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Abstract

Metalworking fluids (MWF) are water- or oil-based liquids to cool and lubricate tools, work

pieces and machines, inhibit corrosion and remove swarf. One of the major problems in the

MWF industry is bacterial growth as bacterial enzymes can cause MWF degradation. In

addition, bacteria can form biofilms which hamper the functioning of machines. Last but not

least, some bacterial by-products are toxic (e.g. endotoxins) and present potential health

risks for metalworking machine operators via the formation of aerosols. Therefore, a novel

fast yet accurate analytical method to evaluate and predict the antibacterial capacity of

MWF would be an important asset. As such a tool is currently lacking, the present study

aimed to develop a protocol based on flow cytometry (FCM) to assess the antibacterial

potential of newly developed MWF independent of bacterial growth. Results of this novel

method were compared to a biochallenge test currently used in MWF industry and also to

traditional plate counts. Our results represent a proof-of-principle that FCM can reliably pre-

dict the antibacterial capacity of MWF already within one day of incubation with Escherichia

coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis, being sub-

stantially faster than the current growth-based methods.

Introduction

The metalworking industry utilizes recirculating metalworking fluids (MWF) to cool, remove

metal fines, lubricate and prevent corrosion during metal grinding and cutting procedures [1].

Metalworking fluids are complex mixtures of oils, biocides, dissolved metals, antifoaming

agents and many other organic and inorganic components [2,3]. These are formulated to

improve longevity of equipment, but their formulation also makes them highly prone to physi-

cal, chemical and especially microbial contamination [4,5]. Uncontrolled microbial growth

significantly impacts both the MWF performance and the health of the machine operators
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[3,6,7]. Indeed, the resulting microbial degradation of MWF can cause corrosion of machines,

tools and work pieces, as well as loss of lubricity and fluid stability, and decrease of the fluid

pH due to organic acid production. Such contamination also often results in biofilm formation

(visible as slime which can plug filters) and in unacceptable odors, but also carries important

health risks for operators [8,9]. On the other hand, knowledge on the MWF deterioration

capacity of microorganisms may also provide an important solution towards a safe and eco-

nomical disposal of operationally exhausted MWF [10,11,12].

Microbial contamination of MWF is inherently related to the composition of these complex

fluids. More than three decades ago, Foxall-Van Aken et al. [13] already stated that 3 important

classes of compounds are usually present in MWF at a sufficient concentration to support

microbial growth, being oil, petroleum sulphonates and fatty acids. In addition to these key

carbon sources, breakdown products of other microorganisms may also serve as nutrients [4].

Nevertheless, the highly selective nature of those substrates limits the microbial diversity in

MWF [10,14,15]. Consequently, it is the general chemistry of a MWF, rather than any particu-

lar component hereof, which selects for the microbial community composition [15]. Many

studies have identified Pseudomonads, including Pseudomonas aeruginosa, as the predomi-

nant species [3,10,14,16,17,18]. A variety of other bacterial classes, including Klebsiella pneu-
moniae, Proteus mirabilis and Escherichia coli has been described to also frequently

contaminate MWF [4,9,17,18,19,20].

Currently, the use of biocides is the most common strategy for the control of microbial

growth in MWF, with formaldehyde condensates being the most popular chemical agents

[6,21]. However, the use (of combinations) of biocides is subjected to severe regulations and

limitations. Consequently, there is an ongoing search for novel MWF biocides that may pro-

vide superior alternatives. For this purpose, it is of critical importance to evaluate each of such

candidate biocide against appropriate problem strains, both in controlled and in used MWF

matrix conditions [22]. Regarding the former, the individual potential of candidate biocidal

compounds should be verified in such a controlled environmental set-up as an initial

screening.

