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The potential of the tree water potential
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Non-invasive quantification of tree water potential is one of the grand challenges for assessing the fate of trees and forests in the
coming decades. Tree water potential is a robust and direct indicator of tree water status and is preferably used to track how
trees, forests and vegetation in general respond to changes in climate and drought. In this issue of Tree Physiology, Dietrich et al.
(2018) predict the daily canopy water potential of mature temperate trees from tree water deficit derived from stem diameter
variation measurements.
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Why tree water potential matters

Water potential is a key variable in plant functioning at different
scales for several reasons. The water potential dictates the
movement of water through any system from areas of high (less
negative) to areas of low (more negative) water potential
(Nobel 2009). In a tree, this movement of water can be directed
axially, from deep to shallow roots via hydraulic redistribution
(Neumann and Cardon 2012), from roots to leaves as defined
in the soil–plant–atmosphere continuum (Nobel 2009) or from
leaves to roots, when foliar water uptake occurs (Goldsmith
2013, Steppe et al. 2018). But water can also move radially
within the sapwood or between the sapwood and the bark. This
radial water transport is not only important to explain diel pat-
terns of stem shrinkage and swelling, as explained in this current
issue by Dietrich et al. (2018) (but also see De Swaef et al.
(2015) and Steppe et al. (2015)), it also governs the tight
coupling between xylem and phloem, and hence ultimately inter-
relates water and carbon transport and dynamics in trees
(Sevanto 2014, Hubeau and Steppe 2015). This implies that a
realistic quantification of tree water potential is also crucial when
assessing hydraulic failure and carbon starvation mechanisms
to understand and predict drought-induced tree mortality
(McDowell et al. 2008). Furthermore, water potential, and not
just stomatal conductance, is key to distinguish isohydric from

anisohydric behavior during drought and to quantitatively com-
pare between tree species (McDowell et al. 2008, Klein 2014).
Finally, in many conceptual frameworks, water potential acts as
the independent physiologically meaningful variable to identify
critical levels or thresholds related to the functioning or perform-
ance of trees, forests or even biomes, which has been exempli-
fied by the use of xylem vulnerability curves to compare and
typify vulnerability of forest biomes to drought-induced cavita-
tion (Choat et al. 2012). In this issue, Dietrich et al. (2018) add
to this concept with their proposed logistic relationship between
normalized tree water deficit (TWD), derived from continuous
stem diameter variation measurements, and canopy water
potential (Figure 1).

Beyond a tight link between tree water deficit and
canopy water potential

In essence, the relationship between the loss of mass or volume
of water from a sample with decreasing (more negative) water
potential represents a desorption curve (Zweifel et al. 2000,
Cochard et al. 2001). Desorption curves are increasingly gain-
ing importance in plant research, as they quantitatively distin-
guish different water storage locations: (i) capillary water stored
in the lumina of inactive xylem elements and in intercellular
spaces, (ii) elastic water stored within living cells and (iii) water
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released during cavitation when air replaces the water-filled
lumina (Zweifel et al. 2000, Cochard et al. 2001). Hydraulic
capacitance of the different water storage pools can be calcu-
lated from the distinct slopes displayed in a desorption curve.
These slopes define the change in amount of water present in
the storage tissue for a given change in water potential of the tis-
sue (Jarvis et al. 1981, Jones 1992), and the critical water
potential value associated with the transition from the elastic
storage pool to cavitation release (i.e., storage water released

by embolism) is then interchangeable with the P12-value (i.e.,
onset of embolism) derived from xylem vulnerability curves.

In this issue, Dietrich et al. (2018) establish desorption
curves in mature individuals of six different European forest tree
species, with the difference that TWD, as a proxy for tree water
loss, is related to crown (or leaf) water potential instead of stem
water potential if quantification of stem hydraulic capacitance
had been targeted. Their proposed logistic relationship between
TWD and canopy water potential also shows three distinct

