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Abstract

Numerous studies have shown that the serotonin1A (5-HT1A) receptor is implicated in the

pathophysiology and treatment of several psychiatric and neurological disorders. Further-

more, functional imaging studies in a variety of species have demonstrated that 4-(2´-Meth-

oxyphenyl)-1-[2´-(N-2´´-pyridinyl)-p- [18F]fluorobenzamidoethylpiperazine ([18F]MPPF) is a

valid and useful PET tracer to visualize the 5HT1A receptor. However, to our knowledge,

[18F]MPPF has never been demonstrated in the canine brain. The ability to image the 5HT1A

receptor with PET in dogs could improve diagnosis and therapy in both canine and human

behavioural and neuropsychiatric disorders. To examine the potential use of [18F]MPPF in

dogs, five healthy adult laboratory beagles underwent a 60-minutes dynamic PET scan with

[18F]MPPF while arterial blood samples were taken. For each region of interest, total distri-

bution volume (VT) and corresponding binding potential (BPND) were calculated using the 1-

tissue compartment model (1-TC), 2-Tissue compartment model (2-TC) and Logan plot.

The preferred model was chosen based on the goodness-of-fit, calculated with the Akaike

information criterium (AIC). Subsequently, the BPND values of the preferred compartment

model were compared with the estimated BPND values using three reference tissue models

(RTMs): the 2-step simplified reference tissue model (SRTM2), the 2-parameter multilinear

reference tissue model (MRTM2) and the Logan reference tissue model. According to the

lower AIC values of the 2-TC model compared to the 1-TC in all ROIs, the 2-TC model

showed a better fit. Calculating BPND using reference tissue modelling demonstrated high

correlation with the BPND obtained by metabolite corrected plasma input 2-TC. This first-in-

dog study indicates the results of a bolus injection with [18F]MPPF in dogs are consistent

with the observations presented in the literature for other animal species and humans. Fur-

thermore, for future experiments, compartmental modelling using invasive blood sampling

could be replaced by RTMs, using the cerebellum as reference region.
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Introduction

The serotonin1A (5-HT1A) receptor is a G-protein-coupled receptor and is believed to be one

of the most important 5-HT receptor subtypes [1–3]. Two different 5-HT1A receptor popula-

tions can be found in the mammalian brain [4–8]. The first population is located in the raphe

nucleus and has an auto-receptor function that inhibits serotonin release at the nerve termi-

nals. The second population is highly abundant in cortico-limbic areas, were it acts as post-

synaptic receptor [2,9].

The 5-HT1A receptor is involved in the pathophysiology of a variety of psychiatric and neu-

rological disorders including depression, anxiety, schizophrenia, dementia, eating disorders,

hallucinogenic behaviour, epilepsy and motion sickness [6,10–14]. Functional imaging studies

of this receptor in healthy volunteers and in people suffering from neuropsychiatric disorders

could improve diagnosis and therapy of these diseases. Therefore, several radioligands have

been studied to assess in vivo changes in the 5HT1A receptors using positron emission tomog-

raphy (PET). Several PET-studies have demonstrated that 4-(2´-Methoxyphenyl)-1-[2´-(N-

2´´-pyridinyl)-p- [18F]fluorobenzamidoethylpiperazine ([18F]MPPF) is a valid and reliable

PET-tracer for imaging the 5HT1A receptor in the human brain [10,15]. In vitro binding assays

with the tritiated compound showed that this 5-HT1A antagonist has a high affinity (Kd: 0.34

nM) and good selectivity towards the 5-HT1A receptors [16]. Other advantages of this radio-

tracer are a high initial brain uptake, the relatively simple radiochemical synthesis compared

to other 5HT1A PET-tracers (for example: [11C]WAY100635) and the long physical half-life of
18F, which permits distribution from production facilities to remote hospitals [1,10,17]. To

date, [18F]MPPF has been used successfully in rodents [18–21], cats [7,22,23], non-human pri-

mates [24,25] and humans [10,15,26–28]. Unfortunately, to the authors’ knowledge, it has

never been used in dogs. However, functional imaging of the 5-HT1A receptor in dogs could

offer several opportunities as dogs exhibit naturally occurring behavioral disorders that may

be comparable to certain human psychiatric conditions [29–33]. Therefore, dogs are consid-

ered as a valuable animal model for several human psychiatric disorders. Moreover, as

opposed to rodents, dogs have a substantial amount of frontal cortex [34], which makes them a

more interesting and more practical animal model in human psychiatry. Radioprotective regu-

lations are also less stringent in dogs than in humans, allowing longitudinal studies with

repeated PET scans in a relative short time frame. In addition, functional imaging studies of

the 5-HT1A receptor in dogs could also improve our understanding of several canine behav-

ioral disorders and may serve as a tool to improve diagnosis and treatment of these disorders.

