
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Using Double Oracle Algorithm for Classification
of Adversarial Actions

Prokop Šilhavý

Supervisor: Mgr. Branislav Bošanský, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2019

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434728Osobní číslo:ProkopJméno:ŠilhavýPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Využití algoritmu inkrementálního generování strategií pro klasifikaci akcí útočníka

Název diplomové práce anglicky:

Using Double Oracle Algorithm for Classification of Adversarial Actions

Pokyny pro vypracování:
Classifiers are used in security domains where the actions of an adversary are being classified as malicious or benign.
This interaction can be modeled as a game; the strategy of one player corresponds to setting parameters of a classifier,
the strategy of the opponent is to choose such an input that causes misclassification. These games can be solved to a
bounded error using a double oracle method that incrementally builds a discrete version of this continuous game. The
goal of the student is to 1. Implement a flexible software framework for using double oracle for an arbitrary classification
problem with 2 classes, 2. Analyze the performance of double oracle depending on the number of features, the structure
of benign data, the shape of the utility function of the adversary, and the used classifiers and the computation time spent
on finding new best responses, 3. Identify for which classes of problems the double oracle algorithm can be used to find
robust classification strategies.

Seznam doporučené literatury:
[1] McMahan, H. B., Gordon, G. J., & Blum, A. (2003). Planning in the presence of cost functions controlled by an adversary.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 536-543).
[2] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., ... & Graepel, T. (2017). A unified
game-theoretic approach to multiagent reinforcement learning. In Advances in Neural Information Processing Systems
(pp. 4190-4203).
[3] M. Brückner, C. Kanzow, and T. Scheffer. Static prediction games for adversarial learning problems. Journal of Machine
Learning Research, 13(Sep):2617–2654, 2012.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Mgr. Branislav Bošanský, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 14.02.2019

Platnost zadání diplomové práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryMgr. Branislav Bošanský, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor,
Mgr. Branislav Bošanský, Ph.D., for his
patient guidance, helpful advises, and con-
structive criticism.

Furthermore, I would like to thank my
family for their love and support during
my study, and especially my sister Terezie
for valuable help.

Finally, my thanks belong also to VO
MetaCentrum, which provides distributed
computing infrastructure, and which en-
ables us to run all the experiments.

Declaration
I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

Prague, May 22, 2019

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze 22. května 2019

v

Abstract
This thesis examines the usability of
Double-Oracle algorithm for finding
a Nash equilibrium in infinite games. Es-
pecially, it focuses on finding a robust
solution for classification of adversarial
action.

At first, we have formalized an adver-
sarial classification problem as an almost
zero-sum game with hard false-positive
constraint in expectation. For this rep-
resentation, we have found an algorithm,
which gives us the exact value of the game.

Double Oracle applied in this game con-
sists of three parts: slightly modified LP
for solving the restricted game, general op-
timization for finding the attacker’s best
response, and a classifier for an approxi-
mation of the defender’s best response.

We have created a framework for using
DO for classification of adversarial actions,
and we have evaluated it on predefined
domains with various structures and a var-
ious number of dimensions. The exper-
iments have been performed with three
classifier types: decision tree, SVM, and
neural network. The experimental results
have shown that the algorithm converges,
but the computation time grows fast with
the number of dimensions.

Keywords: Double Oracle, adversarial
machine learning, infinite games

Supervisor: Mgr. Branislav Bošanský,
Ph.D.

Abstract
Diplomová práce se zabývá použitím algo-
ritmu inkrementálního generování strate-
gií v nekonečných hrách. Konkrétně se
zaměřuje na jeho využití při klasifikaci
akcí útočníka.

Nejprve jsme si formalizovali problém
adversariální klasifikace jako hru se strikt-
ním omezením na chybu prvního typu
v prostoru smířených strategií, která
je téměř s nulovým součtem. K této
reprezentaci jsme vytvořili algoritmus,
který nám přesně určí hodnotu hry.

Algoritmus inkrementálního generování
strategií se v tomto případě skládá ze
tří částí: z lehce upraveného LP na
řešení omezené hry, z obecné optimaliza-
ční funkce pro nalezení optimální reakce
útočníka a z klasifikátoru, který přibližně
hledá optimální reakci obránce.

