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PAPER
Performance Analysis of a Cognitive Radio Network with Imperfect
Spectrum Sensing

Osama SALAMEH†,††a), Koen DE TURCK†††b), Dieter FIEMS†c), Herwig BRUNEEL†d), Nonmembers,
and Sabine WITTEVRONGEL†e), Member

SUMMARY In Cognitive Radio Networks (CRNs), spectrum sensing
is performed by secondary (unlicensed) users to utilize transmission oppor-
tunities, so-called white spaces or spectrum holes, in the primary (licensed)
frequency bands. Secondary users (SUs) perform sensing upon arrival to
find an idle channel for transmission as well as during transmission to avoid
interfering with primary users (PUs). In practice, spectrum sensing is not
perfect and sensing errors including false alarms and misdetections are in-
evitable. In this paper, we develop a continuous-time Markov chain model
to study the effect of false alarms and misdetections of SUs on several per-
formance measures including the collision rate between PUs and SUs, the
throughput of SUs and the SU delay in a CRN. Numerical results indicate
that sensing errors can have a high impact on the performance measures.
key words: cognitive radio, opportunistic scheduling, Markov chain, per-
formance analysis

1. Introduction

The introduction of Cognitive Radio Networks (CRNs) aims
at providing a solution to the problem of wireless spectrum
scarcity [1]–[3]. Under the CRN paradigm there is a sec-
ondary network that operates parallel to a primary network,
where the secondary users (SUs) make use of the same chan-
nels as the primary users (PUs). The PUs are licensed users
and can occupy any channel not used by another PU. The
main idea of CRNs is to allow SUs to opportunistically use
the channels not currently occupied by the PUs, thereby in-
creasing the overall utilization of the channels. We assume
that the primary and secondary networks are completely in-
dependent of each other. There is no coordination between
them. This makes it necessary for a SU to perform channel
sensing before transmission in order not to interfere with
a possible PU occupying the channel. For an overview of
sensing techniques, we refer to the papers [4]–[7] and the
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references therein. In addition, a SU needs to sense an ac-
quired channel during transmission in order to evacuate the
channel upon the arrival of a PU on the channel.

In the ideal scenario, the PUs are not affected by the
presence of SUs. In order to ensure this, the SUs should
have perfect sensing abilities. In practice, sensing errors are
inevitable including SU false alarms (where a SU wrongly
thinks there is a PU on a channel) and SU misdetections
of PUs (where a SU fails to detect the actual presence of a
PU on a channel). Both types of sensing errors are possible
while searching for an idle channel upon arrival and during
transmission. Based on a false alarm, a SU fails to make
use of a transmission opportunity. A SU misdetection of a
PU occupying a channel is a more serious error as it results
in a collision between a SU and a PU, thus degrading the
performance of both primary and secondary networks.

In this paper, we present a generic study of the effect of
sensing errors on the performance of the primary and sec-
ondary networks. We consider two classes of misdetection
and two types of false alarm. The first class of misdetection
occurs when a sensing SU incorrectly considers a channel
that is occupied by a PU as an idle channel and starts to
transmit. The second class of misdetection occurs when a
transmitting SU fails to detect the arrival of a PU and does
not evacuate the transmission channel. These classes are
denoted as class-A and class-B misdetection respectively.
They both result in a collision between a SU and a PU and
we assume that the collided SU and PU are dropped from the
system. Type-I false alarm occurs when a sensing SU fails
to detect an idle channel and type-II false alarm occurs when
a transmitting SU evacuates a channel without a PU arrival.
They both result in a lost transmission opportunity. Our aim
is to gain insight in the CRN performance for a wide range
of values of the false alarm and misdetection parameters.

The CRN performance analysis in this paper makes
use of the tool of continuous-time Markov chain (CTMC)
modeling. CTMCs are widely used for modeling systems
involving stochastic phenomena in various application do-
mains. In particular, CTMCs play an important role in the
design and performance evaluation of telecommunication
systems and networks ever since the early work of A.K. Er-
lang in the field of telephone networks analysis [8]. The
attractiveness of CTMCs lies in their defining feature that
given the present system state, the future is independent of
the past, better known as the Markov property. For fur-
ther background on the theory of CTMCs and their applica-
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tions we refer the reader to the books [9]–[12]. The specific
CTMC model established in the present paper keeps track
of a three-dimensional system state consisting of the num-
bers of transmitting PUs, transmitting SUs en sensing SUs.
Based on this CTMC model we derive various performance
measures of the system, such as the throughputs of PUs and
SUs and the collision rate between PUs and SUs.