The objective of this study was to quantify dynamic [18F]MPPF PET data, obtained in

healthy beagle dogs, in pharmacological parameters utilizing compartmental modeling. Several

standard kinetic models were evaluated using metabolite corrected arterial plasma input func-

tions and time-activity curves of each region of interest. Subsequently, to avoid invasive arte-

rial blood sampling in future experiments and to improve the clinical applicability of the

analysis method, the validity of different reference tissue models was assessed.

Materials and methods

Experimental animals

This study was approved by the Ethical committee of Ghent university (EC approval 17/108).

Five neutered female experimental beagles (age 4.7 ± 0.1 years; weight 11.2 ± 0.7 kg) were

included in this study. The animals were classified as healthy based on general clinical exami-

nation. They were provided by the faculty of veterinary medicine (Ghent University) and were

socially-housed in small groups (2 to 8 dogs) on an internal surface of 15 m2 with permanent
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access to an outside area of 15 m2, equipped with enrichment tools. Food was withheld for at

least 12 hours before anaesthesia but water was provided ad libitum. Prior to transportation to

the PET centre of Ghent university hospital, the dogs were premedicated with an intramuscu-

lar (i.m.) injection of dexmedetomidine (375 μg/m2 body surface area, Dexdomitor, Orion

Corporation, Espoo, Finland). At the PET centre, a 22G over-the-needle venous catheter was

placed in one of the cephalic veins to gain intravenous access and a Lactated Ringer’s solution

(Vetivex 500 mL, Dechra Veterinary products, Heusden-Zolder, Belgium) was infused i.v. at a

rate of 5 mL/kg/h. General anaesthesia was induced with propofol (Propovet, Abbott laborato-

ries, Queenborough, UK) given i.v. to effect. During the scan, anaesthesia was maintained with

a mixture of 1.2–1.4% isoflurane (Isoflo, Abbott laboratories, Queenborough, UK) vaporized

in oxygen using a circle rebreathing system. After positioning the dog on the bed of the PET/

CT scanner, a 22G arterial catheter was placed in one of the dorsalis pedis arteries to perform

arterial blood sampling. During general anaesthesia, a continuous monitoring of body temper-

ature and cardiorespiratory functions by pulse oximeter and capnography was performed.

After completion of the study, the dogs were reintroduced in their housing facility and

remained available for future research.

Radiosynthesis

[18F]MPPF was synthesized on a Synthra RN+ module (Synthra GmbH, Hamburg, Germany).

Labelling precursor solution was prepared by dissolving five milligram nitro-MPPF (ABX,

Radeberg, Germany) in 750 μL anhydrous DMSO (Sigma Aldrich, Germany). This was added

to a dried [18F]F-/Kryptofix 222/K+ complex, heated at 150˚C for 20 minutes, and diluted with

2.25 ml 0.05 M NaOAc (pH 5) after cooling down. Subsequently, HPLC purification was per-

formed using a semipreparative HPLC system (Column: RP Symmetry Prep C18 (7 μm, 7.8

mm X 300 mm, Waters, Milford, Massachusetts, US); Solvent: 0.05 M NaOAc buffer pH 5/

MeOH/THF: 50/32/18 (% V/V); flow: 3.5 mL/min). The [18F]MPPF fraction, eluted after 9

minutes, was collected during one minute. To remove the HPLC solvent, solid phase extrac-

tion (SPE) was performed using a C18 Sep-Pak cartridge (Braun, Germany), preconditioned

with 10 mL ACN and 10 mL water. [18F]MPPF was eluted from the Sep-Pak by adding one

millilitre of ethanol (VWR chemicals, Belgium). Finally, this ethanol eluate was diluted with

nine millilitre of physiological saline (Braun, Germany) to obtain a formulation suitable for i.v.

administration.

