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ABSTRACT 

In mountainous regions burned by wildfires, profound changes in soil 

characteristics and combustion of vegetation increase hillslope and channel erosion 

during storm events. Reduced infiltration and abundant loose sediment produce large 

post-fire erosional events which endanger human lives and infrastructure and contribute 

significantly to long-term erosion rates. While the influence of fire in increasing erosion 

has long been recognized, quantifying volumes and sources of eroded material from 

burned landscapes is difficult. Pre-erosion high-resolution topographic data (e.g. lidar) 

are often not available in burned areas and determining specific contributions from post-

fire hillslope and channel erosion is challenging. Multiple erosional processes mobilize 

sediment from hillslopes, but the connectivity of hillslopes to channels controls the basin-

wide erosional response.  

We quantify an important spatial threshold separating hillslope and channel 

erosion processes in a catchment burned in the 2016 Pioneer Fire. Further, we confirm 

the impact of post-fire erosion on landscape evolution, demonstrate the applicability of 

Structure from Motion photogrammetry (SfM) to quantify post-fire erosion without 

detailed pre-erosion topography, and improve estimates of rill erosion at adequate spatial 

scales. In this rugged 0.95 km2 watershed in the weathered Idaho Batholith, widespread 

rilling and channel erosion produced a runoff-generated debris flow following modest 

precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based 

SfM to derive 5 cm resolution topography of the channel scoured by debris flow. Lacking 
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cm-resolution pre-erosion topography, we created a synthetic surface defined by the 

debris flow scour’s geomorphic signature and used a DEM of difference (DoD) to map 

and quantify channel erosion, finding 3467 ± 422 m3 was eroded by debris flow scour. 

Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded 

~1100 m3 of sediment and define a volume uncertainty of 29%. Next, we delineated sub-

basins within the larger study catchment to investigate the evolution of hillslope and 

channel erosion with varying contributing areas. We document that a drainage area of 20 

ha (0.2 km2) represents the threshold from dominantly hillslope to dominantly channel 

erosion in this setting. Hillslopes contribute less to total erosion as drainage area 

increases, reflecting increased connectivity and efficiency of channel networks. Our 

experimental sub-basin results show a positive relationship between sediment yield 

(mass/area/time) and drainage area; contrary to most literature. The modern deposit 

volume was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel 

erosion. Our measured total eroded volume (4600 ± 740 m3) aligns closely with the 

preliminary assessment from the US Geological Survey (USGS) post-fire hazard model 

for similar, modest precipitation intensities.  

Holocene alluvial stratigraphic sequences exposed by the 2016 debris flows show 

fire-related deposition dominates the stratigraphic record. Dating of charcoal fragments 

preserved in stratigraphy at the catchment outlet and reconstructions of prior deposit 

volumes provide a record of Holocene fire-related debris flows at this site. Comparisons 

of fire-related sediment yields from episodic events with Holocene sediment yields 

reconstructed from other studies in the region suggest episodic wildfire-driven erosion 

dominates millennial-scale erosion. Further investigations into spatial thresholds of post-
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fire erosion, hillslope-channel connectivity, and long-term landscape changes, especially 

when coupled with high resolution topography, will help to quantify the impacts of 

wildfire in other settings. 
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Abstract 

After wildfire, hillslope and channel erosion produces large amounts of sediment 

and can contribute significantly to long-term erosion rates. However, pre-erosion high-

resolution topographic data (e.g. lidar) is often not available and determining specific 

contributions from post-fire hillslope and channel erosion is challenging. The impact of 

post-fire erosion on landscape evolution is demonstrated with Structure from Motion 

(SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment 

burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without 

detailed pre-erosion topography and hillslope transects to improve estimates of rill 

erosion at adequate spatial scales. Widespread rilling and channel erosion produced a 

runoff-generated debris-flow following modest precipitation in October 2016. We 

implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm 

resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the 

absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the 

debris-flow scour’s geomorphic signature and we used a DEM of Difference (DoD) to 
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map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow 

scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling 

eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded 

volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% 

channel erosion and 25% rill erosion, reinforcing the importance of catchment size on 

erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 

m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal 

fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior 

deposit volumes provide a record of Holocene fire-related debris-flows at this site; results 

suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale 

erosion (~5 mm/Ka) at this site. 

 

Keywords: Structure from Motion, post-fire erosion, debris-flow, rilling, Idaho 
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Introduction 

Modern post-fire erosion demands attention. Anthropogenic climate change is 

exacerbating the size and severity of wildfires, leading to dramatic impacts on 

landscapes, ecosystems, human interests, and infrastructure (Goode et al., 2012; 

Abatzoglou et al., 2016; Sankey et al., 2017; Murphy et al., 2018). Pervasive post-fire 

erosion across steep landscapes exceeds background erosion rates by water-, gravity-, and 

wind-driven processes (Roering and Gerber, 2005; Shakesby and Doerr, 2006; Sankey et 

al., 2009; Moody et al., 2013). Hillslope and channel erosion processes interact with 

precipitation on steep, burned landscapes to produce and augment dramatic runoff-

generated debris-flows (e.g. Meyer and Wells, 1997; Cannon et al., 2001; Gabet and 

Bookter, 2008). Runoff-generated debris-flows usually result from intense, convective 

precipitation in steep catchments, scouring channels and delivering large magnitudes of 

poorly-sorted sediment.  

The occurrence and impacts of post-fire debris-flows are well documented (e.g. 

Cannon et al., 2010; Kean et al., 2011; Nyman et al., 2011), but questions remain about 

the relative contributions of hillslope and channel erosion to total sediment yield at 

various basin scales. In a range of basin sizes across the western United States, traditional 

surveying methods indicate post-fire channel erosion exceeds that from hillslopes (Santi 

et al., 2008; Moody and Martin, 2009). Hillslope processes, such as rilling, are difficult to 

measure across a landscape because they have small dimensions and are spatially 

variable. Prior efforts to measure rills in burned catchments are simplistic and do not 

report uncertainty (Meyer and Wells, 1997; Santi et al., 2008). Other workers have 

recorded erosion from hillslope plots (a few m2) under natural or simulated rainfall (e.g. 
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Benavides-Solorio and MacDonald, 2005; Pierson et al., 2009). However, plot-scale 

studies may miss the landscape-wide picture of erosion. Therefore, improving rill volume 

quantification, and its uncertainty, is required to more fully elucidate post-fire erosion 

processes. 

Other recent work seeks to quantify the process-based erosion contributions using 

cm-resolution topography (e.g. terrestrial laser scanning, TLS) and multi-temporal 

change detection (e.g. DEM of Difference, DoD); several studies demonstrate that 

extensive hillslope erosion surpasses channel contributions (Staley et al., 2014; Rengers 

et al., 2016; Delong et al., 2018). Staley et al. (2014) show that >80% of post-fire erosion 

is from hillslopes and note that more work is needed at a range of catchment scales to 

determine when and how channel erosion exceeds hillslope erosion. 

TLS surveys achieve cm-resolution, capture small landscape details, and reveal 

the spatial fingerprints and magnitudes of post-fire erosion processes, but are limited by 

viewing angle, occlusion, and scan locations across larger scales and in rugged settings. 

These studies are focused on relatively small areas (a few hectares) where significant 

post-fire erosion is anticipated. Further, they usually depend on collecting topographic 

data with lidar prior to precipitation; possible in certain situations but not feasible 

everywhere. Structure from Motion, Multi View Stereo photogrammetry (simplified to 

SfM hereafter) represents a lower-cost, flexible alternative to acquire cm-resolution 

topographic data (Johnson et al., 2014). 

SfM is an adaptation of traditional photogrammetry used to derive 3D information 

from imagery. SfM uses computer algorithms to match features from many overlapping 

digital images and create point clouds with x,y,z and r,g,b values at each point. As with 
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lidar, SfM point clouds are often gridded into DEMs during analysis. Many applications 

demonstrate SfM’s flexibility including investigations of shallow river topography 

(Javernick et al., 2014), coral reef roughness (Leon et al., 2015), landslide monitoring 

(Stumpf et al., 2015), and dryland vegetation (Cunliffe et al., 2016). James and Robson 

(2014) and James et al. (2017) give encompassing discussions and provide suggestions to 

minimize SfM error including high-quality imagery with some convergent geometries, 

adequate spatial coverage of ground control points (GCPs), and the inclusion of GCP 

uncertainty in models. SfM has proven to be enormously flexible with accuracy and 

resolution comparable to TLS. Furthermore, coupling SfM techniques with an unmanned 

aerial vehicle (UAV) platform makes this technology viable for quantifying post-fire 

erosion over rough terrain at suitable extents and cm-resolutions 

The majority of post-fire studies have temporal scopes restricted to the present or 

a few decades prior, and limited work has been done on post-fire erosion over Holocene 

and Quaternary timescales (Moody et al., 2013; Murphy et al., 2018). A handful of 

studies investigate erosion and sedimentation responses to wildfire driven by Holocene 

climate changes by dating charcoal fragments from alluvial fans (Meyer and Pierce, 

2003; Pierce et al., 2004, 2011; Bigio et al., 2010; Nelson and Pierce, 2010; Weppner et 

al., 2013; Riley et al., 2015; Fitch and Meyer, 2016). Over Quaternary timescales, post-

fire erosion is responsible for >90% of landscape denudation since 1.24 Ma at Valles 

Caldera, New Mexico (Orem and Pelletier, 2016).  

Adding to our understating of post-fire erosion’s role in landscape evolution 

requires temporal data beyond a few decades to place modern erosion magnitudes in a 

Holocene or even Quaternary framework. Additionally, combining an improved estimate 
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of rill erosion with high-resolution topography allows critical insights into the 

contributions of hillslope and channel processes to runoff-generated post-fire debris-

flows.  

Several primary research questions motivate this study: 1) How is channel and 

hillslope rill erosion partitioned following wildfire in a 1 km2 Idaho Batholith catchment? 

2) How can estimates of rill erosion, and their uncertainty, be improved? 3) In the 

absence of detailed pre-erosion topographic data, can SfM be used to map and quantify 

channel scour by runoff-generated debris-flow? A further goal of this study is to compare 

modern post-fire erosion with erosion over Holocene timescales. We apply cm-resolution 

SfM, traditional field work, and Monte Carlo simulation to quantify channel and rill 

eroded volumes and their uncertainties. We estimate paleo sediment yields at this site 

using radiocarbon dating of prior deposits. We then compare the Holocene values to 

observed modern post-fire erosion and to the results of similar studies. 

Study Site 

We studied a catchment within the ~35,000 km2 Idaho Batholith in central Idaho 

which burned in the 2016 Pioneer Fire (Figure 1.1A). The Pioneer Fire began in July 

2016 and burned ~750 km2 of mountainous terrain on the Boise National Forest. Our 

study site is a steep, unnamed headwater catchment contributing to Clear Creek (Figure 

2). Clear Creek drains 150 km2 with 1500 m relief and receives 97 cm of precipitation per 

year (https://streamstats.usgs.gov/ss/, PRISM normals 1981-2010, accessed October 

2018). Vegetation is mixed Ponderosa Pine (Pinus ponderosa) and Douglas Fir 

(Pseudotsuga menziesii) transitioning to Lodgepole Pine (Pinus contorta) and mixed 

conifer forests at high elevations with deciduous vegetation along riparian floodplains. 

https://streamstats.usgs.gov/ss/
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Over 80% (120 km2) of the Clear Creek drainage was burned at varying intensities in the 

Pioneer Fire (Burned Area Emergency Response 

https://fsapps.nwcg.gov/afm/baer/download.php?year=2016, accessed October 2016). 

The study catchment was burned around August 30, 2016 at moderate to high severities 

(Figure 1.2). 

The study catchment is 0.95 km2 in size, oriented approximately E-W, with 

elevations between 1778-2323 m. Mean catchment slopes are 26.2 degrees with a 

maximum of 45 degrees within the study catchment (Figure 1.2). Slopes are mostly soil-

mantled with shallower, rockier soils and more bedrock outcrops on south aspects than 

north aspects. Latest-Pleistocene glacial features are present nearby in valleys above 2250 

m elevation (Kiilsgaard et al., 2006), but mapped Quaternary deposits at the study 

catchment are limited to low stream terraces and fan gravel. The study catchment is 

underlain by biotite-granodiorite intruded approximately 75 Ma (Kiilsgaard et al., 2006) 

with sparse Eocene rhyolite and dacite dikes. The catchment was last logged in the late 

1950’s or early 1960s (D. Brown, personal communication, 2018). Most still-standing, 

burned trees have trunks <1 m diameter. Remnants of several skid roads are apparent on 

hillslopes. 

October 2016 Precipitation and Debris-flow Events 

The study catchment produced a debris-flow on October 15, 2016 following 

precipitation from a frontal-type storm. The Banner Summit Snow Telemetry (SNOTEL) 

site (20 km away, hourly resolution) recorded a maximum precipitation magnitude of 10 

mm/hr (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=312, accessed September 2018). 

The Cozy Cove (~16 km away) and Jackson Peak (~18 km away) SNOTEL sites (also 

https://fsapps.nwcg.gov/afm/baer/download.php?year=2016
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=312
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hourly resolution) recorded maximum precipitation of 5 mm/hr and 8 mm/hr, 

respectively. For reference, the 2-year recurrence interval precipitation at this location is 

61.2 mm in 24 hours (http://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.html, accessed 

September 2018) and the estimated October 15, 2016 precipitation was 25 mm in 24 

hours (http://prism.oregonstate.edu/explorer/, accessed September 2018). The complex 

topography surrounding our study site modifies, and likely enhances, the precipitation 

produced by frontal-type storms (e.g. Daly et al., 1994; Mock, 1996). High-temporal 

resolution precipitation data are not available within 4 km of the study site (Staley et al., 

2016, 2017), and therefore we do not attempt to report specific forcing data (peak 15-

minute intensity) for the studied debris-flow. 

Our study catchment was the only basin to produce a debris-flow within the Clear 

Creek drainage, as determined from reconnaissance along the entirety of Clear Creek 

using road access in October 2016 and June 2017. Indeed, little evidence of fresh 

depositional response was noted at any other catchment outlets. While this is surprising 

given the burn severity, the lack of response from nearby basins results from the modest 

precipitation intensity from the October 15, 2016 storm. Other steep basins along the 

axial South Fork Payette did produce fire-related debris-flows, resulting in large sediment 

and wood inputs, and rearrangement of rapids on this recreationally popular river. 

The US Geologic Survey (USGS) post-fire debris-flow hazard model provides a 

tool to quickly assess the probability of debris-flow occurrence and debris-flow volume 

in a basin receiving designed peak 15-minute precipitation intensities (Staley et al., 2016, 

2017). The USGS post-fire debris-flow hazard map produced for the Pioneer Fire shows 

the study catchment has a debris-flow probability of 46% under 16 mm/hr peak 15-

http://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.html
http://prism.oregonstate.edu/explorer/
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minute rainfall intensity and 67% under 20 mm/hr peak 15-minute intensity 

(https://landslides.usgs.gov/hazards/postfire_debrisflow/detail.php?objectid=5, accessed 

October 2016). In all, 20 basins within the Clear Creek drainage have probabilities 

exceeding 45% at 16 mm/hr rainfall intensity (Figure 1.1B). These 20 basins have 

drainage areas ranging from 0.04 to 1.1 km2 and the predicted debris-flow volumes range 

from 389 to 10751 m3. 