Vytvořili jsme framework používající
algoritmus inkrementálního generování
strategií pro řešení problému klasifikace
akcí útočníka a otestovali jsme ho
na doménách s různorodou strukturou
a s různě dimenzionálním prostorem akcí
útočníka. Experimenty využívaly tři
různé klasifikátory: rozhodovací stromy,
SVM a neuronové sítě. Výsledky ukázaly,
že algoritmus konverguje, ale jeho časová
náročnost rapidně roste s počtem dimenzí
prostoru útočníkových akcí.

Keywords: algoritmus inkrementálního
generování strategií, adversariální
klasifikace, nekonečné hry

Title translation: Využití algoritmu
inkrementálního generování strategií pro
klasifikaci akcí útočníka

vi

Contents
1 Introduction 1
1.1 Related Work 1
1.2 Outline and Contributions 2
2 Introduction to Game Theory 5
2.1 Normal-Form Games 5
2.2 Infinite Games 7
3 Solution Concepts 11
3.1 Nash Equilibrium 11
3.2 Finding of a NE in a Zero-Sum
NFG . 13

3.3 Finding of a NE in a General-Sum
NFG . 14

3.4 Finding of a NE in Infinite Games 14
3.5 Double-Oracle Algorithm 15
3.6 Stackelberg Equilibrium 16
4 Adversarial Classification as
a Game 17
4.1 General-Sum Game 18
4.2 Finding a NE by Discretization . 19
4.3 Finding a NE by Double Oracle 20
4.4 Zero-Sum Game 20
4.4.1 Hard Constraint in
Classification 21

4.4.2 Hard Constraint in
Expectation 21

4.4.3 Soft Constraint in Expectation 23
4.5 Specialized Discretization for
Game with Hard Constraint in
Expectation . 23

5 Framework Details and Setting of
Experiments 25
5.1 Datasets . 25
5.2 Specialized Discretization 27
5.3 Double Oracle Setup 27
5.3.1 Attacker’s Best Response . . . 28
5.3.2 Defender’s Best Response . . . 29

5.4 Implementation Details 30
6 Experiments 33
6.1 Alternating or Simultaneous BR
Computation 33

6.2 Comparison of Optimization
Algorithms . 36
6.2.1 Insertion of Benign Points to
the Optimization 37

6.3 Weights of Benign Points for
Classifier Training 37

6.4 Decision Tree 38
6.4.1 Unlimited Decision Tree 42

6.5 Support Vector Machine 43
6.6 Neural Network 46
6.7 Final Observations 48
7 Conclusions 51
7.1 Future Work 52
A Bibliography 55
B Experiments on Discretization
Algorithm 61
C Framework Source Code 63
D CD Content 67

vii

Figures
1.1 An example of the confusion of
a classifier by addition of adversarial
noise to the original image [1] 1

2.1 A payoff matrix for Rock, Paper,
Scissors game 6

2.2 An example of a polynomial game 8
2.3 An example of a non-separable
game . 10

3.1 A payoff matrix for the Prisoner’s
dilemma game [2] 12

3.2 Schematic of the Double-Oracle
algorithm. [3] 15

4.1 An example of an adversarial
classification game. The utility
function is linear until the diagonal,
where the defender’s threshold is.
Behind the diagonal there is utility 0.
Vertical lines stand for the
discontinuity. 18

4.2 An example of an adversarial
classification general-sum game.
Black lines correspond to the benign
points, and vertical lines stand for
the discontinuity. 18

4.3 An example of a zero-sum
adversarial classification game with
a restricted false-positive rate of the
classifiers . 21

5.1 The functions displayed for
dimensions 1 and 2 26

5.2 The datasets displayed for
dimensions 1 and 2 27

5.3 Schema of the used neural
network . 31

6.1 A few iterations of the run with
simultaneous BR computation 34

6.2 A few iterations of the run with
alternating BR computation 35

6.3 Time duration of the optimization
algorithms . 36

6.4 Time duration of the BR
algorithm, depending on the
dimension of the attacker’s space . 40

6.5 Convergence of DO with the
three-dimensional linear utility and
DT with max depth 6 41

6.6 Convergence of DO with the
two-dimensional utility with one
maximum and DT with max depth 7 41

6.7 Convergence of DO with the utility
with two maxima 42

6.8 Convergence of DO with the
three-dimensional linear utility and
SVM with polynomial kernel with
degree 6 . 44

6.9 Convergence of DO with the
three-dimensional utility with two
maxima and SVM with polynomial
kernel with degree 6 45

6.10 Convergence of DO with the
two-dimensional utility with one
maximum and SVM with polynomial
kernel with degree 4 45

6.11 Time duration of training of SVM
in seconds, depending on the utility
function . 46

6.12 Convergence of DO with the
two-dimensional linear utility and
NN with 10 neurons in hidden layer,
adding first better 47

