
Multi-Fidelity Deep Neural Networks for Adaptive
Inference in the Internet of Multimedia Things.

Sam Leroux∗, Steven Bohez, Elias De Coninck, Pieter Van Molle, Bert
Vankeirsbilck, Tim Verbelen, Pieter Simoens, Bart Dhoedt

Authors are with Ghent University - imec, IDLab, Department of Information Technology

iGent Tower - Department of Information Technology
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium

Abstract

Internet of Things (IoT) infrastructures are more and more relying on multime-

dia sensors to provide information about the environment. Deep neural networks

(DNNs) could extract knowledge from this audiovisual data but they typically

require large amounts of resources (processing power, memory and energy). If

all limitations of the execution environment are known beforehand, we can de-

sign neural networks under these constraints. An IoT setting however is a very

heterogeneous environment where the constraints can change rapidly. We pro-

pose a technique allowing us to deploy a variety of different networks at runtime,

each with a specific complexity-accuracy trade-off but without having to store

each network independently. We train a sequence of networks of increasing size

and constrain each network to contain the parameters of all smaller networks

in the sequence. We only need to store the largest network to be able to deploy

each of the smaller networks. We experimentally validate our approach on dif-

ferent benchmark datasets for image recognition and conclude that we can build

networks that support multiple trade-offs between accuracy and computational

cost.

Keywords: IoT, Deep neural networks, resource efficient inference

∗Corresponding author
Email address: sam.leroux@ugent.be (Sam Leroux)

Preprint submitted to Future Generation Computer Systems September 24, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/211075089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

The Internet of Things (IoT) entails the promise of a world with billions of

interconnected devices, each with sensors that continuously monitor our homes,

offices and streets. These devices will generate massive amounts of information

allowing us to analyze and optimize our environments in unprecedented ways.5

There are many challenges involved when building large scale sensor networks.

The devices themselves need to be small and affordable yet they also need to be

robust and reliable. They need to capture and transmit fine-grained information

without consuming large amounts of energy and they need to be easy to deploy10

and to maintain without intensive manual interaction.

Typical sensors that are found in these IoT deployments are temperature, hu-

midity, pressure and motion sensors. With the right analytic tools these sensors

can already provide a wealth of information about their surroundings but we15

will also need additional rich sensors such as cameras and microphones to fully

understand our environment. A smart traffic camera with license plate de-

tection capabilities can recognize a stolen car or it can detect a traffic jam.

Smart security cameras with facial recognition software can trigger alerts when

unauthorized persons are detected. Voice recognition is already used in smart20

personal assistants and microphones are increasingly used as sensors for exam-

ple to detect gunshots in urban environments1.

These multimedia sensors generate large amounts of high dimensional data [1]

and extracting useful high level insights typically requires computationally in-25

tensive techniques. It is usually not an option to offload the computations to

a cloud back-end since the latency and communication cost of transmitting the

1https://www.washingtonpost.com/news/true-crime/wp/2017/05/10/how-shotspotter-

locates-gunfire-helps-police-catch-shooters-and-denormalize-gun-violence

2



Figure 1: An IoT environment is characterized by a large amount of heterogeneous devices.

We store a single set of weights and are able to deploy a different optimized neural network

to each device without having to train or store all these networks independently.

data to the cloud would be prohibitively large for some applications. In addition

the raw audio and video recordings are often privacy sensitive and should not

leave the local device [2].30

In this work we look at techniques that could perform these types of operations

locally on an Internet of Things device. We focus on deep learning techniques

since these are arguably the state of the art methods to extract information from

high dimensional observations. Deep learning is typically not a good match for

the resource constrained IoT devices since deep learning models require large35

amounts of memory and computational power. A lot of progress however has

been made in reducing the computational cost of deep learning models (we refer

to section 2 for an overview).

An IoT setting is characterized by a large amount of heterogeneous devices.40

Therefore we argue that it is not sufficient to have one optimized neural net-

work with a fixed computational cost. Instead we should be able to optimize

the neural network for each specific device. In addition we would also like to

trade-off the computational cost and accuracy of the network at runtime. This

would allow us to adjust the required resources based on external factors such45

3



as tolerable latency, battery level of the device or required accuracy. The triv-

ial solution would be to train a number of different neural networks each with

a different configuration and to deploy the network that best fits the current

needs. Training all these different networks will take time but even worse, the

overhead involved in storing all these different networks on an embedded device50

in the network might be prohibitively large. A single neural network for large

scale image recognition can quickly require millions of parameters adding up to

hundreds of megabytes of storage.