Data acquisition

All dogs were scanned with a Siemens Biograph mCT Flow 20 clinical PET/CT imaging system

(Siemens, Knoxville, USA). Prior to the PET scan, a low dose CT survey (120 kV, 35 mA, pitch

of 0.7, 20 slices of 3 mm) was conducted and used for attenuation correction and anatomical

framework. Dynamic PET recordings were initiated on bolus injection of 370 MBq [18F]

MPPF. Emission data were reconstructed in 28 successive frames of increasing duration (6 x

10 s, 8 x 30 s, 5 x 120 s, 9 x 300 s), each consisting of a 512 x 512 matrix with a voxel size of

0.797 x 0.797 x 2 mm, using the TrueX algorithm. During the 60-minutes dynamic PET scan,

arterial whole blood samples (1–2 mL) were taken manually into heparinized syringes at differ-

ent time points (15, 30 and 45 seconds, 1, 1.5, 2, 4, 6, 8, 10, 15, 20, 30, 40 and 60 minutes) and

collected in K3EDTA tubes. After centrifugation (10 min, 4000 rpm, 4˚C) of the blood samples,

the plasma fraction was separated from the blood cells. Radioactivity in plasma (100 μl) was

measured using a gamma counter (Cobra, Canberra, Australia). The plasma parent compound

fraction (%) was determined at six time points (15 seconds, 1, 4, 10, 20 and 40 minutes).

Plasma fraction was mixed with 1:2 acetonitrile (Sigma Aldrich, Saint Louis, US) and
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centrifuged for 10 min at 4000 rpm. The resulting supernatant was then filtered using an Acro-

disc Syringe filter 0.2 μm (Hoegaarden, Belgium) and injected (2 mL) onto the semipreparative

HPLC system (Column: Symmetry Prep C18 column (7 μm, 7.8 mm X 300 mm, Waters, Mil-

ford, Massachusetts, US); Solvent: 0.05 M NaOAc buffer pH 5/MeOH/THF: 50/32/18 (V/V);

flow: 3.5 mL/min). To calculate the parent compound fraction (%), 30 HPLC eluent fractions

(each 0.5 min) were collected during a 15 minutes run and measured using a gamma counter

(Cobra, Packard, Canberra, Australia).

Image analysis

Prior to the PET scan, a series of T1 weighted anatomical images (3D MPRAGE sequence, 176

sagittal slices, TR: 2250 ms, TE: 4.18 ms, TI: 900 ms, parallel acquisition method = GRAPPA

acceleration factor: 2, matrix size: 256 x 256, FOV: 220 mm, flip angle: 8˚, voxel size: 1 x 1 x 1

mm3) were acquired using a 3T Magnetom Trio Tim system MRI scanner (Siemens, Erlangen,

Germany). Subsequently, these images were co-registered with the PET/CT images using

PMOD software version 3.405 (PMOD Technologies, Ltd., Zurich, Switzerland). Based on

information from a dog brain atlas [35], 16 regions of interest (ROI) were manually delineated

on the MR image. These included: left frontal cortex, right frontal cortex, left temporal cortex,

right temporal cortex, left occipital cortex, right occipital cortex, left parietal cortex, right pari-

etal cortex, midbrain, anterior cingulate gyrus, posterior cingulate gyrus, left hippocampus,

right hippocampus, subgenual cingulate gyrus, presubgenual cingulate gyrus and cerebellum.

Subsequently, time-activity curves could be obtained for each ROI representing the radioactiv-

ity concentration into each time frame, corrected for decay.

For each of the dogs, a Watabe function was fitted to the six metabolite time points and

added to the plasma input function to obtain a metabolite-corrected plasma input function

[36].

Kinetic modelling

All kinetic modelling was performed using the kinetic tool of the PMOD software version

3.405. The total volume of distribution (VT), defined as the ratio of the concentration of radio-

tracer in a certain ROI to the concentration in plasma at equilibrium, was calculated for the

different ROIs using the one- and two-tissue compartment (1-TC and 2-TC) model [37] and

the Logan plot [38].