The remainder of the paper is organized as follows. In
Sect. 2, we discuss related literature on mathematical models
for CRNs that account for sensing. The system under study
is described in detail in Sect. 3 and the corresponding CTMC
model is presented in Sect. 4. Several performance measures
are derived in Sect. 5. Numerical results are presented and
discussed in Sect. 6 and the paper is concluded in Sect. 7.

2. Related Work

CRNs with sensing errors have been studied extensively us-
ing different mathematical tools. In [13], load balancing
for SUs on the different CRN channels is studied using a
preemptive M/G/1 queueing model. An optimal number
of channels for sensing by a SU is obtained (in view of
the balance between the difficulty for a SU to find an idle
channel and the amount of time wasted on sensing), where
false alarms and misdetections are considered. In [14], the
sensing-throughput tradeoff for CRNs is studied and the op-
timal sensing time that results in the highest throughput for
SUs is obtained using Monte Carlo simulation. Both perfect
and imperfect sensing are considered in [15], where an opti-
mal sensing-transmission structure is presented to maximize
the SU spectrum usagewhile providing a satisfactory level of
protection for PUs. However, the analysis in [15] is limited
to one PU channel only. In [16], stochastic network calculus
is used to analyze a CRN with imperfect sensing. Therein,
the backlog and delay bounds are obtained. However, false
alarms andmisdetection of a PU by a SU are only considered
for arriving SUs. The sensing time is considered negligible,
while in practice it is not when compared to the transmission
time [15].

The sensing time is taken into account in [17]. The
utilization of PUs and SUs and the probability of collision
between a PU and a SU are derived. The PU traffic is mod-
eled by an on-off CTMC and the SU network is time-slotted.
However, the analysis is limited to one channel only and sens-
ing errors during a SU transmission are not considered. The
cross-layer modeling of a multichannel CRN with imperfect
sensing is presented in [18]. The throughput of SUs and
the delay of PUs are analyzed. The primary and secondary
networks are time-slotted and synchronized, which might be
expensive to implement when the PU network is already op-
erational [19]. In this case, SUs sense at the beginning of a
time slot and sensing errors during SU transmission are not
applicable.

Discrete-time Markov chains (DTMCs) are used to an-
alyze the performance of CRNs in [20], [21]. In [20], the
effect of false alarms and misdetections on the performance
of a cooperative CRN is investigated. The throughput of

SUs is derived when the channels are assumed to experience
slowRayleigh fading. However, the sensing time is not taken
into account and sensing errors during a SU transmission are
not considered in [20]. CRNs with sensing errors are also
studied in [21]. Therein, the focus is on the tradeoff between
false alarms and misdetections and an adequate operating
point of the sensing mechanism is chosen.

The analysis of CRNs with sensing errors using
continuous-time Markov chains is considered in [22]–[27].
In [22], the performance measures include the PU termina-
tion probability, i.e., the probability that a PU is terminated
due to a collision with a SU, and the SU success probabil-
ity. One limitation of this study is the assumption that only
an arriving SU can experience a collision with a PU and a
transmitting SU will always correctly detect PU arrivals and
start to search for a new idle channel. Other limitations are
that the SU sensing time and false alarms for transmitting
SUs are considered negligible and the number of channels is
at most 3. In [23], the authors consider an extension where
an arbitrary number of channels is possible but all the other
limitations of [22] still hold. The analysis of a multichannel
CRN is presented in [24], where the probability mass func-
tions of the SU queue length and the SU queueing delay are
obtained. Sensing errors are considered during the sensing
interval, but the interaction between SUs and PUs in the
CRN is assumed to be collision-free. The studies [22]–[24]
all have in common that they do not take sensing errors of
transmitting SUs into account.

Sensing errors of both sensing and transmitting SUs are
considered in [25]–[27]. However, these studies have several
other limitations including the absence of sensing time and
the assumption that a transmitting SU can instantly switch
to another channel if one is available upon a PU arrival.
The effect of SU interruptions is only considered when no
idle channels are available in the system and in this case an
interrupted SU is placed in a virtual queue. It is assumed
that SUs in the virtual queue cannot experience type-I false
alarms or class-A misdetections. Moreover, it is assumed
that collisions are not affected by the number of transmitting
SUs in the system. Apart from these existing studies, the
CTMCmodel considered in this paper takes the sensing time
and the number of transmitting SUs into account. Also, our
model fully captures the effect of interruptions, where every
interrupted SU starts to sense the channels to find a new
transmission opportunity and consequently we consider the
possibility of false alarms and misdetections at every stage
of a SU’s existence in the system. The present paper is an
extension of our previous work [28], where perfect spectrum
sensing was assumed.