Our preliminary visit to the study site was on October 24, 2016, 9 days after the 

debris-flow. We were not able to conduct extensive field work at this time, but we made 

observations of the debris fan deposit and the lower section of channel. Clear Creek had 

already incised through the debris fan and carried some material downstream. Ash and 

charred organic matter were several centimeters thick upstream of the debris fan and in 

local depressions, indicating some redistribution and ponding post debris-flow. Ash was 

present on nearly all surfaces except where fresh sediment was exposed or deposited (i.e. 

channel and fan). Woody debris ranging from small branches to large trunks was 

entrained throughout the debris fan and was most abundant at the toe. The character and 

thickness of deposits varied, indicating several types of flow with changing sediment to 

water ratios (i.e. debris-flow, hyperconcentrated flow, and streamflow), and levees were 

present but not well-defined on the fan surface. The scoured channel had distinct margins 

and a striking rectangular cross section. The channel sides exposed and cut through roots, 

and the channel bed was scoured to fresh bedrock in multiple locations (Figure 1.3). 

Large-caliber sediment and woody debris were deposited upstream of obstructions within 

the channel and along the sloping margins. Mud lines and matted, in-situ vegetation were 

https://landslides.usgs.gov/hazards/postfire_debrisflow/detail.php?objectid=5
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present up to 3 m above the freshly-scoured channel bed. We did not make observations 

of the upper channel reaches or much of the hillslopes during this preliminary visit. 

 
Figure 1.1: A) geographic setting within Idaho, USA. Orange outline is extent of 

2016 Pioneer Fire. B) USGS Post-Fire Debris-flow Hazard model results for 

probability of debris-flow occurrence under 16 mm/hr peak 15-minute precipitation 

in the Clear Creek watershed. Study catchment is outlined in white. 
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Figure 1.2: A) National Agricultural Image Program (NAIP) image of study site 

from 2013 (pre-fire). B) NAIP image of study site from 2017 (post-fire and post-

debris-flow). C) Slope map of study area. 50 m contours for scale. D) Soil Burn 

Severity map from USFS Burned Area Emergency Response (BAER). 50 m 

contours for scale. 
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Figure 1.3: A) Image of study catchment outlet post-fire and pre-debris-flow, 

taken from USFS helicopter. B) UAV image of debris-flow fan deposit. Orange 

rectangle marks approximate location of described and dated stratigraphy (Fig 4). 

C) Image of scoured channel from first visit to site, 9 days after debris-flow. Note 

mud lines, scarred trees and roots, and abrupt channel margins. D) UAV image of 

rilling on hillslope, arrows highlight individual rills. 

Methods 

Deposit Stratigraphy, Radiocarbon Ages, and Deposit Volumes 

To place the modern debris-flow deposit within a Holocene context we described 

and dated ~2 m of alluvial fan deposit stratigraphy recording the study catchment history. 

The described catchment-outlet alluvial fan stratigraphy was exposed along a cutbank by 

the incision of Clear Creek through the modern and prior fan deposits (Figure 1.4). We 

radiocarbon dated charcoal fragments from 3 of the 6 described stratigraphic units at the 

University of Arizona Accelerator Mass Spectrometry Lab. The radiocarbon ages (14C 

year BP ± 1-sigma) were converted to calibrated years before present (cal year BP, where 
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present is 1950) using OxCal v4.3.2 and the IntCal13 atmospheric curve (Reimer et al., 

2013). Calibrated age ranges are reported at 95% confidence (2-sigma). 

We estimated the deposit volume from the 2016 post-fire debris-flow and 

compared it to separate measurements of channel debris-flow scour and hillslope rill 

erosion. The eroded volume methods are described in subsequent sections. We also 

estimated the volume of previous debris-flow deposits preserved in alluvial fan 

stratigraphy at the catchment outlet. We estimated the modern deposit volume, including 

portions removed downstream, using the extent of the deposit mapped from orthorectified 

UAV images, 12 measured depths where deposits were exposed, and 10 estimated depths 

where we judged deposition to have occurred but later removed downstream by spring 

runoff in Clear Creek. We created an interpolated surface from the measured and 

estimated depths using inverse distance weighting (IDW) with a 0.5 m resolution grid of 

the mapped deposit extent, then summed the grid cell volumes for a total volume of the 

modern deposit. IDW was selected for interpolation by visual inspection of the results; it 

provided deposit depths that were representative of debris-flow and alluvial fan 

deposition. 

We estimated the volume of prior deposits by taking the volume of an oblique 

pyramid on its side: 1/3 b * h. The base (b) was equal to the deposit length measured 

along Clear Creek multiplied by the depths associated with radiocarbon ages from the 

described stratigraphic section. The pyramid’s height (h) was equal to the distance from 

the modern fan’s apex to the opposite bank of Clear Creek. We assigned 20% error to our 

modern and paleo deposit volume estimates (e.g. Meyer et al., 2001; Santi et al., 2008; 

Moody and Martin, 2009). The volume of a pyramid does not capture the nuances of all 
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debris-flow dominated fans, but at this site we consider it an acceptable, first order 

approximation of paleo deposit volumes. 

 
Figure 1.4: Fan deposit stratigraphy. Photo at left is 1 m upstream of described 

and dated section. At right, thicknesses and descriptions for units. Depths of dated 

charcoal fragments are shown by red triangles. In the field, we separated depths 10-

130 cm into 3 units. Ages suggest they are from a single event. All deposits are fire-

related except 130-150 cm depth.
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Erosion Rates and Sediment Yields 

We converted our deposit volumes to sediment yield (mass/area) and catchment-

averaged erosion rate (depth/time) to allow comparisons with other post-fire erosion 

studies. We determined a catchment-averaged erosion rate (mm/Ka or mm/year) by 

dividing the deposit volume by the catchment area and the associated age. We propagated 

the 20% deposit volume error and the calibrated 2-sigma age ranges when calculating the 

catchment-averaged erosion rates. We converted our deposit volumes to sediment yield, 

in t/ha, using a bulk density of 1500 kg/m3 and the catchment area (Kirchner et al., 2001; 

Meyer et al., 2001). There are potential bulk density changes between eroded material 

and deposits, so the assumed bulk density of 1500 kg/m3 should be considered a tool for 

comparison and not necessarily as an absolute conversion from volume to mass. 

Furthermore, the erosion rates and sediment yields we calculated represent minimum 

values because they pertain only to deposits preserved at one site on the alluvial fan. 

Hillslopes and Rill Eroded Volume 

We did not explicitly measure interrill erosion but noted and observed 

geomorphic indicators of interrill erosion processes across the study catchment. We also 

made 20 m transects (n=15) parallel to contours and recorded the number of rills and 

their widths and depths. Transect locations include a range of slopes (14-37 degrees), 

aspects (N- and S-facing), and landscape positions (Figure 1.5). When soils were dry we 

observed a hydrophobic layer (e.g. Debano, 2000) at the transition between gray, burned 

soil and unburned, tan mineral soil (~2 cm depth) in several locations, but we did not 

attempt to determine the spatial variations in soil hydrophobicity. 
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We used the rill dimensions recorded along hillslope transects and Monte Carlo 

simulation to quantify the volume of sediment eroded by rilling in the entire catchment. 

This approach requires two assumptions: 1) our transects sufficiently represent the 

variability in rilling across the catchment; and 2) the mean rill dimensions and counts 

come from an underlying normal distribution. Eighty percent of the paired width and 

depth values from the individual rills (n=175) were randomly sampled in Matlab and the 

variation in the means were calculated using 1000 Monte Carlo simulations. We also 

randomly sampled 10 of 15 transects and calculated the variation in mean count (number 

of rills per 20 m transect) using 1000 Monte Carlo simulations. From these simulations, 

we calculated a total cross-sectional area eroded by rilling per 20 m transect by 

multiplying the overall mean rill width and depth by the overall mean rill count. We 

converted the eroded cross-sectional area to a volume of erosion per transect by assuming 

20 m rill lengths, then normalized it to an eroded depth per unit area. Note that the choice 

of assumed rill length does not affect the depth per unit area. We multiplied the eroded 

depth per unit area by the total area impacted by rilling to calculate the volume of rill 

erosion within the entire catchment. We considered the catchment area impacted by 

rilling to include anywhere within the range of slopes sampled by our transects (14-37 

degrees). From this, we removed prominent drainage divides using a 25 m buffer in 

ArcMap10, consistent with our observations of rill initiation locations in the field. We 

used the standard deviations in mean width, depth, and counts from the Monte Carlo 

simulations as uncertainty to calculate upper and lower bounds to the catchment-total rill 

erosion volume. The rill erosion volume we measured in summer 2017 is primarily from 

the October 2016 precipitation but may also include minor erosion during snowmelt. We 
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simplify the measured rill eroded volume by considering it to represent one full year of 

erosion. 

 
Figure 1.5: Study catchment detail. More detailed hillshade shows extent of SfM-

derived 5 cm DEM. Green triangle is location of described and dated stratigraphic 

section (Fig 4). Black squares are locations of manually-surveyed channel cross-

sections. Purple circles are locations of hillslope transects (n=15) scaled by the 

relative magnitude of rill erosion at each. Transects sample a range of slopes (14-37 

degrees) and a variety of landscape positions. Blue diamonds mark channel head 

locations mapped in the field. 20 m contours shown for scale. 

Calculation of Minimum Channel Erosion Volume 

To calculate a minimum volume of the channel scoured by the 2016 debris-flow 

we made cross-sections (n=4) using a tape and stadia rod. The eroded area of each 

channel cross-section was multiplied by the distance between cross-sections for each 

section, then summed. We attributed the 20% error for surveyed erosion and deposition 
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cited by others to this minimum eroded volume (e.g. Meyer et al., 2001; Santi et al., 

2008; Moody and Martin, 2009). We also used the manual channel cross-sections to help 

assess error within the SfM model. 

Structure from Motion Methods 

While the manual channel cross-sections provide a minimum estimate of channel 

erosion, we sought to derive more explicit spatial information about the landscape and 

erosion processes by collecting high-resolution topography. We chose to apply UAV-

based SfM to derive cm-resolution topography of the eroded channel in our steep, 1 km2 

study catchment. After snowmelt in June 2017, we installed rebar (n=20) in stable and 

distributed hillslope and channel locations to serve as GCPs and recorded their locations 

with a TopCon HiperV real-time kinematic global positioning system (RTK-GPS). Points 

were post-processed to 0.01 m accuracy (https://www.ngs.noaa.gov/OPUS/, accessed 

September 2017) (Table 1). Orange bucket lids with centered holes were placed over 

each GCP rebar to serve as visual targets in UAV imagery. We conducted a total of 6 

flights with a DJI Phantom 4 Pro UAV, covering 0.1 km2 of the debris-flow fan deposit, 

the primary channel, and the main tributaries with overlapping 20 megapixel images 

(Figure 1.6). Camera focus was automatic and focal length was fixed, while image 

orientations and UAV positions were controlled manually. Images (n=837) were acquired 

mostly at nadir at flying altitudes ranging from 5-50 m (average 30 m). Some oblique 

views were included to reduce distortion in the processed point cloud (James and Robson, 

2014). We prioritized overcast and early morning flight times to minimize contrast and 

shadows (James and Robson, 2014; Mosbrucker et al., 2017). 

https://www.ngs.noaa.gov/OPUS/
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We used AgiSoft Photoscan Pro (http://www.agisoft.com/) to process the images 

into a point cloud and assign absolute locations of the GCPs projected to Universal 

Transverse Mercator Zone 11 North. The raw point cloud had 122 million points, each 

with an x,y,z position and a r,g,b value. The UAV images, original point cloud, and 

derived DEM are available on OpenTopography 

(http://opentopo.sdsc.edu/dataspace/dataset?opentopoID=OTDS.012019.32611.1). We 

used CloudCompare (https://www.danielgm.net/cc/) for further analyses of the point 

cloud and to create DEMs. We cleaned the point cloud by manually removing noise 

points and those >1 m above the surface. Next, we subsampled the point cloud using 2.5 

cm minimum spacing between points (62 million points remaining) and created a 5 cm 

resolution DEM of the post-erosion topography. 

Table 1.1: Summary of ground control points (GCPs), their RTK-GPS accuracy, 

and Agisoft-processed SfM root-mean-square error (RMSE). The 0.076 m (7.6 cm) 

total error includes all 20 available GCPs. For our SfM error analysis and volume 

uncertainty scenario 2 we randomly selected 10 GCPs to serve as control points, 

calculated the error, and repeated 3 times, resulting in 6.6 cm overall RMSE. 

Ground 

control 

point 

name 

RTK-

GPS 

horz 

accurac

y (m) 

RTK-

GPS 

vert 

accurac

y (m) 

GCP 

accurac

y 

carried 

into 

Agisoft 

(m) 

Error 

(m) 

X error 

(m) 

Y error 

(m) 

Z error 

(m) 

102 0.005 0.005 0.005 0.0694 -0.0075 0.0661 0.0198 

104 0.005 0.005 0.005 0.1051 0.0668 0.0804 -0.0112 

109 0.004 0.006 0.006 0.0080 -0.0031 -0.0013 0.0072 

112 0.004 0.007 0.007 0.0848 -0.0752 -0.0267 -0.0287 

113 0.004 0.006 0.006 0.1030 0.0794 0.0656 -0.0002 

114 0.004 0.007 0.007 0.0947 0.0282 0.0702 -0.0569 

http://www.agisoft.com/
http://opentopo.sdsc.edu/dataspace/dataset?opentopoID=OTDS.012019.32611.1
https://www.danielgm.net/cc/
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119 0.004 0.008 0.008 0.0631 0.0509 0.0040 0.0372 

123 0.004 0.005 0.005 0.0034 -0.0026 -0.0021 -0.0004 

124 0.004 0.006 0.006 0.0077 0.0072 0.0023 0.0013 

125 0.006 0.009 0.009 0.0191 -0.0184 0.0043 0.0029 

126 0.004 0.009 0.009 0.0495 0.0169 0.0343 -0.0314 

127 0.004 0.009 0.008 0.0201 0.0053 -0.0160 0.0110 

128 0.004 0.008 0.008 0.0218 0.0181 0.0110 0.0054 

129 0.004 0.008 0.008 0.0320 -0.0172 -0.0244 -0.0117 

130 0.004 0.008 0.008 0.0172 -0.0068 0.0121 0.0102 

131 0.003 0.006 0.006 0.0856 0.0195 -0.0559 0.0618 

132 0.004 0.007 0.007 0.1065 -0.0765 -0.0526 0.0521 

133 0.003 0.007 0.007 0.1077 -0.0619 -0.0877 0.0086 

134 0.004 0.008 0.008 0.1375 -0.0817 -0.1103 -0.0082 

135 0.003 0.007 0.007 0.1225 -0.0388 -0.1014 -0.0567 

Total 

error, m 

   0.0761 0.0444 0.0544 0.0294 

Standard 

deviation 

of error, 

m 

   0.0440 0.0453 0.0554 0.0302 
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Figure 1.6: SfM methods and error assessment. A) Perspective view of point 

cloud section. Blue flag represents an RTK-GPS ground control point. Blue squares 

represent locations and orientations of UAV images. Nadir images were acquired 

from several altitudes, while some oblique images were collected to minimize 

distortion (e.g. James and Robson, 2014). Flow is from left to right in the image. B) 

Vertical RMSE for the processed point cloud compared to 20 RTK-GPS surveyed 

GCPs. A mix of positive (orange-red) and negative (blue-green) vertical errors 

indicates little systematic distortion of the analyzed DEM. 
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High-resolution pre-erosion topographic data was not available for our study site, 

but we needed a pre-erosion surface upon which to detect change and make calculations 

of channel eroded volume via a DEM of Difference (DoD) method. We obtained a DEM 

of the pre-erosion topography by removing the eroded portions and creating a synthetic 

surface derived from the surveyed, post-erosion point cloud (Figure 1.7A-E). We used 

the prominent, rectangular signature of debris-flow scour as a guide when removing 

eroded portions. In CloudCompare, we calculated contour lines at 10 cm intervals to 

highlight the abrupt scour margins (Figure 1.7B). We used the contours, in conjunction 

with the color and form of the SfM-derived point cloud, to manually remove scoured 

points. We fit a surface to the remaining non-scoured points using Delaunay triangulation 

(Figure 1.7C), enabling us to create a 5 cm resolution DEM of the synthetic, pre-erosion 

surface. Outside of the scoured channel the synthetic, pre-erosion point cloud and the 

SfM-derived, post-erosion point cloud are identical. 

