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Abstract 22 

Myxovirus resistance 1 (Mx1) is an interferon-induced gene that encodes a GTPase that plays an 23 

important role in the defense of mammalian cells against influenza A and other viruses. The Mx1 24 

protein can restrict a number of viruses, independently of the expression of other interferon-induced 25 

genes. Mx genes are therefore considered to be an important part of the innate antiviral immune 26 

response. However, the possible impact of Mx expression in the hematopoietic cellular compartment 27 

has not been investigated in detail in the course of a viral infection. To address this, we performed 28 

bone marrow chimera experiments using congenic B6.A2G Mx1+/+ and B6.A2G Mx1-/- mice to study 29 

the effect of Mx1 expression in cells of hematopoietic versus non-hematopoietic origin. Mx1+/+ mice 30 

were protected and Mx1-/- mice were susceptible to influenza A virus challenge infection, regardless 31 

of the type of bone marrow cells (Mx1+/+ or Mx1-/-) the animals had received. Infection with 32 

Thogotovirus, however, revealed that Mx1-/- mice with a functional Mx1 gene in the bone marrow 33 

compartment showed reduced liver pathology compared with Mx1-/- mice that had been grafted with 34 

Mx1-/- bone marrow. The reduced pathology in these mice was associated with a reduction in 35 

Thogotovirus titers in the spleen, lung and serum. Moreover, Mx1+/+ with Mx1-/- bone marrow failed 36 

to control Thogotovirus replication in the spleen. Mx1 in the hematopoietic cellular compartment 37 

thus contributes to protection against Thogotovirus infection.   38 
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Importance 39 

Mx proteins are evolutionarily conserved in vertebrates and can restrict a wide range of viruses in a 40 

cell autonomous way. The contribution to antiviral defense of Mx1 expression in hematopoietic cells 41 

remains largely unknown. We show that protection against influenza virus infection requires Mx1 42 

expression in the nonhematopoietic cellular compartment. In contrast, Mx1 in bone marrow-derived 43 

cells is sufficient to control disease and virus replication following infection with a Thogotovirus. This 44 

indicates that next to its well established antiviral activity in nonhematopoietic cells, Mx1 in 45 

hematopoietic cells can also play an important antiviral function. In addition, cells of hematopoietic 46 

origin that lack a functional Mx1 gene, contribute to Thogotovirus dissemination and associated 47 

disease.  48 
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Introduction 49 

Myxovirus resistance proteins are dynamin-like large GTPases that can inhibit a wide array of viruses, 50 

including members of the Orthomyxoviridae, Rhabdoviridae and Bunyaviridae (1). Mx genes are 51 

evolutionary conserved in vertebrates and their expression is induced by type I and type III interferon 52 

(2-4). How Mx1 proteins inhibit viral replication is still largely undetermined. It has been shown that 53 

mouse Mx1 can suppress primary transcription of influenza A virus (IAV) genes in the nucleus (5). 54 

Furthermore, we previously reported that murine Mx1 can interact with the polymerase basic 2 55 

(PB2) protein and nucleoprotein (NP) in IAV ribonucleoproteins (vRNPs), and disturb the PB2-NP 56 

interaction (6). Human MxA, the orthologue of mouse Mx1, can also interact with IAV NP (7). 57 

Moreover NP has been shown to be a determinant of the sensitivity of IAVs for Mx1 and MxA (8, 9). 58 

Based on these studies, and on the observation that human MxA – like dynamins – can form ring-like 59 

structures (10-14), we hypothesized that the interaction with IAV PB2 and NP might be mediated by 60 

a ring structure comprised of oligomerized Mx1, which then actively disrupts the PB2-NP interaction 61 

(6). Indirect support for this hypothesis was obtained from the observation that an Mx1 construct 62 

that was only active in the presence of an artificial small compound drug, could disrupt pre-existing 63 

IAV vRNPs (15). 64 

 65 

The GTPase activity of Mx1 and MxA is required for the suppression of IAV replication. Presumably 66 

the GTPase function combined with the 2 hinges that flank the central bundle signaling element that 67 

separates the globular head domain from the extended helical stalk domain, allow Mx proteins to 68 

function as molecular machines that exert a kind of ‘power stroke’. This mechano-chemical transition 69 

might generate latitudinal shear forces between neighboring Mx ring structures that destroy the 70 

functional vRNP structure (16). Next to their antiviral effect against IAV, Mx proteins can also restrict 71 

Thogoto virus (THOV, a member of the Orthomyxoviridae family) replication. Mouse Mx1, which is 72 

only active in the cell nucleus, inhibits THOV multiplication (17). It has also been shown that human 73 

MxA can interact with the NP molecules of the THOV vRNPs. This interaction prevents THOV vRNPs 74 

from entering the nucleus (18, 19). 75 

 76 

The Orthomyxoviridae family currently comprises seven genera: Influenza A, B, C and D, 77 

Thogotovirus, Quaranjavirus and Isavirus (20-22). Influenza A and B viruses are important human 78 

respiratory pathogens. THOV is a tick-borne virus that has small rodents as natural hosts and very 79 

rarely causes zoonotic infection (23, 24). When people become infected with IAV, the first cells that 80 

are targeted, are the airway epithelial cells. After binding, endocytosis and membrane fusion, the 81 

viral vRNPs are released into the cytoplasm. These then enter the nucleus, where transcription and 82 
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replication will take place (reviewed in (25)). The incoming vRNPs first direct the synthesis of viral 83 

mRNA (primary transcription), which is transported to the cytosol and translated. Newly produced 84 

PB1, PB2, Polymerase acidic (PA) and NP migrate to the nucleus to start initiate replication of the 85 

viral genome and boost transcription. The resulting progeny viral RNA molecules form vRNPs, and 86 

leave the nucleus, ready for packaging and budding (26). Although THOV has not been studied as 87 

elaborately as IAV, it has been shown that both viruses are structurally and genetically similar (27-88 

33). Several studies have also pointed out that their replication cycles are comparable (17-19, 34-40). 89 

When a mouse becomes infected with THOV, the virus replicates and spreads rapidly to different 90 

sites in the mouse body to eventually kill the mouse (41). A similar pathogenesis in mice following 91 

infection with the related Dhori virus has been reported: the virus could be detected in multiple 92 

organs such as the brain, lungs, thymus, spleen, adrenal glands, and liver (42). However, the main 93 

target organ of THOV and Dhori virus is the liver, where these viruses can replicate to very high titers 94 

and cause severe coagulative zonal necrosis leading to the rapid death of the infected mouse (17, 95 

