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ABSTRACT
To unlock the value of increasingly available data in high volumes,
we need flexible ways to integrate data across different sources.
While semantic integration can be provided through RDF gener-
ation, current generators insufficiently scale in terms of volume.
Generators are limited by memory constraints. Therefore, we devel-
oped the RMLStreamer, a generator that parallelizes the ingestion
and mapping tasks of RDF generation across multiple instances.
In this paper, we analyze what aspects are parallelizable and we
introduce an approach for parallel RDF generation. We describe
how we implemented our proposed approach, in the frame of the
RMLStreamer, and how the resulting scaling behavior compares to
other RDF generators. The RMLStreamer ingests data at 50% faster
rate than existing generators through parallel ingestion.
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1 INTRODUCTION
The massively increasing volume of data has become a global phe-
nomenon. However, flexible ways to integrate data across different
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sources are needed to unlock the value of such high volumes of
data. While semantic integration can be achieved through RDF
generation, current RDF generators insufficiently scale in terms
of volume due to memory constraints. However, since data can far
exceed the amount of available memory, RDF generators are not
able to process data in high volumes so far.

Traditional RDF generators do not consider parallelizations, limit-
ing the volume of data sources that can be supported and eventually
even reflecting on the overall performance with respect to speed. Ex-
isting RDF generators, e.g. the RMLMapper1 or SPARQL-Generate2
sequentially ingest multiple data sources, even though not only the
ingestion, but also the processing, can be parallelized. They load all
data in memory during ingestion, before the RDF generation starts.
However, this severely limits the amount of data that can be in-
gested, since the size of the data must be smaller than the available
memory. Other solutions, e.g., CARML3, ingest through streaming.
Instead of loading all data in memory, CARML iterate through the
data, so only smaller parts that fit in memory are processed at any
time. Even though this solves the data volume problem, it does not
improve the speed, because the data is still sequentially processed.
Last, other solutions, e.g. RocketRML4, limit the support of data
sources or rules range to optimize their speed.

Therefore, we propose an approach that parallelizes and dis-
tributes the ingestion tasks of the RDF generation process over
multiple nodes to scale with data volume. Scaling out the RDF
generation process allows generating RDF in far higher volumes
than was feasible before. In this paper, we (i) demonstrate how we
implemented such a methodology, and (ii) compare the resulting
scaling behavior of such an implementation to other RDF gener-
ators. To validate our methodology, we developed and evaluated
the RMLStreamer5, a generator that parallelizes the ingestion task
of RDF generation across multiple instances. The RMLStreamer
ingests unlimited volumes of data at a faster rate than existing RDF
generators through parallel ingestion.

1RMLMapper, http://github.com/RMLio/RML-Mapper
2SPARQ:L-Generate, https://ci.mines-stetienne.fr/sparql-generate/
3CARML, https://github.com/carml/carml
4RocketRML, https://github.com/semantifyit/RML-mapper
5RMLStreamer, https://github.com/RMLio/RMLStreamer
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The remainder of the paper is structured as follows: In Section 2,
we outline the current state of the art with respect to Linked Data
generators and distributed processing frameworks. In Section 3, we
introduce our proposed approach. In Section 4, we explain the im-
plementation. In Section 5 we describe the evaluation we performed
and its results. Last, in Section 6, we outline our conclusions.

2 RELATEDWORK
In this section, we discuss the state of the art regarding RDF gener-
ation from multiple heterogeneous data sources (Section 2.1) and
distributed processing (Section 2.2).

2.1 RDF generation tools
Several RDF generators were implemented so far, but only few
can generate RDF from multiple data formats, employing though
separate source-centric approaches for each format. We outline the
most well-known RDF generators for data in different formats.

The RMLMapper [4] is an RML engine: it generates RDF from
(semi-)structured data sources in various structures, formats, and
serializations using rules in RML [4], but it is not optimized for high
volumes. The RMLMapper is Java-based built on top of RDF4J6.

