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Abstract

Behavioral disturbances of persons with dementia residing in a nursing home impose a significant burden on other
residents and on the care staff. A social robot can provide an adequate technological support tool for the caregivers
by approaching a resident that exhibits a behavioral disturbance. In this paper, we focus on how to position the robot
in the nursing home, taking into account the profile and location of the residents. We minimize the time between the
detection of a behavioral disturbance and the robot having arrived near the resident and starting an interaction scenario.
Our algorithm is evaluated using realistic data that was collected during 3 months in two Belgian nursing homes.
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1. Introduction1

Dementia is characterized by a progressive decrease of2

cognitive capabilities that affects memory, thinking and3

social abilities severely enough to interfere with daily func-4

tioning. As age is one of the strongest known risk factors5

for dementia, the worldwide cost of dementia care services6

is projected to grow significantly with the aging popula-7

tion (World Health Organization, 2018; Harper, 2014).8

Ambient assisted living technology can reduce costs by9

extending the period in which older adults can stay inde-10

pendent in their home (Demir et al., 2017). Over time, the11

care for a person with dementia often becomes too com-12

plex to be organized in the home environment, and at a13

certain point the person needs to be placed in a nursing14

home with guaranteed supervision and specialized facili-15

ties (Mller et al., 2017).16

The corollary of these societal and technological evolu-17

tions is that the care needs of the average nursing home18

resident are becoming more complex and that the demand19

by the staff for technological support tools is increasing20

accordingly (OSullivan et al., 2018). Behavioral distur-21

bances (BD) are one of the most prominent manifestations22

of dementia, exhibited by a majority of the persons with23

moderate to severe dementia living in nursing homes (De-24

sai et al., 2012; Husebo et al., 2011). BD can take various25

forms, including mood disorders, wandering and verbal or26

physical aggression. These BDs are an important inhibitor27

of stress to other residents as well as to caregivers (Hazel-28

hof et al., 2016).29
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To manage these BDs, one can use pharmacological or30

non-pharmacological interventions. Pharamacological in-31

terventions are used only in acute situations since these32

treatments do not address the underlying psychosocial rea-33

sons and may have adverse side effects (Sadowsky and34

Galvin, 2012). Many different non-pharmacological ther-35

apies are designed to resolve specific BDs by interacting36

with the residents and without the harmful effects of med-37

ical interventions (de Oliveira et al., 2015). Robot-Assisted38

Therapies are one particular form of non-pharmacological39

therapy. Many recent studies investigated the effects of40

various social robots on persons with dementia, such as41

the robot seal PARO or the humanoid Nao (Sabanovic42

et al., 2013; Jøranson et al., 2015; Wada et al., 2005; Va-43

lent Soler et al., 2015; Inoue et al., 2014). Even with rel-44

atively simple interactions such as storytelling, singing a45

song or performing a dance, a positive effect on the neuro-46

psychiatric symptoms is reported. However, these robots47

only interact in a preprogrammed manner and it is often48

too time consuming for the staff to program new therapy49

sessions on the robot.50

Our aim is to evolve the role of a social humanoid robot51

in the caregiving workflow from a tool that is manually52

controlled during therapy sessions to an autonomously53

functioning technological support tool. In particular, when54

a BD manifestation is detected from sensors installed in55

the nursing home or from wearables worn by the residents,56

the robot should drive to the resident, and generate an57

audio-visual stimulus to temporarily distract the resident58

and possibly alert the staff if the BD manifestation is not59

stopped.60

A key component of such a system - and the main con-61

tribution of this paper - is a control algorithm that pro-62
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actively positions a social robot in a nursing home in order63