In order to validate that a reference tissue model constitutes as a good alternative for the

invasive blood sampling, the non-displaceable binding potential (BPND), referring to the ratio

at equilibrium of specifically bound radioligand to that of non-displaceable (ND) radioligand

in tissue, was estimated for both compartment models and the Logan plot [39]. Therefore, a

region devoid of the targeted receptors (i.e. a reference region) is required. Various in vitro
and in vivo experiments have demonstrated the absence of 5HT1A receptors in the cerebellum,

and therefore, the cerebellum has been put forward as reference region [19,39–41].

The goodness-of-fit for each compartment model was evaluated using the Akaike Informa-

tion Criterion (AIC) value, where the lower the AIC value is, the better the model fits to the

data [42]. For both compartmental models, the brain activity was corrected for the contribu-

tion of blood activity assuming a cerebral blood volume in the regions of interest fixed at 0.05

mL/cm3.

Furthermore, three RTMs were included in this study: the 2-step simplified reference tissue

model (SRTM2) [43], the 2 parameter multilinear reference tissue model (MRTM2) [44] and

the Logan reference tissue model [45]. For each of these models the possibility to reproduce

the BPND, obtained with the compartment models and the Logan plot, was analysed. Based on

PET quantification of [18F]MPPF in the canine brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0218237 June 11, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0218237


previous studies in humans [46] and rats [47], the cerebellum was used as a reference region.

Furthermore, the BPND was determined using a fixed k2’ value based on the mean k2’ of four

high binding regions: hippocampus left, hippocampus right, presubgenual cingulate gyrus and

subgenual cingulate gyrus. For the SRTM2 model and Logan reference model, regional cou-

pling with the SRTM2 model was used to calculate the k2’ value. For the MRTM2 model, the

MRTM model was used to calculated the k2’ value.

Test-retest analysis

To asses test-retest variability of the model parameters, one dog received two additional

60-minutes dynamic PET scans with bolus injection of 370 MBq [18F]MPPF. BPND were calcu-

lated using the three different RTMs (SRTM2, MRTM2 and Logan reference model) as

described above.

Statistical analysis

Statistical analysis was computed using RStudio 1.1.456 using packages MASS (version 7.3–50)

and Sommer (version 3.0). To compare the BPND from the 2-TC models with those from the

RTM, a multivariate linear mixed model with heterogeneous (unstructured) variances was set

up on the data, containing BPND as response variable and the delineated ROI’s as outcome var-

iable. The model included the individual animal as a random factor and the different kinetic

models as fixed factor. The degrees of freedom were calculated based on the Welsh-Sat-

terthwaite equation and the type-I error α was set at 0.001 (two-tailed) after Bonferroni correc-

tion (correction for the comparison between 15 regions and 4 different models). Furthermore,

a random intercept was included. Finally, Pearson correlation coefficients (R2) were calculated

between all models using Microsoft Excel.

Results

Radiosynthesis

The synthesis procedure of [18]MPPF gave rise to end of synthesis (EOS) activities of

1420 ± 650 MBq with high radiochemical and chemical purities of> 99%. The specific radio-

activity measured with analytical HPLC was at least 101.3 GBq/μmol at EOS.

Blood input function and metabolites

Fig 1A represents the plasma parent compound fraction over time (averaged for five dogs).

[18F]MPPF was rapidly metabolised to polar metabolites over the course of the PET scan. After

4 minutes, [18F]MPPF accounted for 69 ± 10% of total activity in the blood plasma, 21 ± 4%

after 10 minutes and declined to 7 ± 2% at 40 minutes. A Watabe function could be fitted to

the fraction of parent tracer in plasma for each individual dog. Subsequently, a metabolite-cor-

rected plasma input curve could be calculated in PMOD (Fig 1B).

Brain analysis

Fig 2 represents a summed PET image co-registered with the MR image after bolus injection

of [18F]MPPF. The highest radioactive uptake was found in the hippocampus, anterior cingu-

late cortex, presubgenual cingulate gyrus and subgenual cingulate gyrus. Intermediate radioac-

tive uptake was found in the frontal cortex. The lowest radioactive uptake was observed in the

cerebellum (i.e. the reference region). The corresponding time-activity curves are shown in Fig

3.

PET quantification of [18F]MPPF in the canine brain
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Kinetic modelling

VT values (mean + SD) and corresponding BPND in each ROI for the 1-TC and 2-TC model

are shown in Table 1. The 1-TC and 2-TC model gave rise to maximum standard errors (SE)

of 6.47% and 6.96%, respectively. The 2-TC model showed lower AIC-values in all of the

observed brain regions compared to the 1-TC model. When plotting the BPND of the 1-TC

model and 2-TC model (Fig 4A, column 2), no general over- or underestimation could be

found, which is illustrated with a mean difference around zero in the Bland and Altman plot.