3. System under Study

As illustrated in Fig. 1, we consider a CRN where a sec-
ondary user network operates parallel to a primary user net-
work. The wireless spectrum is divided into N error-free
frequency bands (channels) with the same bandwidth and
the channels are not time-slotted. The primary user network
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Fig. 1 CRN scenario with primary and secondary networks.

is an infrastructure-based network where a primary base sta-
tion coordinates the access of PUs to the available frequency
channels, so no collisions between PUs can occur. Specifi-
cally, to each arriving PU wanting to transmit data a channel
for transmission is assigned randomly, provided there is at
least one channel available (i.e., not already occupied by an-
other PU); otherwise, if all channels are already in use by
other PUs, the arriving PU is blocked. It is important to note
that as soon as a channel is assigned to a PU, the PU starts
to transmit immediately, i.e., PUs do not perform spectrum
sensing. Also, the primary base station views all channels
occupied by SUs as available channels and can assign PUs
to them.

SUs are allowed to opportunistically use licensed fre-
quency channels that are temporarily not occupied by PUs.
The secondary user network is a network without infras-
tructure composed of a set of SUs equipped with cognitive
capabilities, where each SU determines whether a channel
is occupied or idle based on its own measurements. Fur-
thermore, SUs can coordinate the access to the idle channels
with other SUs by exchanging messages on a common con-
trol channel [25]; a SU is thus aware of the channels occupied
by other SUs and there are no collisions between SUs, as in
[26], [27]. Similarly to the primary network, the secondary
network is not time-slotted. SUs perform spectrum sensing
upon arrival to find an idle channel for transmission as well
as during transmission to avoid the interference with PUs.
As in [30]–[32], we consider the case where each SU op-
erates in full duplex mode, i.e., a SU can sense a channel
continuously while transmitting; for an implementation of a
SU operating in full duplex mode we refer to [25]. Note that
channel sensing of SUs during transmission has a positive
impact on the primary network as it decreases the collision
probability between a transmitting SU and an arriving PU;
it moreover has a positive impact on the secondary network
since no white space part is wasted on sensing. This is in
contrast with the case where SUs do not operate in full du-
plex mode and a SU has to transmit and sense in cycles until
the SU transmission is complete.

The system parameters are summarized in Table 1. In
our analysis, we assume that PUs and SUs having data to
transmit arrive according to independent Poisson processes
with arrival rates λ1 and λ2 respectively. The channel hold-
ing times of PUs and SUs are modeled as exponentially dis-
tributed random variables with mean values 1/µ1 and 1/µ2,

Table 1 System parameters.
N number of channels
λ1 PU arrival rate
λ2 SU arrival rate
µ1 PU channel holding rate
µ2 SU channel holding rate
K maximum number of sensing SUs
σ channel sensing rate
pm1 class-A misdetection probability
pm2 class-B misdetection probability
p f 1 type-I false alarm probability
δ f 2 type-II false alarm rate

i.e., with channel holding rates µ1 and µ2, respectively.
An arriving SU starts sensing to determine an idle chan-

nel for transmission if there are less than a given maximum
number K of sensing SUs in the system; otherwise, the ar-
riving SU is blocked. The maximum number of sensing SUs
is referred to as the “sensing room size” in the sequel. As
in [18], the sensing time is defined as the time to sense one
channel that is selected randomly and we assume the sensing
time is exponentially distributed with rate σ. The assump-
tion that the sensing time is not fixed has also been used in
e.g. [29].

When searching for an idle channel, a SU senses all
channels not occupied by other SUs, i.e., both idle channels
and those occupied by PUs. The outcome of the sensing of
a channel by a SU is then one of the following results:

• the channel is found occupied by a PU correctly,
• the channel is found occupied by a PU while it is idle,
• the channel is found idle while it is occupied by a PU,
• the channel is found idle correctly.

In the first two cases, the SU randomly picks a channel and
starts to sense again, where in case 2 a type-I false alarm
is fired because of a lost transmission opportunity. Case 3
corresponds to a class-Amisdetection of a PU and both users
are dropped from the system due to collision. In case 4 the
SU starts transmission.

Each SU transmits on one channel only and, as men-
tioned above, performs continuous sensing during transmis-
sion to detect a possible PU arrival on the channel. During
this sensing one of the following (instantaneous) events can
occur, causing a change in the system:

• a PU arrives on the channel and it is correctly detected,
• the SU wrongly thinks there is a PU arrival on the
channel,

• a PU arrives on the channel and it is not detected.