to minimize the Time-To-Intervention (TTI) for a maxi-64

mum number of BD manifestations. We define the TTI65

as the time elapsed between the detection of a BD from66

the sensor data and the robot having approached the res-67

ident close enough to start an intervention. We evaluate68

this algorithm with simulations based on realistic datasets69

annotated by the staff of closed dementia wards in two70

nursing homes in Belgium. Our use case imposes the fol-71

lowing specific requirements:72

1. Single robot Social robots are an expensive invest-73

ment for nursing homes which are, in Belgium as74

well in many other countries, under financial pressure.75

The controller algorithm was thus primarily designed76

for a single robot, leaving extensions to multi-robot77

deployments for future work.78

2. Location priority Although some patterns can be79

observed in the daily displacements of a resident, the80

occurrence of a BD is a stochastic process related to81

the individual and not to a spatial position such as82

a common room or the bed room. These patterns83

change over time, e.g. when a new resident arrives af-84

ter the decease of a resident (caregivers report typical85

stays of 9-15 months), or if the frequency of BDs of a86

resident increases as dementia progresses. Therefore,87

the robot should adapt its position to the actual loca-88

tion of the residents, weighted for the statistical BD89

risk profile of each resident.90

3. Trajectory As BD events are detected using wear-91

ables or sensors, the main design goal for the robot’s92

trajectory in the nursing home is to arrive as fast as93

possible to a resident if such an event occurs - not to94

patrol and detect as much BDs as possible. If no res-95

ident moves significantly - a situation not uncommon96

in a nursing home - the optimal robot position does97

not change and the robot can stay idle.98

4. Finite duration BD events have a finite duration,99

meaning that a BD can only be alleviated if a robot100

arrives within a fixed duration after the onset of a BD.101

5. Energy management Since the system is intended as102

a support tool in the caregiving workflow, the amount103

of actions required from the caregivers must be as104

minimal as possible. The robot should timely move105

itself to a charger location. Preferably, charging cycles106

are scheduled when fewer BD events are expected.107

The rest of this paper is structured as follows. In sec-108

tion 2, we relate existing studies on robot positioning al-109

gorithms to the specific requirements imposed by BD in-110

terventions. In section 3 we situate this positioning algo-111

rithm in a broader cyber-physical framework that contains112

components for BD detection, positioning and navigation.113

In section 4, we explain our control algorithm that deter-114

mines the position and charging times of the robot. In115

section 5, we evaluate the performance of our pro-active116

position control algorithm. We conclude the paper in sec-117

tion 6.118

2. Related work119

Continuous surveillance of a target environment by a120

robot has a wide range of applications such as prop-121

erty surveillance, environment monitoring in disaster sites122

and ecological monitoring (for an extensive review, see123

e.g. Nigam (2014)). Our studied problem of a robot posi-124

tioning itself nearby locations of interest relates to robotic125

surveillance. In this section, we evaluate existing work on126

the requirements that were listed in section 1. A summary127

can be found in Table 1.128

In many of the works in this domain, the robot cycles129

through a predetermined sequence of locations. The aim130

is to balance dwell time, i.e. time spent at each location,131

with the time between two visits of the same location,132

see e.g. Smith et al. (2012), Yu et al. (2017)). For our use133

case, fixed patrolling circuits are less efficient since the tra-134

jectories followed by residents may vary from day to day.135

Yu et al. (2015) and Baykal et al. (2016) study a problem136

where events are generated according to a location-specific137

Poisson process. The trajectory and dwell times of a single138

robot are optimized to register as much events as possible.139

The events considered in these works are instantaneous: if140

the robot is not at the location when an event occurs, it is141

completely missed by the robot. The goal of our control142

algorithm is however to maximize the number of BDs al-143

leviated (i.e. robot arrives no longer than a time T after144

the onset of a BD) and not to maximize the number of145

BD events detected, since BD detection is performed by146

sensors and wearables.147

Battery management is often accounted for in terms of148

a constraint, ensuring that the robot arrives at a charging149

point (just) before running out of battery. For instance,150

Mersheeva and Friedrich (2015) calculate trajectories for151

a set of unmanned aerial vehicles where batteries can only152

be replaced at a limited set of locations. Rather than153

maximizing the length of a single trajectory between sub-154

sequent charging cycles, we let the robot charge its battery155

in idle times such that it can alleviate more BDs whenever156

they do occur.157

In Tran et al. (2017), three different technologies are158

compared to solve the planning and scheduling problem of159

deploying multiple robots in a nursing home environment.160

Multiple robots need to jointly fulfill a set of tele-presence161

sessions, reminding residents about the upcoming Bingo162

activity as well as leading the Bingo activity. At the begin-163

ning of each day, a new task schedule is generated for each164

robot. Our position control algorithm is not designed for165

such deadline and location-constrained announcement and166

interaction tasks. Instead, we position the robot nearby167

residents so that the robot can quickly reach them if a168

resident starts exhibiting a BD. Finding an robot sched-169

ule for the combination of pre-scheduled and stochastically170

arriving interaction tasks is an interesting topic for future171

research.172
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Single or
multi-agent

Trajectory
Energy
management

Location priority Event type

Smith et al. (2012) Multi
Predetermined static
cycle

None

Dwell times
based on
accumulation
function

None

Mersheeva and
Friedrich (2015)

Multi

Sequence over
landmarks, with
replacement of
batteries at base
stations

Charge when
critically low

Predetermined
stationary
location priorities

None

Yu et al. (2015) Single

Periodically updated
sequence over
landmarks, without
revisits

None
Rate of events
(stationary)

Instantaneous

Baykal et al. (2016) Single

Periodically updated
sequence over
landmarks, with
possible revisits

None
Rate of events
(non-stationary)

Instantaneous

Tran et al. (2017) Multi
Planned based on
resident day schedule

Charge times are
included in plan

Fixed day
schedule for
resident

None

Yu et al. (2017) Single
Fixed sequence over
landmarks, no
revisits

None
Time since last
visit and dwell
time

None

Ours Single
Dynamic positioning
on grid

Charge in idle
times or when
necessary

Risk-weighted
person tracking

Finite duration

Table 1: Comparison of the proposed framework with current state of the art on the requirements for BD intervention introduced in section 1.