We propose to train a sequence of models, increasing in size but instead of55

training all networks independently we constrain the larger models to contain

all parameters of the smaller networks as subsets. Hence, just one set of weights

needs to be stored (i.e. the weights of the largest model in the sequence) while

we can use subsets of these weights to deploy smaller networks.

60

We presented the concept of a runtime configurable neural network before in a

conference paper [3]. We now extend this work with a more thorough evalua-

tion on different network architectures and datasets including neural networks

trained on the Imagenet dataset. We also provide a guideline on how to choose

the different subnetworks depending on the bottlenecks of the environment.65

The remainder of this paper is organized as follows. We give an overview of

related work in section 2. We introduce our multi-fidelity architecture in sec-

tion 3 and we experimentally validate our approach on different benchmark

datasets in section 4. We finally conclude in section 5 with a short summary of70

possible future research directions.

2. Related work

Neural networks have been around for a long time but recent advances in tech-

nology such as efficient GPU implementations and large labelled datasets have

4



renewed interest. Deep neural networks are the current state of the art for im-75

age and speech recognition [4]. We refer to [5] for an in depth overview of the

history of neural networks and deep learning.

One problem with deep neural networks is the amount of resources they require

during training and inference. Training a neural network is the computationally80

most expensive part. In most cases however training can be done offline on high

performance GPU systems where energy consumption is less of an issue. We

instead focus on deploying a trained network on an IoT device. These devices

are constrained in terms of processing power, memory or energy consumption.

In these cases we need to reduce the size or complexity of the network with-85

out sacrificing too much accuracy. Various approaches have been proposed to

achieve these goals.

2.1. Reducing the memory footprint

Deep neural networks for image classification easily require millions of parame-

ters (hundreds of megabytes). This makes it hard to deploy a neural network to90

a device with limited memory or to incorporate a neural network into a mobile

app. There is a considerable amount of prior work that has focussed on reducing

the memory footprint of deep neural networks. Han et al. presented a three

stage pipeline that is able to reduce the storage requirement of neural networks

by 35x to 49x without affecting the test accuracy [6]. They succeed in reducing95

the size of the Alexnet [7] and VGG16 [8] architectures from 240MB and 552MB

to 6.9MB and 11.3MB respectively.

Chen et al. proposed an elegant Hashing based approach [9]. They use a

hashing function that groups the weights into a small number of buckets. All100

connections belonging to the same bucket share a single weight value. This

technique was extended in a follow up paper [10] in which they also apply the

hashing trick to the convolutional layers. The authors argue that the weights

of the convolutional filters are typically smooth and low-frequency. They first

5



convert the weights to the frequency domain and then use the hash function to105

group the parameters in hash buckets.

Other approaches to reduce the memory footprint of a neural network include

low rank decomposition of the weight matrices [11] or Structured Matrices [12],

m × n matrices that can be described using less than mn parameters because110

they follow a certain structure. This dramatically reduces the memory footprint

but also supports faster matrix multiplications which can accelerate inference

and training.

2.2. Reducing the computational cost

Reducing the number of weights in a neural network does not necessarily reduce115

the computational cost. Most of the parameters are used in the fully connected

layers while the convolutional layers are responsible for most operations.

One approach is to introduce sparsity between the layers. In [13] the authors

use a sparse connection matrix for the convolutional layers where each output120

channel is only connected to a small subset of the input channels. Operations on

sparse data may need less operations in theory but since most implementations

are optimized for dense matrix operations this may not result in a reduction in

latency or in an increase in throughput.

125

Other techniques try to transfer the knowledge stored in large models (teacher)

to a smaller more efficient (student) network. Hinton et al. proposed to use

the soft outputs of the teacher (the probability distribution over the classes) as

a soft target for the student [14]. A soft target includes information about the

similarities between classes which can make it easier to optimize the student.130

This was later extended by Romero et al. Their Fitnets [15] uses the interme-

diate representations to guide the student in addition to the soft targets.

Most implementations of deep neural networks use 32 bit floating point num-

6



bers for weights and activations. Various works have shown that this is not135

necessary and that 8 bit fixed point integers [16] are usually sufficient. This

reduces the memory footprint and allows for a very efficient implementation in

hardware. Other works further reduce the precision of the weights to 4 bits (for

convolutional layers) or even to two bits (for fully connected layers) [6]. It is

even possible to use binary weights and activations [17] which allows for a very140

efficient implementation in hardware since the floating point operations can be

replaced with logical operations.