Yet, research in this specific field is hampered by the fact that the conventional culture-

based methods used for the evaluation of the biocidal potential of MWF lack both speed and

specificity. Most importantly, the stressed and/or non-culturable fraction of this bacterial pop-

ulation, which equally contributes to the described detrimental effects, remains undetected in

culture-based analysis [23]. This has led to an increasing interest in developing alternative

methods that can provide real-time information on the microbial viability in MWF. Several

studies have been performed with a variation of bacterial species including PCR [23,24], FISH

[25], ATP quantification [26], and also flow cytometry (FCM) [27,28]. Both latter studies from

the same group illustrated the problems occurring due to interference of the MWF matrix

with FCM and highlight the need to isolate the micro-organisms from this matrix prior to

such analysis.

In the present study, an isolation method of selected Gram-negative bacterial species all

relevant in the context of MWF is at first described complementary to our recent report on

fungal contamination of MWF [29]. Secondly, this optimized sample preparation was the

basis for the subsequent FCM evaluation of real-time bacterial viability using carefully opti-

mised conditions. Thirdly, for comparative purposes, plate counts were performed and our

novel FCM method was further validated and its predictive value on the biocidal potential of

the screened MWF confirmed, by comparing these data with the time consuming American

Society for Testing and Materials (ASTM E2275) method traditionally used in MWF

industry.

Flow cytometry in metal working fluids
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Materials and methods

Test compounds

Quakercool 3530 FF (product 270). This product is described as a multi-purpose MWF

used mainly for ferrous alloys. It contains polyborates which results in an excellent pH buffer-

ing capacity. As a lubricant it consists of a medium amount of mineral oils and a low amount

of synthetic esters. It does not contain any biocides.

Quakercool 7110 BF (product 258). This high-end product is mainly used for difficult

machining operations on aluminium alloys. It is boron-free and relies on a combination of pri-

mary and tertiary alkanolamines, in combination with a proprietary, innovative boron replace-

ment for pH buffering. For lubrication it consists of a high level of mineral oils and a medium

amount of synthetic esters. It does not contain any biocides.

Quakercool 7601 BFFR (product 869). This high-end product is mainly used for

machining aluminium, titanium and nickel alloys, specifically in aerospace applications. As

lubricant it contains a low amount of mineral oils and a high amount of different synthetic

esters, combined with a phosphorous based anti-wear agent. It is boron-free, and contains an

isothiazolone based biocide. The special blend of specific amines not only inhibits the growth

of gram negative bacteria, but also of mycobacteria and fungi.

Experimental Product 284 (prototype 0018.2.4). This product is an experimental prod-

uct which was not further developed due to insufficient resistance against microbiological

growth. It contains a medium amount of mineral oil and synthetic esters, a low amount of pri-

mary and tertiary alkanolamines. It is boron-free and contains no biocides.

Preparation of the emulsions

All emulsions were first prepared at a concentration of 6% end use dilution in Conshohocken

tap water. The pH of the emulsions was equilibrated by bubbling through air for 24 hours (h),

at an air flow rate of 350 ml/min. The uptake of carbon dioxide from the air brings down the

pH to an equilibrium value. pH after aeration was recorded as the starting pH for the biochal-

lenge test. Samples that passed the 8 week challenge at 6%, were further diluted to 4%.

Starting pH values for the biochallenge test were 9.15, 8.93, 9.19 and 9.27 for P270, P284,

P258 and P869 respectively. For the flow cytometric and plate counts analyses separate series

of the emulsions were prepared with pH 9.00 and 9.50.

Bacterial strains and culture

Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumo-
niae (ATCC 13883) were obtained from the DSMZ culture collection (Germany). Proteus
mirabilis (ATCC 7002) was obtained from LGC Standards. These bacterial species were

selected based on ASTM E686-91 and ASTM E2275-03.

For flow cytometric analysis and plate counts, E. coli, P. aeruginosa, K. pneumoniae and P.

mirabilis were separately grown overnight at 37˚C in Müller-Hinton broth (MH, Oxoid Lim-

ited, Hampshire, United Kingdom). The bacteria were then collected by centrifugation (10 000

x g, 2 min, room temperature) of 1 ml of bacterial culture and then resuspended in 1 ml of ster-

ile PBS.

Exposure conditions for flow cytometry and plate counts

The four MWF were inoculated with the separate bacterial cultures to a final concentration of

4.5�106–1�107 CFU/ml MWF, without affecting the final MWF concentration. As a control

sample, sterile 0.9% NaCl (pH 7.4) was also inoculated with the same bacterial concentrations.