We created a DEM of Difference (DoD) to measure the volume of sediment 

eroded from the channel by debris-flow scour. We used Geomorphic Change Detection 

v7.3 software (Wheaton et al., 2010; http://gcd.riverscapes.xyz/) to compute the volume 

of erosion and incorporate our SfM volume error. All calculations were done using 5 cm 

resolution DEMs which we ensured were concurrent and orthogonal (Passalacqua et al., 

2015). The GCD program incorporates user-specified error surfaces to calculate the DoD 

and outputs values of erosion or deposition for each grid cell, as well as tabular and 

graphical summaries. We did not incorporate spatially-variable error estimates 

(Schaffrath et al., 2015). The pre-erosion surface we created results in a generally flat-

bottomed valley and therefore over-estimates the volume of erosion in certain sections. 
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To account for a more realistic pre-erosion valley bottom we subtracted 25% from our 

calculated volume. This assumption is simple but subtracting a triangle (25%) from the 

rectangular channel cross-section mimics a generic pre-erosion valley geometry (Figure 

1.7D). Similar approaches have been used (i.e. Meyer et al., 2001; Istanbulluoglu et al., 

2003; Gabet and Bookter, 2008; Gartner et al., 2008; Santi et al., 2008; Nyman et al., 

2015) when estimating the pre-erosion geometry of gullies. The volume of channel 

erosion we measured in Summer 2017 is primarily from the October 2016 debris-flow 

but may also include minor erosion during snowmelt. We simplify the measured channel 

eroded volume by considering it to represent one full year of erosion. 

 
Figure 1.7: A) UAV detail image of channel eroded by debris-flow. Orange boxes 

are in same location to aid comparison. B) 10 cm contour intervals highlight abrupt 

channel margin. C) Synthetic, pre-erosion surface created by removing “scour” 

points. D) Diagram of assumption correcting total calculated volume for a generic, 

pre-erosion geometry. E) Point cloud perspective view of same channel segment, 

showing detailed topographic form and appearance of SfM point cloud. 
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Structure from Motion Error Analysis 

We used 2 approaches to assess error within our SfM model. First, we calculated 

the vertical root mean square error (RMSE) and mean average error (MAE) between 

manual channel cross-sections (n=4) and corresponding topographic profiles extracted 

from the point cloud (z-coord only). We ignored measurement error within the manual 

channel cross-sections. There is also the possibility of slight misalignment of the SfM 

point cloud coordinates with the local coordinate system used for the manual cross-

sections. In our second approach, we considered the maximum error in horizontal (x,y 

coord) or vertical (z-coord) directions from the post-processed RTK-GPS ground control 

points and carried these into the SfM model. Using a random number generator, we chose 

10 out of the available 20 GCPs to serve as check points. We calculated the RMSE (x,y,z 

coords) between the RTK-GPS GCP locations and the SfM model GCP locations, then 

averaged the results of 3 trials. The resulting overall RMSE accounts for both the RTK-

GPS error and the SfM model error in all three dimensions. 

We used the 2 SfM error assessments to build 3 scenarios for budgeting error 

when calculating the debris-flow eroded volume by DoD. The error scenarios were 

implemented in GCD as part of our DEM of Difference calculation. In the first, most 

conservative scenario, we used a uniform minimum level of detection (LOD) equal to the 

RMSE calculated between manual cross-sections and the SfM model (16 cm). The 

resulting error was 19% of the calculated volume. In the second scenario we assigned the 

overall RMSE (6.6 cm) as the spatially uniform error for the pre-erosion surface and no 

error (0 cm) for the post-erosion surface. The resulting propagated error was 8% of the 

calculated volume. We justify this low error because both pre- and post- DEMs are 
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created from the same SfM model and therefore share the exact same reference system, 

ground control points, extents, resolution, and accuracy. When comparing other high-

resolution topographic datasets (e.g. TLS post- to Airborne Laser Scanning (ALS) pre-), 

there can be significant uncertainty due to instrument error, georeferencing, and gridding 

operations (e.g. Delong et al., 2012). In our situation, the pre-erosion and post-erosion 

DEMs are derived from the same point cloud and propagating the error from just the pre-

erosion DEM is supported. In the final scenario we calculated a probabilistic error budget 

(0.8 confidence level) using 10 cm spatially uniform error for the surveyed, post-erosion 

topography and no error (0 cm) for the synthetic, pre-erosion topography. We chose 10 

cm to split the difference between the first scenario, which we consider overly-

conservative, and the second scenario, which is a minimum representation of error. Using 

this final scenario, error was 12% of the calculated volume. Based on our analyses we 

judged this final scenario to be the most suitable error budget and use it for subsequent 

results and interpretations. 

When we returned to the study site in August 2018 low vegetation was re-

established across much of the landscape. Significant geomorphic changes were not 

visually apparent, and we did not observe evidence of extensive erosion since the prior 

summer. The scoured channel margins were less abrupt, and rills were less distinct or no 

longer apparent. We conducted two more UAV flights, using an automated flight path to 

collect 358 images from ~60 m altitude covering 8 of the same RTK-GPS surveyed 

GCPs. We processed the imagery similarly to the 2017 data into a point cloud with 56 

million points. We tried several approaches to filter vegetation points but were not able to 
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produce a satisfactory ‘bare-earth’ DEM at comparable resolution upon which to detect 

changes from the 2017 survey. 

Results 

Channel Erosion 

The volume eroded from the channel by debris-flow scour was 3467 ± 422 m3 as 

derived from the DoD approach (Table 2). This represents ~75% of the total measured 

eroded volume (debris-flow + rills) or ~60% of the estimated deposit volume. The DoD 

change detection map reveals spatial variations in erosion at 5 cm resolution; the greatest 

scour depths occur downstream of bedrock knickpoints (Figure 1.8). Mean scour depth 

was 0.8 m and 77% of scour depths were between 0.25 and 1.5 m. The SfM survey did 

not extend to channel heads but we visited those locations in the field (Figure 1.5). The 

rectangular cross-section of the scoured channel persisted during our field work and cut 

into fresh bedrock in some reaches. We observed debris-flow signatures such as scarred 

trunks and clasts up to 0.5 m diameter deposited upstream of channel constrictions and 

obstructions in the upper reaches. We also observed small bank collapses and 

discontinuous sections of exposed bedrock extending nearly to the channel heads. Using 

the manual channel cross-sections the minimum volume eroded from the channel was 

3300 ± 660 m3, or ~5% less than measured by our SfM method.
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Table 1.2: Summary of eroded volumes and uncertainties. Values in bold used 

for analysis and discussion 

Method/scenario Volume 

eroded 

(m3) 

Volume 

uncertainty 

(m3) 

Volume 

uncertainty 

(%) 

Channel erosion, manual cross-sections 3300 660 20% 

Channel erosion by DoD, scenario 1 

(minimum LOD) 

3453 655 19% 

Channel erosion by DoD, scenario 2 

(propagated error) 

3485 298 8% 

Channel erosion by DoD, scenario 3 (0.8 

probabilistic error) 

3467 422 12% 

Rill erosion by Monte Carlo, lower 811 - - 

Rill erosion by Monte Carlo, mean 1104 320 29% 

Rill erosion by Monte Carlo, upper 1425 - - 
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Figure 1.8: A) DEM of Difference for debris-flow channel scour. Red values 

indicate erosion and blue values indicate deposition. SfM topography extent is 

shown as hillshade. 20 m contour interval for scale. B) Detail of DoD corresponding 

to Figure 1.7. C) UAV image of section of channel scoured to bedrock by debris-

flow. Flow is from right to left in all panels.
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Structure from Motion Error 

Both approaches we used to determine SfM error fit closely with previous 

assessments (Johnson et al., 2014; Lucieer et al., 2014). Mean SfM point cloud RMSE (z-

coord) was 0.16 m (MAE 0.03 m) when compared to our manual channel cross-sections. 

SfM point cloud RMSE (x, y, z coords) was 0.076 m when compared to all 20 available 

RTK-GPS ground control points (Table 1) and 0.066 m using 3 trials of 10 random GCPs 

each. 

Eroded Volumes from Hillslopes and Rills 

Hillslope erosion by surface runoff contributed to debris-flow generation. We 

observed evidence of hillslope erosion by multiple processes. Curved flakes were spalled 

from granite outcrops and boulders. Burn marks on rocks (e.g. Smith et al., 2012) and 

pedestals below rootlets and small rocks (e.g. Nyman et al., 2011) indicated overland 

flow and raindrop impact had removed hillslope material (e.g. Kinnell, 2005). Overall, 

less ash was present on surfaces than during our first visit. The depth of material removed 

was <2 cm in most locations we observed, inferred to be a mixture of ash and mineral 

particles. We did not explicitly quantify erosion by interrill processes on hillslopes. 

Rilling throughout the catchment extended to within a few tens of meters of the drainage 

divides. Rill widths and depths were mostly cm- to dm-scale. Rill lengths were 10 - 100 

m and often discontinuous. Burned-out roots were common and provided significant 

conduits into the subsurface. Finer-grained regolith occurred on north aspect hillslopes 

along with more distinct and more numerous rills. Transects sampled a range of slopes 

(14-37 degrees) and recorded significant variability in rill count and rill dimensions 
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(Figure 1.9). The rill dimension measurements and counts along our transects were not 

significantly correlated with slope or contributing area. 

Hillslope erosion by rilling produced ~20% of the estimated total deposit volume. 

The volume of rill erosion within the entire study catchment was 1100 ± 320 m3 (29% 

uncertainty) by our Monte Carlo method, shown in Figure 1.9 and summarized in Table 

2. Our rill eroded volume calculation is based on the catchment area represented by the 

range of slopes captured by our hillslope transects and excludes regions near drainage 

divides. Rilling impacted >80% of the catchment (770,000 of 955,000 m2) with an 

average erosion depth of 1.4 mm/m2. We directly measured rill erosion and we use that 

magnitude in our discussion but recognize that our measured rill erosion represents a 

minimum value for hillslope erosion (rill + interrill processes). We note that concurrent 

interrill erosion does not impact the erosion magnitudes for the channel and rills that we 

did measure, nor does it increase the error associated with our catchment totals. 
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Figure 1.9: Upper left, Boxplots of rill dimensions from full dataset (n=175) and rill 

counts per transect (n=15). Upper right, Monte Carlo simulation results showing 

variation in mean rill count per transect. Lower left, Monte Carlo simulation results 

showing variation in mean rill width (red) and depth (blue) dimensions. Lower right, 

Mean rill depth plotted against mean rill width, with linear best fit shown, note x and 

y axis scales.
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Deposit Stratigraphy, Radiocarbon Ages, and Deposit Volumes 

Alluvial fan stratigraphic sequences at the study site outlet preserve ~4.5 Ka of 

fire-related deposition. At our sampling site where the stratigraphy was best exposed, we 

split the stratigraphic exposure into six units based on sedimentary characteristics and 

inferred depositional processes (Figure 1.4) and three dated charcoal fragments (Table 3). 

Samples 4-2 and 4-4 likely record the same fire-related debris-flow event at ~560 cal yr 

BP. Taken together with the stratigraphy and estimated deposit volumes, these ages 

indicate three significant fire-related debris-flow events every ~5 Ka and a recurrence 

interval (of deposition, not fire) of ~1.6 Ka. We acknowledge that there are likely 

depositional events preserved elsewhere on the alluvial fan that are not represented by 

our ages from the described stratigraphic section. 

Individually, all three deposits have very similar magnitudes. The volume of the 

modern deposit was 5716 ± 1143 m3 using interpolated depths (Table 3). The inferred 

volumes of the ~560 cal year BP and ~4420 cal year BP deposits are ~6,300 and ~10,000 

m3, respectively. We determined the volume of the 2 prior units based on the depths of 

dated charcoal samples and the stratigraphic descriptions. When calculating erosion rates 

and sediment yields, we considered the deposit volumes to include overlying deposits 

(e.g. volume of ~4420 cal BP deposit includes ~560 cal BP and modern deposits). This 

averages the deposition of sediment over longer timescales and provides a better 

representation of the overall erosional response of this basin to fire since the mid-

Holocene.
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Table 1.3: Radiocarbon dates from charcoal fragments preserved in 

stratigraphy at study catchment outlet. 

Sample name (lab 

sample number) 

Sample depth 

(m) 

14C age, year 

BP (1-sigma) 

Calibrated age, 

year BP (2-sigma) 

4-2 (X32824) 0.6 601 (18) 557 (13) 

4-4 (X32826) 1.2 628 (19) 580 (27) 

4-6 (X32825) 2.2 3970 (21) 4429 (20) 

 

Erosion Rates and Sediment Yields 

The catchment-averaged erosion from the 2016 event is similar to the overall 

erosion rate since the mid-Holocene at this site (Table 4). The catchment-averaged 

erosion magnitude for the 2016 event was 6 mm (± 1 mm) while the erosion rate since 

~4420 cal year BP has been 5 (±1) mm/Ka. The increased sediment yield and erosion rate 

over the last 600 years reflects two debris-flow events and are therefore higher than the 

4.5 Ka average. We consider the erosion and sediment yield in the year following fire to 

be equivalent to the measured October 2016 event magnitudes for our discussion. When 

partitioned by process, modern debris-flow channel scour contributed 55 t/ha sediment 

yield or 3.7 mm of catchment-averaged erosion, while hillslope rilling alone contributed 

17 t/ha or 1.2 mm of catchment-averaged erosion. The erosion rates and sediment yields 

we calculated represent minimum values because they do not include erosion that 

occurred but was not preserved in the stratigraphic record (e.g. material carried by 

streamflow into Clear Creek), or erosion that occurred but we did not directly measure 

(interrill magnitude). 
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Table 1.4: Estimated deposit volumes and conversions to catchment-averaged 

sediment yield and erosion rate. The deposit volumes represent single events based 

on stratigraphy and radiocarbon ages. The sediment yield and erosion rate are 

calculate including overlying deposits to represent longer-term averages. 

