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Abstract

We associate an Albert form to any pair of cyclic algebras of prime degree p over a

field F with char(F) = p which coincides with the classical Albert form when p = 2.

We prove that if every Albert form is isotropic then H4(F) = 0. As a result, we obtain

that if F is a linked field with char(F) = 2 then its u-invariant is either 0, 2, 4 or 8.
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1. Introduction

Given a field F, a quaternion algebra over F is a central simple F-algebra of degree

2. The maximal subfields of quaternion division algebras over F are quadratic field

extensions of F. When char(F) , 2, all quadratic field extensions are separable. When

char(F) = 2, there are two types of quadratic field extensions: the separable type

which is of the form F[x : x2
+ x = α] for some α ∈ F \ {λ2

+ λ : λ ∈ F}, and the

inseparable type which is of the form F[
√
α] for some α ∈ F× \ (F×)2. In this case, any

quaternion division algebra contains both types of field extensions, which can be seen

by its symbol presentation

[α, β)2,F = F〈x, y : x2
+ x = α, y2

= β, yxy−1
= x + 1〉 .

If char(F) = p for some prime p > 0, we let ℘(F) denote the additive subgroup

{λp − λ : λ ∈ F}. Then we may consider cyclic division algebras over F of degree p.

Any such algebra admits a symbol presentation

[α, β)p,F = F〈x, y : xp − x = α, yp
= β, yxy−1

= x + 1〉

Email addresses: adam1chapman@yahoo.com (Adam Chapman),

Andrew.Dolphin@uantwerpen.be (Andrew Dolphin)

http://arxiv.org/abs/1701.01367v2


where α ∈ F \ ℘(F) and β ∈ F× \ (F×)p. In particular, these algebras contain both

cyclic separable field extensions of F (e.g. F[x]) of degree p and purely inseparable

field extensions of F of degree p (e.g. F[y]).

Two quaternion F-algebras are called linked if they share a common maximal sub-

field. When char(F) = 2, the notion of linkage can be refined to separable linkage and

inseparable linkage depending on the type of quadratic field extension of the center

they share. Inseparable linkage implies separable linkage, but the converse does not

hold in general (see [Lam02]). This observation was extended to Hurwitz algebras in

[EV05] and to quadratic Pfister forms in [Fai06]. We similarly call cyclic p-algebras of

prime degree p over a field F separably linked (resp. inseparably linked) if they share

a common maximal subfield that is a cyclic separable (resp. purely inseparable) exten-

sion of F of degree p. The above linkage result for quaternion algebras was generalized

to this setting in [Cha15].

A field F is called linked if every two quaternion F-algebras are linked. When

char(F) = 2, a field F is called inseparably linked if every two quaternion F-algebras

are inseparably linked. Note that any inseparably linked field is clearly linked.

The u-invariant of a field F, denoted by u(F), is defined to be the maximal di-

mension of an anisotropic nonsingular quadratic form over F of finite order in WqF.

Note that when −1 can be written as a sum of squares in F, and in particular when

char(F) = 2, every form in IqF is of finite order. It was proven in [EL73, Main Theo-

rem] that if F is a linked field with char(F) , 2 then the possible values u(F) can take

are 0, 1, 2, 4 and 8. For fields F of characteristic 2, it was shown in [Bae82, Theorem

3.1] that F is inseparably linked if and only if u(F) 6 4. In particular, this means that a

linked field F with u(F) = 8 is not inseparably linked. For example, the field of iterated

Laurent series in two variables F2((α))((β)) over F2 is linked by [AJ95, Corollary 3.5],

but not inseparably linked, because its u-invariant is 8. There are also many examples

of inseparably linked fields, such as local fields, global fields and Laurent series over

perfect fields (see [CDL16, Section 6]). In [Fai06, Theorem 3.3.10] it was shown that

if F is a linked field and I4
q F = 0 (see Section 2) then u(F) is either 0, 2, 4 or 8. We are

interested in removing the assumption that I4
q F = 0 from this result.

We approach this problem from the more general setting of differential forms over

fields of characteristic p (see Section 3). We associate an Albert form to any pair of

cyclic algebras of degree p over a field F with char(F) = p which coincides with the

classical Albert form when p = 2. We prove that if every Albert form is isotropic then

H4(F) = 0. When p = 2, this means that if F is linked then I4
q F = 0. Together with

[Fai06, Theorem 3.3.10], this gives that the possible values of u(F) are 0, 2, 4 and 8.