Flow cytometry in metal working fluids
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The inoculated samples were then incubated at 28˚C and samples were taken at different time

points (0, 5 and 24h, and after 1 week) for further analysis.

Flow cytometric viability measurement

Extraction of bacteria from the MWF. As MWF are complex matrices comprising

different types of mineral oils, amines and synthetic esters amongst others, appropriate sample

preparation was necessary to allow FCM assessment of the bacteria present in these MWF.

Optimization of the isolation process was done for all four types of MWF used to achieve a

common extraction procedure for these MWF matrices. Incubation in the MWF resulted in

residual pollution of the bacterial population with MWF components after a 1-step isolation of

the bacteria by centrifugation. This pollution was attributed to the oil vesicles present in the

MWF matrix. Therefore, the bacteria were washed three times with ice-cooled sterile saline in

Eppendorf tubes (4000g, 10 min, 4˚C) to remove the matrix pollution. After the last wash step,

the pellet was resuspended in 20 μl sterile saline and transferred to a polystyrene round base

flow cytometry tube.

Fluorescence staining and viability assessment of the extracted bacteria. All data were

obtained using a FACSCanto flow cytometer (Becton, Dickinson and Company, Erembode-

gem, Belgium), and acquired and processed using FacsDiva software (Becton, Dickinson and

Company, Franklin Lakes, NJ, USA). All experiments were performed in triplicate.

Bacterial viability was assessed using the LIVE/DEAD BacLightTM kit (Molecular Probes

Eugene, OR, USA) as described by the manufacturer. This bacterial viability kit is widely used

in flow cytometry and consists of two nucleic acid stains: green fluorescent SYTO 9 is cell-per-

meable and freely enters all tested bacteria, either live or dead, while red fluorescent propidium

iodide (PI) can only enter membrane-comprised cells [30]. In our set-up, 977 μl of sterile saline

cell suspension was added to 20 μl of the treated bacteria. These samples were immediately

stained with 3 μl of a mixture of SYTO 9 (5 μM final concentration) and PI (30 μM final con-

centration) and incubated for 15 minutes in the dark at room temperature. FCM measure-

ments were performed immediately thereafter.

Plate counts

The number of CFU per ml was assessed by conventional plate count, which is based on CFU

values obtained from a 10-fold serial dilution of each sample plated on Tryptone Soy Agar

(Oxoid Limited, Hampshire, United Kingdom) and incubated overnight at 37˚C. These plate

counts determine the number of culturable bacteria in each sample. All data are the result of

triplicate experiments.

Biochallenge test

The biological resistance of the fluids was assessed in a test essentially equivalent to the method

described in ASTM E686-91, Standard Method for Evaluation of Antimicrobial Agents in

Aqueous Metalworking Fluids, with the following adaptations. All fluids were initially inocu-

lated with 10% of freshly prepared, mixed inoculum in Trypticase Soy Broth, consisting of E.

coli, K. pneumoniae, P. aeruginosa, P. mirabilis. In the consecutive weeks inoculations were

done with 2% of freshly prepared inoculum of the same bacterial composition. The bacteria in

the mixed inoculi were enumerated by plate count on Standard Plate Count Agar (DF

0479173).

Prior to the weekly additions of inoculum, the emulsions were sampled and the number

of surviving bacteria were enumerated by plate count on Standard Plate Count Agar (DF

0479173).

Flow cytometry in metal working fluids
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The test was run for 8 consecutive cycles (1 cycle = 1 week), or until failure. Failure is

defined as the presence of>5 log CFU/ml for 2 consecutive weeks. Emulsions that passed

eight cycles were further diluted down to 4% and the test was continued for an additional 8

weeks or until failure.

Statistical analysis

A completely randomized block design (general linear model) was used. To assess the effect of

the different treatments, a Tukey test was performed per time point and per bacterial species

with a reliability of α = 0.05. The Tukey algorithm was applied to compensate for the increas-

ing type I error during multiple pairwise comparisons of treatment.