 Deposit age  Volume, m3 

(uncertainty)  

Catchment-averaged 

sediment yield, 

t/ha/Ka (range) 

Catchment-averaged 

erosion, mm/Ka 

(range) 

modern (*1-year) 5716 (1143) *90 (17) *6 (1) 

~560 cal year BP 6300 (1260) 336 (80) 22 (6) 

~4420 cal year BP 10000 (2000) 78 (16) 5 (1) 

 

Discussion 

Precipitation Characterization and Context for Debris-flow Prediction 

Local specific forcing data and detailed pre- and post-erosion topography are 

desirable to link precipitation to erosion processes (e.g. DeLong et al., 2018). However, 

in a large fire with high erosion potential in many basins, the allocation of equipment and 

focus must be balanced with access and hazards. While it is possible to single out small 

areas where post-fire erosion is anticipated, catchments will not produce debris-flows 

after every fire, as evidenced by this site’s charcoal record and by the absence of other 

debris-flows within the Clear Creek drainage. We lack local, high temporal resolution 

precipitation data and we were not able to acquire pre-erosion topography; a common and 

realistic situation. We took advantage of debris-flow occurrence in this representative 

catchment by using the rich topographic information provided by SfM to investigate our 

research questions. 

We did not co-locate a rain gauge or other remote monitoring equipment at our 

study site. The precise, peak 15-minute intensity of the debris-flow triggering rainfall is 
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unknown, but from available hourly (~10mm/hr) and daily (~25 mm/24 hours) data we 

characterize the mesoscale precipitation from the October 2016 frontal storm as modest. 

That said, precipitation in mountainous areas can be highly spatially variable (e.g. Bales 

et al., 2006; Stratton et al., 2009), and given that this particular basin failed and adjacent 

similar basins did not, one possibility is this basin received higher rainfall. Brogan et al. 

(2017) report an environment where mesoscale precipitation resulted in greater 

geomorphic change than convective precipitation via fluvial processes. However, 

Benavides-Solorio and Macdonald (2005) found that convective storms produce >90% of 

hillslope plot erosion, and Kampf et al. (2016) found average sediment yields doubled in 

convective versus mesoscale storms. Hillslope erosion processes vary with precipitation 

intensities (McGuire et al., 2016), but linking the contribution of each hillslope process to 

debris-flows generated by runoff under a wider range of conditions remains an important 

topic. The October 2016 debris-flow triggered by modest rainfall at our study site serves 

as a reminder that post-fire hazards are not limited to especially high-intensity convective 

precipitation. 

We used the USGS post-fire debris-flow hazard model to provide additional 

context for our results. Using our estimated 2016 deposit volume (5700 m3) as a 

parameter, the peak 15-minute precipitation intensity predicted by the USGS model is 

~13.5 mm/hr. The model predicts a 50% likelihood of debris-flow occurrence in our 

study basin under ~17 mm/hr peak 15-minute rainfall and predicts a volume of 6695 m3 

(~17% greater than 2016 deposit volume). The total eroded volume we measured (4600 ± 

740 m3) and total deposited volume that we estimated (5700 ± 1140 m3) fit the USGS 

model predictions moderately well considering the model’s intended use and our 
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uncertainties. Further, the USGS model allows some quantitative characterization of the 

October 2016 event-triggering rainfall. At 16 mm/hr peak 15-minute rainfall (one of the 

design storm intensities used for preliminary assessment), the USGS model predicts 18 

basins in the Clear Creek drainage to have higher probabilities of debris-flow occurrence 

than our study catchment. To date, ours is the only catchment in the Clear Creek basin 

that has produced a debris-flow. Eighty-five percent of runoff-generated debris-flows 

occur in the 1st year after fire, diminishing the likelihood of more debris-flows in the 

Clear Creek basin (Degraff et al., 2015). We infer that debris-flow occurrence in our 

study catchment reflects factors not entirely captured by the current USGS post-fire 

debris-flow hazard model because many other nearby basins had equal or higher 

probabilities but did not produce debris-flows under widespread but modest precipitation 

in October 2016. The study catchment produced a debris-flow ~600 years ago, so perhaps 

the time since the last channel-evacuating debris-flow, and accumulation of sediment on 

hillslopes and channels modifies the post-fire hazard in this setting. 

Structure from Motion: Accuracy, Advantages, and Recommendations 

There are a host of studies addressing the accuracy and precision of SfM, 

generally through comparison with TLS, ALS, or GPS reference data. Both approaches 

we used to quantify SfM error fit closely with prior work assessing SfM accuracy. Our 

overall SfM error as assessed against 20 RTK-GPS surveyed GCPs was 6.6 cm; very 

similar to Lucieer et al. (2014) who found 6 cm vertical error using a denser network of 

39 RTK-GPS surveyed GCPs on a landslide in Tasmania. Other studies that assess SfM 

error using GPS report RMSE of 5-10 cm (Tamminga et al., 2015), a few decimeters 

(Javernick et al., 2014), and 5-13 cm (Smith et al., 2014). Several studies have compared 
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SfM data to TLS data as a reference and found 2-20 cm error (Cook, 2017; Johnson et al., 

2014; Stumpf et al., 2015). Johnson et al. (2014) also compared SfM to ALS data as a 

reference and found error was <13 cm for 90% of points. Gillan et al. (2017) compared 

UAV-derived SfM measurements to manual erosion bridge measurements along 

topographic transects and calculated an RMSE of ~3 cm. Clapuyt et al. (2016) tested the 

reproducibility of SfM topographic datasets and found 6 cm MAE within their workflow. 

Our assessment of SfM error (16 cm using manual channel cross sections, 6.6 cm using 

RTK-GPS surveyed GCPs) fits closely with these studies and show that SfM is a viable, 

accurate method to quantify post-fire erosion volumes. 

Continued work on georeferencing accuracy is critical to improving change 

detection using ultra-high resolution topography (e.g. Passalacqua et al., 2015; DeLong et 

al., 2018). Our results show that low error (6.6 cm) and very high spatial resolution (5 cm 

DEM) are possible when sub-centimeter RTK-GPS ground control is integrated into SfM 

surveys, even in a steep and challenging landscape. However, current SfM 

georeferencing accuracies are not adequate to detect changes of a few centimeters (i.e. 

rilling) continuously over a ~1 km2 catchment using change detection techniques. Eltner 

et al. (2015) and Morgan et al. (2016) applied SfM to small hillslope plots and laboratory 

flumes, respectively, showing its promise for sub-cm level measurements. Glendell et al. 

(2017) used the iterative closest point (ICP) method to compare multi-temporal SfM 

models of upland features in England, but this approach is not appropriate where 

landscape change is widespread and where there are multiple best-fits for the ICP 

algorithm. SfM depends on image information, so variable lighting and image locations 

(among other factors) influence the resulting SfM model, even with well-constrained 
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GCP locations (Clapuyt et al., 2016). Regularizing UAV flight paths and image locations, 

as Goetz et al. (2018) have done, is an important methodological consideration for future 

change detection via SfM. 

The ease of acquiring cm-resolution topography via UAV and SfM provided a 

logistic advantage over TLS at our study site. A comparable TLS point cloud extent 

would require many scan locations to accommodate the rugged topography and occlusion 

from standing burned trees. The orange bucket lids over rebar GCPs worked well for 

visibility in UAV imagery and in the field. In such a steep, rugged study site, setting up 

the GCP network and recording it with RTK-GPS took longer than executing the UAV 

flights. The directly georeferenced UAV-SfM options becoming available would have an 

advantage in particularly high-relief study sites (Carbonneau and Dietrich, 2017; Turner 

et al., 2014). 

The regrowth of vegetation was significant 2 years post-fire, reducing the 

occurrence and magnitude of further erosion (i.e. Orem and Pelletier, 2015; 

Wagenbrenner and Robichaud, 2014). Additionally, the spatial coverage of new 

vegetation on the landscape precludes the use of SfM to derive cm-resolution topographic 

models for change detection. We were not able to produce a satisfactory “bare earth” 

model from 2018 at an equivalent resolution as the 2017 survey. The limitations of SfM, 

namely vegetation and georeferencing, must be considered when applied to geomorphic 

change detection. 

Post-Fire Erosion Processes 

The debris-flow scoured the channel to bedrock in multiple places, proving an 

effective tool for long-term geologic erosion and landscape denudation (Stock and 
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Dietrich, 2006). We did not observe any large colluvial failures as expected in a debris-

flow triggered by saturation failure (i.e. Costa, 1984; Stock and Dietrich, 2006). Instead, 

widespread rilling and inferred extensive overland flow led to a runoff-generated debris-

flow (e.g. Meyer and Wells, 1997; Cannon et al., 2001; Gabet and Bookter, 2008). As 

Kean et al. (2013) and Rengers et al. (2017) show, runoff-generated debris-flow initiation 

often requires sediment to be introduced to the channel, temporarily stored, and then fail. 

It was difficult to pinpoint specific initiation points in the field, but markers 

representative of debris-flows including small levees, inset deposits of large-caliber 

clasts, and scarred vegetation were present throughout the SfM-surveyed channel sections 

and >75% of the distance to channel heads. Widespread hillslope rilling, and inferred 

interrill erosion, provided the in-channel sediment necessary for debris-flow initiation. 

In this setting, rilling contributed about 25% of the total measured erosion. Rill 

widths were more variable than rill depths and rills were twice as common on north 

aspects (Figure 1.10). Rills are transient and difficult to measure across continuous spatial 

extents. Our method addresses that by using a limited number of representative hillslope 

transects, randomly sampled and repeated many times with Monte Carlo simulation. We 

make two assumptions: 1) our transects adequately sampled the variability in rilling 

within the catchment, and 2) the sample means come from an underlying normal 

distribution, permitting us to use the standard deviations as uncertainty. An effort was 

made to sample a variety of locations and sample means often approach a normal 

distribution by the central limit theorem, thereby satisfying both assumptions. The range 

in sample mean rill width, depth, and number is much smaller than the range in all rill 

data, and subsequently provides a better constrained estimate of total rill erosion volume. 
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The range in sample means also defines the 29% volume uncertainty in our approach; a 

clear advantage over prior work that does not report uncertainty. Finally, Monte Carlo 

simulation highlights the difference between rilling on north and south aspects (Figure 

1.10). Fitch and Meyer (2016) found north-facing basins experienced more post-fire 

erosion in the late-Holocene based on analyses of alluvial fan stratigraphy in the Jemez 

Mountains, but they do not split it into specific process differences. While not statistically 

significant, the north-facing aspects exhibit more numerous rills with smaller dimensions 

than the south-facing aspects. We attribute this difference to generally finer-grained 

regolith on north aspects as noted in the field, but further exploration is warranted. Rilling 

was not significantly correlated with slope, perhaps an effect of only making 15 transects 

and extracting their slopes from 10 m resolution elevation data. Moody and Martin 

(2009) report an “inability to link slopes to actual erosion sites” and did not correlate 

sediment yield with slope. Similarly, Perreault et al. (2017) found no strong correlations 

between terrain attributes (such as slope) and diffusive hillslope erosion and suggested 

that stochasticity may obscure predicted relationships. 

Other indicators of interrill hillslope erosion processes were observed but not 

directly measured. These included raindrop induced impact and shallow overland flow 

(e.g. Kinnell, 2005) evidenced by burn marks on rocks, pedestals below rootlets, and 

pebble surface lag. Significant dry ravel or sediment wedges released by vegetation loss 

did not occur at our study site, contrasting with the supply-limited system of Dibiase and 

Lamb (2013). There was no occurrence of levee-lined “hillslope debris-flows” (Langhans 

et al., 2017). 
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Figure 1.10: Upper left, Boxplots of rill dimensions separated by aspect, and 

boxplots of mean rill count per transect separated by aspect. Upper right: Monte 

Carlo results showing variation in mean rill counts on north aspects (blue) and South 

aspects (red). Lower left, S aspect mean rill counts plotted against N aspect mean rill 

counts, note x and y axis scales. While not statistically significant, north aspects had 

about three times as many rills as South aspects. Lower middle, Monte Carlo results 

showing variation in rill width and depth, separated by north aspect (blue) and South 

aspect (red). Lower right: Mean rill depth plotted against mean rill width, separated 

by north aspect (blue) and South aspect (red). Linear best fits shown in black, note x 

and y axis scales. 

Partitioning of Erosion Processes 

Our hillslope versus channel erosion partitions fall within literature values (Figure 

1.11). We found 75% of total erosion came from debris-flow scour in the channel, while 

hillslope erosion from rilling alone produced about 25% of the total measured eroded 

volume. In a setting fairly similar to our own, Meyer and Wells (1997) recorded 70% of 

total eroded volume from channels and 30% from rilling. However, Santi et al. (2008) 

report only 3% of total eroded volume from rilling in 46 debris-flow producing basins. In 
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their review, Moody and Martin (2009) report a factor of 3 greater sediment eroded from 

channels than from hillslopes in the year following fire (240 t/ha vs 82 t/ha). Conversely, 

multiple TLS studies show hillslope erosion exceeds channel erosion (DeLong et al., 

2018; Rengers et al., 2016; Staley et al., 2014). Rengers et al. (2016) found erosion from 

hillslopes was 3 times greater than from convergent, incipient channels at a 0.55 ha study 

site in Colorado. Staley et al. (2014) determined ~80% of total erosion came from 

hillslopes with contributing areas <40 m2 in Southern California. In Arizona, overland 

flow and rilling produced 68% of total post-fire erosion while channels produced 32% 

(DeLong et al., 2018). Nyman et al. (2015) calculated ~50% of total erosion was 

contributed from hillslopes using average depths of erosion from quadrats and transects 

in two burned, ~0.5 km2 basins in Australia. At the same sites, Smith et al. (2012) 

reported 22-74% hillslope contribution to total erosion using radionuclide tracers in 

debris-flow deposits. This range of values for channel versus hillslope contributions to 

total post-fire erosion is not surprising given the variety of geologic settings, rainfall 

regimes, and basin characteristics. Additionally, each study uses different methods; 

where the TLS studies focus on small areas of relatively large change and the channel 

survey methods likely underestimate hillslope components (Delong et al., 2018). The 

partitioning of erosion processes in our 1 km2 study catchment (75% channel, 25% 

rilling) provides additional information on how drainage area influences erosion process-

dominance. In the small catchments (a few hectares) examined using cm-resolution TLS 

data by Staley et al. (2014), Rengers et al. (2015), and Delong et al. (2018), hillslope 

processes dominate total erosion primarily because the drainage areas are small. On the 

other hand, the compiled values from Moody and Martin (2009) include a range of larger 



43 

 

 

drainage areas (a few sq km) and subsequently channel erosion processes dominate total 

erosion. Other studies have examined relationships between drainage area and erosional 

processes (e.g. Montgomery and Foufoula-Georgiou, 1993; Moody and Kinner, 2006; 

Reneau et al., 2007; Scott et al., 1998; Stock and Dietrich, 2006; Wagenbrenner and 

Robichaud, 2014). However, more work is needed to 1) examine how fire alters 

relationships between erosional processes and drainage area, and 2) integrate high-

resolution topography into a wider range of drainage areas. 