42). 96 

 97 

Mx proteins exert their antiviral activity in a cell autonomous way. Haller and coworkers reported 98 

that athymic (nude) mice, which carry a functional Mx1 gene, survived intracerebral infection with a 99 

neurotropic IAV strain, demonstrating that Mx1-positive mice do not require a functional T cell 100 

system to survive the infection (43). Later, the same lab reported that in vivo resistance to a 101 

pneumotropic, neurotropic or hepatotropic strain of IAV was largely independent of whether 102 

macrophages carried a functional Mx1 gene or not (44). These studies showed that Mx1 expression 103 

in hematopoietic cells does not play a major role in the resistance against IAV infection. It is also 104 

important to note that almost all mouse genetic studies on the contribution of interferon-induced 105 

gene products to antiviral defense in the immune cell compartment have been carried out in 106 

laboratory mouse strains that lack a functional Mx1 gene (45). 107 

 108 

The aim of the present study is to examine the role of Mx1 expression in immune cells for the 109 

antiviral host defense. We show that in bone marrow chimeric mice the protection by Mx1 against 110 

IAV infection depends solely on the genotype of the stromal (nonhematopoietic) cells as previously 111 

demonstrated by Haller et al. (43). In striking contrast, challenge infection with THOV showed that 112 

Mx1 expression in bone marrow-derived cells is sufficient to markedly reduce virus replication and 113 

dissemination, and delay morbidity in mice.  114 
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Materials and methods 115 

Ethics statement. All animal experiments described in this study were conducted according to the 116 

national (Belgian Law 14/08/1986 and 22/12/2003, Belgian Royal Decree 06/04/2010) and European 117 

legislation (EU Directives 2010/63/EU, 86/609/EEC). All experiments on mice and animal protocols 118 

were approved by the ethics committee of Ghent University (permit numbers LA1400091 and 119 

EC2015-027). 120 

 121 

Mice. Mice were bred in-house under Specific Pathogen Free (SPF) conditions. Mice were housed in 122 

individually ventilated cages, in a temperature-controlled environment with 12h light/dark cycles, 123 

with food and water ad libitum. Congenic B6.A2G-Mx1 (Mx1+/+) mice with a functional A2G Mx1 124 

allele were kindly provided by Peter Stäheli (University of Freiburg, Germany). Congenic B6.A2G-Mx1 125 

(Mx1-/-) carrying the defective C57BL/6J Mx1 allele were generated in our laboratory by crossing 126 

B6.A2G-Mx1 (Mx1+/+) with C57BL/6J (Mx1-/-) mice, and subsequent crossing of the heterozygous 127 

offspring. Mouse genomic DNA was isolated from tail biopsies following digestion at 55°C in buffer 128 

containing 50 mM Tris-HCl (pH8.0), 10 mM EDTA, 100 mM NaCl, 0.1% SDS and 1 mg/ml proteinase K. 129 

A PCR was performed using the following primers: 5’-GGAGCTCACCTCCCACATCT-3’, 5’-130 

AGCATGGCTGTGTCACAAGCA-3’, and 5’-CGAAGGCAGTTTGGACCATCT-3’. PCR consisted of a 1 min 131 

denaturation step at 94°C, a 1 min annealing step at 61°C, and a 1 min polymerization step at 72 °C 132 

for 1min (40 cycles). The resulting PCR products were visualized by agarose gel electrophoresis. 133 

 134 

Bone marrow chimera mice. Starting one week before and until three weeks after irradiation, mice 135 

were given water containing 0.2% neomycin ad libitum. Mice were subjected to lethal total body 136 

irradiation (10 Grey) with an X-Rad 320 Biological Irradiator (Precision X-Ray (PXi), North Brandford, 137 

Connecticut, USA), and 24h later they were reconstituted with syngeneic or allogeneic bone marrow 138 

cells (8-10 x 106) that were harvested from femurs of age-matched mice. Experimental transfers were 139 

as follows: B6.A2G Mx1-/- donors into B6.A2G Mx1-/- recipients (Mx1-/-  Mx1-/-), B6.A2G Mx1-/- 140 

donors into B6.A2G Mx1+/+ recipients (Mx1-/-  Mx1+/+), B6.A2G Mx1+/+ donors into B6.A2G Mx1+/+ 141 

recipients (Mx1+/+  Mx1+/+), and B6.A2G Mx1+/+ donors into B6.A2G Mx1-/- recipients (Mx1+/+  142 

Mx1-/-). Animals were allowed to recover and reconstitute their hematopoietic cellular compartment 143 

for eight weeks. Only healthy mice without obvious signs of graft-versus-host disease were used in 144 

experiments. 145 

 146 

Virus challenge. Mice were challenged with 10 lethal dose 50% (LD50) (approximately 170 PFU) of 147 

mouse adapted (ma) influenza A/Puerto Rico/8/34 (PR8) (H1N1) or with 103 PFU of THOV SiAr 126 148 
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(17). The challenge dose was administered intranasally in a volume of 50 µl (maPR8) or 149 

intraperitoneally in a volume of 100 µl (THOV) to mice that were anesthetized with a mixture of 150 

ketamine (10 mg/kg) and xylazine (60 mg/kg). Morbidity was monitored during six (maPR8) or four 151 

(THOV) days post infection. Mice that had lost 25% or more of their bodyweight were euthanized by 152 

cervical dislocation. 153 

 154 

Determination of influenza lung virus titers. Mice were sacrificed at different time points after 155 

infection by intraperitoneal injection of pentobarbital (125 µg/g). The mouse lungs were removed 156 

aseptically, and the left lobe was snap-frozen in liquid nitrogen. Lung extracts were prepared by 157 

homogenizing the lungs in PBS using metal beads. Cell debris was cleared by centrifugation for 10 158 

min at 400g and 4°C. Cleared lung extracts were stored at -80°C. Influenza virus titers were 159 

determined in triplicate by titration on MDCK cells. Briefly, MDCK monolayers were infected for 1h 160 

with 500 µl of serial 1:10 dilutions of the lung homogenates in a 12-well plate in serum-free DMEM 161 

medium supplemented with penicillin and streptomycin. Following inoculation, the supernatant was 162 

replaced by medium containing 2 µg/ml trypsin and 0.6% avicel RC-851 (FMC Biopolymers). Two days 163 

after infection, the cells were fixed with 4% paraformaldehyde, and permeabilized with PBS 164 

containing 0.2% Triton X-100. Plaques were stained using a mouse monoclonal antibody against the 165 

ectodomain of the influenza M2 protein, and an HRP-conjugated anti-mouse IgG antibody (Sheep 166 

anti-mouse IgG HRP, GE Healthcare, UK). Plaques were then visualized by using TrueBlue peroxidase 167 

substrate (Seracare, Gaithersburg, MD, USA). 168 

 169 

Determination of Thogoto liver virus titers. Mice were killed by cervical dislocation, the liver was 170 

removed aseptically, and one of the lobes was used for histochemistry. Liver extracts were made by 171 

homogenizing the livers in PBS using metal beads. Cell debris was cleared by centrifugation for 10 172 

min at 400g and 4°C. Cleared liver extracts were stored at -80°C before use. THOV titers were 173 

determined in triplicate by titration on Vero cells. Monolayers of Vero cells were infected for 1h with 174 