In this contribution we take a different approach and instead focus on reconfig-

urability. We argue that it is not enough to train one optimized network because145

an IoT setting is a very heterogeneous environment where different devices re-

quire different trade-offs that might change at runtime. It is however possible

to combine our approach with other techniques such as reducing the precision

of the weights to further reduce the memory footprint or computational cost.

3. Architecture150

Our goal is to train a set of different neural networks each with their own

accuracy v.s. cost trade-off. All networks in the set share the same structure

(same number and types of layers) but they will have a different number of

parameters (see Figure 2). We constrain every network to contain the exact

weights of all smaller networks. We start by training a very small network and155

then gradually add additional parameters to each layer while keeping the already

trained parameters fixed. As a result, the largest network in the sequence will

contain all the weights of the previous networks as subsets of its own weight

matrices. To deploy the networks we only need to store one set of weights (the

weights of the largest network that we want to use) and we can use a subset of160

these weights to deploy smaller versions.

Figure 3a shows how this is done for a fully connected layer. A fully connected

layer with n neurons computes x · W + b where x is a one dimensional input

7



Input Layer 1 Layer 2 Layer 3 Layer 4

Figure 2: For our multi-fidelity architecture we train a set of weights that can be used to

deploy different networks, each with their own accuracy and computational cost trade-off.

Each network has the same structure but differs in the number of parameters (the width of

the layers).

vector (with size m), W is the (m×n) weight matrix of the layer and b is a bias

vector (with size n). If we increase the number of neurons for this layer from165

n to n + k we reshape the weight matrix and bias vector for this layer and we

initialize the new values with random values (grey blocks in figure 3a). We also

need to reshape the weight matrix of the next layer since this layer now receives

a larger input.

170

We use the same approach for convolutional layers. The weight matrix for

a layer with n kernels is now a 4D tensor (n × c × w × h) with c the number

of channels in the input and w and h the width and height of the convolutional

kernels. If we increase the number of kernels in one layer from n to n + k we

again reshape the weight matrix and bias vector of this layer (grey blocks in175

Figure 3b). We also need to reshape the weight matrix of the next layer because

the input of this layer will have a larger number of channels.

We use the traditional backpropagation algorithm to train the network. At

each step in the backpropagation algorithm we calculate the gradient of the loss180

function with respect to the weights of the network and update them to min-

imize the error. We make sure to only update the new parameters by putting

all updates to zero except those that correspond to the new parameters. We

8



FC 1 FC 2

Weights Bias Weights Bias

m

n

n

k
k k

n

(a)

Conv 1 Conv 2

Weights Bias Weights Bias
ww

w w

h h

h h

c c

c c

n

k

n

k

n

k

w

h

w

h

k

n

(b)

Figure 3: Schematic overview of how the weight tensors change when we scale the number

of neurons in a fully connected layer (a) or the number of filters in a convolutional layer (b)

from n to n+k. For both cases we increase the size of the weight tensor and bias vector. This

changes the dimensionality of the output of the layer which is why we also need to change the

size of the weight tensor of the next layer.

simply multiply the gradient descent updates with a mask that contains zero

values except for those positions that correspond to the new weights. For exam-185

ple in the first fully connected layer of Figure 3a where we increase the number

of neurons from n to n + k we calculate the gradient updates with respect to

every element of the m ∗ (n+ k) weight tensor and n+ k bias vector but put all

elements to zero except those m ∗ k weights and k bias values that correspond

to the grey parts of the tensor.190

In the previous paragraph we explained the iterative training routine where we

start with the smallest network of the sequence and each time add additional

parameters and retrain them without changing the already trained weights. We

also experimented with an alternative training approach that trains the differ-195

ent networks all at once. During training we simply select one configuration

at random for each batch of training data and only update the weights of this

specific subnetwork. This update might reduce the performance of the other

networks that share a subset of the weights but we found that during training

the networks learn to co-adapt. This approach is easy to implement but results200

in slightly lower accuracies than the first training technique.

9



4. Experimental validation

In this section we apply our approach to different benchmark problems. We fo-

cus on image classification since this typically requires large networks to process

the high dimensional input images.205

All our experiments were performed using Pytorch 2. We trained the networks

on NVIDIA GTX1080 GPUs. The reported runtimes were all measured on an

Intel Edison3 device. The Intel Edison is an ultra-small embedded computing

platform with an Intel® Atom� SoC dual-core CPU and integrated WiFi and210

Bluetooth LE. These features combined with a peak power consumption of un-

der 1W make this platform an interesting computing platform for various IoT

applications.