Our measured volume of erosion (debris-flow + rills) was ~4600 (± 740) m3 while 

our estimated deposit volume was 5700 (± 1140) m3. The eroded and deposited volumes 

overlap within error. However, we noted widespread evidence of interrill hillslope 

erosion. Several possibilities exist: 1) “missing” portion of deposit volume (~1100 m3, or 

~20% of total deposit) represents erosion by rainsplash, overland flow, and other interrill 

hillslope processes, 2) fine-grained material removed by interrill processes was carried 

downstream and not preserved in deposit, 3) material removed was mostly organic matter 

or ash rather than mineral clasts, 4) Potential bulk density differences between eroded and 

deposited material preclude the total eroded volume from equaling the total deposited 

volume. Considering our observations of interrill processes the first possibility is very 

likely but we cannot accurately quantify the extent or magnitude of interrill erosion 

across a 1 km2 catchment given current measurement uncertainties and the other 

possibilities mentioned. 
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Figure 1.11: Comparison of post-fire studies reporting contribution from channel 

erosion processes to total erosion. Channel processes include debris-flow, 

hyperconcentrated flow, and streamflow. Solid columns are from high-resolution 

topography and single catchments. Hollow columns are from other methods or 

averages from multiple catchments. Catchment sizes are 0.075 km2 (Delong), 0.5 

km2 (Meyer), various (Moody and Martin), 0.1-2.2 km2 (Nyman), 0.005 km2 

(Rengers), 0.5-5 km2 (Santi), 0.07-0.2 km2 (Smith), 0.01 km2 (Staley), and 0.95 km2 

(this study). 

Modern and Holocene Erosion Rate and Sediment Yield Comparison 

Our basin produced a total sediment yield of 90 t/ha (from estimated deposit 

volume) in the first year after fire; 17 t/ha (from measured rill volume) came from rilling 

alone. Meyer et al. (2001) describe two nearby, ~0.5 km2 basins (one unburned) that 

produced 4 times greater sediment yields (~420 t/ha) resulting from 7 cm of rain on 

rapidly-melting snowpack, contrasting with the more modest precipitation that drove 

erosion at our study site. In the Middle Fork Salmon River watershed, Riley (2012) 

shows sediment yields of 1.8-740 t/ha from several burned, debris-flow producing basins. 
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Sediment yields from hillslope erosion on burned plots in Colorado are 10-12 t/ha 

per year (Benavides-Solorio and MacDonald, 2005; Schmeer et al., 2018). The average 

value for post-fire hillslope erosion across the Western US is 82 t/ha/year (Moody and 

Martin, 2009). In a coarse-scale modeling study, Miller et al. (2011) predict 2 t/ha/year 

for hillslope erosion in the intermountain West; more than 7 times less than what we 

measured with rilling alone. Using the ~35,000 km2 Salmon River basin in Idaho as their 

domain, Gould et al. (2016) model an increase of 31 t/ha/year sediment yield under future 

climate scenarios linked to increases in fire frequency and severity. However, neither 

study includes mass wasting processes (debris-flows) in their models, which integrate 

over large watersheds and dominate the sediment yield and erosion rate over Ka 

timescales (Kirchner et al., 2001). 

A 4500-year record of fire-related erosion at our study site is preserved in fan 

stratigraphy (Figure 1.4). Attributing a percentage of erosion to fire is complicated by 

potential reworking or removal of older deposits by Clear Creek, but 90% of deposition is 

fire-related (2.0 of 2.2 m) using the available stratigraphy. Over the last 4.5 Ka, three 

significant events deposited ~6-10,000 m3 each. These similar magnitudes are logically 

controlled by basin size, morphology, and bedrock composition, among other quasi-static 

factors. The debris-flow magnitudes are perhaps also influenced by sediment availability 

via weathering and soil production (e.g. Heimsath et al., 1997; Dibiase and Lamb, 2013; 

Eppes and Keanini, 2017), vegetation and climate changes (e.g. Pierce et al., 2004, 2011), 

and other factors varying over Ka timescales. Schumm’s (1973) concept of complex 

response and geomorphic thresholds modifies these static and varying factors. Parsing out 
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the role of each would require information on debris-flow magnitudes from a wider range 

of spatial and temporal settings. 

We calculated 78 (± 16) t/ha/Ka for the sediment yield since ~4420 cal year BP 

and 90 (± 17) t/ha in the modern event. Put simply, the sediment yield from 2016 erosion 

alone more than satisfies the average sediment yield over the last 4.4 Ka at this site. 

Nearby, Meyer at al. (2001) found an average sediment yield of ~160 t/ha/Ka between 

7.4 and 6.6 Ka from alluvial fan records; our modern yield accounts for >55% of that in a 

single event. Kirchner et al. (2001) calculated sediment yields and denudation rates for 32 

basins in Idaho ranging from 0.2-35,000 km2 using 10Be concentrations in alluvial 

sediments. Averaged over 5-27 Ka, sediment yields were 550-2600 t/ha/Ka and 

denudation rates were ~20-100 mm/Ka (Figure 1.12). Kirchner et al. (2001) compared 

their long-term values to measurements of sediment flux in streams and concluded that 

70-97% of sediment is delivered in infrequent, large-magnitude events, i.e. extreme 

floods and following wildfire. Riley (2012) attributed 40-70% of the 35,000 km2 Salmon 

River basin sediment yield over the last 6 Ka to post-fire debris-flows in the tributary 

7500 km2 Middle Fork Salmon River basin. Therefore, we argue that post-fire erosion, 

while brief and separated by long quiescent periods, dominates the long-term erosion 

signal in the Idaho Batholith and elsewhere. 

Looking outside of the Idaho Batholith, Orem and Pelletier (2016) used a suite of 

approaches to show >90% of the million-year erosion rate is a result of post-fire erosion 

in Valles Caldera, NM (Figure 1.12). They found mean post-fire erosion rates exceed 1 

mm / year, while long-term landscape denudation rates are 0.1 to 0.01 mm / yr (10-100 

mm/Ka) (Orem and Pelletier, 2016). Our catchment-averaged erosion rate for the first 
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year post-fire was 6 mm/yr, and our long-term rate was 5mm/Ka; the same order of 

magnitude as Orem and Pelletier’s (2016) estimates. In the Chiricahua Mountains in 

Arizona, 22 mm of catchment-averaged erosion in a 7.5 ha catchment from a 10-yr 

recurrence interval convective storm drastically exceeds the (not specifically fire-related) 

millennial-scale erosion rate of ~0.04 mm/yr from the nearby Pinaleno Mountains 

(Jungers and Heimsath, 2016; DeLong et al., 2018). In addition to these examples, 

numerous modern studies have measured post-fire erosion rates and magnitudes that 

greatly exceed background erosion (e.g. Moody et al., 2013). Our study corroborates 

prior work describing the critical impact of post-fire erosion over Holocene and 

Quaternary timescales. 

 
Figure 1.12: Plot of erosion rates versus timescale of measurement from selected 

studies in discussion. Open symbols are data from Idaho, including this study shown 

in red. Closed symbols are from SW USA. Measurements of erosion rates are from a 

variety of methods and catchment sizes. Adapted from Kirchner et al., 2001 and 

Orem and Pelletier, 2016. 
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Conclusion 

Hillslope and channel erosion processes interact to produce ubiquitous erosion 

after wildfire in steep terrain. However, measuring each process is difficult at the scale of 

a typical catchment and few studies include Holocene magnitudes of post-fire erosion. 

This study presents methods for partitioning post-fire rill and channel erosion 

processes that are flexible and robust. Importantly, we show that insights into erosional 

processes, sediment volumes, and their uncertainties, can be made across a 

representative, 1 km2 catchment without detailed pre-erosion topography. We derived 5 

cm resolution topography from SfM and adapted change detection techniques to show 

that the volume of debris-flow scour (3500 ± 420 m3) contributed ~75% of the total 

measured eroded volume and ~60% of the estimated deposit volume. SfM is capable of 

accuracies <10 cm and is an appropriate tool for investigating post-fire erosion at cm-

resolution, especially when coupled with UAV technology. Through Monte Carlo 

simulation using hillslope transect data, we showed that another ~25% (1100 ± 320 m3) 

of the total eroded volume was contributed by rilling alone and clearly defined our 

uncertainty. Quantifying these two processes elucidates the overall role of channel and 

rill post-fire erosion for this typical Idaho Batholith catchment. Our hillslope rilling 

versus channel erosion partitions fall between values reported from other settings. 

Additionally, although this debris-flow was triggered by a low intensity precipitation 

event, the estimated deposit volume aligns fairly closely with the USGS post-fire debris-

flow hazards model. Our approaches are relevant across smaller and larger catchment 

scales as climate change leads to more frequent and more severe fires in the near future. 
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We also confirm the overwhelming importance of post-fire erosion to long-term 

erosion rates and sediment yields by dating charcoal fragments preserved in stratigraphy. 

The modern post-fire erosion rate of 6 mm/year dominates the average erosion rate of 5 

mm/Ka since the mid-Holocene at this site and agrees with other work from a range of 

settings. Expanding our temporal knowledge of post-fire erosion beyond the modern, 

such as we have done, is vital to better understand landscape evolution and to better 

prepare for impacts of erosion following fires on communities. 
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AN ISSUE OF SCALE: CONTRIBUTING AREA AND POST-FIRE EROSION 

Abstract 

At catchment outlets, the impacts of post-fire erosion on communities, 

infrastructure, and ecosystems are being highlighted and augmented by climate change. 

In steep, burned catchments, sediment is mobilized from hillslopes by multiple erosional 

processes; the basin-scale post-fire erosional response is ultimately controlled by a 

complex combination of basin characteristics (e.g. slope angle), sediment availability, 

precipitation variables, and the interaction and integration of channel networks and 

hillslopes. We use a 0.95 km2 catchment burned in the 2016 Pioneer Fire in Idaho to 

quantify an important spatial threshold separating hillslope and channel erosion 

processes. Modest precipitation produced widespread rilling and a runoff-generated 

debris flow in the study catchment. We measure channel erosion by debris flow scour 

using 5 cm resolution Structure from Motion topography and hillslope erosion by rilling 

using transect data and explore their relationship at varying sub-basin sizes. We 

document the decreasing importance of hillslope processes to total eroded volumes as 

drainage area increases. In this setting, there is approximate parity between hillslope and 

channel eroded volumes at a drainage area of 0.2 km2 (20 ha): channel erosion dominates 

the overall signal for contributing areas greater than 0.2 km2 and hillslope erosion 

dominates the contribution of sediment for contributing areas smaller than this threshold. 

At drainage areas from 0.2-0.95 km2, hillslope-channel connectivity increases and 

channel networks facilitate more efficient erosion. We compare the experimental results 
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from our study catchment to values from the post-fire literature, confirming the shift from 

hillslope-dominance to channel-dominance as drainage basin areas increases. Our sub-

basin analyses show sediment yield increases with drainage area while other studies show 

the inverse, reflecting a variety of influences. Among these influences are the diverse 

geographic and geologic settings, the precipitation values, and the burn severity. 

Furthermore, the selection of field sites, the mode of measurement, and the timescale of 

measurement affect the reported sediment yield to drainage area relationship. 

Investigations into spatial thresholds separating hillslope and channel process-dominance, 

especially when coupled with high resolution topography, will help to quantify the 

landscape reaction to wildfire in other settings. 

Introduction 

Erosional processes in burned landscapes produce rapid and dramatic landscape 

changes which impact communities, infrastructure, and ecosystems. However, the 

delivery of sediment from hillslopes to basin mouths, where most homes, roads and other 

infrastructure are located depends on the connectivity of hillslopes and channels. 

Connectivity is a continuum representing how efficiently material is transferred 

between landscape components (Grant et al., 2017; Wohl et al., 2018). Connectivity 

includes two concepts that vary in time and space: structural connectivity and functional 

connectivity (Wohl et al., 2018). Functional connectivity refers to the processes 

responsible for fluxes, while structural connectivity (system configuration) influences 

their boundaries and magnitudes. Changes to structural and functional connectivity are 

often non-linear and based on thresholds (Wohl et al., 2018). 
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Significant work has been devoted to thresholds across many systems, including 

Schumm’s (1973) concept of complex response. For example, sediment flux is controlled 

by a critical gradient threshold (Roering et al., 1999), landscape dissection and channel 

initiation are controlled by a slope-area threshold (Montgomery and Dietrich, 1992; 

Montgomery and Foufoula-Georgiou, 1993), thresholds influence the occurrence of 

distinct hillslope processes (Dietrich et al., 1992), link river incision to tectonic uplift 

(Snyder et al., 2000), and couple hillslopes to valleys incised by derbis flows (Stock and 

Dietrich, 2006). The spatial threshold of 0.1-1 km2 drainage area signifies a transition to 

fluvial processes in many settings (Stock and Dietrich, 2006). 

In post-fire settings, debris flows are initiated above a precipitation intensity-

duration threshold or when a critical channel stability threshold is reached (McGuire et 

al., 2017; Staley et al., 2017). Wildfire changes infiltration, friction, and shear stress, 

reducing the critical area required for channel initiation or promoting infiltration-excess 

overland flow (Moody and Kinner, 2006; McGuire et al., 2018). 

Fire usually reduces critical area, impacting hillslope processes (e.g. rilling, dry 

ravel, raindrop impact, and sheetwash) and their connectivity to channels (Meyer and 

Wells, 1997; Cannon et al., 2001; Moody and Kinner, 2006; Reneau et al., 2007; Moody 

et al., 2013). Hillslope erosional processes can promote debris flows when they transport 

material downslope and rapidly introduce sediment to channels (Staley et al., 2014). 

Therefore, high connectivity implies hillslopes and channels are closely coupled, 

allowing efficient export of detached sediment to the channel network, while low 

connectivity implies inefficient sediment transport. Accordingly, there should be a spatial 
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threshold differentiating low-efficiency (primarily hillslope) erosion from high-efficiency 

(primarily channel) erosion for a particular post-fire landscape. 

In recent decades, high resolution topography (HRT) has significantly enhanced 

our understanding of landscape change through its ability to detect connectivity pathways 

and quantify thresholds (Passalacqua et al., 2015; Wohl et al., 2018). We define HRT as 

having 1 m or finer spatial resolution (e.g. Airborne Laser Swath Mapping (ALSM), 

Terrestrial Laser Scanning (TLS), and Structure from Motion Multi View Stereo (SfM-

MVS, simplified to SfM hereafter). Moody et al. (2013) call for quantitative metrics to 

describe post-fire erosion processes and thresholds. Here, we investigate one post-fire 

threshold using SfM-derived HRT and hillslope transects. 