1 ml of serial 1:10 dilutions of the liver homogenates in a 6-well plate in DMEM medium 175 

supplemented with 2% fetal calf serum and 20 mM HEPES pH 7.3. Following inoculation, the 176 

supernatant was replaced by medium containing 0.6% avicel RC-951 (FMC Biopolymers). Four days 177 

after infection, the cells were fixed with 4% paraformaldehyde. The cell monolayers were stained 178 

with a crystal violet solution (1% crystal violet + 1% methanol + 20% ethanol) for approximately 15 179 

minutes at room temperature. The crystal violet solution was then removed and the wells were 180 

washed with water to reveal the plaques. 181 

 182 

 on June 18, 2019 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


Histopathological examination of livers. Livers of bone marrow chimeric mice were excised at 0, 2 or 183 

4 dpi. After fixation in 4% paraformaldehyde (PFA) and embedding in paraffin, livers were sectioned 184 

at 5 µm. Sections were used for haematoxylin/eosin staining and immunohistochemical analysis. 185 

After incubation with primary and secondary biotin-conjugated antibodies immunoreactivity was 186 

revealed using the ABC-HRP Kit (Vector Laboratories, Burlingame, California USA) and the sections 187 

were counterstained with hematoxylin. Images were obtained with an Axioscan.Z1 slide scanner 188 

(Zeiss, Oberkochen, Germany), and were analyzed with ZEN Lite software (Zeiss, Oberkochen, 189 

Germany). 190 

 191 

ALT/AST assay. Blood was taken by retro-orbital bleeding after sedation of the mice with 192 

pentobarbital (125 µg/g). To prepare mouse serum, the blood samples were allowed to clot 193 

overnight at 4°C. The next day the clot was removed and samples were centrifuged at 14000 rpm for 194 

3 minutes. Serum samples were stored at -20°C before use. Levels of aspartate aminotransferase 195 

(AST) and alanine aminotransferase (ALT) were measured using a Hitachi kit and apparatus in the 196 

Clinical Biology Laboratory of Ghent University Hospital. 197 

 198 

Real-time quantitative PCR (RT-qPCR). Mice of each group were sacrificed just prior to and on day 3 199 

and 6 after IAV infection by intraperitoneal injection of pentobarbital (125 µg/g). The mouse lungs 200 

were removed aseptically, and the left lobe was snap-frozen in liquid nitrogen. Lung extracts were 201 

made by homogenizing the lungs in PBS using metal beads. Cell debris was cleared by centrifugation 202 

for 10 min at 400g and 4°C. Cleared lung extracts were stored at -80°C until use. RNA was isolated 203 

with the High Pure RNA Isolation Kit (11828665001, Roche) as indicated by the manufacturer. Total 204 

mRNA was converted to cDNA by RT-PCR using oligo-dT reaction (Transcriptor First Strand cDNA 205 

Synthesis Kit, 04897030001, Roche). Ten nanogram of cDNA was used for each quantitative PCR 206 

(qPCR) reaction, and triplicate reactions were setup in 384-well plates. qPCR reactions based on SYBR 207 

green detection, were performed using a LightCycler (Roche). qPCR-data were analyzed using the 208 

qbase+ software packet (Biogazelle, Zwijnaarde, Belgium). 209 

The primers used in this study are as follows. M1/2 forward: 5’-GGGAAGAACACCGATCTTGA-3’; M1/2 210 

reverse: 5’-CGGTGAGCGTGAACACAAAT-3’; NA forward: 5’-CATCTCTTTGTCCCATCCGT-3’; NA reverse: 211 

5’-GTCCTGCATTCCAAGTGAGA-3’; HA forward: 5’-GAGGAGCTGAGGGAGCAAT-3’; HA reverse: 5’-212 

GCCGTTACTCCGTTTGTGTT-3’; PB1 forward: 5’-CCTCCTTACAGCCATGGGA-3’; PB1 reverse: 5’-213 

GTGCTCCAGTTTCGGTGTTT-3’; PB2 forward: 5’-GGATCAGACCGAGTGATGGT-3’; PB2 reverse: 5’-214 

CCATGCTTTAGCCTTTCGACT-3’; PA forward: 5’-CATCAATGAGCAAGGCGAGT-3’; PA reverse: 5’-215 

GCCCCTGTAGTGTTGCAAAT-3’; NP forward: 5’-CAGCCTAATCAGACCAAATG-3’; NP reverse: 5’-216 

TACCTGCTTCTCAGTTCAAG-3’; NS1 forward: 5’-TTCACCATTGCCTTCTCTTC-3’; NS1 reverse: 5’-217 
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CCCATTCTCATTACTGCTTC-3’; HPRT1 forward: 5’-AGTGTTGGATACAGGCCAGAC-3’; HPRT1 reverse: 5’-218 

CGTGATTCAAATCCCTGAAGT-3’; UBC forward: 5’-AGGTCAAACAGGAAGACAGACGTA-3’; UBC reverse: 219 

5’-TCACACCCAAGAACAAGCACA-3’; GAPDH forward: 5’-TGAAGCAGGCATCTGAGGG-3’; GAPDH 220 

reverse: 5’-CGAAGGTGGAAGAGTGGGAG-3’; TBP forward: 5’-TCTACCGTGAATCTTGGCTGTAAA-3’; TBP 221 

reverse: 5’-TTCTCATGATGACTGCAGCAAA-3’; RPL13A forward: 5’-CCTGCTGCTCTCAAGGTT-3’; RPL13A 222 

reverse: 5’-TGGTTGTCACTGCCTGGTACTT-3’; actin forward: 5’-GCTTCTAGGCGGACTGTTACTGA-3’; 223 

actin reverse: 5’-GCCATGCCAATGTTGTCTCTTAT-3’. 224 

 225 

Antibodies. A polyclonal antiserum against mouse Mx1 was generated by immunizing New Zealand 226 