In the first two cases, the SU goes back to sensing in order
to search for an idle channel if the sensing room is not full
and the SU is lost otherwise, where in case 2 a type-II false
alarm is fired. Case 3 corresponds to a class-B misdetection
of a PU and the collided PU and SU are dropped from the
system. Note that as long as during the sensing none of
the above 3 events occurs, the SU is still correctly detecting
there is no PU arrival on the channel and simply continues
its transmission without any change in the system.
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The probabilities of class-A and class-B misdetection
of a PU by a SU are denoted by pm1 and pm2 respectively.
Here, pm1 is the probability that a SU who is searching for
an idle channel and has finished sensing a busy channel,
has failed to detect the presence of a PU on that channel,
while pm2 is the probability that the arrival of a PU to a
channel occupied by a transmitting SU is not detected by
that SU. We assume that a type-I false alarm occurs with
probability pf 1, i.e., pf 1 is the probability that a SU who
is searching for an idle channel and has finished sensing
an idle channel, wrongly thinks the channel is occupied by
a PU and thus fires a type-I false alarm. Like in [25], a
transmitting SU wrongly thinks there is a PU arrival and
thus fires a type-II false alarm according to a Poisson process
with rate δ f 2. Note that the occurrence of type-II false
alarms is not modeled by a probability, but by the rate δ f 2.
This is because we assume that a transmitting SU performs
continuous sensing and consequently can fire a type-II false
alarm at any moment based on channel measurement results,
where during an infinitesimal time interval of length dt a
type-II false alarm occurs with probability δ f 2dt.

4. CTMC Model

In view of the non-time-slotted nature of both the primary
and the secondary network, continuous-time Markov chain
modeling is the natural modeling framework to investigate
the performance of the considered cognitive radio system.
In particular, in this section, we create a three-dimensional
CTMC model of the system under study. To this end, we
let system state x correspond to the triplet x = (x1, x2, x3),
where x1 is the number of transmitting PUs, x2 is the number
of transmitting SUs and x3 is the number of sensing SUs
searching for an idle channel. The state space S of the CTMC
contains all possible system states. Clearly, S is finite and
contains all states (x1, x2, x3) such that

0 ≤ x1 ≤ N, 0 ≤ x2 ≤ N − x1 and 0 ≤ x3 ≤ K . (1)

The next step is now to determine the infinitesimal gen-
erator or transition rate matrix Q of the CTMC. A basic
property of this (square) matrix is that its diagonal elements
qx,x (x ∈ S) are such that the row sums of Q are equal to
zero. Another property is that the non-diagonal element qx, y
(x ∈ S, y ∈ S, x , y) of Q is the transition rate from state
x to another state y . More explicitly, this means that given
the CTMC is in system state x, a transition from state x to
another state y (x , y) will occur in an infinitesimal time
interval of length dt with probability qx, ydt. In what fol-
lows, we establish expressions for these transition rates qx, y
(x , y). To do so, for each state x = (x1, x2, x3) ∈ S we
need to consider all possible events that cause a transition
out of state x to another state y (x , y) and to determine
the corresponding rates. As an illustration, for a system
state x = (x1, x2, x3) with 0 < x1 < N , 0 < x2 < N and
0 < x3 < K , the state transitions out of this state are depicted
in Fig. 2.

To list the different events that cause a change of the

Fig. 2 Graph to illustrate the state transitions out of a system state x =
(x1, x2, x3) with 0 < x1 < N , 0 < x2 < N and 0 < x3 < K .

system state and to determine the corresponding transition
rates, we first observe that a PU arrival occurs with rate λ1.
If in the current system state x = (x1, x2, x3) all channels are
already occupied by other PUs (i.e., if x1 = N), the arriv-
ing PU is blocked and the system state remains unchanged.
Therefore, with respect to changes in the system state due to
the arrival of a PU, we only need to focus on the case where
x1 < N . In such case, there are still N−x1 channels available
for the arriving PU and one of these available channels (ei-
ther an idle channel or a channel in use by a SU) is randomly
assigned to the PU. As such, a first event causing a change of
the system state corresponds to the arrival of a PU at an idle
channel. If x1 < N , the channel that is randomly assigned
to the arriving PU will not be in use by a transmitting SU
and, hence, be idle with probability N−x1−x2

N−x1
. In this case,

the number of transmitting PUs in the system increases by
one, whereas the numbers of transmitting and sensing SUs
remain unchanged. Therefore, with rate λ1