Results

Flow cytometric viability measurement

As previously shown for E. coli [31], flow cytometric analysis of membrane integrity with

SYTO 9/PI dual staining revealed a unique fluorescence pattern directly related to the degree

of membrane damage. Our optimized FCM protocol was now used to monitor the viability of

E. coli, P. aeruginosa, K. pneumoniae and P. mirabilis. in 4 different MWF and each at 2 differ-

ent pH values (pH 9.0 and 9.5). A negative control sample (sterile PBS) was included in all

experiments for comparison purposes. Three bacterial subpopulations were thus identified:

membrane-intact live bacteria, membrane-damaged “intermediates” and dead bacteria. The

FCM contour plots obtained at pH 9.0 are shown in Fig 1, those of the incubations at pH 9.5

are shown in S1 Fig.

Influence of short term incubation (i.e. 5h and 24h). Our FCM data show that the via-

bility of K. pneumoniae, P. aeruginosa and P. mirabilis was the least affected upon their expo-

sure to MWF P284, in contrast to E.coli at 24h of exposure. The antibacterial influence of the

other 3 MWF was even more species-dependent (Fig 1). The increase in percentage of dead

bacteria between the start of the experiment (t0) and after 24h of incubation is summarized for

each of the 4 MWF and separate bacterial species (Table 1). The antibacterial influence of the

MWF was species-dependent (Fig 1).

Increase in the percentage of the dead bacterial subpopulation of E. coli, P. aeruginosa, K.

pneumoniae and P. mirabilis between the start of the incubation (t0) and after 1 day (t24).

The difference in susceptibility to the 4 MWF comparing E. coli, K. pneumoniae, P. aerugi-
nosa and P. mirabilis, at both incubation times (t0, t24) and both pH values (pH 9.0 and 9.5)

are presented in Table 2, showing the percentages of the three bacterial subpopulations for all

incubation conditions.

For E. coli at pH 9.0 and after 5h of incubation, the highest percentage of dead bacteria

(92.7% cell death) was seen with P869. After 24h of incubation, the highest percentage of dead

bacteria was seen with P270 (76.6% cell death), closely followed by P258 (72.6% cell death).

Results at pH 9.5 were comparable (S1 Fig). For P. aeruginosa at pH 9.0 and after 5h of incuba-

tion, the highest percentage of dead bacteria was also seen with P869 (62.0% cell death), closely

followed by P270 (58.7% cell death). After 24h of incubation, the highest percentage of dead

bacteria was seen with P270 (16.6% cell death). For P. aeruginosa results also show that after

24h of incubation the intermediate bacteria are the predominant viability state present (i.e

87.7%, 87.7%, 84.4% and 93.8% of intermediate bacteria with P284, P869, P270 and P258

respectively). Results at pH 9.5 were comparable to pH 9.0 (S1 Fig). For K. pneumoniae at pH

9.0 and after 5h of incubation the highest percentage of dead was seen with P270 (48.2% cell

death), followed by P869 (32.0% cell death). After 24h of incubation the highest percentage of

dead bacteria was seen with P270 (79.3% cell death), closely followed by P258 (74.7% cell

Flow cytometry in metal working fluids
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death) and P869 (61.3% cell death). Results at pH 9.5 were comparable for P869 (43.7% cell

death), P270 (37.6% cell death) and P258 (42.2% cell death) (S1 Fig). For P. mirabilis at pH 9.0

and after 5h incubation the highest percentage of dead was seen with P869 (36.5% cell death),

closely followed by P270 (24.3% cell death). After 24h of incubation, P270 has the highest per-

centage of dead bacteria (66.6% cell death). Results at pH 9.5 show the highest percentage of

Fig 1. Flow cytometric SYTO 9/PI dual staining contour plots. Flow cytometric SYTO 9/PI dual staining contour plots presenting E. coli, P. aeruginosa, K.

pneumoniae and P. mirabilis viability at different incubation times with each of the 4 MWF (P284, P869, P270, P258) at pH 9.0 and compared to PBS (negative

control). The green region corresponds to the subpopulation of viable cells with an intact plasma membrane, the blue region corresponds to the subpopulation

of intermediate cells with (partly) damaged membranes and the red region corresponds to the subpopulation of dead cells with irreversibly damaged

membranes.

https://doi.org/10.1371/journal.pone.0211583.g001
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dead bacteria with P869 (74.6%) after 5h of incubation, whereas at 24h of incubation results

for both P869 and P270 were comparable (73.0% and 67.5%, respectively) (S1 Fig).