White rabbits with a synthetic, high-performance liquid chromatography-purified peptide 227 

CKKFLKRRLLRLDEARQKLAKFSD (C terminus of the Mx1 protein) and purified as described (6). M2e-228 

specific monoclonal antibody was produced in our laboratory. Briefly, hybridomas that produce M2e-229 

specific monoclonal antibodies were isolated as described (46). After subcloning, these hybridoma 230 

cultures were scaled up and monoclonal antibodies were purified from the culture supernatant with 231 

a protein A column (GE Healthcare). Polyclonal anti-Thogoto virus NP antibody, (antiserum, rabbit), 232 

was generated in the laboratory of Georg Kochs (University of Freiburg, Germany) (32). Polyclonal 233 

anti-CD45 antibody (rabbit) was obtained from Abcam (ab10558). Biotinylated anti-rabbit antibody 234 

(goat) was obtained from Vector Laboratories (BA-1000). 235 

 236 

Statistical analysis. The obtained data were analyzed using Graphpad Prism 7 or Genstat software. 237 

Methods used in Genstat are described below. Statistical tests were performed in Graphpad Prism 7 238 

software and are mentioned in the figure legends. Relative bodyweight data were analyzed as 239 

repeated measurements using the residual maximum likelihood (REML) approach as implemented in 240 

Genstat v19 (47). Briefly, a linear mixed model with replicate, genotype, time and genotype x time 241 

interaction as fixed terms, and subject time used as residual term, was fitted to the data. Times of 242 

measurement were set at equal intervals and an autoregressive correlation structure of order 1 with 243 

equal variances (i.e. homogeneity across time) was selected as best model fit in all cases, based on 244 

the Aikake Information Coefficient. Significances of the fixed terms and significances of changes in 245 

differences between genotype effects over time were assessed by an F-test. Viral titers were 246 

analyzed with a Hierarchical Generalized Linear Mixed Model (HGLMM; fixed model: poisson 247 

distribution, log link; random model: gamma distribution, log link) as implemented in Genstat v19 248 

(47). Titers below the detection limit have been imputed with values generated as a random sample 249 

from a skewed left tailed beta distribution Beta (5,1). Fixed terms include GENOTYPE, DPI, TISSUE and 250 

their two-way and three-way interaction, while REPLICATE was set as random term. T- statistics were 251 

used to assess the significance of tissue-specific genotype effects at dpi = 2 and 4 (on the 252 
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transformed scale). Estimated mean values were obtained as predictions from the HGLMM, formed 253 

on the scale of the response variable. RT-qPCR data were compared with a Generalized Linear Mixed 254 

Model (GLMM) (fixed model: Poisson distribution, log link; random model: gamma distribution, log 255 

link) as implemented in Genstat v19 (47) fitted to RT-qPCR expression data of PB1, PB2, PA, NP, HA, 256 

NA, M and NS genes simultaneously. The linear predictor vector of the values can be written as 257 

follows: log(µ) = η = Xβ + Zν, where the matrix X is the design matrix for the fixed terms genotype, 258 

time and genotype x time, β is their vector of regression coefficients, Z is the design matrix for the 259 

random term (i.e. gene, replicate and gene x replicate), and ν is the corresponding vector of random 260 

effect having a gamma distribution. The significance of the fixed interaction term genotype x time 261 

was assessed by a Wald test. Significance of the regression coefficients were assessed by a t-test. 262 

Estimated mean values and their standard errors were obtained as predictions from the GLMM, 263 

formed on the scale of the response variable. A Hierarchical Generalized Linear Mixed Model 264 

(HGLMM; fixed model: Poisson distribution, log link; random model: gamma distribution, log link) as 265 

implemented in Genstat v19 (47) has been fitted to the “ALT” and “AST” data. Fixed terms include 266 

GENOTYPE, DPI and their interaction, while REPLICATE was set as random term. T statistics were 267 

used to assess the significance of time-specific genotype effects (on the transformed scale). 268 

Estimated mean values were obtained as predictions from the HGLMM, formed on the scale of the 269 

response variable.  270 
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Results 271 

Resistance to influenza A virus infection primarily depends on the Mx1 genotype of the recipient 272 

Most immune cells originate from multipotent hematopoietic stem cells in the bone marrow. To 273 

address the possible role of Mx1 as a virus restriction factor in this compartment, we generated all 274 

four possible bone marrow chimeric mice between B6.A2G Mx1-/- and B6.A2G Mx1+/+ mice (Fig 1A). 275 

Eight weeks after bone marrow transfer, the chimeric mice were infected with 10 LD50 of maPR8 276 

virus, and bodyweight was monitored during 6 days post infection (dpi). B6.A2G Mx1-/- recipient mice 277 

displayed significantly more bodyweight loss than B6.A2G Mx1+/+ recipient mice regardless of the 278 

donor genotype (Fig 1B). In addition, infection with maPR8 virus of mice with a functional Mx1 gene 279 

in the stromal cells did not result in bodyweight loss regardless of the donor genotype (Fig 1B). Lung 280 

virus loads were significantly lower in the B6.A2G Mx1+/+ recipients than in B6.A2G Mx1-/- recipients 281 

on day 3 and 6 after infection. We observed no significant difference in viral loads between Mx1-/- 282 

mice that had been reconstituted with bone marrow from either donor and neither between the 283 

Mx1+/+ recipients that were reconstituted with Mx1-/- or Mx1+/+ donor bone marrow (Fig 1C). It has 284 

been reported that in cells that stably express Mx1, primary transcription of IAV genes is reduced and 285 

this reduction is more pronounced for the larger genes encoding the polymerase subunits compared 286 

with the shorter viral transcripts (5). To ascertain that such a differential effect might also be 287 

observed in vivo, we quantified the individual viral mRNA levels in the mouse lung on day 3 and 6 288 

after infection by RT-qPCR. Three and six days after infection, the viral mRNA levels were much lower 289 

in the lungs of B6.A2G Mx1+/+ compared to those in lungs of B6.A2G Mx1-/- recipient mice (Fig 1D). In 290 

contrast to what was previously reported by Pavlovic et al. (5), we noticed that the inhibiting effect 291 

of Mx1 was equally strong for the shorter and longer viral RNA segments (Fig 1E). Together, these 292 

data show that the Mx1 genotype of the recipient rather than the donor determines the outcome of 293 

maPR8 virus infection, both in terms of controlling disease and viral replication.  294 

