Assessment of tailor-made fertilizer blends produced from recycled nutrients

Amrita Saju, Ivona Sigurnjak, Evi Michels, Erik Meers

Ghent University, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent, Belgium

PROBLEM AND OBJECTIVES:

- ☐ Excess of animal manure, sewage sludge and food waste causes nutrient surplus in some regions, whereas, other regions face a nutrient shortage sometimes, resulting in nutrient imbalance.
- ☐ Animal manure, sewage sludge and food waste are recycled to produce valuable derivatives that can serve as replacements of synthetic fertilizers.
- ☐ The nutrient concentration in recycled derivatives is variable, making them undesirable as fertilizers.
- ☐ Problem of nutrient imbalance can be mitigated by stimulating an exchange of nutrients from areas of surplus to areas of shortage.
- ☐ The issue of nutrient variability in recycled derivatives can be mitigated by developing tailor-made fertilizer blends from recycled fertilizers, with specific nutrient ratios desirable for the farmers in specific regions of North-West Europe.
- ☐ With this approach, *Interreg ReNu2Farm* aims to replace 2% mineral fertilizers in 5 years and 6% in 10 years by the recycling-derived fertilizer blends. To achieve this aim, an implementation of effective communication with the stakeholders (producers, farmers, policy makers etc.) will be crucial.

STAGES OF RESEARCH:

AIDING IN THE TRANSITION TOWARDS SUSTAINABLE AGRICULTURE BY REPLACING SYNTHETIC MINERAL FERTILIZERS

LAB~SCALE EXPERIMENTS:

- Physico-chemical characterization of 20 recycling-derived fertilizers including ashes, struvite, compost, digestate derivatives, ammonium sulphate, ammonium nitrate, pig urine and mineral concentrate
- Preparation of tailor-made blends suitable for specific crop requirements
- Incubation experiments to assess N mineralization and N release potential
- Pot experiments to examine the effectiveness of recycling derived fertilizers and blends in comparison to synthetic mineral fertilizers

Pot experiments to test the recycling-derived fertilizers and tailor-made blends

FIELD~SCALE EXPERIMENTS:

- Field trials in Flanders to be carried out in collaboration with Inagro.
- Rotation of trials as follows:
 - o First trial in March/April 2019 with maize
 - o Second trial in 2020 with spinach + corn/cover crop
- Seven treatments to be tested with 4 replicates per treatment. The treatments of interest are:
- Blank (no fertilization)
- II. Control 1 (Synthetic P and K fertilizer)
- III. Control 2 (Synthetic NPK fertilizer)
- IV. Animal manure
- V. Ammonium nitrate
- VI. Ammonium sulphate
- VII. Pig Urine
- ☐ 3 dosages for all treatments except blank and control 1. The dosages are:
- I. N fertilizer advice ~ 60 %
- II. N fertilizer advice ~ 30 %
- III. N-fertilizer advice

Field trials with maize (top) and spinach (bottom)

TESTED PRODUCTS FOR FIELD TRIALS:

stripping of liquid fraction of digestate

European Regional Development Fund

from scrubbing of air from pig stables

Pig urine

NPK VALUES OF TESTED PRODUCTS:

Fertilizer	N (g/Kg)	P (g/Kg)	K (g/Kg)
Ammonium nitrate	60-80	_	~0,01
Ammonium sulphate	~25	~0,05	~0,14
Pig urine	~6	~0,03	~3,52

FUTURE PERSPECTIVES:

☐ To determine nutrient loss atmospheric through emission of NH₃, N₂O and CO₂ from the application of recycling-derived tailor-made fertilizers and blends