Influence of long term incubation (i.e. 1 week). Remarkably, for E. coli, at pH 9.0 and

after 1 week of incubation the percentage of dead bacteria for all MWF (59.2%, 47.1%, 33.1%

and 24.5% for P284, P869, P270 and P258, respectively) was lower than after 24h of incubation

(88.3%, 56.3%, 76.6% and 72.6% for P284, P869, P270 and P258, respectively). Consequently

the percentage of intermediate bacteria was systematically higher after 1 week of incubation

(Table 2). For P. aeruginosa this overall effect was already observed after 24h of incubation and

persists as the bacterial population consisted mainly of intermediate bacteria after 1 week of

incubation during at pH 9.0 (76.1%, 79.9%, 84.2% and 81.7% of intermediate bacteria with

P284, P869, P270 and P258, respectively). In marked contrast to both E.coli and P. aeruginosa,

for K. pneumoniae the percentage of dead bacteria increased after 1w of incubation at pH 9.0

(79.9%, 65.2%, 92.0% and 54.7% for P284, P869, P270 and P258, respectively) compared to

24h after incubation with P284 (4.1% cell death), P869 (61.3% cell death) and P270 (79.3% cell

death) but not with P258 (74.7% cell death). For P. mirabilis after 1 w of incubation at pH 9.0

(53.7%, 65.4%, 75.8% and 54.3% for P284, P869, P270 and P258, respectively) a higher percent-

age of dead bacteria was seen compared to after 24h of incubation (23.6%, 36.4%, 66.6% and

35.4% for P284, P869, P270 and P258, respectively).

Results of pH 9.5 are comparable to the effects seen at pH 9.0 (S1 Fig).

Plate counts

Complementary to the flow cytometric evaluation of bacterial viability, the bacterial culturabil-

ity was assessed through traditional plate counts for in-house comparative purposes. Mean val-

ues of E. coli, K. pneumoniae, P. aeruginosa and P. mirabilis incubated with the 4 different

MWF and a negative control (0.9% NaCl) are presented in Fig 2. Culturability of all 4 bacterial

species was most affected by exposure to P869 after 5h and longer incubation times. For E.

coli, P284 had the lowest antibacterial effect (still 2.92 log CFU/ml after 24h of incubation),

while for the 3 other bacterial species P284 had a similar effect as P270 and P258, i.e. after 24h

of incubation at pH 9.0, no bacterial growth was observed. Remarkably, after 1 week of incuba-

tion at pH 9.0 bacterial growth was seen for P. aeruginosa incubated with all MWF (1.44, 2.94,

1.33 and 2.95 log CFU/ml with P284, P869, P270 and P258, respectively), for K. pneumoniae
when incubated with P258 (1.50 log CFU/ml) and for P. mirabilis when incubated with P258

(1.62 log CFU/ml) and P270 (1.09 log CFU/ml).

Biochallenge test

Results of this slightly adapted Standard Method for Evaluation of Antimicrobial Agents in

Aqueous Metalworking Fluids (Table 3) showed that P284 had a bacterial count >5 log CFU/

ml after the first period of 8 weeks with an emulsion concentration of 6%. This product was

Table 1. Increase in the percentage of dead bacteria for each of the 4 bacterial species between t0 and t24 after

exposure to each of the 4 MWF at pH 9.0.