In addition, the BPND obtained with the 1-TC and 2-TC model are well correlated with each

other (R2 = 0.979) (Fig 4A, column 1). Furthermore, the VT (SEMAX = 1.29%) and correspond-

ing BPND values obtained with the Logan plot are also shown in Table 1. BPND-values obtained

with the Logan plot were highly correlated with those from the 2-TC model (R2 = 0.979) (Fig

4B, column 1). Nevertheless, the Logan plot showed a moderate negative trend of differences,

Fig 1. A: Fraction (%) of parent compound in plasma over time. The Watabe function fitted to the fraction of

parent compound ([18F]MPPF) (mean ± SD) in plasma over time. B: Metabolite corrected plasma input function. A

representative total plasma activity curve and corresponding metabolite corrected plasma curve.

https://doi.org/10.1371/journal.pone.0218237.g001
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proportional to the magnitude of the measurement and mean underestimation of 7 ± 3% (Fig

4B, column 2).

The BPND of [18F]MPPF estimated using the reference tissue methods (SRTM2, MRTM2

and Logan reference model) are shown in Table 2 and were plotted against those obtained

with the 2-TC model (Fig 4C–4E). The BPND values obtained with reference tissue models

showed SE< 10%. No significant difference could be found between each of the different ref-

erence tissue models and the 2-TC model in any of the ROI’s (p-values > 0.001), although, the

Bland and Altman plots showed a mean underestimation of BPND ranging from 7 ± 3%

(MRTM2) to 11 ± 7% (SRTM2). However, all models are highly correlated with the 2-TC

model (R2(SRTM2) = 0.982, R2(Logan Reference) = 0.999, R2(MRTM2) = 0.999) (Fig 4C–4E).

Moreover, a small enlargement correlating to the BPND levels for the Logan reference model

and MRTM2 model could be seen in the Bland and Altman plots.

Test-retest variability

Test-retest variability for the regional BPND using three different RTMs is represented in

Table 3. The mean percentage difference in BPND between test and retest ranges from 7.15%

Fig 2. PET/MR image. Summed PET image (frames: 10 to 60 min) after bolus injection of [18F]MPPF co-registered

with MR image. 1: cerebellum, 2: occipital cortex, 3: frontal cortex, 4: subgenual cingulate gyrus, 5: hippocampus, 6:

midbrain, 7: posterior cingulate cortex (PCC) and 8: anterior cingulate cortex (ACC).

https://doi.org/10.1371/journal.pone.0218237.g002

Fig 3. Time-activity curves. Regional time activity curves after bolus injection of [18F]MPPF for the presubgenual

cingulate gyrus, subgenual cingulate gyrus, anterior cingulate cortex (ACC), hippocampus, frontal cortex and reference

region. The data were corrected for radioactive decay.

https://doi.org/10.1371/journal.pone.0218237.g003
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(SRTM2) to 8.56% (Logan reference). The lowest difference is seen in the cortical regions and

hippocampus, while highest difference is seen in the presubgenual cingulate gyrus, ACC and

midbrain.

Discussion

To our knowledge, this is the first study that examines the use of [18F]MPPF as PET-tracer to

image the 5HT1A receptor in the canine brain.

After a bolus injection of [18F]MPPF, high radioactive uptake was found in all brain regions

followed by a rapid washout (Fig 3). The pattern of [18F]MPPF uptake into the brain corre-

sponded well to the known distribution of the 5HT1A receptor observed in human, rodent and

cat studies [19,41,48]. The highest uptake of [18F]MPPF was found in the hippocampus, ante-

rior cingulate cortex, presubgenual cingulate gyrus and subgenual cingulate gyrus. As

expected, low uptake was found in the cerebellum, indicating an absence of 5HT1A receptors

as previous reported and further approving its use as reference region in RTMs (Fig 2) [19,40].