N−x1−x2
N−x1

we get a
transition to state y = (x1 + 1, x2, x3) and hence,

qx, y = λ1
N − x1 − x2

N − x1
,

if y = (x1 + 1, x2, x3), x1 < N . (2)

A second event then clearly corresponds to a PU arriv-
ing at a channel that is in use by a transmitting SU, which
occurs with rate λ1

x2
N−x1

if x1 < N and x2 > 0 (i.e., there
is at least one transmitting SU). In this case, the transmit-
ting SU can correctly detect the PU arrival (with probability
1 − pm2 of having no class-B misdetection); the SU will
then either evacuate the channel and go back to the sensing
state if x3 < K or leave the system if x3 = K . Important
to note here is that the condition x2 > 0 implies x1 < N ,
since x1 + x2 ≤ N (see (1)). The corresponding transition
equations are then
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qx, y = λ1
x2

N − x1
(1 − pm2), (3)

if y = (x1 + 1, x2 − 1, x3 + 1), x2 > 0, x3 < K ;

qx, y = λ1
x2

N − x1
(1 − pm2),

if y = (x1 + 1, x2 − 1, x3), x2 > 0, x3 = K . (4)

Alternatively, still if x2 > 0 (and x1 < N), the arriving PU
is misdetected by the transmitting SU with probability pm2;
the PU and SU then run into a collision and are both dropped
out of the system; the state changes to y = (x1, x2 − 1, x3) in
this case. Other events may, however, cause a similar state
transition (see later), so we postpone giving the expression
for the total transition rate to state y = (x1, x2 − 1, x3) for
now.

A SU arrives with rate λ2 and will enter the sensing
state if the number of sensing SUs is less than K ; otherwise,
if x3 = K , the arriving SU cannot be accepted and gets
blocked, and the system state remains unchanged. Therefore,
with respect to changes in the system state due to the arrival
of a SU, we only need to consider the case where x3 < K .
We thus have

qx, y = λ2, if y = (x1, x2, x3 + 1), x3 < K . (5)

A next event corresponds to the completion of a PU
transmission, which can only occur if there is at least one
transmitting PU (i.e., if x1 > 0). Each of the x1 transmitting
PUs can complete transmission with rate µ1, and therefore

qx, y = x1µ1, if y = (x1 − 1, x2, x3), x1 > 0. (6)

Another set of events is related to a transmitting SU
leaving the transmitting state due to either transmission com-
pletion or a type-II false alarm. These events can only occur
if there is at least one transmitting SU (i.e., if x2 > 0). The
completion of a SU transmission occurswith rate x2µ2. With
rate x2δ f 2 a type-II false alarm occurs and in such case the
transmitting SU stops transmission and either goes back to
the sensing state if x3 < K or leaves the system if x3 = K . As
indicated above, a transmitting SU may also leave the trans-
mitting state due to a PU arrival combined with a class-B
misdetection, which occurs with rate λ1

x2
N−x1

pm2 if x2 > 0
(and x1 < N). These observations lead to the following
transition equations:

qx, y = λ1
x2

N − x1
pm2 + x2µ2,

if y = (x1, x2 − 1, x3), x2 > 0, x3 < K ; (7)

qx, y = λ1
x2

N − x1
pm2 + x2(µ2 + δ f 2),

if y = (x1, x2 − 1, x3), x2 > 0, x3 = K ; (8)
qx, y = x2δ f 2,

if y = (x1, x2 − 1, x3 + 1), x2 > 0, x3 < K . (9)

Finally, we look at system state changes corresponding

to a sensing SU that finishes the sensing of a channel, which
can only occur if there is at least one sensing SU (i.e., if
x3 > 0). Note that as SUs are aware of the channels occupied
by other SUs (see Sect. 3), SUs will only sense the N − x2
channels not already occupied by other SUs. Therefore, with
respect to system state changes, we only need to consider the
case where x2 < N . If x3 > 0 and x2 < N , the event
of a sensing SU finishing the sensing of a channel occurs
with rate x3σ. In case the (randomly picked) sensed channel
is an idle channel and there was no type-I false alarm, the
SU starts transmission and there is a transition to state y =
(x1, x2 + 1, x3 − 1). In case the sensed channel is occupied
by a PU (which is only possible if x1 > 0) and there was a
class-A misdetection, the SU starts transmission, runs into a
collision with the PU and both PU and SU are dropped out
of the system; the state changes to y = (x1 − 1, x2, x3 − 1) in
this case. Also note that x1 > 0 implies x2 < N , in view of
(1). All these observations then lead to

qx, y = x3σ
N − x2 − x1

N − x2
(1 − pf 1),

if y = (x1, x2 + 1, x3 − 1), x2 < N, x3 > 0; (10)

qx, y = x3σ
x1

N − x2
pm1,

if y = (x1 − 1, x2, x3 − 1), x1 > 0, x3 > 0. (11)