Increase in % of dead bacteria after 24h incubation

P284 P869 P270 P258

E. coli 79.8 73.8 68.9 63.8

P. aeruginosa 8.4 4.1 4.6 -1.8

K. pneumoniae 3.4 59.2 78.7 74.3

P. mirabilis 19.7 34.0 42.7 35.3

https://doi.org/10.1371/journal.pone.0211583.t001
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Fig 2. Plate counts and statistical analysis. (A) Plate counts of E. coli, P. aeruginosa, K. pneumoniae and P. mirabilis representing bacterial culturability.

Bacterial populations were exposed for different incubation times to either P284, P869, P270, P258 at pH 9.5 and compared to PBS (negative control). (B)

Different letters indicate statistical differences (p<0.05).

https://doi.org/10.1371/journal.pone.0211583.g002
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thus not further exposed to the bacterial mix and failure was defined after 7 cycles. On the

other hand, P270, P258 and P869 all showed satisfactory plate counts� 2 log CFU/ml after the

first 8 cycles. These 3 MWF were therefore further diluted to 4% to continue the biochallenge

test. Plate counts showed that P270 failed after 3 extra cycles (i.e. failure after 11 cycles) and

that P 258 failed after 2 extra cycles (i.e. failure after 10 cycles) at those lower emulsion concen-

trations. Only P869 was able to resist the bacterial challenge for the whole second 8 week

period (i.e. failure after >16 cycles). Table 3 presents an overview of all bacterial counts during

the biochallenge test. From these plate count data an overall ranking of the products could be

made according to their bio-resistancy: P869> P270> P258> P284, with P869 being the

most resistant and P284 the least resistant to E. coli, K. pneumoniae, P. aeruginosa and P.

mirabilis.
All fluids were initially inoculated with 10% of freshly prepared, mixed inoculum of E. coli,

K. pneumoniae, P. aeruginosa and P. mirabilis in TSB broth. In the consecutive weeks inocula-

tions were done with 2% of freshly prepared inoculum of the same bacterial composition.

Prior to the weekly additions of inoculum, the emulsions were sampled and the number of sur-

viving bacteria were enumerated by plate count on Standard Plate Count Agar. The test was

run for 8 consecutive cycles (1 cycle = 1 week), or until failure. Failure is defined as the pres-

ence of>5 log CFU/ml for 2 consecutive weeks. Emulsions that passed eight cycles were fur-

ther diluted down to 4% and the test was continued for an additional 8 weeks or until failure.

Discussion

Results show that the susceptibility to the MWF compounds is predominantly bacterial spe-

cies-dependent. When the results of an incubation time up to 24h are compared, K. pneumo-
niae and P. mirabilis are the most resistant to the antimicrobial effects of the MWF matrices.

When incubated for 1 week, P. aeruginosa and P. mirabilis appeared to be more resistant to the

Table 3. Overview of all bacterial counts during the biochallenge test.

Surviving bacteria (log CFU/ml)

MWF P270 P284 P258 P869

Inoculum (log CFU/ml) week # Emulsion concentration 6%

7.54 1 2.00 2.00 <2.00 <2.00

7.73 2 2.00 4.00 2.00 <2.00

7.64 3 3.00 4.00 2.00 <2.00

7.56 4 <2.00 3.00 <2.00 2.00

7.32 5 2.00 3.00 <2.00 <2.00

7.36 6 2.00 4.00 <2.00 <2.00

7.32 7 2.00 4.00 2.00 <2.00

7.32 8 <2.00 7.40 2.00 <2.00

Emulsion diluted to 4%

7.41 9 3.00 terminated <2.00 <2.00

7.43 10 3.00 3.00 4.00

7.61 11 3.00 7.00 <2.00

7.69 12 5.00 7.00 <2.00

7.66 13 >7.00 terminated 2.00

7.69 14 terminated <2.00

7.63 15 4.00

7.65 16 3.00

Failure in week 13 8 11 >16

https://doi.org/10.1371/journal.pone.0211583.t003
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antimicrobial effects of the MWF. When comparing the different MWF, at 5h of incubation

P869 has a greater antibacterial effect, however, after 24h of incubation exposure to P270

results in the highest percentage of dead bacteria. In general, the antibacterial effect of the

MWF appears stronger at pH 9.5 compared to pH 9.0, however the observed trends of

decreased bacterial viability are comparable at both pH values and there was no statistically sig-

nificant effect of pH.