XSPARQL[1] performs dynamic query translation to generate
RDF from XML, combining XQuery7 and SPARQL. This way, it
allows querying data in XML and RDF, using the same framework,
and transform data from one format to the other, i.e. generating
RDF from XML and vice versa. Besides data in XML, XSPARQL was
also used for data in relational databases. However, it was never
extended to be used beyond data in databases or XML format.

xR2RML8 [8] extends R2RML and RML to generate RDF from
data in NoSQL, clarifying RML’s extension over access interfaces
for NoSQL databases. Its processor extends Morph with a MongoDB
implementation that relies on the MongoDB API and the Jongo API
for the management of MongoDB shell queries. xR2RML follows
the object factory design pattern to deal with heterogeneity.

CARML9 is an RML processor that generates RDF using RML
rules. It is implemented along the lines of the RMLMapper with
respect to schema and data transformations. It differs because it
turns a data source into a stream to generate the corresponding
RDF overcoming out of memory issues.

SPARQL-Generate [6] is an RDF generator that considers the
SPARQL-Generate language for specifying rules to generate RDF
from various data structures and formats. It is a Java-based imple-
mentation on top of Apache Jena 10. However, SPARQL-Generate
is not optimized for high volumes.

2.2 Distributed processing frameworks
We present the most well-known distributed processing frame-
works and discuss their scaling behavior.

6RDF4J, http://rdf4j.org
7XQuery, https://www.w3.org/TR/xquery/all/
8xR2RML, https://github.com/frmichel/morph-xr2rml
9CARML, https://github.com/carml/carml
10Apach Jena, https://jena.apache.org

Figure 1: Parallel RDF generation. In parallel, (i) multiple
Data Sources [DS] can be ingested, (ii) its data can be split in
Data Chunks [DC], (iii) their Data Records [DR] can be pro-
cessed, and (iv) their mapping can be performed to generate
RDF in separate graphs or a complete RDF set.

Akka11 is an actor-based concurrency library, written in Scala,
which is designed for low-level streaming applications implemented
conforming to the Reactive Streams standard12.

Apache Spark Streaming13 is a distributed data streaming pro-
cessing framework, written in Scala. The execution of algorithms is
split in different partitions run in parallel over different configured
machines. The Spark Streaming API is an extension of the Apache
Spark framework14, a batched processing framework. Thus, Spark
Streaming uses micro-batches to process streams [9]. Apache Spark
Streaming is a mature library for Big Data processing.

Apache Storm15 is a distributed real-time data processing frame-
work, written in Java. Apache Storm processes data streams, doing
for realtime processing what Hadoop did for batch processing.

Apache Flink [2] is an open-source distributed processing frame-
work for streaming and batch data, written in Java. Flink is a more
recent frameworks and the only framework that supports event
time and out-of-order processing, provides consistent managed
state with exactly-once guarantees, and achieves high throughput
and low latency, serving both big static and streaming data.

3 PARALLELIZABLE RDF GENERATION
We propose an approach to incorporate distribution and paral-
lelization in the RDF generation process. Our proposed approach is
driven by observations of workloads from our existing RDF gener-
ator, i.e., the RMLMapper, and our real-case experiences, e.g., with
the DBpedia Extraction Framework [7], which led us to reexamine
traditional choices and explore a radically different design.