2. Bilinear and Quadratic Pfister Forms

We recall certain results and terminology we use from quadratic form theory. We

refer to [EKM08, Chapters 1 and 2] for standard notation, basic results and as a general

reference on quadratic forms.

Let F be a field of characteristic 2. A symmetric bilinear form over F is a map

B : V × V → F satisfying B(v,w) = B(w, v), B(cv,w) = cB(v,w) and B(v + w, t) =

B(v, t) + B(w, t) for all v,w, t ∈ V and c ∈ F where V is an n-dimensional F-vector
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space. A symmetric bilinear form B is degenerate if there exists a vector v ∈ V \ {0}
such that B(v,w) = 0 for all w ∈ V . If such a vector does not exist, we say that B is

nondegenerate. Two symmetric bilinear forms B : V ×V → F and B′ : W ×W → F are

isometric if there exists an isomorphism M : V → W such that B(v, v′) = B′(Mv, Mv′)

for all v, v′ ∈ V .

A quadratic form over F is a map ϕ : V → F such that ϕ(av) = a2ϕ(v) for all

a ∈ F and v ∈ V and the map defined by Bϕ(v,w) = ϕ(v + w) − ϕ(v) − ϕ(w) for all

v,w ∈ V is a bilinear form. The bilinear form Bϕ is called the polar form of ϕ and is

clearly symmetric. Two quadratic forms ϕ : V → F and ψ : W → F are isometric if

there exists an isomorphism M : V → W such that ϕ(v) = ψ(Mv) for all v ∈ V . We

are interested in the isometry classes of quadratic forms, so when we write ϕ = ψ we

actually mean that they are isometric.

We say that ϕ is singular if Bϕ is degenerate, and that ϕ is nonsingular if Bϕ is

nondegenerate. Every nonsingular form ϕ is even dimensional and can be written as

ϕ = [α1, β1] ⊥ · · · ⊥ [αn, βn]

for some α1, . . . , βn ∈ F, where [α, β] denotes the two-dimensional quadratic form

ψ(x, y) = αx2
+ xy + βy2 and ⊥ denotes the orthogonal sum of quadratic forms.

We say that a quadratic form ϕ : V → F is isotropic if there exists a vector v ∈ V \
{0} such that ϕ(v) = 0. If such a vector does not exist, we say that ϕ is anisotropic. The

unique nonsingular two-dimensional isotropic quadratic form is � = [0, 0], which we

call the hyperbolic plane. A hyperbolic form is an orthogonal sum of hyperbolic planes.

We say that two nonsingular quadratic forms are Witt equivalent if their orthogonal sum

is a hyperbolic form.

We denote by 〈α1, . . . , αn〉 the diagonal bilinear form given by (x, y) 7→
∑n

i=1 αi xiyi.

Given two symmetric bilinear forms B1 : V × V → F and B2 : W × W → F, the

tensor product of B1 and B2 denoted B1 ⊗ B2 is the unique F-bilinear map B1 ⊗ B2 :

(V ⊗F W) × (V ⊗F W)→ F such that

(B1 ⊗ B2) ((v1 ⊗ w1), (v2 ⊗ w2)) = B1(v1, v2) · B2(w1,w2)

for all w1,w2 ∈ W, v1, v2 ∈ V . A bilinear n-fold Pfister form over F is a symmetric

bilinear form isometric to 〈1, α1〉 ⊗ · · · ⊗ 〈1, αn〉 for some α1, α2, . . . , αn ∈ F×. We

denote such a form by 〈〈α1, α2, . . . , αn〉〉. By convention, the bilinear 0-fold Pfister

form is 〈1〉.
Let B : V × V → F be a symmetric bilinear form over F and ϕ : W → F be

a quadratic form over F. We may define a quadratic form B ⊗ ϕ : V ⊗F W → F

determined by the rule that (B ⊗ ϕ)(v ⊗ w) = B(v, v) · ϕ(w) for all w ∈ W, v ∈ V . We

call this quadratic form the tensor product of B and ϕ. A quadratic n-fold Pfister form

over F is a tensor product of a bilinear (n−1)-fold Pfister form 〈〈α1, α2, . . . , αn−1〉〉 and

a two-dimensional quadratic form [1, β] for some β ∈ F. We denote such a form by

〈〈α1, . . . , αn−1, β]]. Quadratic n-fold Pfister forms are isotropic if and only if they are

hyperbolic (see [EKM08, (9.10)]).