For all other combinations of system states x and y ,
with x , y , the transition rate qx, y from state x to state y
equals 0:

qx, y = 0, otherwise. (12)

Since the row sums of the transition rate matrix Q of
the CTMC equal zero, the diagonal elements qx,x of Q are
obtained from

qx,x = −
∑

y∈S, y,x

qx, y . (13)

The above equations completely determine the matrix
Q. The row vector π of steady-state probabilities of the
CTMC can then be computed as the solution of the set of
balance equations

πQ = 0, (14)

together with the normalization condition π1 = 1, where 1
is a column vector of ones, or more explicitly

N∑
x1=0

N−x1∑
x2=0

K∑
x3=0

π(x1,x2,x3) = 1, (15)

where the element π(x1,x2,x3) of vector π denotes the steady-
state probability that the system is in state x = (x1, x2, x3) ∈
S. Based on the vector π, we derive several performance
measures in the next section.

5. Performance Measures

A first performance measure is the collision rate between
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PUs and SUs. The collision rate α = α1 + α2 is defined
as the rate with which PUs and SUs are dropped out of the
system because of collision, where α1 and α2 are related to
a class-A and class-B misdetection respectively. These rates
are calculated as follows:

α1 =

N∑
x1=1

N−x1∑
x2=0

K∑
x3=1

π(x1,x2,x3) x3σ
x1

N − x2
pm1, (16)

α2 =

N∑
x2=1

N−x2∑
x1=0

K∑
x3=0

π(x1,x2,x3)λ1
x2

N − x1
pm2. (17)

In (16), the summation runs over all states x = (x1, x2, x3) in
the state space S of the CTMC with at least one transmitting
PU and at least one sensing SU, in accordance with the fact
that a class-A misdetection can only occur in such a system
state (see transition equation (11) above). In a similar way,
the summation in (17) runs over all states with at least one
transmitting SU, as only for x2 > 0 a class-B misdetection
can occur (see transition Eqs. (7) and (8)).

The throughput of PUs ηPU is defined as the rate with
which PUs successfully complete transmission, i.e., without
collision. This rate can be computed as

ηPU =

N∑
x1=1

N−x1∑
x2=0

K∑
x3=0

π(x1,x2,x3) x1µ1, (18)

where the summation runs over all states in S with x1 > 0 in
view of (6).

Similarly, the throughput of SUs ηSU is defined as the
rate with which SUs successfully complete transmission,
i.e., stop transmission not due to collisions or false alarms
or interruptions upon a PU arrival. The throughput ηSU is
hence given by

ηSU =

N∑
x2=1

N−x2∑
x1=0

K∑
x3=0

π(x1,x2,x3) x2µ2, (19)

where in the summation only states in S with x2 > 0 are
considered in view of (7) and (8).

Finally, we are interested in obtaining the mean delay
E[dSU] experienced by a SU. To this end, we first calculate
themean number of transmitting SUs E

[
nSU,tr

]
and themean

number of sensing SUs E
[
nSU,se

]
as

E
[
nSU,tr

]
=

N∑
x2=1

N−x2∑
x1=0

K∑
x3=0

x2π(x1,x2,x3), (20)

E
[
nSU,se

]
=

N∑
x1=0

N−x1∑
x2=0

K∑
x3=1

x3π(x1,x2,x3) . (21)

The mean SU delay E[dSU] then follows from Little’s law as

E[dSU] =
E
[
nSU,tr

]
+ E

[
nSU,se

]
λ2(1 − γ)

, (22)

where γ is the blocking probability of arriving SUs due to a

full sensing room (i.e., K sensing SUs in the system), which
is given by

γ =

N∑
x1=0

N−x1∑
x2=0

π(x1,x2,K ) . (23)

6. Numerical Results and Discussion

We investigate the performance of SUs and PUs in a CRN
scenario with N = 20 channels. The mean transmission
times of SUs and PUs are 1/µ2 = 1/µ1 = 10 ms. The of-
fered PU load ρPU is defined as λ1/(µ1N ) = 0.3 and the
offered SU load is ρSU = λ2/(µ2N ) = 0.5. We consider a
mean sensing time 1/σ = 10 ms and the maximum number
of sensing SUs equals K = 50. The aim of this section is
a generic evaluation of the performance of a CRN and the
impact of SUs on the primary network using a wide range
of sensing error parameters. This way the big picture of the
impact of imperfect spectrum sensing is revealed. Moreover,
using our model a practitioner can conduct experiments to
estimate the performance measures for different sets of pa-
rameters. The SU system can then be designed to ensure the
specific QoS requirements of the PU network are met, i.e.,
to reach a SU interference level (collisions) with PUs that is
allowed while maximizing the utilization of white spaces of
the idle channels.