4.1. Small scale experiments on CIFAR10, CIFAR100 and SVHN

In our first experiments we validate our approach on three small scale datasets215

for image recognition: CIFAR10 [18], CIFAR100 [18] and SVHN [19]. All three

datasets are similar in size and they all contain 32 by 32 RGB images. The CI-

FAR10 dataset contains images from ten classes such as “cat”, “dog”, “car” and

“plane”. The CIFAR100 dataset is similar but contains images from 100 classes.

The Street View House Numbers (SVHN) dataset contains small cropped digits220

obtained from house numbers in Google Street View images. The number of

train and test samples in each dataset are shown in table 1.

We applied our multi-fidelity approach to a VGG16-like [8] network. The

VGG16 architecture was used by the Visual Geometry Group (VGG) at Oxford

University in the 2014 ImageNet competition. We used the same network ar-225

chitecture for all three datasets. We trained the network at four different scales

following the approach from the previous section. For each scale we divide the

number of convolutional filters and neurons of each layer by the same number.

2Pytorch website: http://pytorch.org/
3Intel Edison Wikipedia article: https://en.wikipedia.org/wiki/Intel_Edison

10

http://pytorch.org/
https://en.wikipedia.org/wiki/Intel_Edison


CIFAR10 CIFAR100 SVHN

Number of classes 10 100 10

Number of train images 50 000 50 000 73 257

Number of test images 10 000 10 000 26 032

Table 1: Properties of the small scale datasets.

Scale 1/4 for example means that each layer contains one-fourth of the num-

ber of convolutional kernels or neurons of the same layer in the full network.230

The results are summarized in table 2. For each scale we report the number

of parameters, the execution time on the Intel Edison platform and the classi-

fication accuracy on the three datasets. The smallest version (scale 1/8) takes

only 2% of the execution time of the original network measured on the Intel

Edison (60ms vs 3400ms) and requires only 1.7% of the number of parameters.235

Compared to the largest scale, the accuracy drops by 10% for the CIFAR10 and

CIFAR100 datasets and by 5% for the SVHN dataset which is an easier task.

By doubling the size to one-fourth of the original size we increase the number

of parameters five-fold to just over 1 million (4 MB if they are stored as 32 bit

floating point). The execution time increases four-fold to 224 ms. The accuracy240

increases with 5% for CIFAR10 and CIFAR100 but only by 1% for the SVHN

dataset. Doubling the scale to 1/2 and again to the full size increases the num-

ber of parameters and execution time four-fold each time.

For each scale we also report the accuracies for a network of the same scale245

but now trained independently of the other scales. The accuracy of the single

scale networks is consistently slightly higher than the multiscale versions be-

cause the optimization problem is much harder when we constrain the network

to contain all parameters of the smaller networks. This penalty is however a

small price to pay for the freedom of having 4 different configurations contained250

in one set of weights.

11



Scale Parameters Time (ms) CIFAR10 CIFAR100 SVHN

1/8 280 460 60 82.3% 62.7% 92.7%

1/4 1 061 428 224 87.5% 68.4% 93.5%

1/2 4 125 188 870 90.2% 70.2% 96.0%

1 16 260 004 3400 91.4% 71.7% 97.1%

1/8 (single scale) 280 460 60 82.1% 62.8% 93.0%

1/4 (single scale) 1 061 428 224 87.8% 69.2% 94.6%

1/2 (single scale) 4 125 188 870 90.5% 70.5% 96.8%

1 (single scale) 16 260 004 3400 92.4% 73.1% 97.8%

Table 2: Results for the VGG16 network on the small scale datasets. The first part of the

table shows the results of our multi-fidelity approach where the weights are shared between the

scales. The second part shows the results of the same networks but now trained independently

without the constraint that weights have to be shared between them.

4.2. Imagenet

The previous experiments used small scale datasets that are not really repre-

sentative of real world applications. In this section we apply our method to the

ILSVRC2012 dataset[20]. This dataset contains 1.2 million training images in255

1000 classes.

We use the Alexnet architecture [7] for this dataset. This architecture has five

convolutional layers and three fully connected layers. The full Alexnet archi-

tecture requires 62 million parameters which corresponds to 250 MB of storage

when all weights are stored as 32 bit floating point numbers. The original ar-260

chitecture requires 7E+08 floating point operations for a single image.