The Witt equivalence classes of nonsingular quadratic forms over F form an abelian

group, called the Witt group of F, with ⊥ as the binary group operation and � as the

zero element. We denote this group by IqF or I1
q F. This group is generated by scalar
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multiples of quadratic 1-fold Pfister forms. Let In
q F denote the subgroup generated by

scalar multiples of quadratic n-fold Pfister forms over F.

Let ϕ = [α1, β1] ⊥ · · · ⊥ [αn, βn] be a nonsingular quadratic form. The Arf invariant

of ϕ, denoted △(ϕ), is the class of α1β1 + · · · + αnβn in the additive group F/℘(F)

(see [EKM08, §13]). The Arf invariant only depends on the class of the form ϕ in

IqF. An Albert form over a field of characteristic 2 is a 6-dimensional nonsingular

quadratic form with trivial Arf invariant. To any central simple algebra isomorphic to

the tensor product of two quaternion algebras over F, we may associate the Witt class

of the orthogonal sum of the two norm forms of the quaternion algebras (these norm

forms are 2-fold quadratic Pfister forms). This uniquely determines a similarity class

of Albert forms. Conversely, every similarity class of Albert forms determines such a

central simple algebra over F (see [MS89] for more details).

3. Differential Forms

Let F be a field of characteristic p > 0. For a ∈ F, we denote the extension of F

isomorphic to F[T ]/(T p−T −a) by Fa. If a < ℘(F), then this is a cyclic field extension

of degree p and we denote the norm map by NFa/F : Fa → F. Otherwise Fa is an étale

extension isomorphic to F × . . . × F (p times), and one defines a norm map by taking

the determinant of the F-linear map given by multiplying by an element of Fa. We

again denote this map by NFa/F . It is easily seen that NFa/F has a non-trivial zero if and

only if Fa is not a field if and only if a < ℘(F).

The space Ω1(F) of absolute differential 1-forms over F is defined to be the F-

vector space generated by symbols da, a ∈ F, subject to the relations given by additiv-

ity, d(a + b) = da + db, and the product rule, d(ab) = adb + bda. In particular, one has

d(F p) = 0 for F p
= {ap | a ∈ F}, and d : F → Ω1(F) is an F p-derivation.

The space of n-differentials Ωn(F) (n > 1) is then defined by the n-fold exterior

power, Ωn(F) :=
∧n(Ω1(F)), which is therefore an F-vector space generated by sym-

bols da1 ∧ . . . ∧ dan, ai ∈ F. The derivation d extends to an operator d : Ωn(F) →
Ω

n+1(F) by d(a0da1∧ . . .∧dan) = da0∧da1∧ . . .∧dan. We putΩ0(F) = F, Ωn(F) = 0

for n < 0, and Ω(F) =
⊕

n>0
Ω

n(F), the algebra of differential forms over F with

multiplication naturally defined by

(a0da1 ∧ . . . ∧ dan)(b0db1 ∧ . . . ∧ dbm) = a0b0da1 ∧ . . . ∧ dan ∧ db1 ∧ . . . ∧ dbm .

Note that the wedge product is anti-commutative. That is da ∧ db = −db ∧ da.

There exists a well-defined group homomorphismΩn(F) → Ωn(F)/dΩn−1(F), the

Artin-Schreier map ℘, which acts on logarithmic differentials as follows:

b
da1

a1

∧ . . . ∧
dan

an

7−→ (bp − b)
da1

a1

∧ . . . ∧
dan

an

We define Hn+1(F) := coker(℘). The connection between the groups Hn+1(F) and

quadratic forms was shown by Kato [Kato82]:
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Theorem 3.1. Let F be a field of characteristic 2. Then there is an isomorphism

αn,F : Hn+1(F)
∼−→ In+1

q (F)/In+2
q (F) defined on generators as follows:

b
da1

a1

∧ . . . ∧
dan

an

7−→ 〈〈a1, . . . , an, b]] mod In+2
q (F) .

The p-torsion part of the Brauer group of F is known to be isomorphic to H2(F)

(see [GS06, Section 9.2]). The isomorphism is given by

[α, β)p,F 7→ α
dβ

β
.

The following lemma records certain equalities for later use.