 295 

Mx1 in hematopoietic cells contributes to the control of Thogotovirus infection 296 

We next addressed the possible contribution of Mx1 in the stromal versus hematopoietic cells for 297 

control of THOV infection. The rationale for choosing this virus is threefold: (i) THOV, like IAV, is a 298 

member of the Orthomyxoviridae, (ii) the virus is also sensitive to murine Mx1 (17), and (iii) small 299 

rodents are natural hosts of this virus (24). Bone marrow chimeric mice were infected 300 

intraperitoneally with 1000 plaque forming units (PFU) of THOV (Sicilian SiAr 126 isolate), and 301 

bodyweight and morbidity were monitored daily during four days after infection. Mx1+/+ mice that 302 

received Mx1+/+ bone marrow showed no signs of morbidity or bodyweight loss, and Mx1-/- recipients 303 

that had been reconstituted with Mx1-/- bone marrow lost significantly more bodyweight than all 304 
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other chimeric groups and became moribund by day 4 post infection (Fig 2A). Interestingly, B6.A2G 305 

Mx1+/+ mice that had received Mx1-/- bone marrow lost significantly more bodyweight than B6.A2G 306 

Mx1-/- mice that had received Mx1+/+ bone marrow, indicating a protective role for Mx1 expression in 307 

hematopoietic cells in this infection model. Surprisingly, liver viral titers did not reflect these findings. 308 

The THOV titers in the liver of the B6.A2G Mx1-/- recipient mice were very high (approximately 106 to 309 

107 PFU/g; the two fold lower virus load in the Mx1+/+ recipients did not reach statistical significance) 310 

(Fig 2B). In contrast, THOV virus could not be detected in liver extracts from infected B6.A2G Mx1+/+ 311 

recipient mice on 4 dpi independent of the donor genotype (Fig 2B). These data suggest that Mx1 312 

expression in hematopoietic cells contributes to the control of THOV-associated morbidity and, to a 313 

limited extent, viral replication in the liver of B6.A2G Mx1-/- recipient mice. 314 

 315 

Mx1+/+ expression in hematopoietic cells reduces THOV-associated liver pathology in B6.A2G Mx1-/- 316 

recipients 317 

THOV infection was previously shown to cause severe liver pathology in Mx1-/- mice, but not in 318 

Mx1+/+ mice (17). To examine the possible contribution of donor-derived Mx1 on THOV-associated 319 

liver damage, we performed histological analysis on the bone marrow chimeric mice sacrificed on 320 

day 4 after THOV infection. Livers isolated from Mx1-/- mice that had been reconstituted with Mx1-/- 321 

bone marrow appeared very pale and friable in comparison to the livers from mice in the three other 322 

groups, which had a normal brown-red color and firm tissue. Liver sections were prepared, stained 323 

with hematoxylin and eosin (H&E) and analyzed microscopically. H&E-stained liver tissue from THOV 324 

infected Mx1-/- mice reconstituted with Mx1-/- bone marrow showed lesions with focal to widespread 325 

liver cell necrosis (Fig 2C). Interestingly, liver tissue from Mx1+/+ recipient mice reconstituted with 326 

Mx1-/- bone marrow also showed lesions, although these lesions appeared to be in an earlier stage of 327 

necrosis compared to those in mice that are Mx1-/- in both the stromal and immune cell 328 

compartment. This is manifested as foci in the liver tissue where structure and cell architecture are 329 

lost, but cell nuclei are still observed. B6.A2G Mx1+/+ recipient’s liver tissue appeared normal and 330 

showed no lesions, irrespective of the donor genotype (Fig 2C). In summary, these results show that 331 

Mx1 in cells with a hematopoietic origin can reduce or at least delay liver pathology associated with 332 

THOV infection in B6.A2G Mx1-/- recipient mice.  333 

 334 

To quantify the degree of liver damage resulting from the THOV infection, alanine aminotransferase 335 

(ALT) and aspartate aminotransferase (AST) levels were determined in serum of the bone marrow 336 

chimeric mice at 4 dpi. The serum levels of both ALT and AST were markedly increased in THOV-337 

infected Mx1-/- mice reconstituted with Mx1-/- bone marrow compared with the two Mx1+/+ recipient 338 

groups (Fig 2D and 2E). Interestingly, THOV infection of irradiated Mx1-/- mice reconstituted with 339 
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Mx1+/+ bone marrow was associated with intermediate levels of both enzymes. This is in accordance 340 

with the histological scoring of the liver sections, further substantiating that Mx1+/+ hematopoietic 341 

cells can contribute to protection against THOV infection in mice that lack Mx1 in the stromal 342 

compartment. 343 

 344 

Delayed THOV-associated morbidity in Mx1-/- mice grafted with Mx1+/+ bone marrow 345 

The previous results led to the hypothesis that Mx1 expression in the hematopoietic compartment 346 

can delay the course of the THOV infection-associated pathology in Mx1-/- recipient mice. Therefore, 347 

we performed additional THOV experiments in the chimeric mice to compare virus replication and 348 

pathology at day 2 and 4 after infection. Before infection, all mice had healthy liver tissue (Fig 3A). 349 

Two days after infection Mx1-/- recipient mice already showed clear zones of cellular influx (Fig 3A). 350 

These zones were markedly larger and more numerous in the Mx1-/- mice reconstituted with Mx1-/- 351 

bone marrow than in the Mx1+/+ mice reconstituted with Mx1-/- donor cells. Amongst the Mx1+/+ 352 

recipient mice that had received Mx1-/- bone marrow, a few small zones of cellular influx were 353 

observed after 2 days of infection. Four days after infection, Mx1+/+ recipient mice showed no zones 354 

of cellular influx or liver cell necrosis. In contrast, all Mx1-/- recipients showed clear zones of cellular 355 

influx and/or liver cell necrosis. Livers from mice that lack Mx1 in both the stromal and immune cell 356 

compartment showed clear zones of liver cell necrosis and only a few small zones of cellular influx. 357 

Interestingly, livers from Mx1-/- mice that had received Mx1+/+ donor cells, showed large zones of 358 

cellular influx. In the largest influx zones a center of necrotic cells could be observed (Fig 3A, arrows). 359 

This indicates that the THOV infection-related pathology is at an earlier state in Mx1-/- mice that 360 

received Mx1+/+ bone marrow than in Mx1-/- mice that received Mx1-/- bone marrow. 361 