Because the location of the raphe nuclei in dogs is not clearly defined in the literature and was

very difficult discernible on the PET image, the nuclei were not included in this study. In

accordance to the clinical study of Costes et al. [28], a rapid metabolism of [18F]MPPF to polar

metabolites was observed (Fig 1); 21 ± 4% of unmodified [18F]MPPF was found after ten min-

utes and declined to 7 ± 2% at 40 minutes. Due to limited sensitivity of the analysing method,

the metabolite correction curve needed to be extrapolated from 40 to 60 minutes using the fit-

ted Watabe function.

In this study, the 1-TC, 2-TC and Logan plot blood input models were compared with three

RTMs: SRTM2, MRTM2 and Logan reference tissue model. According to the lower AIC values

of the 2-TC model compared to the AIC values of 1-TC in all ROIs, the 2-TC model showed a

better fit to the data, especially in the regions with high radioactive uptake: presubgenual cin-

gulate gyrus and subgenual cingulate gyrus, hippocampus and cingulate cortex. The Logan

Table 1. Kinetic parameters derived from 1-TC model, 2-TC model and Logan plot. Distribution volumes (VT), Akaike information criterion value (AIC) and binding

potential (BPND) in all the ROIs derived from plasma input data using the 1-TC, 2-TC model and Logan plot. The data is expressed as mean ± SD. BPND were estimated

using the cerebellum as reference region, BPND = (VT/VRef) -1.

1-TC 2-TC Logan Plot

Region VT AIC BPND VT AIC BPND VT BPND

Presubgenual cingulate gyrus 3.82 ± 1.03 52 ± 9 1.27 ± 0.29 4.35 ± 1.09 15 ± 23 1.15 ± 0.29 4.42 ± 1.06 1.03 ± 0.21

Subgenual cingulate gyrus 4.03 ± 1.05 51 ± 10 1.40 ± 0.30 4.61 ± 1.15 10 ± 23 1.27 ± 0.28 4.70 ± 1.10 1.16 ± 0.21

Frontal cortex L 2.67 ± 0.69 58 ± 10 0.59 ± 0.13 3.22 ± 0.76 21 ± 21 0.58 ± 0.15 3.34 ± 0.71 0.54 ± 0.12

Frontal cortex R 2.49 ± 0.58 58 ± 12 0.50 ± 0.19 3.04 ± 0.61 22 ± 21 0.51 ± 0.19 3.18 ± 0.57 0.48 ± 0.15

Temporal cortex L 2.56 ± 0.74 57 ± 10 0.51 ± 0.15 3.07 ± 0.82 21 ± 23 0.50 ± 0.13 3.22 ± 0.77 0.48 ± 0.11

Temporal cortex R 2.50 ± 0.69 56 ± 13 0.48 ± 0.15 3.00 ± 0.76 23 ± 20 0.47 ± 0.13 3.13 ± 0.71 0.44 ± 0.11

Occipital cortex L 2.33 ± 0.70 61 ± 12 0.37 ± 0.14 2.88 ± 0.84 26 ± 22 0.40 ± 0.11 3.04 ± 0.78 0.39 ± 0.09

Occipital cortex R 2.29 ± 0.70 62 ± 11 0.35 ± 0.15 2.85 ± 0.81 27 ± 21 0.39 ± 0.13 2.99 ± 0.74 0.37 ± 0.12

Parietal cortex L 2.69 ± 0.83 58 ± 11 0.58 ± 0.14 3.29 ± 0.94 23 ± 21 0.60 ± 0.10 3.43 ± 0.91 0.56 ± 0.08

Parietal cortex R 2.71 ± 0.82 57 ± 11 0.60 ± 0.16 3.32 ± 0.93 22 ± 21 0.62 ± 0.11 3.45 ± 0.87 0.58 ± 0.09

Midbrain 2.37 ± 0.59 49 ± 13 0.41 ± 0.10 2.71 ± 0.62 23 ± 20 0.34 ± 0.11 2.88 ± 0.57 0.33 ± 0.08

ACC 3.48 ± 0.96 50 ± 10 1.07 ± 0.26 3.96 ± 1.03 10 ± 21 0.95 ± 0.23 4.04 ± 0.99 0.85 ± 0.18

PCC 2.57 ± 0.78 55 ± 11 0.51 ± 0.20 3.06 ± 0.88 18 ± 24 0.50 ± 0.20 3.18 ± 0.82 0.46 ± 0.17

Hippocampus R 3.90 ± 0.79 61 ± 7 1.34 ± 0.26 4.73 ± 0.60 14 ± 24 1.36 ± 0.27 4.81 ± 0.84 1.23 ± 0.19