This study intends to evaluate how post-fire hillslope and channel erosion vary 

with drainage area. Specifically, we demonstrate the drainage area threshold separating 

dominantly hillslope erosion from dominantly channel erosion for a 0.95 km2 burned 

catchment in Idaho and relate it to connectivity. To do so, we produce and analyze a 

dataset of channel erosion by debris flow scour and hillslope erosion by rilling across 

multiple sub-basin sizes. Further, we ask how hillslope contributions to total erosion and 

sediment yield evolve with increasing drainage area, and we compare our observations to 

relevant literature. 

Study Site, Debris Flow Occurrence, and Field Observations 

Our study catchment is a 0.95 km2 headwater catchment burned at moderate to 

high intensities in the ~750 km2 2016 Pioneer Fire in Idaho, USA (Figure 2.1A). The 

study catchment ranges in elevation from 1770-2320 m with 26o average slopes (45o 

max), receives ~100 cm of precipitation per year, and is underlain by weathered 



54 

 

 

Cretaceous biotite-granodiorite. Slopes are mostly soil-mantled and planar, becoming less 

steep near drainage divides. Valleys are v-shaped with a main channel and several 

tributaries supporting ephemeral flow. Pre-fire vegetation included Douglas Fir 

(Pseudotsuga menziesii) and Lodgepole Pine (Pinus contorta) and was last logged around 

1960 (D. Brown, personal communication, 2018). Remnants of burned trees are mostly 

<1 m diameter. 
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Figure 2.1: A) Area map of 2016 Pioneer Fire perimeter (orange) in Idaho. Yellow 

circle is study catchment location Study catchment contributes to Clear Creek. B) 

UAS (aerial) image of rills on planar hillslopes connecting to scoured debris flow 

channel. Arrows give direction of flow. C) Detail map of study catchment. 0.95 km2 

full extent outlined in gray. Extent of SfM 5 cm resolution DEM shown as hillshade. 

Red shading shows channel scour measured with DoD. Black triangles show locations 

of hillslope transect used to derive rill erosion volumes. Analyzed sub-basins are 

outlined. Labels at sub-basin outlets correspond to Table 2.1. 50 m contours for scale. 



56 

 

 

The catchment was burned around August 30, 2016. A debris flow was triggered 

on October 15, 2016 with the catchment receiving 25 mm of rain in 24 hours with an 

estimated peak 15-minute intensity of 10 mm/hr (http://prism.oregonstate.edu/explorer/, 

accessed September 2018; https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=312, 

accessed September 2018). Erosion response to this modest precipitation included 

widespread hillslope rilling leading to a runoff-generated debris flow. A large volume of 

sediment and large woody debris was delivered to the catchment outlet fan and impinged 

on Clear Creek. 

Rilling was pervasive across the catchment, with rill heads located a few tens of 

meters from drainage divides. Rills on planar slopes were parallel and often 

discontinuous with lengths 10-100 m (Figure 2.1B). Rills coalesced into shallow gullies 

where topography was convergent. Burned out root casts were common and provided 

conduits into the subsurface. Rills were more common in the finer-grained regolith of 

north facing slopes. Besides hillslope rilling, burn marks on rocks and pedestals below 

rootlets and pebbles indicated raindrop impact and sheetwash had removed surface 

material, and flakes were spalled from granite boulders. 

The scoured debris flow channel had a rectangular cross-section. We observed 

debris flow markers such as scarred trunks, cut roots, matted vegetation, mudlines, and 

large-caliber clasts deposited upstream of channel obstructions. The primary channel and 

tributaries were scoured to fresh bedrock in multiple locations. Channel margins were 

directly adjacent to steep hillslopes without any floodplain or break in slope. 

http://prism.oregonstate.edu/explorer/
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=312
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Methods 

In order to explore how hillslope and channel erosion process-dominance evolves 

with varying drainage area, we first quantified channel scour by debris flow and hillslope 

erosion by rilling across the entire 0.95 km2 study catchment. We then subdivided the 

study catchment into 15 sub-basins and attributed corresponding values for rill erosion 

from hillslope transects and channel erosion from HRT. 

We quantified and mapped the channel eroded volume using a 5 cm resolution 

DEM created with SfM. In Summer 2017, we collected overlapping images (n=837) of 

the trunk channel and tributaries using an unmanned aerial vehicle (UAS), then processed 

the photos into a point cloud using Agisoft Photoscan Professional. Ground control points 

(n=20) were surveyed with a real-time kinematic GPS unit, post processed to ~1 cm 

accuracy. The point cloud is available at: 

http://opentopo.sdsc.edu/dataspace/dataset?opentopoID=OTDS.012019.32611.1.We 

gridded the point cloud (~900 pts/m2) into a 5 cm resolution DEM using CloudCompare 

(https://www.danielgm.net/cc/), preserving rich detail of the channel bed, banks, and 

margins. We differenced elevations from the surveyed, 5 cm post-erosion DEM from a 

synthetic pre-erosion surface to create a DEM of Difference (DoD) (Wheaton et al., 

2010). We then calculated the channel volume by taking the sum of the grid cell areas 

multiplied by their elevation differences. The DoD also provides a spatially-explicit 

representation of scour depths and channel erosion by debris flow (Figure 2.1C). The 

measured eroded volume represents the majority of observed channel erosion but does 

not extend entirely to the channel heads. Further methodological details are provided in 

Chapter 1. 

http://opentopo.sdsc.edu/dataspace/dataset?opentopoID=OTDS.012019.32611.1
https://www.danielgm.net/cc/
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We quantified the rill eroded volume using 15 representative hillslope transects 

across the study catchment. At each transect, we recorded the number, width, and depth 

of individual rills (n=175). Transects included planar, convergent, and divergent 

hillslopes at a range of slope angles and distances from drainage divides. We used 

random sampling and Monte Carlo simulation to calculate the mean rill dimensions and 

number of rills per transect, normalized to a depth per unit area, and then applied this 

erosion magnitude to the catchment area impacted by rilling (0.77 km2 of 0.95 km2 total). 

Further methodological details are provided in Chapter 1. 

We defined 15 sub-basins of various sizes within the study catchment to compare 

the relative channel versus hillslope erosion volumes (Figure 2.1C). These sub-basins 

were delineated from 10 m resolution topographic data. For each sub-basin, we 

determined the corresponding channel eroded volume from the 5 cm DoD and the rill 

eroded volume from the depth per unit area multiplied by the sub-basin area impacted by 

rilling. If no channel erosion was measured in the sub-basin, we consider it to have 

eroded only by rilling. In this manner, we explore the evolution of channel and hillslope 

erosion as a function of sub-basin size within the larger study catchment. 

We also evaluated how sediment yield (mass/area/time) varies with drainage area. 

We converted eroded volumes to sediment yield using a bulk density of 1500 kg/m3 for 

both our sub-basin analysis and for comparison with relevant literature in our discussion. 

Results 

Rill erosion depth was 1.4 mm per unit area and produced an eroded volume of 

1104 m3 at the full 95 ha study catchment extent, producing 24% of the total eroded 
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volume. Mean channel scour depth from the DoD was 0.8 m and channel erosion by 

debris flow scour produced a volume of 3467 m3, or 76% of the total erosion. 

Results from the 15 analyzed sub-basins are summarized in Table 2.1. For sub-

basins with drainage areas below 10 ha erosion was entirely by hillslope rilling (Figure 

2.2). At approximately 20 ha (0.2 km2) drainage area, channel erosion and hillslope 

erosion contributed equal volumes. In sub-basins of a few hectares, channels were not 

developed and erosion was entirely by hillslope processes. Around 10 ha drainage area, 

channels began to contribute erosion volume, and at 20 ha drainage area channel and 

hillslope volumes reached parity. For drainage areas above 20 ha up to the study 

catchment extent of 95 ha, channels produced the majority of eroded volume. Sediment 

yield increased as drainage area increased (Figure 2.3), while the percentage of total 

erosion attributed to rilling (hillslope erosion) decreased as the basin size increased 

(Figure 2.4).
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Table 2.1: Study catchment sub-basin data used in figures 2.2, 2.3, 2.4 

Basin 

name 

Sub-

basin 

area 

(ha) 

Area 

impacted 

by 

rilling 

(ha) 

Rill 

eroded 

volume 

(m3) 

Channel 

eroded 

volume 

(m3) 

Total 

eroded 

volume 

(m3) 

Rill 

yield 

(t/ha) 

Channel 

yield 

(t/ha) 

Sub-

basin 

total 

yield 

(t/ha) 

Hillslope 

erosion 

% of 

total 

1 2.1 1.5 20.4 0.0 20.4 14.7 0.0 14.7 100 

2 2.7 2.2 31.2 0.0 31.2 17.6 0.0 17.6 100 

3 3.4 3.1 42.8 0.0 42.8 18.7 0.0 18.7 100 

4 4.1 3.9 55.1 0.0 55.1 20.3 0.0 20.3 100 

5 5.0 3.3 45.8 0.0 45.8 13.7 0.0 13.7 100 

6 7.0 5.7 80.4 0.0 80.4 17.4 0.0 17.4 100 

7 8.9 8.3 116.2 0.0 116.2 19.5 0.0 19.5 100 

8 17.0 12.1 169.0 79.5 248.5 14.9 7.0 21.9 68 

9 19.5 15.7 219.2 314.2 533.4 16.9 24.2 41.1 41 

10 20.4 14.4 200.9 302.6 503.5 14.8 22.3 37.1 40 

11 22.9 19.1 267.1 204.2 471.2 17.5 13.3 30.8 57 

12 48.6 37.9 531.1 970.3 1501.3 16.4 29.9 46.3 35 

13 52.6 41.4 579.7 1402.7 1982.4 16.5 40.0 56.6 29 

14 75.4 59.7 836.0 1852.5 2688.5 16.6 36.8 53.5 31 

15 93.2 75.0 1049.7 2838.8 3888.5 16.9 45.7 62.6 27 

16 95.5 77.0 1104.0 3467.0 4571.0 17.3 54.5 71.8 24 
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Figure 2.2: Eroded volumes from sub-basins within study catchment. Channel 

eroded volume surpasses hillslope eroded volume at a drainage area of about 20 

hectares (0.2 km2). Channel erosion volumes also increase about three times faster 

than rill erosion volumes, reflecting increased integration and efficiency of channel 

networks. Total erosion volume (channel + rill) is shown in gray squares. Rill erosion 

volumes (triangles) are extrapolated from hillslope transect data and applied as a 

uniform 1.4 mm per unit area erosion where rilling was observed. Channel erosion 

volumes (X’s) are from 5 cm resolution DEM of Difference derived from synthetic 

pre-erosion and surveyed post-erosion Structure from Motion survey. Orange circles 

are data from post-fire gully erosion, in similar Idaho Batholith terrain 

(Istanbulluoglu et al., 2003). 
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Figure 2.3: Sediment yield, in metric tons per hectare per year (mass/area/time) for 

sub-basins of varying size within the study catchment. Sediment yields increase as the 

scale of analysis increases, up to the 95 hectare study catchment size. Data from all 

drainage areas are fit with a power law function (black dashed line). Channel 

networks are not present at the smallest drainage areas. As drainage area increases, 

hillslopes are more closely coupled to channels and connectivity improves, allowing 

increased sediment yields. Green symbols represent contributing areas below 20 ha, 

where rill erosion contributes a majority of total erosion. Blue symbols represent 

contributing areas above 20 ha, where channel erosion contributes a majority of total 

erosion. Gray dashed lines are linear best fits above and below the 20 ha drainage 

area threshold, representing a change in process-dominance. A positive relationship 

between post-fire sediment yield and drainage area is shown in other studies, e.g. 

Gabet and Bookter, 2008; Moody and Martin, 2009; Pelletier and Orem, 2014. 

Sediment yields are converted from measured eroded volumes using a bulk density 

of 1500 kg/m3. 
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Figure 2.4: Percent contribution of hillslope erosion (rilling) to total erosion for 

varying size sub-basins within the study catchment. At small drainage areas, erosion 

is entirely by hillslope erosion. As the drainage area increases and channels are 

present, the relative contribution of hillslope erosion diminishes. In this setting, the 

threshold between hillslope-process dominance and channel-process dominance 

(purple shading) occurs at a drainage area of about 20 hectares (0.2 km2). Data are 

fit with a power law function (dashed line). 

Discussion 

Uncertainty and Assumptions: 

Our quantification of channel eroded volume does not extend to channel heads. 

From our field observations we are confident the DoD captures the largest-magnitude 

channel erosion and most of the significant channel erosion. However, mapping the 

locations of more channel heads with imagery (e.g. from UAS) or in the field would 

provide a more complete picture of the hillslope-channel connectivity. HRT of the entire 

catchment would facilitate additional analyses at appropriate scales (Passalacqua et al., 

2015). Our DoD has a total volume uncertainty of 12% as characterized in Chapter 1. 
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Our method to extrapolate the rill measurements from 15 transects to the entire 

watershed is predicated on the mean rill dimensions. Considering the rill erosion to be a 

spatially consistent depth per unit area simplifies the quantification of erosion attributed 

to rilling. Our statistical approach could be misleading because it is not a spatially 

explicit representation of the significant variability recorded by our hillslope transects. 

Intuitively, we would expect rill dimensions and the number of rills to increase 

downslope as contributing areas become larger and flow paths lengthen. However, for 

parallel rills on planar slopes, dimensions are consistent downslope and the contributing 

area per rill is moderated (Moody and Kinner, 2006). Additionally, in the field we 

observed that rills were commonly discontinuous; individual rills encountered surface 

depressions or roughness and disappeared, or initiated with minimal convergent area. 

Therefore, our constant 1.4 mm of rill erosion per unit area may sufficiently represent rill 

erosion for our study’s purpose. Our total rill volume has an uncertainty of 29%. 

For this discussion, we avoid point and plot measurements of hillslope erosion 

from the post-fire literature because contributing areas are often ambiguous. Instead, we 

focus on studies that clearly define the basin area, the measurement method, and report 

sediment yield in mass/area/time. The sediment yields we report from our study 

catchment (t/ha/yr) are minimum values because our channel and rill eroded volumes 

only measured one event. Special attention is brought to studies that implement HRT to 

partition hillslope erosion magnitudes from channel erosion magnitudes.
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Channel Erosion Outpaces Hillslope Erosion as Drainage Area Increases 

We found that channel erosion volumes increase more quickly than rill erosion 

volumes with increasing drainage area (Figure 2.2). We attribute this relationship to 

increasing connectivity provided by the channel network at larger drainage areas. Interill 

erosion (which we did not measure) is dominated by rainfall, whereas runoff controls rill 

and channel erosion (Aksoy and Kavvas, 2005). Therefore, as contributing area increases 

the importance of runoff erosion also increases, promoting channel erosion (rather than 

hillslope erosion). Additionally, rill and channel erosion are reflective of structural and 

functional connectivity and are related and especially dynamic in post-fire scenarios 

(Wohl et al., 2018). Competent runoff is required to link hillslope rill erosion to channels 

(Wester et al., 2014). Additionally, fires remove riparian vegetation, further increasing 

hillslope-channel connectivity (Wester et al., 2014). Where drainage area is too small to 

support a channel, erosion by rilling has limited capacity to transport sediment. However, 

where channels are present and connected to the hillslopes, such as the steep-sided and 

narrow valleys at our study site, sediment produced from hillslopes is transported to the 

sub-basin outlet more efficiently. Additionally, runoff-generated debris flows increase in 

volume as they proceed downstream, either by the continued addition of hillslope 

material, the scouring of their channel, or both (Meyer and Wells, 1997; Cannon et al., 

2001; Gabet and Bookter, 2008; Santi et al., 2008). Resultingly, the eroded volume to 

drainage area relationship becomes noticeably more positive for drainage areas that 

include channel processes. This result is broadly consistent with Moody and Martin 

(2009), who compiled studies of post-fire erosion across the western United States and 
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found channels contribute 75% (240 t/ha/yr average) of total erosion compared to 25% 

(82 t/ha/yr average) erosion contribution from hillslopes. 