 362 

Four days after THOV infection it was clear that Mx1-/- mice that received Mx1-/- bone marrow show 363 

the highest ALT and AST levels with an average of approximately 4000 and 10 000 U/L, respectively. 364 

Mx1+/+ recipients showed only background levels of ALT and AST. In Mx1-/- mice reconstituted with 365 

Mx1+/+ bone marrow, intermediate ALT and AST levels were detected in the serum (approximately 366 

100 and 500 U/L, respectively) (Fig 3B and 3C). The differences between the ALT and AST levels 367 

between the four groups are most pronounced at 4 dpi. At two dpi the ALT and AST levels of the 368 

Mx1-/- mice that received Mx1-/- bone marrow are comparable to the AST and ALT levels of the Mx1-/- 369 

mice reconstituted with Mx1+/+ bone marrow at four dpi. This shows that the presence of a functional 370 

Mx1 gene in hematopoietic cells can delay the THOV infection-related liver pathology in mice. 371 

 372 

We also assessed the presence of THOV in the spleen, lung and serum next to the liver. Similar to the 373 

experiment shown in Figure 2, liver viral titers at 4 dpi were highest in the Mx1-/- mice that received 374 
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Mx1-/- bone marrow, 1.5 to 2 logs lower in Mx1-/- mice that received Mx1+/+ bone marrow, and were 375 

undetectable in both Mx1+/+ recipient groups (Fig 4A). At 2 dpi, liver viral titers in both Mx1-/- 376 

recipient groups are lower compared to the viral titers at 4 dpi. Mx1+/+ recipient mice had 377 

undetectable liver viral titers at 2 dpi. THOV was detectable in lung and serum sampled from Mx1-/- 378 

mice that received Mx1-/- bone marrow but in none of the other groups (Fig 4B and C). Strikingly, the 379 

spleen viral titers show a remarkable difference compared to the titers in the liver, lung and serum. 380 

Spleen THOV titers were highest in the Mx1-/- mice that received Mx1-/- bone marrow group at 2 and 381 

4 dpi (Fig 4D). However, spleen viral titers are below the detection limit in Mx1-/- mice that received 382 

Mx1+/+ bone marrow. Surprisingly, Mx1+/+ mice that received Mx1-/- bone marrow show viral titers 383 

that are only 4 fold lower than Mx1-/- mice that received Mx1+/+ bone marrow at 2 dpi and 9 fold 384 

lower at 4 dpi. Thus a functional Mx1 gene in the hematopoietic cellular compartment is sufficient to 385 

control THOV spread to the lungs, spleen and serum. 386 

 387 

Mx1 expression negatively correlates with THOV NP expression in stromal and bone marrow-388 

derived cells 389 

The above data show that dissemination of THOV infection depends on the Mx1 genotype of the 390 

hematopoietic and/or stromal compartment. To demonstrate the cellular import of THOV infection, 391 

liver tissue slides of bone marrow chimeras were stained with antibodies specific for CD45 (myeloid 392 

cell marker), mouse Mx1, or THOV NP two and four dpi. Accumulation of myeloid cells could be 393 

detected in all chimeric groups except in Mx1+/+ mice that received Mx1+/+ bone marrow (Fig 5). In 394 

livers of Mx1-/- mice that received Mx1-/- bone marrow none of the cells stained positive for Mx1. 395 

Surprisingly, the only cells that stained positive for THOV NP – these cells are productively infected by 396 

THOV – are cells in the zones of cellular infiltrates. By contrast, cells in the cellular infiltrate zones in 397 

livers of Mx1-/- mice that received Mx1+/+ bone marrow stained positive for CD45 and Mx1, but not 398 

for THOV NP. In liver tissue of Mx1+/+ mice that received Mx1-/- bone marrow the opposite was 399 

observed. Here, the cells in the cellular infiltrate zone stained positive for CD45 and THOV NP, but 400 

not for Mx1. As expected, there are no zones of cellular infiltration in livers of Mx1+/+ mice that 401 

received Mx1+/+ bone marrow, and liver cells only stained positive for mouse Mx1. Four days after 402 

infection, liver tissue of Mx1-/- mice that received Mx1-/- bone marrow displayed ample liver cell 403 

necrosis (Figure 5). This loss of structure in the liver tissue also influenced the background staining. 404 

Except for the large zones of cell infiltration in liver tissue of Mx1-/- mice that received Mx1+/+ bone 405 

marrow, staining for CD45, mouse Mx1 and THOV NP at 4 dpi was comparable with that at 2 dpi. 406 

Together, these data suggest that cells that make up the zones of cellular infiltration are CD45+, that 407 

these CD45+ cells first encounter THOV then infiltrate the peripheral organs and thus disseminate the 408 

infection.   409 
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Discussion 410 

In mice, it is well established that expression of a functional Mx1 protein can protect against a 411 

challenge dose of IAV or THOV that otherwise causes severe morbidity and mortality in mice without 412 

a functional Mx1 gene. However, whether Mx1 expression is induced in every IFN-responsive cell 413 

upon infection, and whether Mx1 is needed for their proper functioning, remains an open question. 414 

Several studies have shown the importance of an IFN response in cell types involved in the adaptive 415 

immune response after IAV infection (48-50). These studies make it tempting to hypothesize that 416 

Mx1 can also play a role in the protection against viral infection of cell types that are involved in 417 

adaptive immunity. Here, we generated Mx1 bone marrow chimeras, allowing us to investigate the 418 

possible effect of Mx1 when it is primarily expressed by bone marrow-derived cells or stromal cells. 419 

However, some bone marrow-derived cell types, such as Langerhans cells (51) and mesenchymal 420 

stromal cells (reviewed in (52)), are resistant to lethal total body irradiation. Consequently, these cell 421 

types will have the genotype of the bone marrow recipient. 422 

 423 

Because of the dominant effect of the presence or lack of Mx1 expression in epithelial cells, the data 424 

obtained in this IAV infection model do not answer the question if Mx1 can play a role in bone 425 

marrow-derived immune cells. Conceivably, the maPR8 virus infection model, characterized by a 426 

preferred tropism for epithelial cells, is not the best suited for answering the question. It was 427 

recently reported that internal genes of highly pathogenic H5N1 viruses can facilitate replication in 428 

myeloid cells and lead to severe disease in Mx1-deficient mice (53). It is therefore possible that 429 

challenge infections of Mx1 bone marrow chimeras with such influenza viruses could have revealed a 430 

more pronounced effect on the infection outcome in animals that received Mx1+/+ bone marrow. 431 