Our proposed approach considers three main tasks: (i) inges-
tion, (ii) mapping, and (iii) combination. These tasks are aligned in
the aforementioned order, following the producer–consumer para-
digm [5]. The producer and consumer are two concurrent processes
which use a common buffer as a queue. The producer generates
data into the buffer and the consumer takes data out of the buffer.
11Akka, https://akka.io/
12Reactive Streams, https://goo.gl/FoNs7h
13Spark streaming, https://spark.apache.org/streaming/
14Apache Spark, https://spark.apache.org
15Apache Storm, http://storm.apache.org
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Each instance of a task produces data in buffers in memory
for consumption for the next task, while multiple instances of
each task can exist in parallel (Figure 1). The ingestion consumes
data from data sources and produces data records. The mapping
then consumes these data records and generates RDF according to
the specified rules. The combination consumes the results from all
mapping tasks and reduces to a single RDF dataset. In details:

Ingestion. The ingestion task parallelizes on (i) data source (DS,
Figure 1 a ), (ii) data chunk (DC, Figure 1 b ), and (iii) data record
level (DR, Figure 1 c ). Multiple data sources are ingested in paral-
lel. Then data from data sources are retrieved and split in smaller
data chunks of predefined size. The ingestion task fetches and de-
serializes data records from each chunk in memory (consumer,
Figure 1 b ). A data record can be, for instance, a CSV row, a JSON
object, or an XML element. Several data records are ingested in a
buffer (the ingestion task becomes a producer, Figure 1 c ) to be
consumed in the next task, i.e. mapping. As a result, data records
are available in buffers of parallel instance.

Mapping. The mapping task reads data records from the inges-
tion task buffers, and generates RDF in its own buffer from these
independent records, according to the specified rules. By default
mapping rules allow the records to be processed in parallel, however
in some specific situations the parallelism might be reduced, for
instance, when relations among different data sources are defined
and the order of the records to merge differs significantly.

Combination. The combination task reads all RDF from all buffers
of the mapping task and reduces this to separate graphs (RDF graph,
Figure 1 d ) or an RDF set (RDF set, Figure 1 e ). The RDF that
resides in the buffers from all instances of the mapping task is
merged (a union on Flink DataStreams) into a single RDF set by
concurrently emptying the buffers and writing into a final source.

4 IMPLEMENTATION

RML Job Creator

Flink Job

ingestion

mapping

combination

RMLStreamer

Data source Linked Data

RML mapping document

a

b

c

d

e

Figure 2: RMLStreamer’s execution workflow

We propose a Scala implementation of the aforementioned pro-
posed approach for parallel RDF generation. It is built on top of the
distributed processing framework Apache Flink, for handling the
parallel execution of each task of the RDF generation process over
multiple (distributed) instances. RML [4] is used to define the rules

to generate RDF, but other languages can be used as well. We chose
RML because it extends the W3C recommended R2RML [3], and
supports data from multiple heterogeneous sources.

We introduce our implementation of the proposed approach
(Section 4.1) and our workflow for RDF generation (Section 4.2).

4.1 Tasks in a Flink pipeline
The tasks of our proposed approach are implemented as part of a
Flink pipeline. Rules in RML determine how the pipeline is config-
ured for the RDF generation process. Flink defines its execution
process as jobs that exist out of pipelines. A job is executed by a
running instance, a task manager that orchestrates tasks on a local
node, or a cluster of multiple nodes. Flink pipelines are defined by
several operators that handle input, transformations and output. A
pipeline consists of consumers and producers: one operator is the
producer for the next operator that consumes as input the output
of the previous operator. If an operator is parallelizable, Flink’s task
managers distribute the execution of this operator over multiple
(distributed) instances. The tasks implementation are outlined here:

Ingestion. The ingestion is implemented as an input operator in
a Flink pipeline. Different data formats (CSV, JSON and XML are
indicatively supported) require dedicated input operators. Currently
a data source in CSV format is implemented as a parallel input
operator, i.e. it can be parallelized over multiple (distributed) nodes,
while data sources in JSON and XML as sequential input operators.
This occurs because data in CSV format consists of independent
rows which can be split and consumed in parallel. Namely, its data
is split in data chunks, which, in turn, can be handled in parallel, as
well as its data records. If the structure of the data does not opt for
parallel consumption, the data will be read sequentially by a single
node, but still without loading everything in memory.