Hippocampus L 3.80 ± 0.82 64 ± 9 1.29 ± 0.32 4.69 ± 0.88 19 ± 19 1.34 ± 0.32 4.80 ± 0.95 1.23 ± 0.28

Cerebellum 1.71 ± 0.50 63 ± 14 - 2.06 ± 0.98 38 ± 23 - 2.19 ± 0.54 -

https://doi.org/10.1371/journal.pone.0218237.t001
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plot showed very similar VT values compared to the 2-TC model and the BPND were highly

correlated with each other (R2 = 0.979), which indicates this graphical analysis could serve as a

good alternative. Nevertheless, a moderate negative trend of differences and mean underesti-

mation of 7 ± 3% should be kept in mind when using the Logan plot (Fig 4B, column 2).

Calculating BPND, using RTM, with the cerebellum as reference region, showed high corre-

lation with the BPND obtained by metabolite corrected plasma input 2-TC modelling (Fig 4).

Although the Bland and Altman plots showed an underestimation of the BPND values when

using the RTMs compared to the 2-TC model, no significant difference was found in any of

the ROI’s. Furthermore, the MRTM2 model and reference Logan model show a dependency

on the actual values. Nevertheless, the high correlation between the RTMs and 2-TC indicate

the invasive blood sampling could be replaced by RTMs in future experiments with [18F]

MPPF in dogs, which requires no arterial catheterisation or blood sampling. Based on the

highest correlation values (R2 = 0.999) with the 2-TC model, the Logan reference model and

MRTM2 model would be the models of choice, but a small enlargement correlating to the

BPND levels should be mentioned for both models. An excellent alternative would be the

SRTM2 model, which doesn’t have this dependency and showed also a very good correlation

(R2 = 0.982) with the 2-TC model.

The test-retest variability was best for the SRTM2 model with a mean difference of 7.15%,

compared to 8.27% and 8.56% for Logan reference model and the MRTM2 model, respec-

tively. The cortical regions showed the lowest variability with a mean difference of 5.18%.

High variability was seen in the presubgenuale gyrus and ACC for all three models. These

regions are both very small which are highly susceptible to small errors in PET/MR fusion.

High variability was also seen in the midbrain region but was due to very low BPND-values.

Fig 4. (A-E). Method comparisons. Graphical comparison of each kinetic model to the 2-TC model presented as a

regression analysis (column 1) and a Bland and Altman plot were differences are presented as percentage (bold line:

mean, dotted line: ± SD) (column 2). 4A: 1-TC model vs 2-TC model; 4B: 2-TC model vs Logan Plot; 4C: 2-TC model

vs Logan reference model; 4D: 2-TC model vs SRTM2 model; 4E: 2-TC model vs MRTM2.

https://doi.org/10.1371/journal.pone.0218237.g004

Table 2. BPND derived from the SRTM2-, Logan reference- and MRTM2 model. Binding potentials (BPND) in all the ROIs derived from RTM using the SRTM2-,

Logan reference- and MRTM2 model. The data is expressed as mean ± SD.