When relating the results more specifically to the composition of the different MWF used,

several observations can be made. The MWF P270, P258 and P284 all contain no specific bio-

cides, whereas P869 does contain an isothiazolone based biocide. Isothiazolone biocides are

widely used in different water-based industrial systems [32,33] and the presence of this com-

pound could explain the better antibacterial characteristics of P869. The antibacterial action of

isothiazolone biocides is based on the disruption of metabolic pathways by a broad enzyme

inhibition, resulting in the loss of viability and inhibition of growth, followed by a rapid cell

death [32].

Other compounds with antibacterial effects are the boron-based compounds [34,35]. Only

P270 contained polyborates which will have contributed to the antibacterial effect. Sandin

et al. [2] described an effect of boric acid on the bacterial cell wall, which could explain the rap-

idly detected effect in the bacterial membrane by our flow cytometry protocol. The MWF P258

and P284 do not contain a biocide, nor any boron-based compounds, however alkanolamines

were added to these MWF. The antibacterial potential of alkanolamines has also been

described [36,37]. The MWF P284 contains a lesser amount of these alkanolamines, which

could explain the poor antibacterial capacity of this MWF.

The current results show a remarkable concordance between the prediction based on the

FCM data and the industrial biochallenge test ranking the 4 MWF according to their bio-resis-

tance. Whereas up to 16 weeks were needed for the latter ranking, FCM viability staining gen-

erated the same conclusion after only 24h of incubation. Moreover, the FCM data allowed

additional differentiation in the antibacterial activity of the different MWF and also on the sus-

ceptibly of the different species of bacteria by the identification of 3 separate bacterial popula-

tions, i.e. live, intermediate and dead bacteria. More specifically, the identification of a third

subpopulation of “intermediate” bacteria beside the viable and dead subpopulations yields

important information on the antimicrobial potential of the different MWF. Moreover, this

extra population of bacteria provides potential information on the viability of the bacteria that

is missed when in only culturability is taken into account.

There are only a handful of studies describing the use of FCM to evaluate microbial viability

in MWF. Recently, our group has developed a novel method that allows the accurate predic-

tion of the fungicidal potential of MWF using FCM viability measurements [29]. This method

uses a simple centrifugation protocol to isolate fungal conidia from MWF. Previously, the

FCM detection and quantification of mycobacteria was described by Chang et al. [27], per-

forming the staining in the MWF matrix, which resulted in significant interferences in their

viability assessment. To overcome this matrix interference, they subsequently [28] attempted

to isolate the mycobacteria by immunomagnetic separation and centrifugation, but again

reported suboptimal results. Chang et al. [27] also emphasizes the importance of separating

bacteria from the MWF in order to measure specific characteristics of bacterial populations. In

accordance with our novel protocol developed for fungal conidia, which comprises of 2

straightforward washing steps, we were able to isolate E. coli, K. pneumoniae, P. aeruginosa
and P. mirabilis from MWF combining centrifugation and several wash steps at 4˚C. This sim-

ple sample preparation elegantly avoided matrix interference with our bacterial viability assess-

ment after incubation with different MWF matrices. The strength of this isolation method lies

in its simplicity and it can be performed in MWF developing laboratories. Also, the use of
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FCM has become a standard method in several scientific fields, which has led the development

of affordable user-friendly flow cytometers. Most importantly, there is a very significant time

gain in evaluating the antibacterial potential of newly developed MWF using our novel FCM

method (24h) compared to the traditionally used biochallenge method (8 weeks).