Mapping. The mapping is implemented as a custom transforma-
tion operator in a Flink pipeline. It contains an engine that supports
rules in RML to specify how RDF terms and triples are generated.
Transformation operators allow RDF to be generated as output,
from a certain input, according to a given function. RML rules can
be given to the transformation operator as a side parameter.

Combination. The combination is implemented as an output op-
erator in a Flink pipeline. Output operators merge all intermediary
results from a previous operator in the pipeline to a final output,
namely the results of the different mapping operators are merged.

4.2 Workflow
The RMLStreamer workflow consists of the following steps: (i)
Flink runtime setup, a Flink runtime must be configured and
start running; (ii) mapping configuration, a set of rules must be
provided which are used to execute on the Flink runtime; and (iii)
RMLStreamer execution, the three subtasks (ingestion, mapping,
combination) of our proposed approach are performed.

Flink runtime setup. A Flink runtime is a configuration of a local
node or a cluster of nodes (Flink runtime, Figure 2 a ) managed by
task managers. Flink’s task managers can execute and distribute
created Flink jobs (Flink task manager, Figure 2 b ). Flink jobs are
executables that contain all tasks of a pipeline to be executed.
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Mapping configuration. The execution is driven by rules in RML
(RML rules, Figure 2 c ). These rules define the semantic annota-
tions to be applied to certain data. Different rules refer and, thus, are
applied to data records from different data sources. Therefore, this
influences the execution’s parallelization, because both ingesting
the data sources and applying the rules to the records of those data
sources are executed in parallel.

Execution. When the RML rules are provided as input, an exe-
cutable is created that contains a Flink job (Flink job, Figure 2 d ).
The three subtasks: ingestion, mapping and combination that were
discussed before as part of a Flink pipeline, are embedded in this
job as tasks. This job is executed on a Flink runtime (Flink runtime,
Figure 2 a ). After the job is created, it is given to the Flink run-
time for execution (Flink job given to Flink runtime, Figure 2 e ).
Flink’s task managers distribute the execution of all tasks in the
job’s pipeline over all available nodes of the Flink runtime. Namely,
the ingestion and mapping tasks are distributed and parallelized
over different nodes managed by the Flink runtime.

5 EVALUATION
We conducted a comparative study focused on data with high vol-
ume and compared our approach to SPARQL-Generate, as it sup-
ports multiple data formats, including CSV, JSON, and XML. We
elaborate on the applied methodology and discuss the results.

Methodology. We generate RDF from artificial datasets with per-
son details (incl. id, name, phone, email, birth date, height, weight,
and company) in different formats and measure the duration of this
task for both the RMLStreamer and SPARQL-Generate. We created
15 datasets16 with their number of records ranging from 1,000,000
till 5,000,000 and with CSV, XML, or JSON as their data format, to-
gether with the corresponding mapping files17. The records in the
JSON and XML files have a flat structure (no hierarchy) to reflect
the same data records of the CSV files, which are flat by definition.
Note that the RMLStreamer is not limited to handling flat records.
For each data source, the corresponding RDF is generated. For every
person, an entity is created together with 6 attributes.

We measure the time it takes to (i) start the tool, (ii) generate the
corresponding RDF, and (iii) stop the tool. The starting and stopping
time of the tool is included, as it might have an impact on the total
duration to generate the RDF. We accomplished this by creating a
Docker container for both the RMLStreamer and SPARQL-Generate.
For each dataset, the duration between when the container starts
and when it stops is recorded. With the RMLStreamer we gener-
ated RDF four times, because Flink is able to use 1, 2, 3, or 4 nodes
(or more), but one with SPARQL-Generate because this cannot be
configured. This results in four different measurements for a single
dataset for the RMLStreamer. The scripts to orchestrate the evalua-
tion are available at https://doi.org/10.6084/m9.figshare.6106706.v1.