3. Background173

The positioning algorithm is part of a complete frame-174

work for personalized interventions of social robots, de-175

veloped in the WONDER project1. In this section, we176

delineate the responsibilities of the positioning algorithm177

in the framework and briefly discuss the other building178

blocks that have been realized in the project.179

Our system was designed in co-creation with the staff180

of closed dementia wards in two nursing homes. In such181

a ward, residents have their private bedroom while meals182

and leisure activities are organized in common rooms. For183

reasons of personal safety, residents cannot leave the ward184

unaccompanied.185

The framework can be seen as a cyber-physical system186

that receives constant input from sensors and wearables187

on the residents and that steers a social robot through-188

out the premises of the nursing home: corridors, common189

rooms and private bedrooms. The conceptual architecture190

is illustrated in Figure 1.191

The data processing block continuously tracks the res-192

idents’ locations and whether they start exhibiting a be-193

havioral disturbance (BD), e.g. by monitoring sound level194

to detect yelling or by tracking walking patterns to detect195

1https://www.imec-int.com/en/what-we-offer/

research-portfolio/wonder

Figure 1: The social robot alternates between a pro-active mode
and an intervention mode, based on real-time sensor data as well as
historical information. The Robot Mobility block controls navigation
through the corridors, common rooms and (private) bedrooms.
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wandering behavior. Such BD detection algorithms have196

for instance been reported in (Lin et al., 2018; Vuong et al.,197

2015; Beltrán et al., 2014).198

The robot control alternates between a pro-active mode199

and an intervention mode. In the default pro-active mode,200

the robot is positioned close to where the most BD are ex-201

pected in the near future. As we will detail in the rest of202

this paper, these estimations are based on the combina-203

tion of historical information on BD occurrences for each204

resident with real-time location information. For instance,205

during the night the robot will position itself closer to the206

bedrooms, while in the afternoon it will be close to a com-207

mon room where all residents are gathered.208

If a BD is detected, the system switches to the interven-209

tion mode. The robot drives towards a particular resident210

to attempt to alleviate the BD by starting an interaction.211

The success of the robot intervention can be monitored212

again via the wearables and sensors and if necessary, a213

caregiver is alerted for further assistance.214

3.1. Personalized interactions215

In co-creation with the nursing home staff (Ongenae216

et al., 2017), we defined a number of intervention actions217

that the robot can perform when in front of a resident:218

asking a question about an important event in his lifetime,219

reading out a news highlight and playing a song. Both the220

style and content of the intervention are tailored to the221

resident. Style parameters include the language, speak-222

ing volume and approaching distance. The robot can play223

a favorite song, tell a short story about a topic of inter-224

est (e.g a news headline) or elicit a positive memory from225

the resident’s lifetime. All these robot actions, together226

with profile information, are formally described in an on-227

tology. Modeling this information in an ontology allows to228

incorporate knowledge from other domains, for instance,229

notions of an elderly’s culture that determine the style230

of greeting (Bruno et al., 2017) or the way of approach-231

ing (Truong et al., 2016). By following and interpreting232

the links in the ontology, it can be automatically derived233

which profile information can be used to personalize the234

action. The effort of the care staff is limited to inputting235

some basic profile information about interests, language,236

etc. This is information that is already captured in today’s237

care practices.238

3.2. Mobile platform for the Nao robot239

In our study, we used the humanoid Nao robot. The240

same robot was used in the KSERA project (Torta et al.,241

2014). The obtained results in a senior center home sug-242

gest that the participants did not feel any anxiety during243

interaction, mostly due to the shape and small size of the244

robot.245

It is important for the robot to move fluently through-246

out the nursing homes. The Nao robot is however a legged247

robot that walks too slowly for our needs as it is limited to248

a speed of roughly 10 cm/s. To enable a more swift move-249

ment between locations in the nursing home, a new mobile250

Figure 2: Front and backside view of the platform used by the social
robot to move efficiently through the nursing home. The robot can
autonomously step on and off the platform.

platform has been designed, shown in Figure 22. The plat-251

form’s mobility is accomplished by continuous track tires252

which are actuated by two independent motor drivers. We253

have equipped it with 5 simple sonars as well as a Robo-254

Peak A1 lidar. The platform has a top speed of 1 m/s255

making it much more suitable for a nursing home envi-256

ronment. The red color for the front was advised by the257

nursing home staff as red is the color that is most likely to258

be noticed by the persons with dementia.259

260

3.3. Study design261

Real sensor data was collected in two nursing homes262

located in Ghent, Belgium. Although we realized an inte-263

grated prototype of the framework in which a robot enters264

a room and initiates a personalized intervention (see Fig-265

ure 2), we were not able to organize field trials to validate266

the positioning algorithm presented in this paper. The267

main reason is that the newly designed mobile platform268

was implemented as a proof-of-concept but was not certi-269

fied for experimenting with humans in real environments.270

Hence, the experimental validation of the positioning al-271

gorithm is based on simulations with real data on BD ma-272

nifestations in a dementia ward.273

4. Robot Position Control274

Residents constantly move between their room, the com-275

mon areas and the corridors in the ward. If a BD is de-276

tected from sensor data, the robot will plan a personalized277

intervention. If no resident is currently exhibiting a BD,278

we aim to position the robot so as to minimize the time-to-279

interaction (TTI), which we define as the time between the280

detection of a BD and the robot arriving at the resident’s281

2A video of the robot driving around can be found at https:

//vimeo.com/243125775.