Traditional enumeration methods for bacteria in MWF include both direct and indirect

detection. Typically, dip slides used to grow and subsequently count the number of bacteria

present in MWF are very laborious and time consuming. Moreover, they underestimate the

actual distribution of the bacteria present in the MWF [18]. The past decade, several novel

methods have been described that potentially meet the industry’s need for a test method that

can rapidly estimate the total number of bacteria, such as the ATP bioluminescence assay

[38,39] and various adapted microscopy-based direct count methods [25,40,41]. More

recently, substantial efforts have also been made to detect and quantify specific microbial types

in MWF without the need for their culture [42]. Nevertheless, none of these alternatives have

been widely accepted. In the current study, a straightforward novel growth-independent pro-

tocol that allows the reliable prediction of the antibacterial potential of experimentally contam-

inated MWF within only 24h, is presented and applied in parallel to the ASTM standard

method used in the MWF industry. The latter method is growth-based and requires several

weeks of incubation. Therefore, our protocol represents a major saving of both time and bud-

get in the development of novel MWF formulations. This is convincingly demonstrated in our

proof-of-principle concept on the highly predictive potential of our flow cytometry based pro-

tocol for the evaluation of antibacterial capacity of 4 MWF against E. coli, K. pneumoniae, P.

aeruginosa and P. mirabilis. Of relevance, such predictive power was recently also described by

our group for the antifungal capacity, after incubation of different commercial MWF with

Fusarium solani [29].

Generally, the use of flow cytometry in combination with specific fluorescent stains pro-

vides detailed information and different states of the bacterial viability whereas traditional

techniques like agar plating and microscopy only provide limited information [25]. Moreover,

recently novel flow cytometer models of (e.g. the Cytoflex system of Beckman Coulter) have

been developed with a very high sensitivity using adopted strategies for single molecule fluo-

rescence detection in sheathed flow. Using label-free side scatter detection, a single bacterial

cell can be well discriminated from the instrumentation background and total bacterial counts

can be made based on a volumetric control that enable a direct quantification of the bacterial

concentration [43,44].

The microscopy-based counting reveals the total population of cells and plate counting

only yields the culturable fraction of the population. A major discrepancy between those differ-

ent types of counts is often reported. The LIVE/DEAD BacLightTM dual staining used in the

current study has been described for viability analysis of bacterial species in several biological

matrices such as seawater, drinking water, soil and food products [45,46,47,48]. Only in a few

studies the use of this staining has been reported in MWF for either Mycobacteria [25] or by

our group for fungal conidia [29]. Nonetheless, the ability of the SYTO 9/PI staining to differ-

entiate different viability states of bacteria within a bacterial population has been widely

described including also reports from our group [30,31,49].

When comparing the traditional biochallenge technique and the FCM method, it is obvious

that the FCM technique is faster, less labor-intensive and provides more detailed information

about the antibacterial potential of MWF. For these reasons, the here developed FCM method

is strongly suggested to be valuable in predicting the antibacterial capacity of new MWF for-

mulations. Therefore, our straightforward novel protocol might be implemented in an indus-

trial setting to evaluate the antibacterial properties of new MWF formulations in a

considerably more time- and cost-efficient manner.
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Conclusion

This paper provides novel data on the predictive power of FCM in assessing the antibacterial

capacity of MWF formulations. The development of an accurate analytical tool to evaluate bac-

terial viability in MWF is an asset important step to tackle this problem. In the present study

we developed a FCM method to measure bacterial viability, based on membrane integrity, in

MWF using Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus
mirabilis as model organisms. We compared our novel flow cytometric method with a biochal-

lenge test currently used in MWF industry and also with traditional plate counts. This study is

a proof-of-principle which is timely as it meets the current increasing needs of industrial stake-

holders and the academic world to extend traditional microbiological test methods with novel

high-throughput consensus methods which can later be adopted by industrial stakeholders.

The combination of bacterial isolation, fluorescent staining and FCM analysis holds large

potential to enhance and greatly accelerate the quantitative and qualitative evaluation of bacte-

rial viability in MWF.

Supporting information

S1 Fig. Flow cytometric SYTO 9/PI dual staining contour plots presenting the E. coli, P.

aeruginosa, K. pneumoniae and P. mirabilis viability at different incubations with each of

the 4 MWF (P284, P869, P270, P258) at pH 9.5 compared to PBS (negative control). The

green region corresponds to the subpopulation of viable cells with an intact plasma membrane,

the blue region corresponds to the subpopulation of intermediate cells.
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