SRTM2 Logan reference MRTM2

Region BPND BPND BPND

Presubgenual cingulate gyrus 1.06 ± 0.22 1.05 ± 0.22 1.05 ± 0.21

Subgenual cingulate gyrus 1.20 ± 0.22 1.18 ± 0.21 1.18 ± 0.21

Frontal cortex L 0.52 ± 0.11 0.54 ± 0.12 0.54 ± 0.12

Frontal cortex R 0.44 ± 0.17 0.47 ± 0.16 0.47 ± 0.16

Temporal cortex L 0.46 ± 0.12 0.47 ± 0.11 0.48 ± 0.11

Temporal cortex R 0.43 ± 03.12 0.44 ± 0.11 0.44 ± 0.11

Occipital cortex L 0.35 ± 0.12 0.38 ± 0.10 0.39 ± 0.10

Occipital cortex R 0.32 ± 0.13 0.36 ± 0.12 0.37 ± 0.12

Parietal cortex L 0.53 ± 0.12 0.55 ± 0.10 0.56 ± 0.09

Parietal cortex R 0.54 ± 0.13 0.56 ± 0.11 0.57 ± 0.10

Midbrain 0.35 ± 0.08 0.33 ± 0.08 0.34 ± 0.08

ACC 0.88 ± 0.18 0.87± 0.18 0.87 ± 0.18

PCC 0.45 ± 0.17 0.45 ± 0.17 0.46 ± 0.16

Hippocampus R 1.08 ± 0.15 1.20 ± 0.19 1.21 ± 0.19

Hippocampus L 1.07 ± 0.15 1.20 ± 0.28 1.21 ± 0.27

https://doi.org/10.1371/journal.pone.0218237.t002
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Potential minor effects of the anaesthesia on the kinetics of [18F]MPPF during the PET-

scan should be mentioned, although the use of anaesthesia is inevitable in dogs and a widely

used anaesthesia protocol was used. Currently very little is known about the potential effects of

various anaesthesia protocols on the kinetic of PET-tracers in dogs and should be further

investigated in the future. Also the use of only female dogs in this study should be addressed. A

second limitation of this study would be the absence of an in vivo blocking study, demonstrat-

ing the selectivity and specific binding of [18F]MPPF to the 5HT1A receptor. However, this

PET tracer has already proven its selectivity in various species and the high uptake brain

regions are in accordance with other studies [19,41,48]. Furthermore, there is a 92% homology

between the human 5HT1A receptor and the canine 5HT1A receptor [49]. Nevertheless, a

future blocking study could provide a clear relationship between the model-derived parame-

ters and the receptor expression levels.

Conclusion

This study describes the first step in the visualisation and quantification of the 5HT1A receptor

using a bolus injection of [18F]MPPF in dogs. The results are consistent with the observations

presented in the literature for other animal species and humans. The kinetics of [18F]MPPF in

the canine brain could be best described by a 2-TC model. Furthermore, for future experi-

ments, compartmental modelling using invasive blood sampling could be replaced by RTMs,

using the cerebellum as reference region. This could be of great value for future experiments

analysing the function of the 5HT1A receptor, improving both diagnosis and therapy in canine

and human behavioural and neuropsychiatric disorders.
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Table 3. Test-retest variability. Binding potentials (BPND) and % difference in all the ROIs derived from RTM using the SRTM2-, Logan reference- and MRTM2 model

for the test-retest experiment.

BPND (Test) BPND (Retest) % difference

Region SRTM2 MRTM2 Logan reference SRTM2 MRTM2 Logan reference SRTM2 MRTM2 Logan reference

Presubgenual cingulate gyrus 1.29 1.28 1.28 1.16 1.13 1.13 10.1 11.4 11.5

Subgenual cingulate gyrus 1.50 1.50 1.50 1.42 1.40 1.39 5.13 6.76 6.35

Frontal cortex L 0.75 0.76 0.76 0.70 0.73 0.72 6.66 4.78 4.65

Frontal cortex R 0.69 0.72 0.71 0.64 0.64 0.64 6.27 10.5 10.8

Temporal cortex L 0.64 0.65 0.65 0.61 0.67 0.66 3.83 2.73 3.85

Temporal cortex R 0.63 0.68 0.68 0.59 0.59 0.59 6.75 13.9 13.7

Occipital cortex L 0.42 0.45 0.45 0.39 0.42 0.41 6.77 7.67 7.88

Occipital cortex R 0.43 0.46 0.46 0.41 0.44 0.45 4.31 3.41 4.28

Parietal cortex L 0.63 0.65 0.65 0.61 0.67 0.67 3.70 4.04 3.79

Parietal cortex R 0.63 0.63 0.63 0.61 0.58 0.59 3.15 6.99 8.00

Midbrain 0.36 0.38 0.37 0.30 0.32 0.31 17.1 17.0 16.5

ACC 1.07 1.06 1.06 0.84 0.83 0.82 21.3 22.0 22.0

PCC 0.52 0.59 0.58 0.49 0.60 0.59 5.19 1.92 2.72

Hippocampus R 1.41 1.52 1.54 1.49 1.62 1.62 5.90 5.81 6.53

Hippocampus L 1.34 1.49 1.49 1.33 1.40 1.41 1.02 5.34 5.91

MEAN 7.15 8.27 8.56

https://doi.org/10.1371/journal.pone.0218237.t003
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