4

https://vimeo.com/243125775
https://vimeo.com/243125775


Algorithm 1 Control routine

1: while true do
2: if has to charge() then
3: navigate to(~xcharger)
4: wait until charged()
5: else if can alleviate bd() then
6: navigate to(~xBD)
7: execute personalized interaction()
8: else
9: do proactive action()

10: end if
11: end while

current location and start a personalized intervention sce-282

nario. As we will show in section 5.1, our empirical data283

collected in two nursing homes reveals temporal patterns284

in the type of BD exhibited, e.g. there are typically fewer285

BDs during organized activities or meals. Therefore the286

control algorithm will constantly steer the robot towards287

locations in the ward where there is a high probability of a288

resident exhibiting a BD. Our algorithm is designed such289

that it can be deployed in any nursing home (e.g. with dif-290

ferent day schedule) or with changing population charac-291

teristics (new residents, progressively declining residents).292

Lastly, the robot should never run out of out battery so the293

control algorithm must also decide when the robot should294

move to a charging station deployed in the nursing home.295

4.1. Environment model296

We define the nursing home as a two-dimensional grid297

X wherein our robot as well as all residents are at dis-298

cretized time t positioned at one of the possible positions299

~x = (x, y) ∈ X on the grid. Example grids of the two nurs-300

ing homes participating to our study are shown in Fig. 3.301

We denote the battery level of the robot at time t as b(t)302

(0 < b(t) < 100). There is a single charger placed at303

location ~xcharger ∈ X.304

At any moment in time, the robot is either standing305

idle (on a non-charger position), charging, moving (with306

a constant speed v) or interacting with a resident. The307

corresponding depletion of the battery per time step, ∆b,308

is modeled as fractions of a base discharge per timestep c:309

∆b =


c · fidle if idle

−c · fcharge if charging

c · fmove if moving

c · fint if interacting,

310

The actions of the robot are controlled by a continu-311

ously running control algorithm, of which the pseudo-code312

is displayed in Alg. 1. Every iteration of this control algo-313

rithm starts with a check of the current battery level of the314

robot. The function has to charge() (line 2 of Alg. 1) com-315

putes the distance D(~xrobot, ~xcharger) between the current316

robot position and the location of the charger and checks317

if the current battery level is still sufficient for reaching the318

charger, i.e. if b(t) > D(~xrobot, ~xcharger) · c · fmove +Bmin,319

with Bmin a safety margin.320

As distance measure D(x, y) we take the A∗-distance321

(Hart et al., 1968). If the battery level is not high enough322

then the robot will immediately go towards the charger.323

By performing this check we ensure that our robot never324

runs out of battery, which would require a manual inter-325

vention of the staff. Please note that once an robot decides326

it must charge, it will always fully charge. We have chosen327

to do this in order to avoid pivoting behavior and shall328

further motivate this choice after explaining the cost func-329

tions in more detail (see section 4.3).330

If the robot does not need to charge, the control routine331

checks if the algorithms analyzing the sensor data report332

a BD ongoing at one of the residents (line 5 of Alg. 1)333

and if it can alleviate them depending on the location of334

the reported BD, the robot’s current position and its bat-335

tery level. It again checks this by computing the power336

necessary to (i) travel towards the location of the ongoing337

BD, (ii) alleviate the ongoing BD and (iii) travel from the338

BD location to the charger. If the robot cannot alleviate339

the BD due to energy constraints, the ongoing BD will be340

ignored.341

If there are no ongoing BDs and the robot has sufficient342

battery, we execute a cost-based optimal control problem343

(line 9 of Alg. 1) to optimize the robot position (in terms344

of TTI). The internals are detailed in the next section.345

4.2. Pro-active action control346

In pro-active mode, the robot can take five possible ac-347

tions a ∈ A: moving one grid cell up/down/left/right or348

stay on the current location (idle). The optimal anticipa-349

tive action for the robot depends on the relative position350

of the robot towards the charger and towards all residents,351

the probability of all residents to exhibit a BD in the near352

future, and the actual battery level b(t).353

We define our state space as:

S = {s(t) = (~xrobot, ~xresident, b(t), t)|~xrobot ∈ X,
~xresident ∈ X, b ∈ [0, 100]} (1)

We consider movement of our robot to be noiseless and354

therefore the state transitions s → s′ are deterministic.355

The optimal action a∗ is then determined as the action for356

which the cost of the resulting state s′ is lowest:357

a∗ = arg min
a∈A

[Cenv(s
′, a) + CBD(s′, a) + Cbat(s

′, a)] (2)

The cost terms in Eq. (2) are designed to strike a358

balance between the Time-To-Interception (TTI) and not359

running out-of-battery. These cost functions are explained360

in more detail below.361
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Figure 3: Heatmap of the locations where BDs are taking place in the nursing homes. Accessible areas are coloured gray while inaccessible
ones are black. Small rooms on the outer rim of the grids are patient rooms while large rooms indicate common rooms. The plans are reduced
versions of the original floor plans because rooms of patients for which no informed consent of the patient was obtained are also marked as
inaccessible. Colours indicate the number of behavioral disturbances collected over 100 days for nursing home 1 and 135 days for nursing
home 2. The red dotted line is the patrolling path for the patrolling baseline. The night is defined between 22:00 and 06:00, the morning
between 06:00 and 12:00, the afternoon between 12:00 and 18:00 and the evening between 18:00 and 22:00.
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4.2.1. Environment cost362

The cost linked with the environment, Cenv is intro-
duced to ensure that our robot does not take an impossible
action by for example walking into a wall.