We start with exploring the effects of the class-A and
class-B misdetection probabilities pm1 and pm2 on the col-
lision rate α between SUs and PUs. Figure 3 shows curves
of constant collision rate α versus pm1 and pm2. We set the
values of pf 1 and δ f 2 to zero. This models the case where the
CRN does not experience false alarms. It can be seen from
this figure that α is more sensitive to small values of pm1. In
particular, it has been found that when pm1 increases in the
interval (0,0.2) the collision rate α rapidly increases. These
observations are fully in line with Eq. (16) for α1. Clearly, in
increase of pm1 will have a negative impact on the collision
rate α1 for sensing SUs. As pm1 grows further, however, this
negative impact of pm1 on α1 is expected to get somewhat

Fig. 3 Curves of constant collision rate α (collisions/s) versus the class-
A misdetection probability pm1 and the class-B misdetection probability
pm2, for 1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
p f 1 = δ f 2 = 0.
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Fig. 4 Curves of constant throughput of SUs ηSU (SUs/s) versus the
class-B misdetection probability pm2 and the type-II false alarm rate δ f 2,
for 1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
p f 1 = pm1 = 0.

tempered by the decreasing number of sensing SUs due to
collisions. Further numerical experiments, beyond those of
Fig. 3, have also indicated that changing the mean sensing
time 1/σ between 1 and 20 ms only has negligible impact on
α. When the mean sensing time increases above 20 ms, the
value of α decreases, again in accordance with (16), while
the qualitative behavior remains the same.

Figure 4 shows the effect of the class-B misdetec-
tion probability pm2 and the type-II false alarm rate δ f 2
of transmitting SUs on the throughput of SUs ηSU, for
pf 1 = pm1 = 0. We observe that for small values of
pm2 < 0.2, an increase of δ f 2 strongly decreases ηSU. For
higher values of pm2, however, the influence of δ f 2 on the SU
throughput decreases. For instance, for pm2 > 0.9, values
of δ f 2 < 140 have no influence on ηSU. A further increase
of δ f 2 decreases the SU throughput for less than 5 percent.
This observation can be explained by the fact that for higher
values of pm2, an increasing number of SUs collide with
PUs and are dropped out of the system. Likewise, for small
values of δ f 2 < 60, an increase of pm2 decreases ηSU. For
higher values of δ f 2 > 60, pm2 has a smaller influence on
ηSU for pm2 not too high. This is as expected since for higher
values of δ f 2, more SUs stop transmitting due to a type-II
false alarm and thus there are less chances for collisions
with PUs. An interesting observation is that for δ f 2 > 60
and increasing pm2, ηSU somewhat increases until it reaches
a maximum value and then ηSU decreases again forming a
small peak. The increase in the first part can be explained
by the fact that some PUs are dropped because of collisions,
which makes it possible for some more SUs to utilize the
channels.

The effect of pm2 and δ f 2 on the throughput of PUs
ηPU is shown in Fig. 5. It can be seen that pm2 has a higher
impact on the PU throughput than δ f 2, which is expected.
Obviously, an increase of pm2 increases the collisions and
consequently decreases ηPU. An increase of the type-II false
alarm rate δ f 2 only slightly increases ηPU, for all values of
pm2.

Next, the effect of type-I false alarms and class-A mis-
detection errors by sensing SUs on the throughputs ηSU and

Fig. 5 Curves of constant throughput of PUs ηPU (PUs/s) versus the
class-B misdetection probability pm2 and the type-II false alarm rate δ f 2,
for 1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
p f 1 = pm1 = 0.

Fig. 6 Curves of constant throughput of SUs ηSU (SUs/s) versus the
type-I false alarm probability p f 1 and the class-A misdetection probability
pm1, 1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
pm2 = δ f 2 = 0.