Lemma 3.2. Take a1 . . . , an ∈ F× and b ∈ F \ ℘(F). Let 0 , β = NFb/F(u) for some

u ∈ Fb.

(a) For all i = 1, . . . , n we have

b
da1

a1

∧ . . . ∧ dan

an

= (b + ai)
da1

a1

∧ . . . ∧ dan

an

mod dΩn−1(F) .

(b) For all i = 1, . . . , n we have in Hn+1(F)

b
da1

a1

∧ . . . ∧ dan

an

= b
da1

a1

∧ . . . ∧ d(aiβ)

aiβ
∧ . . . ∧ dan

an

.

(c) For all i = 1, . . . , n we have in Hn+1(F)

b
da1

a1

∧ . . . ∧ dan

an

= (b + aiβ)
da1

a1

∧ . . . ∧ d(aiβ)

aiβ
∧ . . . ∧ dan

an

.

Proof. In all the statements, it suffices to consider the case i = 1. Note that as

d
(

b−1
)

∧ db = d

(

bp−1

bp

)

∧ db = −bp−2

bp
db ∧ db = 0

for all b ∈ F× we have

d

(

b
da1

a1

∧ . . . ∧ dan

an

)

= db ∧ da1

a1

∧ . . . ∧ dan

an

∈ dΩn−1(F) .

We first show (a). We have that

a1

da1

a1

∧ . . . ∧ dan

an

= da1 ∧
da2

a2

∧ . . . ∧ dan

an

= d

(

a1

da2

a2

∧ . . . ∧ dan

an

)

∈ dΩn−1(F) .

Hence the result follows from the additivity of d.

For (b), it suffices to consider the case n = 1. In this case, the result follows from

[BO13, VII.1.9, (2)] via identifying cyclic p-algebras and symbols in H2(F). Statement

(c) then follows immediately from (a) and (b). �
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4. Albert p-forms

Let F be a field of characteristic p > 0. For α, β ∈ F and γ, δ ∈ F× the map

A(α, β, γ, δ) : Fα+β ⊕ Fα ⊕ Fβ → F given by

(x, y, z) 7→ NFα+β/F(x) + γNFα/F(y) + δNFβ/F(z)

is called an Albert p-form. By the pure part of the Albert p-form A(α, β, γ, δ) we mean

the restriction of A(α, β, γ, δ) to F ⊕ Fα ⊕ Fβ → F.

Remark 4.1. Note that for p = 2 an Albert p-form is an Albert form as defined in

Section 2. We also note the following:

1. If the Albert p-form above has a non-trivial zero, then the cyclic algebras [α, γ)p,F

and [β, δ)p,F are separably linked. If p = 2, then the converse also holds.

2. If the pure part of the Albert p-form above has a nontrivial zero, then the cyclic

algebras [α, γ)p,F and [β, δ)p,F are inseparably linked. If p = 2, then the converse

also holds.

Proof. The ‘if’ statements follow immediately from [Cha17, Lemma 2.2]. The con-

verse statements for p = 2 can be found in [MS89]. �

Lemma 4.2. Take α ∈ F and β ∈ F×. Then there exist α1, α2 ∈ F and u ∈ F× such that

α = α1 + α2 and

α
dβ

β
= α1

dβ

β
= α2

dβu

βu
∈ H2(F) .

Proof. If α ∈ ℘(F) then the result is trivial. Otherwise let t =
αβ−α
β

, α1 = α + βtp and

α2 = α − β(tp − t + α). Then α = α1 + α2. If t = 0 then β = 1 and again the result is

trivial. If t , 0 then both tp and u = −(tp − t + α) are norms of elements in the field Fa

(using −1 = (−1)p). Hence applying Lemma 3.2, (c) gives the result. �

Theorem 4.3. Let F be a field of characteristic p. If every Albert p-form over F has a

non-trivial zero then H4(F) = 0.

Proof. Let α ∈ F \ ℘(F), β, γ, δ ∈ F× and ω = α
dβ

β
∧ dγ

γ
∧ dδ

δ
∈ H4(F). By Lemma 4.2

there exist α1, α2 ∈ F and u ∈ F× such that α = α1 + α2 and

α
dβ

β
= α1

dβ

β
= α2

dβu

βu
∈ H2(F) . (1)

If α2 or α1 ∈ ℘(F), we have that ω = 0 ∈ H4(F). Therefore we may assume that Fα2
/F

and Fα1
/F are non-trivial extensions. In particular the respective norm forms have no

non-trivial zeros.