Cenv(~x) =

{
∞ if ~x is infeasible/occupied

0 otherwise
(3)

4.2.2. Battery cost363

Each action draws a certain amount of energy from the364

battery, which is accounted for by assigning a cost to each365

action. Furthermore the battery cost Cbat contains a linear366

cost for the distance to the charger. This part ensures that367

if the other terms in the total cost function are zero then368

our robot is steered towards the charger. The cost term369

Cbat thus becomes:370

Cbat(s, a) = Ccharger(~xrobot) + Caction(a) (4)

where Ccharger(~xrobot) = D(~xrobot, ~xcharger)

and Caction(a) =


c · fidle if a=“idle”

c · fmove if a=“up/down/left/right”

c · fint if a=“interact”,

371

This cost term competes with the cost CBD reflecting372

the anticipated BDs. The charger will thus become an373

attractive position for the robot if very few BDs are anti-374

cipated in the near future.375

4.2.3. BD anticipation cost376

At any idle moment, and if the battery level is sufficient,377

the robot should position itself close to the location where378

many residents are gathered that have a high probability379

of exhibiting a BD in the near future. We therefore assume380

the availability of a predictor function µ (r, t, tµ) which re-381

turns the probability that resident r will exhibit one or382

more BDs in the interval [t, t+ tµ], with t the current time383

and tµ a lookahead-time that indicates how far our robot384

should look into the future for anticipating BDs. This pre-385

dictor function can be based on advanced machine learn-386

ing, however, as we will show in section 5, we also obtain387

good results with a simple daily updated historical profile.388

The cost term for BD anticipation is then given by weigh-389

ing the distance between the robot and all residents with390

the predicted BD likelihood for that resident:391

CBD(s, a) =
∑
r

µ(r, t, tµ) D2(~xrobot, ~xresident) (5)

In Eq. (5), D is again the A∗-distance measure on a grid.392

The distance is squared such that decreasing the distance393

from the robot to a location with future predicted BDs394

decreases this cost term more than how Cbat is reduced by395

moving the robot towards the charger. This ensures that396

if there are residents with predicted BDs between t and397

t+ tµ the robot is steered towards them in favor of going398

to the charger.399

We scale the lookahead-time tµ with the battery level b
such that the time window decreases in size as the battery
level decreases. Resulting from this comes the intuitive
result that steering towards the charger (due to the linear
battery cost) becomes more attractive as the battery de-
creases since the number of expected BDs (and thus the
cost term CBD) also decreases due to a smaller time win-
dow. Specifically, the time window is set equal to

tµ(s) = max
(
0, tdepl(b)− t̂(s)

)
(6)

where

t̂(s) = t~x→~xcharger
(s) + tfullcharge(b) + talleviateBD(s)

where tdepl(b) denotes the time needed for the battery400

to deplete fully, t~xrobot→~xcharger
the time needed to travel401

to the charger from the current position, tfullcharge the402

time needed to fully charge from the current battery level403

and talleviateBD the time needed to (i) travel to the near-404

est resident, (ii) alleviate a BD at that location and (iii)405

travel from that location to the charger. Intuitively, Eq.406

(6) reflects that we should not look for BDs expected in407

the far future if we have only a limited battery level. In408

the case where the battery level decreases below a certain409

point we have t̂ ≥ tdepl and thus tµ = 0 at which the cost410

CBD vanishes. The battery cost Cbat is then minimized411

by steering the robot towards the charger as desired.412

4.3. Avoiding pivoting behavior413

The different terms of the cost function try to attract the414

robot either to the charger or to other positions in the grid.415

As introduced in section 4.1, the robot always charges to416

full in case it decides to charge. One might wonder why a417

robot could not leave the charger to alleviate a BD with-418

out being charged to full. Early experimentations showed419

however that without imposing the constraint to charge to420

full, the robot might start constantly pivoting between two421

positions on the grid. Consider for example the case that422

our robot is at a low battery level. Since its battery level423

is low, the lookahead-time is small and the predictor func-424

tions µ(.) will indicate a low probability. However, as its425

battery charges the lookahead time increases accordingly426

and BDs might be anticipated. Since the battery level has427

increased by positioning itself on the charger, the robot428

is steered again towards the expected BD. As soon as the429

robot leaves the charger position its battery level drops,430

thus decreasing its lookahead-time again and the antici-431

pated BD might disappear outside of its time window tµ.432

In this case, the robot again decides to steer towards the433

charger and the process repeats once its battery level rises434

again slightly. The result is that our agent will constantly435

pivot between charging and going towards an optimal loca-436

tion while its battery will reach a certain level. The robot437
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will only take steps on and off the charger position and438