In the previous sections we used a rather naive way of building the subnet-

works by just adding a fixed number of convolutional filters or neurons to each

layer. This is far from optimal since the different layers all have very different265

characteristics. There are three properties that we have to take into account as

we decide on an optimal architecture for a certain device:

12



� The size of the weights. If the storage capacity of the device or the band-

width of the network connection needed to download the weights is the

bottleneck, we can gain most by reducing the number of weights in the270

network.

� The size of the intermediate representations. In addition to storing the

weights we also need memory to temporarily store the intermediate acti-

vations of the network.

� The number of operations. This directly determines the latency and en-275

ergy consumption of the network.

Figure 4 shows these three measurements for each layer in the Alexnet architec-

ture, relative to the entire network. Most of the parameters are needed for the

fully connected layers at the end of the network (the first fully connected layer

alone is responsible for 63% of the parameters). This is a common observation280

that can be made for most convolutional neural networks for image classification

[21]. When the size of the weight vectors is the bottleneck, for example when

the network needs to be downloaded to a device over a slow or costly network

connection, we can gain most by reducing the number of parameters in these

layers.285

The number of floating point operations on the other hand is dominated by the

convolutional layers. The fully connected layers are almost negligible when the

computation itself is the bottleneck. In these cases we can have the highest

impact by reducing the number of filters in the first convolutional layers. The

largest intermediate vectors are created by the first convolutional layers and290

reducing the number of convolutional filters in these layers will have the largest

impact on the required memory.

To build our different networks we focus on the Conv1, Conv2 and FC1 layers

because these have the largest impact on the needed memory, on the number of

operations and on the number of parameters respectively. Note that changing295

the number of parameters in one layer also has an effect on the number of pa-

rameters and number of operations of the next layer.

13



Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 Output

0

20

40

60
R
el
at
iv
e
to

th
e
or
ig
in
al

n
et
w
or
k
(%

)
Number of
Parameters

Number of
operations

Size of
intermediate

representations

Figure 4: Analysis of the number of operations, number of parameters and the size of the

intermediate outputs for each layer in the Alexnet Network.

We trained a multi-fidelity version of the Alexnet network with 16 and 64 filters

for the first convolutional layer (C1), 48 and 192 filters for the second convo-300

lutional layer (C2) and 512 and 4096 neurons in the first fully connected layer

(FC1). This results in eight different combinations each with a computational

cost and corresponding accuracy. Table 3 lists the different subnetworks con-

tained in one set of weights. The first row shows the properties of the original

Alexnet network. The second row shows the same network but now trained with305

the constraint that it needs to contain all parameters of all seven smaller net-

works. The optimization problem for our multi-fidelity network is much harder

because of these constraints which explains the 2% drop in accuracy compared

to the full model trained from scratch. The following rows show various sub-

networks that we have at our disposal thanks to the multi-fidelity architecture.310

We again report the time needed to forward one image through the network on

the Intel Edison platform. We report both the Top 1 and Top 5 accuracy.

Even though we only change three layers, we end up with 8 distinctly different

networks, each with there own trade-offs. If we focus on execution time for ex-315

ample, we can reduce the latency by half and the accuracy drops from 55.6% to

47%. We can also reduce the number of parameters to one-fifth of the original

14



number. This reduces the accuracy by 5%. The execution time stays the same

since we only removed neurons from the fully connected layers and these layers

have a minimal effect on computational cost.320

C1 C2 FC1 Parameters Largest

intermediate

representation

FLOPS Time (s) Top 1 Top 5

64 192 4096 6.1e7 1.9e5 7e8 23 55.6% 78.2%

64 192 4096 6.1e7 (100%) 1.9e5 (100%) 7e8 (100%) 23 53.3% 76.5%

64 192 512 1.3e7 (21%) 1.9e5 (100%) 6.7e8 (95%) 22 50.1% 74.7%

64 48 4096 6.1e7 (100%) 1.9e5 (100%) 4.6e8 (65%) 17 49.9% 73.7%

64 48 512 1.3e7 (21%) 1.9e5 (100%) 4.1e8 (58%) 16 49.8% 71.7%

16 192 4096 6.1e7 (100%) 1.4e5 (74%) 4.9e8 (70%) 17 50.1% 73.7%

16 192 512 1.3e7 (21%) 1.4e5 (74%) 4.5e8 (64%) 16 46.5% 71.5%

16 48 4096 6.0e7 (98%) 6.5e4 (34%) 3.7e8 (52%) 11 47.0% 71.1%

16 48 512 1.2e7 (20%) 6.5e4 (34%) 3.2e8 (46%) 10 43.6% 68.8%

Table 3: Different configurations of our Alexnet network and the corresponding accuracy. We

change the number of convolutional filters in the first and second convolutional layer (C1 and

C2) and the number of neurons in the first fully connected layer (FC1) because these layers

have the largest impact on the size of the intermediate activations, on the FLOPS and on the

number of parameters respectively.