By the hypothesis, the Albert p-form A(α1, α2, γ, δ) has a non-trivial zero. That is,

there exist x ∈ Fα, y ∈ Fα1
and z ∈ Fα2

not all zero such that

NFα/F(x) + γNFα1
/F(y) + δNFα2

/F(z) = 0 . (2)
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If x = 0, which holds if and only if NFa/F(x) = 0, then

γNFα1
/F (y) = −δNFα2

/F(z) = δNFα2
/F (−z) , 0 .

Fix r = NFα1
/F(y) and s = NFα2

/F(−z). Then by (1) and Lemma 3.2, (c) we have

ω = α1

dβ

β
∧ dγ

γ
∧ dδ

δ
= α1

dβ

β
∧ dγr

γr
∧ dδ

δ

= α2

dβu

βu
∧ dγr

γr
∧ dδ

δ
= α2

dβu

βu
∧ dγr

γr
∧ dδs

δs
= 0 ,

where the last equality follows from γr = δs.

Assume now that x , 0, and hence NFa/F(x) , 0. Let η ∈ Fa be such that

NFa/F(η) = α. Fix q = NFa/F(ηx−1). Multiplying (2) by q and using the multiplica-

tivity of the norm form gives α + qγNFα1
/F(y) + qδNFα2

/F(z) = 0 . As q is also a norm

of an element in Fα, Lemma 3.2, (c) gives

ω = α
dβ

β
∧ dqγ

qγ
∧ dqδ

qδ
.

Hence we may assume that ω = α
dβ

β
∧ dγ

γ
∧ dδ

δ
and that α+γNFα1

/F(y)+δNFα2
/F(z) = 0.

Fix

r =

{

NFα1
(y) if y , 0

1 otherwise
and s =

{

NFα2
(z) if z , 0

1 otherwise
.

Then by (1) and Lemma 3.2, (c) we have for some u ∈ F×

ω = α1

dβ

β
∧ dγ

γ
∧ dδ

δ
= α1

dβ

β
∧ dγr

γr
∧ dδ

δ
= α2

dβu

βu
∧ dγr

γr
∧ dδ

δ

= α2

dβu

βu
∧ dγr

γr
∧ dδs

δs
= α

dβ

β
∧ dγr

γr
∧ dδs

δs

= (α + γNFα1
/F(y) + δNFα2

/F (z))
dβ

β
∧ dγr

γr
∧ dδs

δs
= 0 .

�

Theorem 4.4. Let F be a field of characteristic p. Suppose that for all α ∈ F and

γ, δ ∈ F×, the pure part of the Albert p-form A(α, α, γ, δ) has a non-trivial zero. Then

H3(F) = 0.

Proof. Let α, γ, δ ∈ F× and ω = α
dγ

γ
∧ dδ

δ
∈ H3(F). We may assume that α < ℘(F)

and hence that the field extension Fα/F is non-trivial. Consider the Albert p-form

A(α, α, γ, δ). By the hypothesis, there exist x ∈ F and y, z ∈ Fα not all zero such that

xp
+ γNFα/F (y) + δNFα/F(z) = 0 .

Clearly at least one of y or z must be non-zero. Fix

r =

{

NFα/F(y) if y , 0

1 otherwise
and s =

{

NFα/F(−z) if z , 0

1 otherwise
.
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Then by Lemma 3.2, (b) we have

ω = α
dγr

γr
∧ dδs

δs
.

As γr and δs differ by an element in F p we have
dγr

γr
∧ dδs

δs
= 0 and hence ω = 0. �

Remark 4.5. Over fields of characteristic 2, the pure parts of Albert 2-forms of the

type A(α, α, γ, δ) correspond (up to scaling) to 5-dimensional Pfister neighbours (see

[EKM08, (23.10)]) and hence it is clear that if all these forms are isotropic, then I3
q F is

trivial.

By Remark 4.1 and Theorem 4.3 have that H4(F) = 0 for a linked field F of

characteristic 2.

Question 4.6. Let F be a field of characteristic p > 2. If every two cyclic algebras of

degree p over F are separably linked, is H4(F) = 0? If every two such algebras are

inseparably linked, is H3(F) = 0?

5. Linked Fields of characteristic 2

The following result was shown in [Fai06].