 432 

Instead of exploring the outcome of infections with a highly pathogenic influenza virus, we turned to 433 

THOV challenge infections. Bone marrow chimeras were infected intraperitoneally with a high dose 434 

of THOV. Morbidity was somewhat different from that seen in the IAV infection model, in that Mx1-/- 435 

mice that received Mx1+/+ bone marrow showed less body weight loss than Mx1+/+ mice that received 436 

Mx1-/- bone marrow. Remarkably, liver viral titers at 4 dpi were very high for all the Mx1-/- recipients, 437 

and below the detection limit for Mx1+/+ recipients. In order to find an explanation for the seemingly 438 

discrepant data, we examined the liver tissue of bone marrow chimeras at microscopic level 4 days 439 

after THOV infection. Liver tissue from THOV infected Mx1-/- recipient mice showed lesions. For the 440 

Mx1-/- mice that received Mx1+/+ bone marrow, the cells in these lesions were in an earlier stage of 441 

cell necrosis compared to Mx1-/- mice that had been grafted with Mx1-/- bone marrow cells as cell 442 

nuclei were still visible. The lesions in these mice were also characterized by a clear cellular influx. As 443 
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a more objective measure for liver damage, the ALT and AST serum levels were determined following 444 

THOV infection. The obtained data reflected the results of the histological analysis of the liver tissue. 445 

This suggests that the expression of a functional Mx1 protein in hematopoietic-derived cells cannot 446 

protect against productive THOV infection in Mx1-/- recipients, but it can delay disease progression. 447 

This was in line with the THOV infection kinetics data. Histological analysis of liver tissue, as well as 448 

ALT and AST levels in blood serum, showed that Mx1-/- mice that received Mx1+/+ bone marrow cells 449 

have a delayed progression of liver damage compared with Mx1-/- mice that received Mx1-/- bone 450 

marrow cells. Another argument for this theory is that the situation in livers of Mx1-/- mice that 451 

received Mx1-/- bone marrow at 2 dpi is comparable with that at 4 dpi in livers of Mx1-/- mice that 452 

received Mx1+/+ bone marrow. In these two situations we showed comparable liver morbidity and 453 

cellular influx in the liver. Immunohistological analysis made it clear that the cellular influx in the 454 

livers is mainly composed of CD45+ immune cells. It was apparent that cells that express a functional 455 

Mx1 protein (CD45+ or CD45-) do not express the viral protein NP, which suggests that these cells 456 

were not productively infected. Interestingly, in livers of Mx1-/- mice that received Mx1-/- bone 457 

marrow the CD45+ cells appeared to be the first cells that express the THOV NP. 458 

 459 

Recently, Kochs et al. postulated that THOV has a tropism for CD11b+ cells with a clear 460 

myeloid/macrophage phenotype (double positive for surface markers CD11b and F4/80) in the 461 

peritoneum (54). Therefore, it is conceivable that these cells could be partially protected against 462 

THOV infection by Mx1 expression. When these cells become infected with THOV, they likely 463 

transport the virus to the liver. This is a credible theory given that Ghosn et al. identified a population 464 

of large peritoneal macrophages (LPMs) which seem to have a similar phenotype as the CD11b+ 465 

myeloid cells described by Kochs et al. (54, 55). These LPMs can migrate to the omentum – a fat 466 

tissue that connects the abdominal organs – upon inflammation (56), which is in agreement with the 467 

disappearance of the CD11b+ myeloid cell population from the peritoneal cavity after THOV infection 468 

(54). From the omentum, the LPMs can reach the liver of infected mice. There, the virus can infect 469 

hepatocytes, unless these hepatocytes express a functional Mx1 protein, in which case, viral 470 

replication would be suppressed in the hepatocytes. In Mx1-/- mice that received Mx1+/+ bone 471 

marrow we observed high viral titers and necrotic cell lesions in the liver, indicating that THOV can 472 

still reach the liver. However, THOV NP expression in the liver was low to nonexistent. It is plausible 473 

that myeloid cells are only partially protected against THOV infection, or that the viral inoculum 474 

(1000 PFU) used overcomes the Mx1 restriction in the Mx1+/+ myeloid cells. Nonetheless, the 475 

obtained results indicate that Mx1 expression in myeloid cells can delay the progression of THOV 476 

infection. Mx1+/+ mice that received Mx1-/- bone marrow showed no detectable liver viral titers and 477 

no liver injury. However, these mice showed clear viral titers in the spleen, which could be explained 478 
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by the high abundance of myeloid cells in this organ. If THOV could reach the liver tissue via THOV-479 

susceptible Mx1-/- myeloid cells, the virus would still be inhibited by the presence of a functional Mx1 480 

protein in the hepatocytes. However, this does not explain the higher weight loss for these mice in 481 

comparison with the Mx1-/- and Mx1+/+ mice that received Mx1+/+ bone marrow. Conceivably, since 482 

THOV can still reach the liver and spleen quite easily in Mx1+/+ mice that received Mx1-/- bone 483 

marrow, an inflammatory response will be triggered. This response can cause the production of 484 

inflammatory cytokines (57, 58), and possibly is the reason for the more severe weight loss in Mx1+/+ 485 

mice that received Mx1-/- bone marrow. Replication in myeloid cells could lead to high type I IFN 486 

levels and lead to a cytokine storm which would explain the severe weight loss in Mx1+/+ mice that 487 

received Mx1-/- bone marrow (53). 488 

 489 

In conclusion, to confer resistance against Mx1-susceptible viruses that do not have a tropism for 490 

myeloid cells, such as influenza A/Puerto Rico/8/34, Mx1 expression is primarily important in the 491 

stromal cells. However, for resistance against Mx1-susceptible viruses, like THOV, that can infect 492 

myeloid cells and disseminate through these cells, Mx1 expression in bone marrow-derived cells is of 493 

major importance.   494 
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Figure legends 662 
 663 

Figure 1 664 

 665 

Mx1-mediated resistance to influenza A virus infection primarily depends on the genotype of the 666 

recipient bone marrow chimeric mice. (A) Schematic overview of the generation of the bone 667 

marrow chimeras. The PCR-based genotyping of the donor and acceptor mice is also depicted. (B) 668 

Mice (n = 14 per group) were infected intranasally with 10 LD50 of maPR8 virus and the body weight 669 

change over time after infection was monitored. Data points represent the average of 14 mice from 0 670 

dpi until 3 dpi, and the average of 7 mice from 4 dpi until 6 dpi. Error bars represent the standard 671 

error of the mean. Asterisks indicate the significant difference between the Mx1-/-  Mx1-/- group 672 

and all other groups over time. ***, p < 0.001. Circles indicate the significant difference with the 673 