Conceptually, the outsized impact of channel erosion to total post-fire erosion is 

moderated over longer timescales. Low background rates of sediment transport on 

hillslopes integrate over long time intervals between fires (e.g. a few hundred years), to 

store considerable volumes of erodible material in channels. Increased surface runoff and 

peak discharges immediately after fire are able to evacuate this stored material, enabling 

removal of tmaterial derived from long-term hillslope processes and facilitate overall 

landscape-wide erosion. 

Spatial Threshold at 20 ha Drainage Area 

From our sub-basin data, we observe that a switch between hillslope-dominance 

and channel-dominance of total erosion occurs near 20 ha (0.2 km2) drainage area 

(Figures 2.2 and 2.4). We are not implying that 20 ha is the critical area for channel 

initiation (i.e. Montgomery and Foufoula-Georgiou, 1993). Other post-fire studies have 

quantified critical area; fire reduces the critical area required for channel initiation from 1 

ha (unburned) to 0.2 ha in Colorado (Moody and Kinner, 2006), and a transition from 

hillslope to hollow occurs at 0.1 ha in Valles Caldera, New Mexico (Pelletier and Orem, 

2014). Rather, the 20 ha drainage area threshold produces approximately equal eroded 

volumes from hillslope (rilling) and channel (debris flow scour) processes in this setting. 

The 20 ha spatial threshold signifies strong connectivity between the detachment 

and transport of sediment on hillslopes and the channel network. For larger drainage 

areas, channels efficiently transport sediment as well as contribute erosion. For smaller 

drainage areas, hillslopes are not tightly coupled to the channel network and sediment 
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flux is dampened. Investigating this spatial threshold in other burned settings may help 

constrain this value for varied hydro-geomorphic regimes. Over long time scales, 

hillslope to valley coupling is moderated by fire frequency, rainfall, vegetation, and soil 

production (Roering and Gerber, 2005). 

Inconsistent Sediment Yield and Drainage Area Relationship 

For our analyzed sub-basins, total eroded volume (Figure 2.2) and sediment yield 

(Figure 2.3) increase as the drainage area increases. Cannon et al. (1998), Gabet and 

Bookter (2008), and Pelletier and Orem (2014) also report volume increasing with 

drainage area, although each uses a different type of function to represent the 

relationship. Similarly, Moody and Martin (2009) give the summary that post-fire 

sediment yield increases with spatial scale from hillslopes to channel networks. “When 

hillslope processes dominate channel processes, sediment yield decreases as drainage 

area increases. When channel processes dominate hillslope processes, sediment yield 

increases as drainage area increases. The latter is the case after wildfires.” (Moody and 

Martin, 2009). Hillslope and channel landscape compartments and erosional process are 

fundamentally related: burned hillslopes produce surface runoff, but concentrated flow 

(channels) produce more sediment (Macdonald and Robichaud, 2010). In other words, 

channel erosion cannot occur without runoff generated on hillslopes. 

However, most studies report an inverse relationship between sediment yield and 

drainage area in burned and unburned setting (Shakesby and Doerr, 2006; Macdonald and 

Robichaud, 2010). Scott et al. (1998) found higher soil losses at midslope plots than 

measured at the catchment scale, with sediment delivery ratios (SDR) from 0.08-0.5. 

Wagenbrenner and Robichaud (2014) report SDR and sediment yield decreased 
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significantly as the catchment size increased using bedload measurements from several 

sites and scales. A compilation of post-fire literature values bears this out, showing a 

decline in sediment yield for increasing drainage areas (Table 2.2 and Figure 2.5). These 

data are scattered due to an array of methods, settings, and erosion processes, but a trend 

is recognizable. HRT post-fire studies show the same trend of decreasing sediment yield 

with increasing drainage area. A constant sediment yield for various drainage areas may 

imply landscape equilibrium (Reneau and Dietrich, 1991).  

Table 2.2: Literature sediment yield and drainage area data used in figures 2.5 

and 2.7 

High resolution topography only 

Study Basin size, 

ha 

Sediment yield, t/ha Hillslope erosion % of total 

This study 95.5 72 24 

Delong et al., 

2018 

7.5 118 68 

Delong et al., 

2018 

2.6 340 68 

Renger et al., 

2016 

0.6 394 87 

Orem and 

Pelletier, 2015 

136 121 - 

Orem and 

Pelletier, 2015 

132 61 - 

Staley et al., 

2014 

1 384 93 

Literature post-fire erosion values 

Study Basin size, 

ha 

Sediment yield, t/ha Hillslope erosion % of total 
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Gabet and 

Bookter, 2008 

30 29 - 

Gabet and 

Bookter, 2008 

15 134 - 

Gabet and 

Bookter, 2008 

23 187 - 

Gabet and 

Bookter, 2008 

27 62 - 

Gabet and 

Bookter, 2008 

8 239 - 

Gabet and 

Bookter, 2008 

76 72 - 

Meyer and 

Wells, 1997 

159 109 30 

Meyer et al., 

2001 

49 442 51 

Nyman et al., 

2011 

70 120 72 

Nyman et al., 

2011 

12 270 65 

Nyman et al., 

2011 

30 150 35 

Nyman et al., 

2015 

33 148 18 

Nyman et al., 

2015 

72 132 20 

Nyman et al., 

2015 

65 116 43 

Nyman et al., 

2015 

36 113 48 

Nyman et al., 

2015 

100 186 55 
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Nyman et al., 

2015 

12 251 43 

Nyman et al., 

2015 

120 147 41 

Nyman et al., 

2015 

220 294 33 

Nyman et al., 

2015 

23 158 58 

Nyman et al., 

2015 

8 151 62 

Pelletier and 

Orem, 2014 

10 15 - 

Pelletier and 

Orem, 2014 

100 15 - 

Santi et al., 2008 125 75 3 
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Figure 2.5: Post-fire erosion literature values for sediment yield plotted against 

basin size. Sediment yield (t/ha) decreases as drainage area increases. A common 

explanation for this negative relationship is increased opportunities for sediment 

storage or deposition in larger catchments (Lane et al., 1997; Scott et al., 1998; 

Shakesby and Doerr, 2006; Wagenbrenner and Robichaud, 2014). However, this 

result seems at odds with data from sub-basins within our study catchment (Figure 

2.3). Open circle symbols are measurements from multiple methods where basin sizes 

were clearly reported. Filled red diamond symbols are measurements from high-

resolution topography (HRT) methods, this study is shown with purple squares. The 

HRT data are fit with a power law function (dotted line). 

A common explanation for reduced sediment yields in larger catchments is that 

they have greater opportunities to store sediment (Scott et al., 1998; Aksoy and Kavvas, 

2005; Shakesby and Doerr, 2006). From a connectivity standpoint, higher-order 

drainages have greater ability to dampen signals (Wohl et al., 2018). Additionally, 

measurement techniques over large spatial extents (including HRT) are not sensitive to 

small changes and therefore may not record the sediment yield signal. 

So, why does our sub-basin analysis show a positive sediment yield to drainage 

area relationship and most literature the opposite? Undoubtedly there are localized 

differences: Wagenbrenner and Robichaud (2014) noted that sediment yield did not 
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decrease with contributing area at their Hayman site, which has grus hillslopes similar to 

those in our study catchment. Process differences also impact sediment yields at varying 

scales, such as soil detachment at the hillslope scale, bank erosion at the sub-basin scale, 

and runoff amount at the watershed scale (Lane et al., 1997). Hillslope and channel 

sediment yields from disparate landscapes must be compared with caution (Moody and 

Martin, 2009). Moody et al. (2013) remind us that “results cannot be scaled up or down 

unless the dominant process is known to have the same temporal and spatial scales.” 

Hillslope and channel landscape compartments and erosional process are fundamentally 

related: burned hillslopes produce surface runoff, but concentrated flow in channels 

produce more sediment (Macdonald and Robichaud, 2010). In other words, channel 

erosion cannot occur without runoff generated on hillslopes. Lastly, sediment yield is 

inherited from large-scale questions in sedimentary research. It can be a misleading 

metric for post-fire erosion processes because of their intermittency (Figure 2.6), 

(Swanson, 1981; Moody et al., 2013). 

 

 

Figure 2.6: Conceptual diagram from Swanson (1981) illustrating the intermittent 

nature of post-fire sediment yields. 
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Hillslope Contribution as a Function of Drainage Area 

Our sub-basin analysis shows the contribution from hillslopes as a percentage of 

total erosion decreases as the drainage area increases (Figure 2.4), consistent with other 

post-fire literature. Relatively few studies partition total erosion into hillslope and 

channel components. However, those that do show that hillslopes contribute less to total 

erosion as drainage area increases (Figure 2.7). 

 
Figure 2.7: Post-fire literature values for the percent contribution of hillslope 

erosion to total erosion for varying basin sizes. At small drainage areas, hillslope 

processes contribute all or most erosion. As drainage area increases, channel 

processes become more dominant. Open circle symbols are measurements from 

multiple settings and methods where basin sizes were clearly reported. These data are 

fit with a power law function (black dashed line). Filled green triangle symbols are 

from high-resolution topography (HRT) methods, including this study shown with 

purple squares. HRT data are fit with a power law function (green dashed line). While 

taken from few data points, the similarity of fitted lines is encouraging. Variation in 

the literature values is reflective of diverse settings (geology, fire, precipitation, basin 

characteristics, etc) as well as multiple measurement methods. 

Partitioning eroded volumes into channel and hillslope components is facilitated 

by HRT differencing. Multi-temporal surveys, especially those with cm-resolution from 
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TLS and SfM, diagnose the spatial signatures of erosion and relate quantified volumes to 

specific processes (e.g. (Staley et al., 2014; Rengers et al., 2016; DeLong et al., 2018). 

However, these TLS surveys are focused on small study basins (0.5-7.5 ha) and 

consequently, hillslope processes dominate. Considering studies from a range of larger 

drainage areas, our experimental result of decreasing hillslope contribution to total 

erosion is confirmed. A power-law function produces a satisfactory fit to both our 

experimental data (Figure 2.4) and values from the literature (Figure 2.7), albeit with 

different exponents potentially reflecting the diversity of settings. Our interpretation is 

that this relationship illustrates increased sediment flux efficiency from channels and 

better connectivity for increasing drainage areas, rather than a relative reduction in 

hillslope erosion processes. 

Conclusion 

The connectivity of sediment fluxes from hillslopes to channels is a critical topic 

as post-fire erosion processes impact communities, infrastructure, and ecosystems. In all 

watersheds, hillslope surface area drastically exceeds channel surface area. Yet hillslope 

erosion processes (e.g. rilling) are very rarely quantified at appropriate spatial scales (i.e. 

a typical headwater catchment). Erosion in channels by concentrated flow cannot occur 

without runoff generated on hillslopes, but to date many post-fire domains lack 

volumetric and spatial comparisons between hillslope and channel sediment 

contributions. We sought to quantify a fundamental spatial threshold separating channel 

and hillslope processes. To do so, we made measurements of channel erosion by debris 

flow scour and hillslope erosion by rilling in a 0.95 km2 Idaho catchment and compared 

their magnitudes at multiple sub-basin extents. We found channel eroded volume 
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increases faster than hillslope eroded volume as basin area increases, reflecting increased 

hillslope-channel connectivity and more efficient sediment transport through the channel 

network. In this setting, the hillslope-dominance to channel-dominance threshold exists at 

a drainage area of ~20 hectares. A positive relationship between sediment yield and basin 

size in our experimental data is not consistent with literature values, which indicate a 

generally inverse relationship between sediment yield and drainage area. Variability in 

these relationships is reflective of the measurement methods and the array of post-fire 

settings, among many factors. Our approach of dividing a larger watershed into sub-

catchments of varying contributing areas is an efficient method to investigate post-fire 

erosion. Few post-fire erosion studies employ high-resolution topography to differentiate 

channel and hillslope erosion magnitudes, but those that do help elucidate important 

process-based changes and demonstrate how hillslope-channel coupling evolves with 

drainage area. 
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APPENDIX A 

Structure from Motion Methods



90 

 

 

 

 

This is intended to be a user guide to apply Structure from Motion Multi View 

Stereo photogrammetry to geomorphologic investigations. It describes the general 

guidelines and specific approaches employed to conduct the survey, process imagery into 

a point cloud, and produce a DEM. The examples provide support for Nicholas Ellett’s 

Master’s thesis (2019, Boise State University). References are included where relevant or 

helpful. 

Structure from Motion Background 

Structure from Motion, Multi View Stereo photogrammetry (SfM hereafter) is a 

relatively new development in the field of geomorphology. SfM refers to the method of 

deriving high-resolution topographic data (a point cloud) from multiple overlapping 

images. SfM reconstructs the geometry of scene by matching and triangulating features 

from multiple images. The are no rigid requirements for camera specification or 

viewpoint geometry, as in traditional stereo-photogrammetry. An algorithm called Scale 

Invariant Feature Transform overcomes irregular changes in perspective and scale 

between images and simplifies SfM implementation (Johnson et al., 2014). The primary 

derivative product of SfM is a point cloud containing x,y,z and r,g,b values at each point, 
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which can be processed similar to lidar data. The point clouds can also be simplified into 

gridded digital elevation or digital surface models (DEM, DSM). 

SfM is capable of point densities exceeding terrestrial laser scanning (lidar, TLS) 

at scales of a few hundred meters. Combining the SfM process with a flexible platform, 

such as an unmanned aerial vehicle (UAV), is particularly well-suited to geoscience 

investigations at sites up to kilometer-scale where vegetation is sparse or absent. SfM is 

also being used with satellite images to produce DEMs at global scales 

(https://www.pgc.umn.edu/data/arcticdem/ and https://www.pgc.umn.edu/data/rema/ ). 

For a short list of references discussing the concepts and applications of SfM we 

recommend: James and Robson, 2012; Westoby et al., 2012; Johnson et al., 2014; 

Lucieer et al., 2014; https://kb.unavco.org/kb/article/structure-from-motion-sfm-

introductory-guide-843.html; Mosbrucker et al., 2017; and those mentioned elsewhere in 

this appendix. 

 

Other required steps 

 Establish a study area.  

 Take UAV test for Federal Aviation Administration (FAA) “remote pilot” license.  

 Practice UAV takeoff, flight, and landing in a variety of situations, become 

familiar with camera controls, memory card capacity, battery life, and other UAV 

operations.  

 Install and practice with a flight planning app, if using. 