5. Conclusion and future work

Applying deep neural networks to IoT sensor data is an interesting research

direction. In this article we argue that because IoT environments are contin-

uously changing heterogeneous environments we need more than one network

with a fixed computational cost and corresponding accuracy. We propose to325

train multiple networks and to constrain them to share parameters. We only

need to store one set of weights to be able to deploy multiple versions of the

same network. We evaluated our approach on four well known image classifica-

tion datasets and found that it is indeed possible to have a variety of network

15



configurations contained in one set of weights.330

Future work could focus on optimizing the different splits of the network. In

this work we provided some heuristics on how to choose these based on a manual

inspection of the different layers but it would be interesting to find a method

that could find the most interesting splits automatically for any given network335

architecture.

Acknowledgements

Steven Bohez is funded by a Ph.D. grant of the Agency for Innovation by Science

and Technology in Flanders (IWT). We gratefully acknowledge the support of

NVIDIA Corporation with the donation of GPU hardware used for this research.340

16



References

[1] W. Hou, Z. Ning, L. Guo, X. Zhang, Temporal, functional and spatial big

data computing framework for large-scale smart grid, IEEE Transactions

on Emerging Topics in Computing.

[2] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu,345

B. Amos, Edge analytics in the internet of things, IEEE Pervasive Com-

puting 14 (2) (2015) 24–31.

[3] S. Leroux, S. Bohez, E. De Coninck, T. Verbelen, B. Vankeirsbilck,

P. Simoens, B. Dhoedt, Multi-fidelity matryoshka neural networks for con-

strained iot devices, in: Neural Networks (IJCNN), 2016 International Joint350

Conference on, IEEE, 2016, pp. 1305–1309.

[4] Y. Bengio, et al., Learning deep architectures for ai, Foundations and

trends® in Machine Learning 2 (1) (2009) 1–127.

[5] J. Schmidhuber, Deep learning in neural networks: An overview, Neural

networks 61 (2015) 85–117.355

[6] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding, arXiv

preprint arXiv:1510.00149.

[7] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural networks, in: Advances in neural information360

processing systems, 2012, pp. 1097–1105.

[8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[9] W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural

networks with the hashing trick, in: International Conference on Machine365

Learning, 2015, pp. 2285–2294.

17



[10] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen, Compressing

convolutional neural networks, arXiv preprint arXiv:1506.04449.

[11] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al., Predicting parameters

in deep learning, in: Advances in Neural Information Processing Systems,370

2013, pp. 2148–2156.

[12] V. Sindhwani, T. Sainath, S. Kumar, Structured transforms for small-

footprint deep learning, in: Advances in Neural Information Processing

Systems, 2015, pp. 3088–3096.

[13] S. Changpinyo, M. Sandler, A. Zhmoginov, The power of sparsity in con-375

volutional neural networks, arXiv preprint arXiv:1702.06257.

[14] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural net-

work, arXiv preprint arXiv:1503.02531.

[15] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio,

Fitnets: Hints for thin deep nets, arXiv preprint arXiv:1412.6550.380

[16] V. Vanhoucke, A. Senior, M. Z. Mao, Improving the speed of neural net-

works on cpus, in: Proc. Deep Learning and Unsupervised Feature Learning

NIPS Workshop, Vol. 1, 2011, p. 4.

[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized

neural networks: Training deep neural networks with weights and activa-385

tions constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830.

[18] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny

images.

[19] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading

digits in natural images with unsupervised feature learning, in: NIPS work-390

shop on deep learning and unsupervised feature learning, Vol. 2011, 2011,

p. 5.

18



[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, Im-

ageNet Large Scale Visual Recognition Challenge, International Jour-395

nal of Computer Vision (IJCV) 115 (3) (2015) 211–252. doi:10.1007/

s11263-015-0816-y.

[21] V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, Efficient processing of deep neural

networks: A tutorial and survey, arXiv preprint arXiv:1703.09039.

19

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related work
	Reducing the memory footprint
	Reducing the computational cost

	Architecture
	Experimental validation
	Small scale experiments on CIFAR10, CIFAR100 and SVHN
	Imagenet

	Conclusion and future work