will be unable to alleviate any BD. In order to prevent439

this undesired behavior we have chosen to let the robot440

always charge to full if it positions itself on the charger441

while its battery is not fully charged.442

5. Evaluation443

In this section, we evaluate the control routine that was444

presented in Alg. 1. We will compare with two baselines:445

• a reactive controller, called return, that will always446

steer the robot to the charger if there is no BD ongo-447

ing. If there is a BD ongoing (and the robot is not448

in an intervention), the controller will always move449

the robot to the resident, unless there is insufficient450

battery. Essentially, this comes down to nullifying the451

term CBD while keeping the rest of Alg. 1 unmodi-452

fied.453

• a patrolling controller, called patrolling, will make the454

robot follow a fixed and predefined path through the455

hallways of the nursing home. Whenever a BD occurs,456

the robot will move to that resident. After alleviating457

the BD, the robot resumes the predetermined trajec-458

tory. The robot moves only to the charger when the459

battery becomes critically low. The predefined paths460

in the two nursing homes under study are displayed461

in Fig. 3.462

The main figures of merit for our pro-active position463

controller and the two baselines are i) the number of BD464

interventions that the robot can carry out by optimizing its465

charging cycles, and ii) the Time-To-Interception (TTI).466

The number of BDs alleviated reflects the global perfor-467

mance of our controller, i.e. it shows the potential number468

of BDs that could be alleviated by the robot. The TTI469

reflects the performance of our framework as perceived by470

an individual resident, i.e. how long does it take before the471

robot arrives.472

5.1. BD dataset collection and analysis473

To get better insight in the frequency and type of474

BD manifestations, the staff of two nursing homes in475

Ghent, Belgium registered during a period of approx. three476

months via a smartphone app every time they observed477

yelling or wandering behavior for any of the participants478

for which informed consent was obtained. The data col-479

lection procedure, the observational studies and the pro-480

totype deployment of the mobile platform have been ap-481

proved by the ethical committee of UZ Brussels. Patients482

(or their legal representative) and nursing home staff have483

given their informed consent prior to the start of the study.484

In nursing home 1, 15 residents were monitored, of which485

1 deceased and 2 dropped out during the registration pe-486

riod. This resulted in 877 registrations of a wandering el-487

derly and 106 registrations of an elderly yelling. In nursing488

home 2, 10 residents were monitored, and the staff regis-489

tered 564 times yelling behavior and 279 times wandering490

behavior.491

These staff annotations were linked to an estimation of492

the resident’s actual location. To track the out-of-room493

movement, gateways with Bluetooth Low Energy (BLE)494

support were installed in several hallways and common495

living rooms. During the day, most residents are in the496

common living rooms (CLR), whereas in the evening peo-497

ple tend to spend more time in their room or in the hallway.498

Residents participating to the study received a Xiami Mi499

Band® wearable or an XY® BLE tag was attached to500

their wheelchair or walker. With these wearables we were501

able to track the location of the participants.502

Pro-active positioning of the robot is only meaningful if503

BD events are not randomly spread over time and space.504

In Fig. 4, we show how the annotated BD observations505

are distributed over the day. As intuitively expected, a506

clear drop is seen during the night. We also have less an-507

notations during meal times. One should however be very508

careful to conclude that there are less BDs during meal509

times, since this observation may also be caused by the510

staff being too busy to annotate the BDs. Even if the511

drop in BDs can be attributed to this effect, one could ar-512

gue that robot interventions during meal times are anyway513

not desired since the staff is nearby the residents.514

In order to check the underlying spatial patterns of the515

collected data we have plotted a heatmap of the locations516

where the annotated BDs took place, for every part of the517

day, over a time period of 100 days for nursing home 1 and518

135 days for nursing home 2. For nursing home 1 we see519

that there are almost no BDs during the night while in the520

morning the location of BDs is relatively widely spread. In521

the afternoon most BDs are located in the common rooms522

while in the evening most BDs take place in or close by the523

rooms of the patients. Note however that in nursing home524

1 most of the BDs are located in the large room around525

the bottom right. In nursing home 2 we see that a single526

room is accounting for most of the BDs.527

5.2. Experiment configuration528

We evaluate our position control algorithm and the two529

baseline controllers in a simulator that shifts time while re-530

playing the mobility and BD occurrences per patient. At531

each time stamp, all cost terms are calculated. To deter-532

mine the BD anticipation cost CBD (Eq. (5)), we need the533

BD predictor functions µ(.). These were constructed by534

binning daytime in 15 minutes intervals and incrementing535

the counter of the appropriate bin if a BD was annotated.536

Generation of this array is additive throughout the simu-537

lation: i.e. after simulating one day, the µ(.) were updated538

with the corresponding annotations of that day. This al-539

lows us to gradually build up knowledge on the patterns,540

and to account for new residents in the nursing home. In541

the current experiments, we applied no windowing, i.e. all542

historical data available until a particular day is taken into543

account.544
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(b) Nursing Home 2

Figure 4: Number of observed BDs for the two different nursing homes for patients who gave ethical consent. Both show the observations in
time slots with a length of 15 minutes.