Figure 1. Conceptual representation of two approaches to quantify crown water potential as substitute for the labor-intensive manual measurements,
which are a particular challenge in large trees. The logistic relationship proposed by Dietrich et al. (2018) (left) relates relative tree water deficit, derived
from stem diameter variation measurements, to daily canopy water potential (canopy Ψ). Canopy water potential can also be simulated using measure-
ments of sap flow and stem diameter, and mechanistic tree modeling. The so-called flow and storage models that can be used for this purpose include
for each storage pool a desorption curve (right), linking changes in water content (W) in a specific water storage pool (stem, crown) to changes in asso-
ciated water potential from which hydraulic capacitance values can be derived. To be successful, these models need at a certain point in time absolute
and accurate canopy or stem water potential estimates for model calibration or validation. This highlights that any non-invasive approach that is able to
supply tree water potential holds immense potential in both monitoring and modeling studies (basic figures adapted from Dietrich et al. (2018), Steppe
et al. (2006) and https://www.zdf.de/nachrichten/heute-in-europa/baeume-twittern-100.html).
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phases (Figure 1), with TWD only slightly increasing at high and
low crown water potentials, partly reflecting the contributions of
capillary and cavitation-released water, respectively, and
strongly increasing close to the point of 50% depletion of
internal storage tissues (D50). The authors attribute the strong
linear phase of the dependency of TWD on crown water potential
to strong radial water flows from storage pools to the sapwood.
Stem dehydration indeed provokes variation in stem diameter
predominantly caused by shrinkage of the elastic tissues located
in the bark (Zweifel et al. 2000, Cochard et al. 2001) but also
by tension developed within the xylem according to the apparent
elastic modulus (Irvine and Grace 1997). Mass loss per volume
change (calculated from variations in stem diameter) of dehy-
drating stems is typically close to unity, when water is lost from
living tissues (i.e., elastic hydraulic capacitance), but beyond a
critical water potential threshold the ratio becomes higher than
unity, when water is also lost from the less-elastic xylem tissue
due to cavitation (i.e., inelastic hydraulic capacitance) (Zweifel
et al. 2000, Cochard et al. 2001). This explains the logistic
pattern of the relationship between TWD and canopy water
potential observed by Dietrich et al. (2018), showing an asymp-
totically maximum TWD that cannot be further exceeded by
water withdrawal from the living cells and indicating where the
contribution of cavitation release begins. The D50 values that
can be derived from the logistic relationship of Dietrich et al.
(2018), and associated crown water potential, should be used
with care when compared with P12 and P50 (i.e., the water
potential at which 50% loss of conductivity occurs) values
derived from xylem vulnerability curves, because capacitively
stored water released from the leaves in the canopy may buffer
changes in water potential. Interestingly, D50 values of the six
study tree species was reached at about 50% of the normalized
midday leaf water potential (see Figure 7B in Dietrich et al.
(2018)), and the question arises whether this presents a gen-
eral pattern or is rather related to how the reference minimum
water potential value for each species has been defined.

Challenges related to the application of the logistic
relationship

The approach presented by Dietrich et al. (2018) demonstrates
that stem and canopy water relations are tightly coupled on a daily
basis. The beauty of the approach is that when normalized values
for TWD and canopy water potential were used, a universal logis-
tic relationship was found for the six temperate tree species (see
Figure 7B in Dietrich et al. (2018)), and most likely will be found
in more, if not all, tree species. The shape of the relationship
(steepness of the function), however, varied depending on the
study species when crown water potential was not normalized
(see Figure 7A in Dietrich et al. (2018)), which can be attributed
to differences in hydraulic resistances to water flow and in
hydraulic capacitances linked to the elastic properties (elastic

moduli) of the tissues involved in shrinkage. Therefore, a species-
and site-specific calibration curve is currently recommended by
the authors, at least until future research shows that for a certain
tree species a universal relationship can be established across
diameter at breast height and age classes.

When applying the approach of Dietrich et al. (2018) with
relative TWD and to enable comparison across studies, it is
important that the highest TWD value or reference value used for
normalization is reported. The shape of the logistic relationship
will be determined by this reference value. In their study,
Dietrich et al. (2018) used the highest species-specific TWD
value measured over a wet and a dry growing season. Because
of the measurements in the dry season, the logistic relationship
could be fitted, which had been impossible if only the wet sea-
son data had been used. The D50 values identified are also
dependent on this reference value, shaping the logical relation-
ship. From a theoretical point of view, a far-reaching tree dehy-
dration, at least until the living cells in the bark have lost most of
their turgor, is preferable to determine the reference value and
will enable construction of the logistic relationship of a species.
Water released into the transpiration stream during cavitation will
not be captured by this approach, because embolised inelastic
xylem elements unlikely contribute to changes in stem diameter
(Irvine and Grace 1997), but the stored water released during
embolism will affect crown water potential.

Dietrich et al. (2018) further recommend working with abso-
lute instead of normalized TWD values when continuously meas-
uring stem diameter variations in a forest. While the use of TWD
without further calibration is indeed meaningful in large-scale
monitoring studies and can be used for a qualitative assessment
of tree water status, the ultimate goal remains to non-invasively
quantify canopy or stem water potential as substitute for the
labor-intensive manual measurements of daily canopy water
potential, which are challenging in large trees.

The search for potential continues

The work of Dietrich et al. (2018) provides an important
impetus to carry on our search for automated, non-invasive
methods capable of continuous operation to quantify water
potential. Whereas in their work, Dietrich et al. (2018) were
seeking for daily point values of crown water potential, continu-
ous quantification of diel water potential dynamics could be
another quest. Steppe et al. (2008) predicted stem water poten-
tial dynamics using a combination of mechanistic tree modeling
and continuous measurements of stem diameter variations and
sap flow (Figure 1). The so-called water flow and storage mod-
els used in these applications include logistic relationships simi-
lar to the one presented by Dietrich et al. (2018) and link
changes in water content in a specific tree part (trunk, crown) to
associated changes in water potential (e.g., Zweifel et al. 2001,
Steppe et al. 2006) (Figure 1). An advantage of tree models
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being supplied with continuous measurements of sap flow is that
absolute values of water potentials can be calculated. Instant
visualization of real-time calculated water potential dynamics is
also pursued within the TreeWatch.net initiative (Steppe et al.
2016). Tools such as these are much-needed in the forest moni-
toring networks of the future and are suitable for incorporating
into larger-scale models to improve forecasting of tree
responses and drought-induced tree and forest mortality
(Hartmann et al. 2018). However, it is important to highlight
that at a certain point in time any plant hydraulics model will
need absolute and accurate canopy or stem water potential esti-
mates, be it for calibration or validation purposes or to increase
the set of identifiable model parameters and break correlations
between model parameters.
In conclusion, any non-invasive approach that is able to supply