The evaluation was executed on a machine with 24 cores (Intel
Xeon CPU E5-2620 v3 @ 2.40GHz) and 128GB Random Access
Memory (RAM). Each Docker container could use as many cores
as desired, but the total amount of memory was limited to 4GB.

16http://rml.io/data/sbd2019/boundeddata/data
17https://doi.org/10.6084/m9.figshare.6108623.v1

Results. The RMLStreamer outperforms SPARQL-Generate re-
gardless of the data format and number of nodes used. Furthermore,
SPARQL-Generate runs out of memory when dealing with larger
datasets, which is not the case for the RMLStreamer. In the fol-
lowing paragraph we provide detailed results. The duration of the
RDF generation process from the different datasets is available
in Figures 3 to 5 for data in CSV, XML, and JSON format.

The RMLStreamer outperforms SPARQL-Generate for data in
CSV format, regardless of the number of nodes used by Flink, reach-
ing to a performance increase of 75% when using 4 nodes. Even
more, for 2,000,000 records and more, SPARQL-Generate either
exceeds the limit of Java’s default garbage collection or runs out of
memory. The RMLStreamer does not have these issues, thanks to
the efficient memory management of Flink.

The overall trend for the RMLStreamer is linear in function of the
number of records, as it is indicate on Figure 3. The improvement
on duration gets reduced as the number of nodes increases. For
instance, when using 1 and 2 nodes, the durations for 1,000,000
records are 97s and 62s respectively, resulting in a difference of 36%.
However, when using 3 and 4 nodes, the durations are 48s and 41s,
resulting in a difference of only 15%.

For data with a one-level hierarchical depth, i.e., XML and JSON,
the results are similar. The RMLStreamer outperforms SPARQL-
Generate, regardless of the number of nodes used by Flink. There is
a performance increase of 62%. Even more, for 2,000,000 records and
more, SPARQL-Generate runs out of memory. The RMLStreamer
does not have this issue, due to the efficient memory management
of Flink. According to Figures 4 and 5, as with CSV, the overall
trend of the RMLStreamer is linear.

Insights. The RMLStreamer outperforms SPARQL-Generatewhen
dealing with bounded data in different data formats, which is attrib-
utable to the parallelization. However, an increase of the number
of nodes does not necessarily result in an increase of performance.
The specifics of each use case determine the appropriate number.

6 CONCLUSIONS
In this paper, we identified the aspects of RDF generation that can
be parallelized to scale with data volume. We observed that paral-
lelism can be introduced in (i) the ingestion of both data sources
and their data records, and (ii) the mapping task. Thus, we intro-
duced an approach that incorporates parallelization in the RDF
generation process by aligning three subtasks (ingestion, mapping,
combination), following the producer–consumer paradigm.

We presented as a proof-of-concept our implementation, the
RMLStreamer, which follows our proposed approach. The RML-
Streamer builds on top of Flink for handling the parallel execution.
Our evaluation shows that the RMLStreamer is able to handle high
volumes of data that other RDF generators cannot. Furthermore,
when the data format allows parallelism, the generation speed in-
creases proportionally with the parallelism.

In the future, we will continue applying parallelism to join multi-
ple data sources even more efficiently and ingest more complicated
data sources, e.g. distributed file systems.

https://doi.org/10.6084/m9.figshare.6106706.v1
http://rml.io/data/sbd2019/boundeddata/data
https://doi.org/10.6084/m9.figshare.6108623.v1
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Figure 3: The processing time of RMLStreamer scales linearly with the number of records, whereas SPARQL-Generate only
handles CSV datasets of 1,000,000 records. Using more nodes reduces the needed time, as the input is ingested in parallel.
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Figure 4: The RMLStreamer’s processing time scales linearly with the number of records, whereas SPARQL-Generate only
handles XML datasets of 1,000,000 records.
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Figure 5: The RMLStreamer’s processing time scales linearly with the number of records, whereas SPARQL-Generate only
handles JSON datasets of 1,000,000 records.
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