We wish to verify optimal parameters for our framework545

in which our robot alleviates as many BDs as possible while546

keeping the TTI as low as possible. The values of the base547

discharge rate c, fidle and fcharge (see Eq. (1)) were kept548

constant in all experiments, reflecting a discharge time of549

3 hours for a full battery in idle time, and a maximum550

charge time of 1 hour. We set the time of one BD allevia-551

tion interaction to 3 minutes, which we deem is a represen-552

tative duration for the type of personalized interventions553

we designed (Ongenae et al., 2017), such as asking a short554

question or playing a song.555

The main experimental parameter is the robot velocity556

v. Obviously, if the velocity is high the robot can reach557

a resident exhibiting a BD very fast from any location.558

Hence, we expect that the differences between our pro-559

active control framework and both return and patrolling560

baselines will become smaller with increasing v. However561

note in practice the maximum speed is limited by safety562

considerations and/or mechanical constraints.563

The position of the charger, ~xcharger is our second exper-564

imental parameter. As shown in Fig. 3 and as explained in565

section 5.1, in both nursing homes we could identify a se-566

lect number of locations where most of the BDs are taking567

place. Obviously, if the charger is located far from from568

these regions, the robot must spent more energy on driving569

to and from the charger. We experimented with two (ex-570

treme) positions of the charger for each nursing home, one571

in a common room where most of the BDs were annotated,572

and one at a far end of the nursing home. These positions,573

labelled ‘near’ and ‘far’, are indicated in Fig. 3. Note that574

in practice, safety concerns restrict the possible charger575

locations, e.g. it can not be placed in front of a fire exit.576

Also, the spatial BD distribution might shift over time due577

to changes in the population or the progression of demen-578

tia. If the charger is located far away from these regions579

where most BDs take place the return heuristic is at a big-580

ger disadvantage because the robot will be constantly on581

the move. When movement is costly this makes the bat-582

tery drain even faster and much time is wasted on driving583

to and from the charger. The patrolling baseline is also584

at a disadvantage whenever the BDs occur far away from585

the current position on the patrolling path, wasting much586

time on patrolling in areas which are of less importance.587

Our cost-based control framework however should position588

the robot (idle) at optimal positions and only charge when589

deemed beneficial (i.e. in idle times) or when necessary.590

On the other hand, if the charger is located near the region591

where most BDs take place the difference in performance592

between the frameworks should decrease.593

5.3. Number of BDs alleviated594

We first wish to verify that our framework alleviates as595

many BDs as possible. For this we plot α, which equals596

the total number of alleviated BDs divided by the total597

number of BDs, versus the velocity v.598

As seen in Fig. 5, the number of BDs that the robot can599

alleviate increases with the velocity since the robot loses600

less time with navigating to and from the charger position.601

This observation is further backed up by comparing with602

the return controller: for low velocities the number of alle-603

viated BDs is low if the charger is positioned far away from604

where the majority of the BDs take place (right panels in605

the subfigures). In these situations the robot is spending a606

lot of time to move to and from the charger position. Our607

cost-based framework improves the number of alleviated608

BDs since the robot is only moved towards the charger609
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pro-active, tBD = 300
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pro-active, tBD = 1800
return, tBD = 300
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Figure 5: The number of alleviated BDs divided by the total number of BDs as a function of the robot’s velocity. The labels ‘near’ and ‘far’
on top of each graph indicate the charger position ~xcharger. Results are plotted for (fidle : fmove : fint) = (1 : 3 : 2), BD duration = 10 min.

in idle times (or unless it is absolutely necessary). The610

improvement in alleviated BDs for lower velocities is seen611

in both nursing homes. Note that the results in Figure 5612

denote a configuration where the battery cost of move-613

ment, fmove , is larger than the cost of interacting, fint.614

We believe this is the most common setting. However, for615

completeness, we have included in Appendix A the results616

when fint is larger than fmoving.617

The dataset only contains the time of annotation, but618

not the duration of the BD manifestations or the interac-619

tion time necessary to alleviate a BD. We have therefore620

run simulations with different durations of BDs and evalu-621

ated the sensitivity of the number of BDs alleviated. The622

results can be seen in Figure 5. The results confirm the623

intuitive expectation that if a BD has a longer duration,624

the number of BDs alleviated will increase since the robot625

has a longer time window to intervene.626

The BD duration sets an upper limit to the TTI. In the627

experiments reported in the next subsection we will set628

the BD duration to 10 minutes since it represents average629

performance of the robot.630

5.4. Time-To-Interception631

Next we measure the TTI as a function of the robot632

velocity, under the same conditions of charger positions633

and battery cost ratio’s as in the previous section. The634

results are plotted in Fig. 6. (see Appendix A for addi-635

tional figures for different cost fractions; the conclusions636

are similar).637

In all conditions, the TTI decreases with increasing ve-638

locity since the robot can move faster from any location639

towards the location of a BD manifestation. By comparing640

the results for charger positions A and B, it can be seen641

that in both nursing homes the charger position has a very642

limited effect on the TTI achieved by all controllers. This643

means that, when considering the TTI, the staff can freely644

choose where to place the charger station so that it does645

not block fire exits or frequently visited hallways.646

In most experiment conditions, the patrolling baseline647

has the worst TTI of all three controllers. This was ex-648
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Figure 6: TTI in seconds as a function of robot velocity, for different cost ratio’s and different charger positions. Results are plotted for
(fidle : fmove : fint) = (1 : 3 : 2), BD duration of 10 minutes.