 

SfM Survey Steps 

1: Establish ground control points 

Deriving a point cloud without ground control is possible using only the UAV-

integrated GPS. However, for geomorphic change detections applications especially, 

acquiring the best possible ground control is paramount to georeferencing the derived 

https://www.pgc.umn.edu/data/arcticdem/
https://www.pgc.umn.edu/data/rema/
https://kb.unavco.org/kb/article/structure-from-motion-sfm-introductory-guide-843.html
https://kb.unavco.org/kb/article/structure-from-motion-sfm-introductory-guide-843.html
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point cloud accurately. Using independent ground control points (GCPs) attaches the SfM 

point cloud to a real-world coordinate system, from which transformations can be made if 

needed. Additionally, the independent ground control points can provide a metric of 

accuracy or uncertainty for the SfM point cloud itself. 

For the established study area, ground control points should be distributed in a 

variety of locations and extend beyond the edges of the area of interest. A grid pattern is 

not required. James et al. (2017) found ~50 m spacing between GCPs was best for their 

application at 2 cm desired spatial resolution. Goetz et al. (2018) report that DEM 

precision (repeatability) was poorer at locations >40 m from a GCP. However, the actual 

number of GCPs depends on the study’s specific goals, the accuracy of the GCP 

recording, and the field setting. 

For our post-fire erosion study, we placed a total of 35 GCPs in an irregularly-

shaped 0.2 km2 area. The specific locations were chosen in the field, mixed between 

hillslope, channel, and debris fan areas, and judged to be stable (so that repeat surveys 

could utilize them). 20 of these GCPs were covered by UAV imagery and available for 

georeferencing the point cloud. The GCPs consisted of ~40 cm lengths of rebar 

hammered into the surface. Orange bucket lids were placed over the protruding rebar for 

visibility in UAV images and during field work. The precise GCP location were then 

surveyed with a TopCon HiperV real time kinematic GPS unit. A base station is setup 

and begins logging information from multiple satellites for at least 2 hours. A rover 

device mounted on a 2 m pole is used to record the location of each GCP (centered on 

rebar). These data were post-processed using the National Geodetic Survey’s Online User 
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Positioning Service, providing corrected coordinates in UTM Zone 11N with explicit 

horizontal and vertical accuracies for each GCP. 

Another option which provides georeferencing without placing GCPs is the so-

called direct georeferencing method. This involves a UAV with a higher-accuracy 

onboard GPS than common consumer models. An example is the ~$7000 USD DJI 

Phantom Rtk, which when integrated with a base station claims centimeter accuracy. See 

Turner et al. (2014) and Carbonneau and Dietrich (2017) for examples of direct 

georeferencing. 

2: Conduct flights and collect images 

Multiple studies address the number and type of images required for optimal SfM 

processing; James and Robson (2014) and Mosbruker et al. (2017) are recommended. In 

order for SfM to work, each point on the ground needs to be in multiple images. This is 

often referred to as overlap. Overlap should be at least 70%, with more overlap for 

complex terrain. Most images are acquired at nadir (camera facing straight down). 

However, a few convergent, oblique images improve the SfM model by minimizing 

‘doming’ (James and Robson, 2014). 

The flying height and the camera resolution control the ground sampling distance. 

A high altitude and a low resolution camera will result in a less dense point cloud and a 

less detailed DEM, but can cover large areas. Likewise, a low flying altitude and a high 

resolution camera will produce a very dense point cloud and cm-details in the DEM, but 

only over small areas. Each study will have different requirements to balance desired 

detail with areal coverage. A further consideration are restrictions on UAV flight altitude; 

the Federal Aviation Administration requires UAVs remain below 120 m altitude. 
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Another consideration when acquiring images are the lightning and weather 

conditions. Most small, consumer UAVs function fine in gentle breezes but high winds 

pose a hazard. Obviously rain and fog should be avoided. The lighting conditions are also 

important; SfM is limited to information in images to derive point cloud models. The 

camera focal length should be fixed. Gimbal-mounted cameras are designed to minimize 

blur in images. Camera exposure and focus can be controlled automatically; most modern 

digital cameras do this well. Early morning, evening, and overcast conditions provide 

uniform lighting, minimize shadows, and reduce contrast between bright and dim areas. 

A lossless file format (.RAW) is an option, but for our study the .JPG images were more 

than sufficient. These considerations improve the quality of the individual images and the 

resulting SfM model.  

For our post-fire erosion study, we flew the UAV (DJI Phantom 4 Pro) at 20-30 m 

altitude and controlled it manually to avoid standing, dead trees. Most images were 

acquired at nadir, as suggested earlier. With the 20 megapixel camera this set up provided 

ground sampling distances of a few millimeters and a very dense point cloud. With ~15 

minutes flight time per battery, we required 4 flights to cover the eroded channels and 2 

flights to cover the debris fan deposit, a total of <0.2 km2. 

Several apps are available to plan UAV flights and can automate the process of 

takeoff, flying, and image collection at preset locations or time intervals, among other 

features. In a remote study area these require some pre-planning with an internet 

connection to set up the automated survey. We used one called MapPilot for iOS on a 

return visit to our study site in 2018; it worked well. 
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3: Process images using Agisoft Photoscan Professional 

After images and GCPs are ready, they can be processed into a point cloud using 

the SfM workflow. Step by step instructions for Agisoft Photoscan Professional (soon to 

be Agisoft Metashape) follow. We also recommend this UNAVCO guide for another 

perspective: https://kb.unavco.org/kb/article/structure-from-motion-sfm-agisoft-

photoscan-processing-guide-848.html  

1. Open Agisoft 

2. Save the file (.psx or .psz are Agisoft 

formats) 

3. Workflow>Add photos>select images 

files 

 They’ll appear in the main 

“Model” window in their GPS 

positions from the UAV, and 

also in the “Photos” panel. 

 
4. In “Photo” panel, change view from icons to ‘details’. Right click on an image and 

select ‘estimate image quality’ for all images. Sort the column from lowest to highest, 

remove images with quality <0.75 by selecting them and clicking the ‘x’ symbol, or 

https://kb.unavco.org/kb/article/structure-from-motion-sfm-agisoft-photoscan-processing-guide-848.html
https://kb.unavco.org/kb/article/structure-from-motion-sfm-agisoft-photoscan-processing-guide-848.html
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right click and select ‘remove camera’. 

 
 These are usually blurry images. Double clicking on an image file will show 

the full image. 

5. Workflow>Align Photos>Ok 

 This step creates the “sparse” point cloud. It uses a limited number of “tie 

points” to determine the relationship between those points in all images, and 

the relationship of the points to the locations images were taken from. This is 

one of the fundamental “Structure from Motion” processes. 

 
 The accuracy refers to how the images are handled. “high” keeps images full 

size, “medium” reduces them by factor of 4, “low” reduces them another 

factor of 4. The full size images will take longer to process, so depending on 
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computer power, number of images, and 

project goals “medium” or “low” may be 

appropriate.  

 We used “high” on the post-fire erosion 

project with good results 

 Other parameters can be left as default 

 After alignment completes, a point cloud 

will appear in the main “Model” window. 

It can be rotated, zoomed, etc. using 

mouse functions. The “Workspace” panel 

shows some details such as how many 

cameras (images) were aligned, and how 

many points are in the sparse point cloud. 

 Save project. 

 
6. Assign GCP locations 

 Double-click an image in the “Photos” panel that has a known GCP in it. 

 Right click and select ‘Add marker’. Zoom in and adjust the flag position to 

be the exact center of the GCP target. 
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 Find that same GCP in another image, right click and select ‘place marker 1’. 

Adjust the flag position to the exact center of the GCP. 

 After this, Agisoft will find all images that contain that GCP and they will 

have blue flags in the “Photos” panel.  

 Go through each image (with blue flag) individually and adjust the flag 

position to the exact center of the GCP, the flag will change to green. If the 

GCP is not in an image that has a blue flag, right click and select ‘Remove 
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marker’. 

 
 Select the “Reference” tab (same panel as “Workspace”). It shows the UAV 

position information for each image (from UAV GPS, low accuracy) in the 

upper portion and the ‘markers’ in the lower portion. 

 If needed, change the coordinate system from lat/lon to RTK GPS survey 

coordinate system by clicking the ‘calculator’ icon (“Convert”). 

 
 Rename the markers to match RTK GPS data. Input the GCP coordinates, and 

the GCP error, from the RTK GPS post-processed data by clicking each field. 



100 

 

 

 Repeat above steps for all remaining GCPs. 

 
 In “Reference” tab, select all images, right click and select ‘uncheck’. This 

allows Agisoft to consider only the higher-accuracy GCP locations for further 

steps, and ignore the lower-accuracy UAV GPS locations. Leaving the images 

checked will confuse Agisoft because it will try to rectify the UAV locations 

and the GCP locations; they aren’t the same. 

 
 Save project 

7. In “Reference” tab, click the ‘wand’ icon to “optimize” the sparse point cloud.  

 This balances the rigid GCP locations with the estimated or aligned “tie 

points” and camera locations in the sparse cloud. The default parameters are 
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usually acceptable. 

 
 An error for each GCP will be shown in the “Reference” tab, as well as an 

overall error, calculated as the RMSE between the known RTK GPS GCP 

location and the SfM model placement of that point. 

 If some ‘marker’ GCPs are unchecked, they provide an independent estimate 

of error (check points); only checked GCPs (control points) are used to 

georeference the SfM model. 

 Save project. 

8. Workflow>Build Dense Cloud 

 First, Resize the region of interest (bounding box) to ensure the entire sparse 

cloud is contained. Agisoft ignores areas outside that box. 

 Build Dense Cloud>Quality setting is similar to “Accuracy” parameter from 

the sparse cloud; the “high” setting preserves images full-size, but takes 

longer. “High” quality also tends to produce a noisy surface, whereas lower 

quality settings are often sufficiently dense but with a less noisy surface. 

 The Depth filtering setting adjust how Agisoft considers vertical deviations; 

“Aggressive” depth filtering removes high and low points and produces a 

smoother surface, good if small details don’t matter. “Mild” or “disabled” 

retains those vertical differences between points; good for small details and 
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rugged surfaces, but can contain a lot of noise. 

 
 These parameters require some experimentation. They depend on camera 

quality and flying height, the landscape characteristics, processing power, and 

the purpose of the SfM model. 

 We used “Medium” quality and “Moderate” depth filtering for our post-fire 

erosion study. 

 When processing completes, the dense cloud will be visible by selecting the 

icon at the top of the “Model” window.  

 It should be a very life-like point cloud. Navigation is by mouse functions. 

 
 If it is excessively noisy, distorted, or otherwise not suitable, earlier settings 

will have to be changed and the dense cloud re-processed. 
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 Any changes to markers (GCPs), clicking “optimize” again, or any other 

changes will remove the dense cloud and it will have to be reprocessed. 

 This is the final, georeferenced point cloud. The “Reference” tab Total Error 

is a measure of accuracy including GCP error and SfM model error. 

 Save project. 

9. Export point cloud as .LAZ or .LAS file 

 File>Export>Export points 

 .LAS and .LAZ or standardized point cloud formats used by lidar. 

Optional steps: 

10. Classify dense point cloud 

 Agisoft has a tool to classify the point cloud into “ground” and non-ground 

points, as is common for lidar data. 

 Tools>Dense Cloud>Classify Ground Points

 
 Again, this requires some experimentation. Regions below the Max angle 

parameter will be considered for classification as ground points. The Max 

distance parameter is a threshold, below which points can be classified as 

ground. The Cell size parameter computes a surface using a neighborhood of 
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that size, the Max angle and Max distance are taken from that surface. 

 
 View results by selecting the ‘greyed’ dense cloud icon above the main 

“Model” window. 

 Brown points are classified as ground, grey is unclassified, and pink is low 

noise. 

 
 If the classification is satisfactory, save the project and export the .LAZ again. 

It will now contain classified points viewable in other software. 

 If the classification is unsatisfactory, go to Tools>Dense Cloud>Reset 

Classification, then repeat the “Classify ground points” step with different 

parameters. 

11. Generate an othromosaic 
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 Workflow>Build Mesh

 
 Surface type is arbitrary if a very complex scene, select height field for most 

terrain types. Source data should be dense cloud for the most detail possible. 

Face count is the complexity of the mesh surface; default Medium is good. In 

‘Advanced’, the mesh can be built from only ground-classified points, if 

desired for the purpose of project. 

 Now three icons are enabled above the main “Model” window; for a colored 

mesh model, a solid mesh, or a wire mesh. 

 
 Save project. 

 Building the mesh is required before an orthomosaic or a DEM can be created 

in Agisoft. 
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 Workflow>Build orthomosaic

 
 The default settings are usually good. Ensure the desired coordinate system is 

shown. The pixel size can be adjusted, as default Agisoft uses a very small 

pixel size (high resolution) based on the images themselves. 

 After processing completes, save the project. The orthomosaic can be 

exported (as a GeoTIFF) for display or use in another program using 

File>Export>Export Orthomosaic. 

12. Generate a DEM 

 Workflow>Build DEM

 
 Settings are similar to orthomosaic, above and defaults are usually good. 
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 Ensure coordinate system is correct. Choose Dense cloud as Source data. 

Choose Ground class only if desired for project. 

 Save project. File>Export>Export DEM (as a GeoTIFF). 

Other Agisoft functions: 

 Export .kmz for Google Earth: File>Export>Export Orthomosaic>Export Google 

KMZ. Drag this into Google Earth to view high-resolution orthomosiac within the 

Google Earth context. 

 Generate survey statistics: Tools>Survey Statistics. This creates a few figures 

showing image overlap and GCP error, for instance. 

 
 Generate processing report: File>Export>Generate Report. This creates a PDF 

showing the complete processing parameters, calibration, error, and other factors. 

Several helpful figures are produced.  
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4. Further steps and analyses 

Agisoft provides a great way to produce a point cloud and other products, and has 

more functionality than is discussed above. However, other programs can be 

advantageous; an Agisoft DEM could be exported to ArcMap and orthomosaics can be 

analyzed using ENVI. 

For point cloud manipulation, analysis, and further processing we recommend 

CloudCompare (https://www.danielgm.net/cc/). This is an open-source program designed 

for point clouds. There is an active forum (https://www.danielgm.net/cc/forum/ ) and a 

helpful Wiki page for it 

(http://www.cloudcompare.org/doc/wiki/index.php?title=Main_Page ). CloudCompare is 

user-friendly and exploration is encouraged. For our post-fire erosion study, we produced 

the raw point cloud in Agisoft and then used CloudCompare for extensive exploration, 

refinement, and processing. CloudCompare has more options to control DEM creation 

than Agisoft, and a suite of CloudCompare tools are available (and updated regularly) for 

advanced point cloud functions. 

The CloudCompare functions we used for our post-fire erosion study included 

segmenting the point cloud, subsampling the point cloud (reduce point density to ease 

processing demand), generating statistics, calculating elevation contours, creating mesh 

surfaces, filtering noise points (Statistical Outlier Removal tool), filtering ground and 

non-ground classified points, and creating and exporting DEMs, among others.

https://www.danielgm.net/cc/
https://www.danielgm.net/cc/forum/
http://www.cloudcompare.org/doc/wiki/index.php?title=Main_Page
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APPENDIX B 

Radiocarbon data 
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