water potential data as a substitute for the labor-intensive man-
ual measurements holds immense potential in both monitoring
and modeling studies to better represent the mechanisms that
drive the responses of trees and forests to drought and pro-
jected climate changes. In this sense, it is certainly worthwhile to
further explore the predictive power of stem diameter variation
measurements for water potentials, as was pursued by Dietrich
et al. (2018) in this issue.

Conflict of interest

None declared.

References

Choat B, Jansen S, Brodribb TJ et al. (2012) Global convergence in the
vulnerability of forests to drought. Nature 491:752–756.

Cochard H, Forestier S, Ameglio T (2001) A new validation of the
Scholander pressure chamber technique based on stem diameter var-
iations. J Exp Bot 52:1361–1365.

De Swaef T, De Schepper V, Vandegehuchte MW, Steppe K (2015)
Stem diameter variations as a versatile research tool in ecophysiology.
Tree Physiol 35:1047–1061.

Dietrich L, Zweifel R, Kahmen A (2018) Daily stem diameter variations
can predict the canopy water status of mature temperate trees. Tree
Physiol 7:941–952.

Goldsmith GR (2013) Changing directions: the atmosphere–plant–soil
continuum. New Phytol 199:4–6.

Hartmann H, Moura CF, Anderegg WRL et al. (2018) Research frontiers
for improving our understanding of drought-induced tree and forest
mortality. New Phytol 218:15–28.

Hubeau M, Steppe K (2015) Plant-PET scans: in vivo mapping of xylem
and phloem functioning. Trends Plant Sci 20:676–685.

Irvine J, Grace J (1997) Continuous measurements of water tensions in
the xylem of trees based on the elastic properties of wood. Planta
202:455–461.

Jarvis PG, Edwards WRN, Talbot H (1981) Models of plant and crop
water use. In: Rose DA, Charles-Edwards DA (eds) Mathematics and
plant physiology. Academic Press, London, pp 151–194.

Jones HG (ed) (1992) Plants and microclimate. A quantitative
approach to environmental plant physiology. University Press,
Cambridge, UK.

Klein T (2014) The variability of stomatal sensitivity to leaf water poten-
tial across tree species indicates a continuum between isohydric and
anisohydric behaviours. Funct Ecol 28:1313–1320.

McDowell NG, Pockman WT, Allen CD et al. (2008) Mechanisms of plant
survival and mortality during drought: why do some plants survive
while others succumb to drought? New Phytol 178:719–739.

Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribu-
tion by plant roots: a review and synthesis of empirical and modeling
studies. New Phytol 194:337–352.

Nobel PS (ed) (2009) Physicochemical and environmental plant physi-
ology. Academic Press, Oxford, UK.

Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:
1751–1759.

Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006) A mathem-
atical model linking tree sap flow dynamics to daily stem diameter fluc-
tuations and radial stem growth. Tree Physiol 26:257–273.

Steppe K, De Pauw DJW, Lemeur R (2008) A step towards new irrigation
scheduling strategies using plant-based measurements and mathem-
atical modelling. Irrig Sci 26:505–517.

Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree
stems: linking anatomy and ecophysiology. Trends Plant Sci 20:
335–343.

Steppe K, von der Crone J, De Pauw DJW (2016) TreeWatch.net: a tree
water and carbon monitoring network to assess instant tree hydraulic
functioning and stem growth. Front Plant Sci 7:Article 993.

Steppe K, Vandegehuchte MW, Van de Wal BAE, Hoste P, Guyot A,
Lovelock CE, Lockington DA (2018) Direct uptake of canopy rain-
water causes turgor-driven growth spurts in the mangrove Avicennia
marina. Tree Physiol doi:10.1093/treephys/tpy024.

Zweifel R, Item H, Hasler R (2000) Stem radius changes and their rela-
tion to stored water in stems of young Norway spruce trees. Trees 15:
50–57.

Zweifel R, Häsler R, Item H (2001) Link between diurnal stem radius
changes and tree water relations. Tree Physiol 21:869–877.

Tree Physiology Volume 38, 2018

940 Steppe
D

ow
nloaded from

 https://academ
ic.oup.com

/treephys/article-abstract/38/7/937/5036127 by G
hent U

niversity user on 12 June 2019


	The potential of the tree water potential
	Why tree water potential matters
	Beyond a tight link between tree water deficit and canopy water potential
	Challenges related to the application of the logistic relationship
	The search for potential continues
	Conflict of interest
	References