pected, since the robot is following a trajectory throughout649

the entire nursing home and does not account for the ac-650

tual resident location. Our pro-active positioning results651

in the lowest TTI in most experiment conditions. Note652

that the TTI is sometimes reduced by more than a minute653

for lower velocities, which is a significant result considering654

that the BDs have a duration of 10 minutes. The influence655

of the ratio of battery costs of different actions is minimal.656

Only for lower velocities and charger position B, the657

return controller achieves lower TTIs. This better perfor-658

mance might seem counterintuitive, since charger position659

B was chosen as far as possible from locations with fre-660

quent BD events. However, these results must be inter-661

preted in combination with Figure 5(a), where it can be662

seen that the return controller achieves the lowest num-663

ber of interventions. The return controller thus intervenes664

very fast in a very small number of BD events.665

Since our predictor functions µ(.) accumulate knowledge666

over time, we have also evaluated if the average TTI de-667

creases when more data becomes available. In Figure 7,668

we plot the average TTI for each simulated day (see Ap-669

pendix A for additional figures for different cost fractions).670

We have calculated the p-value of the coefficient of a linear671

regression function through the data against the null hy-672

pothesis of a zero coefficient (meaning that the number of673

days has no effect on the obtained TTI). Although we ob-674

tain negative slopes for our pro-active position controller675

in all experiment conditions, only for nursing home 2 we676

obtain p-values < 0.05 to reject the null hypothesis.677

6. Conclusion and Future Work678

In this paper, we have outlined the different algorithms679

and control strategies to pro-actively position a mobility-680

enhanced humanoid robot in order to rapidly approach a681

person with dementia exhibiting a behavioral disturbance.682

The positioning controller presented in this paper can683

be refined in several ways. First, we do not account for684

periods where the robot is used in leisure activities orga-685

nized by the caregivers (bingo, group singing, etc.). If the686

planning of these activities is incorporated in the position687

control algorithm, we can ensure that the robot is fully688

charged at the start of the activity.689

Second, our algorithm is currently not accounting for the690

actual position of the caregiver staff. When a caregiver is691

nearby when a BD is detected, the robot should not be sent692

and instead move itself to areas where fewer personnel is693

available. Besides location tracking of the caregiver staff,694

adding such functionality would require advance activity695

recognition to determine if a caregiver is actually available696

to alleviate a BD.697

Third, the predictor functions µ(.) can be refined. Cur-698

rently the predictor functions are based on accumulating699

all occurred BDs. If the framework would be used on700

longer time scales, one need to remove the BDs from de-701

ceased residents, or one would have to investigate the pro-702

gression rate of dementia, and if this translated in changes703

in BD manifestations. If sensor and wearable data can704

be analyzed in near real-time, one could even imagine a705

real-time BD risk assessment algorithm that continuously706

adjusts the predictor functions.707

Fourth, the current framework is purely reactive: a708

robot interaction is only started in response to a BD event.709

We could extend the framework to also plan robot interac-710

tions outside of BD episodes. By having the robot interact711

more with residents, the robot could potentially contribute712

to an improvement of the Quality-of-Life and thus prevent713

BD occurrences. Such additional interactions would also714

mitigate the risk of exposing sensitive medical information,715

since in the current framework the proximity of the robot716

to users is an implicit signal that one or more persons are717

more likely to have a BD. However, planning such inter-718

ventions outside of BD episodes will require sufficiently719

diverse and more elaborate interaction capabilities of the720

robot.721

Lastly, longer term experiments are needed to evaluate722

the acceptance and effectiveness of the designed solution.723

Although the cognitive capabilities of residents in a closed724

room ward are severely degraded, we conjecture that the725

robot behavior must be sufficiently diverse to maintain an726

enjoying experience on the long term and have a significant727

impact on the Quality of Life.728
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Figure 7: Average TTI of alleviated BDs per week, for charger positions ‘near’ and ‘far’. Errorbars indicate standard deviation of the TTI.
Results are plotted for (fidle : fmove : fint) = (1 : 3 : 2), v−1 = 6, BD duration = 10 min.
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Appendix A. Additional experimental results for different cost ratios854
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Figure A.8: The number of attainable BDs divided by the total number of BDs versus the robots’ velocity in units per second for both NH.
The labels ‘A’ and ‘B’ on top of each graph refer to the charger position ~xcharger. Results are plotted for (fidle : fmove : fint) = (1 : 2 : 3)
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Figure A.9: TTI in seconds as a function of robot velocity, for different cost ratio’s and different charger positions. Results are plotted for
(fidle : fmove : fint) = (1 : 2 : 3), BD duration = 10 min.
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Figure A.10: Linear fit of the TTI in seconds as a function of days simulated, for charger positions ‘A’ and ‘B’. Errorbars indicate standard
deviation of the TTIs of all alleviated BDs in one week. Results are plotted for (fidle : fmove : fint) = (1 : 2 : 3), v−1 = 6, BD duration =
10 min.
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