ηPU of secondary and primary users is illustrated in Figs. 6
and 7 respectively. Figure 6 gives curves of constant ηSU
versus the probabilities pf 1 and pm1, for pm2 = δ f 2 = 0.
It can be seen that for a given value of pm1, an increase of
pf 1 at first slowly decreases the throughput ηSU until pf 1 is
around 0.7. A further increase of pf 1 then decreases ηSU
sharply. The slower decrease for low pf 1 is a consequence
of the presence of enough sensing SUs to compete for the
idle channels such that the event of some sensing SUs fir-
ing a false alarm has a more limited effect on the global
SU throughput. As pf 1 increases further, fewer sensing SUs
are admitted to transmit and this starts to affect ηSU more
strongly. Eventually, when pf 1 = 1, ηSU = 0 and no sensing
SUs are able to transmit. Another interesting observation
is that for values of pf 1 > 0.5, an increase of pm1 from 0
up to a certain point results in a higher throughput of SUs
ηSU. This can be explained by the fact that due to a higher
probability of a class-A misdetection and the corresponding
collision between a sensing SU and a PU,more andmore PUs
are dropped out of the system, which results in more white
spaces being available for a sensing SU to start transmission.

Figure 7 shows the effect of the probabilities pf 1 and
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Fig. 7 Curves of constant throughput of PUs ηPU (PUs/s) versus the type-
I false alarm probability p f 1 and the class-A misdetection probability pm1,
for 1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
pm2 = δ f 2 = 0.

Fig. 8 Curves of constant mean SU delay E[dSU] (s) versus the type-
I false alarm probability p f 1 and the type-II false alarm rate δ f 2, for
1/σ = 1/µ2 = 1/µ1 = 10 ms, ρPU = 0.3, ρSU = 0.5, N = 20 and
pm1 = pm2 = 0.

pm1 on the throughput of PUs ηPU. From this figure, we
observe the following. First, for low values of pm1 < 0.1, the
probability of false alarm pf 1 has a limited effect on ηPU and
when pm1 = 0, this effect even disappears completely. This
is as expected, since in a system without misdetection PUs
do not experience any interference from SUs and therefore,
the false alarm probability pf 1 affects the performance of the
SUs only. Second, for values of pm1 > 0.1, we notice that for
increasing values of pf 1, the throughput ηPU first decreases
until a minumum value is reached and then increases again.
The decrease of ηPU in the first part is due to the fact that
for increasing pf 1, more SUs stay in the sensing state, which
increases the possibility of collisionswith PUs. In the second
part, the number of transmitting SUs sharply decreases (as
mentioned above); hence, the probability that a sensing SU
randomly selects a channel for sensing that is occupied by a

PU (i.e.,
x1

N − x2
) also decreases and therefore ηPU increases.

Figure 8 shows the mean SU delay as a function of the
type-I false alarm probability pf 1 and the type-II false alarm
rate δ f 2, for pm1 = pm2 = 0. We observe that the mean
SU delay slowly increases as pf 1 increases for low values of

Fig. 9 Curves of constant mean SU delay E[dSU] (s) versus the type-I
false alarm probability p f 1 and the class-A misdetection probability pm1,
1/σ = 1/µ2 = 1/µ1 = 10 ms, for ρPU = 0.3, ρSU = 0.5, N = 20 and
pm2 = δ f 2 = 0.

pf 1 and more rapidly increases for higher values of pf 1. An
increase of δ f 2 increases the mean SU delay further. It is
also clear that pf 1 has a higher influence on the mean SU
delay than δ f 2.

Figure 9 illustrates the impact of the type-I false alarm
probability pf 1 and the class-A misdetection probability pm1
on the mean SU delay. It can be seen that an increase of
pm1 between 0 and 0.9 leads to a decrease of the mean delay
of around 50 percent. This is because for increasing pm1,
the number of PUs in the system decreases due to collisions,
thus leavingmore white spaces for SUs. From our numerical
experiments, it has also been found that sensing errors during
a SU transmission (characterized by the parameters pm2 and
δ f 2) have a similar qualitative influence on the mean SU
delay as sensing errors by a sensing SU (as characterized by
the parameters pm1 and pf 1).

7. Conclusion and Future Work

In this paper, we developed a CTMC model of a CRN with
sensing errors. The model takes into account false alarms
and misdetection errors by both sensing and transmitting
SUs. The impact of these errors on the throughput of PUs
and SUs, the collision rate between PUs and SUs and the SU
delaywas thoroughly investigated. Futureworkwill consider
the extension to the case where the frequency channels do
not have the same bandwidth. In this case, the complexity of
the model and the state space of the corresponding CTMC
will increase significantly.
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