Mx1+/+  Mx1-/- group over time. °°, p < 0.01; °°°, p < 0.001. (C) Mice were sacrificed on 3 and 6 days 674 

post infection and lung viral loads were determined. Each data point represents the lung viral titer of 675 

a single animal. Asterisks indicate the significant difference between the Mx1-/-  Mx1-/- group and 676 

all other groups. **, p < 0.01; ***, p < 0.001. Circles indicate the significant difference between the 677 

Mx1+/+  Mx1-/- group and all other groups. °, p < 0,05; °°, p < 0,01; °°°°, p < 0.0001. (D) Viral mRNA 678 

load in lung homogenates from mice sacrificed on day 3 and 6 after infection as determined by RT-679 

qPCR. Data points represent the average levels of total viral mRNA relative to household genes. Error 680 

bars represent standard error of the mean. Asterisks indicate the significant difference between the 681 

Mx1-/-  Mx1-/- group and all other groups. ***, p < 0.001. Circles indicate the significant difference 682 

between the Mx1+/+  Mx1-/- group and all other groups. °°°, p < 0.001. (E) Viral mRNA load of the 683 

eight separate influenza virus genome segments in lung homogenates from the respective bone 684 

marrow chimeric mice sacrificed on day 6 after infection as determined by RT-qPCR. Bars represent 685 

the average levels of viral mRNA relative to household genes. Error bars represent standard error of 686 

the mean. The data are pooled from 2 independently performed experiments (first experiment n = 6 687 

and second experiment n = 8). 688 

Figure 2 689 

 690 

Mx1+/+ hematopoietic cells contribute to protection against THOV-associated pathology. Bone 691 

marrow chimeric mice were infected intraperitoneally with 1000 PFU of THOV on day 0. (A) Body 692 

weight change over time after infection. Data points represent the average of eight mice. Error bars 693 

represent the standard error of the mean. Statistical analysis was done using a two-way ANOVA with 694 

post hoc Tukey’s HSD test. Asterisks indicate the significant difference between the Mx1-/-  Mx1-/- 695 
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group and all other groups. *, p < 0.05; **, p < 0.01; ****, p < 0.0001. Circles indicate the significant 696 

difference between the Mx1+/+  Mx1-/- group and all other groups. °°, p < 0.01; °°°, p < 0.001; °°°°, p 697 

< 0.0001. Caps indicate the significant difference between the Mx1-/-  Mx1+/+ group and all other 698 

groups. ^, p < 0.05; ^^^^, p < 0.0001. (B) Viral titers determined by plaque assay in the liver on day 4 699 

after infection. Each data point represents the liver viral titer of a single animal. Statistical analysis 700 

was performed using Kruskal-Wallis test with post hoc Dunn's multiple comparison test. Asterisks 701 

indicate the significant difference between the Mx1-/-  Mx1-/- group and all other groups. ***, p < 702 

0.001. Circles indicate the significant difference between the Mx1+/+  Mx1-/- group and all other 703 

groups. °, p < 0.05. Data are pooled from 2 independently performed experiments (first experiment n 704 

= 4, second experiment n = 4). (C) Histological analysis of liver tissue section (5 μm slides) after 4 days 705 

of infection stained with hematoxylin and eosin. Arrows indicate focal zones of liver cell necrosis. 706 

Scale bar = 100 µm. Pictures are representative for n = 8. Serum concentrations of ALT (D) and AST 707 

(E) determined on day 4 after infection. Each data point represents the ALT or AST concentration of a 708 

single animal (n = 4). Asterisks indicate the significant difference between the Mx1-/-  Mx1-/- group 709 

and all other groups. *, p < 0.05; **, p < 0.01; Kruskal-Wallis test with post hoc Dunn's multiple 710 

comparison test. 711 

 712 

Figure 3 713 

 714 

Mx1+/+ immune cells delay THOV-associated liver damage in B6.A2G Mx1-/- recipient mice. 715 

Radiation chimeric mice (n = 19 per group) were generated and infected intraperitoneally with 1000 716 

PFU of THOV. Before infection (n = 5), and on day 2 (n = 6) and 4 (n = 8) after infection, mice were 717 

sacrificed and liver and serum samples were prepared. (A) Representative photo micrographs of liver 718 

section stained with hematoxylin and eosin. Arrows indicate focal zones of liver cell necrosis. Scale 719 

bar = 100 µm. Serum concentrations of ALT (B) and AST (C). Each data point represents the ALT or 720 

AST concentration of a single animal. Asterisks indicate the significant difference between the Mx1-/- 721 

 Mx1-/- group and all other groups. ****, p < 0.0001. Data are pooled from 2 independently 722 

performed experiments (first experiment n = 9, second experiment n = 10). 723 

 724 

Figure 4 725 

 726 

Mx1 in hematopoietic cells differentially controls THOV replication in different parts of the body. 727 

Bone marrow chimeric mice (n = 14 per group) were generated and infected intraperitoneally with 728 

1000 PFU of THOV. On day 2 (n = 6) and 4 (n = 8) after infection, mice were sacrificed and viral titers 729 

in liver (A), lung (B), spleen (C), and serum (D) were determined. Each data point represents the viral 730 
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titer of a single animal. Asterisks indicate the significant difference between the Mx1-/-  Mx1-/- 731 

group and all other groups. **, p < 0,01; ***, p < 0.001; ****, p < 0,0001. Circles indicate the 732 

significant difference between the Mx1+/+  Mx1-/- group and all other groups. °, p < 0.05. Caps 733 

indicate the significant difference between the Mx1-/-  Mx1+/+ group and all other groups. ^, p < 734 

0.05. Data are pooled from 2 independently performed experiments (first experiment n = 7, second 735 

experiment n =7). 736 

 737 

Figure 5 738 

 739 

Mx1+/+ hematopoietic cells delay THOV infection-associated liver damage in B6.A2G Mx1-/- 740 

recipient mice. Bone marrow chimeric mice (n = 19 per group) were infected intraperitoneally with 741 

1000 PFU of THOV. Before infection (0 dpi) (n = 5), 2 (n = 6) and 4 (n = 8) days after infection mice 742 

were sacrificed, livers were isolated, and prepared for histological analysis by staining tissue slides 743 

with hematoxylin and immunostaining with polyclonal antiserum directed against THOV NP and Mx1, 744 

or a monoclonal antibody against CD45. Scale bar = 100 µm. 745 
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