Theorem 5.1 ([Fai06, Theorem 3.3.10]). If F is a linked field with char(F) = 2 and

I4
q F = 0 then the possible values its u-invariant can take are 0, 2, 4 and 8.

Since a field of characteristic 2 being linked is equivalent to every Albert form over

F being isotropic by Remark 4.1, combining Theorem 5.1, Theorem 4.3 and Theo-

rem 3.1 gives the following result:

Corollary 5.2. If F is a linked field with char(F) = 2 then the possible values its

u-invariant can take are 0, 2, 4 and 8.

Corollary 5.2 follows more directly from Theorem 5.1 if one can show that every

4-fold Pfister form contains an Albert form as a subform, as then clearly I4
q(F) = 0 if

the field is linked. As this result is also of independent interest, we give a proof below.

The computations are similar to those used in Theorem 4.3. We use the following well-

known isometry. This can be derived from, for example, [DQ17, (2.4) and (2.6)]. It

can also be directly derived from Lemma 3.2 and Theorem 3.1.

Lemma 5.3. Assume char(F) = 2. Let b ∈ F×, a ∈ F, x, y ∈ F not both zero and

β = x2
+ xy + ay2. Then we have 〈〈b, a]] ≃ 〈〈bβ, a + bβ]] .

Lemma 5.4. Assume char(F) = 2. Let π be a 2-fold Pfister form over F and λi ∈ F×

for i = 1, 2, 3. The the form ρ = 〈λ1, λ2, λ3〉 ⊗ π contains an Albert subform.

Proof. Let α ∈ F and β ∈ F× such that π = 〈〈β, α]]. Fix t =
α+βα

β
, α1 = α + βt2 and

α2 = α + β(t2
+ t + α). Then α = α1 + α2. Using Lemma 5.3, we see that the forms

[1, α], [1, α1] and [1, α2] are all subforms of π. Consequently, the form

ψ = λ1[1, α] ⊥ λ2[1, α1] ⊥ λ3[1, α2]

8



is a subform of ρ. The Arf invariant of this form is α + α1 + α2 = 0. Therefore ψ is an

Albert form. �

Corollary 5.5. Given a field F with char(F) = 2, every 4-fold Pfister form contains an

Albert subform.

Proof. Let ϕ = 〈〈δ, γ, β, α]] be a 4-fold Pfister form over F and let π = 〈〈β, α]]. Then

ρ = π ⊥ δπ ⊥ γπ is a subform of ϕ. The form ρ, and hence ϕ, contains an Albert

subform by Lemma 5.4. �

Theorem 5.6. If F is a linked field with char(F) = 2 then I4
q F = 0.

Proof. Let ϕ be a 4-fold Pfister form over F. By Corollary 5.5 it contains an Albert

subform ρ. Since F is linked, ρ must be isotropic. Therefore ϕ is hyperbolic. �

Remark 5.7. A result analogous to Lemma 5.4 holds for those fields F with char(F) ,

2 containing a square root of −1. Let π = 〈〈α, β〉〉 be a 2-fold Pfister form over F and

let λ1, λ2, λ3 be three arbitrary elements in F×. Then ρ = 〈λ1, λ2, λ3〉 ⊗ π contains the

subform

λ1〈α, β〉 ⊥ λ2〈α, αβ〉 ⊥ λ3〈αβ, β〉 .

This has trivial discriminant, and so it is an Albert form. Hence, every 4-fold Pfister

form over F contains an Albert form.

This is not the case in general for fields that do not contain a square root of −1. For

example, the unique anisotropic 4-fold Pfister form 〈〈−1,−1,−1,−1〉〉 over R clearly

has no Albert subform, as all Albert forms over R are isotropic.
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[GS06] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology,

Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge Univer-

sity Press, Cambridge, 2006.

[Kato82] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor K-theory

in characteristic two. Invent. Math. 66 (1982), no. 3, 493–510.

[Lam02] T. Y. Lam, On the linkage of quaternion algebras, Bull. Belg. Math. Soc.

Simon Stevin 9 (2002), no. 3, 415–418.

[MS89] P. Mammone and D.B. Shapiro, The Albert quadratic form for an algebra

of degree four, Proc. Amer. Math. Soc. 105 (1989), no. 3, 525–530.

10


	1 Introduction
	2 Bilinear and Quadratic Pfister Forms
	3 Differential Forms
	4 Albert p-forms
	5 Linked Fields of characteristic 2