B.1 Solution times of discretization
algorithm for scaled dimension count
in seconds (player 1 dimensions ×
player 2 dimensions) 61

viii

Tables
5.1 Expressions for computation of
numbers of points generated by each
distribution in datasets 26

5.2 The exact value of a Nash
equilibrium computed by the
specialized discretization 27

5.3 The version of software used in the
framework . 31

6.1 Results of experiments with the
decision tree and the linear utility
function. The columns are
dimensions, the rows correspond to
the maximal depth. 39

6.2 Results of experiments with the
decision tree and the utility function
with one maximum. The columns are
dimensions, the rows correspond to
the maximal depth. 39

6.3 Results of experiments with the
decision tree and the utility function
with two maxima. The columns are
dimensions, the rows correspond to
the maximal depth. 39

6.4 Results of experiments with the
SVM and the linear utility function.
The columns are dimensions, the rows
correspond to the degree of kernel. 43

6.5 Results of experiments with the
SVM and the utility function with
one maximum. The columns are
dimensions, the rows correspond to
the degree of kernel. 43

6.6 Results of experiments with the
SVM and the utility function with
two maxima. The columns are
dimensions, the rows correspond to
the degree of kernel. 44

6.7 Results of experiments with the
NN and the linear utility function.
The columns are dimensions, the
rows correspond to the number of
neurons in hidden layer. 47

6.8 Results of experiments with the
NN and the utility function with one
maximum. The solumns are
dimensions, the rows correspond to
the number of neurons in hidden
layer. 48

6.9 Results of experiments with the
NN and the utility function with two
maxima. The columns are
dimensions, the rows correspond to
the number of neurons in hidden
layer. 48

C.1 The version of software used in the
framework . 63

ix

Chapter 1
Introduction

1.1 Related Work

Machine learning algorithms, especially deep learning, are being applied in all
branches of computer science these days. They can be easily used in various
scenarios, and they can solve problems, which were unsolvable by traditional
approaches in the past. Moreover, the convolutional neural networks often
reach superhuman performance, which supports the expansion of machine
learning methods even more. As typical examples of the usage, we can show
applications in the computer vision [4, 5], in the voice recognition [6] or in the
biological applications [7]. On top of it, machine learning is more and more
used in the security [8, 9], where it is crucial to be robust against adversary
attacks.

Unfortunately, machine learning methods are vulnerable to adversarial
attacks. Especially, the deep neural networks are sensitive to it [10, 11]. But
similar attacks were proposed also against other classifiers as SVMs [12] or
linear statistical classifiers [13]. The adversaries typically distort the data
to be misclassified. It is usually being demonstrated on images shown in
Figure 1.1, but there also exist many examples of attacks in the security or
the malware detection [14, 15].

Figure 1.1: An example of the confusion of a classifier by addition of adversarial
noise to the original image [1]

1

1. Introduction ...
Adversarial attacks can lead to life-threatening situations. Thus, it is highly

critical to find out a powerful classifier, which can stand against the attacks.
In recent years, there have been many approaches to create more robust
classifiers [16, 17, 18, 19, 20]. These defense strategies were proposed to be
effective against some types of attacks, and none of them can be used as
a universal defense [21]. It is because the classifiers give no guaranty on the
quality of the solution [22]. Moreover, the majority of the algorithms for the
training of robust deep neural networks is based on an obfuscating gradient,
and there always exists an attack, which circumvents it [23].

It all points out the importance of the warranty of the robustness. We need
to have a classifier with a guaranteed maximum loss after an attack. This
leads us to game theoretic approaches. Field of game theory is specialized in
finding optimal or approximately optimal strategies. For this purpose, it can
model an adversarial learning problem to find the optimal classifier. However,
most of the existing game theoretic models solve only simple problems with
a static classifier. [24, 25, 26] Furthermore, the problems are limited by the
properties of the utility function and the type of a classifier, so it is commonly
not usable in real-world situations.

Finally, there are examples of the usage of game theory in large machine-
learning problems. The first example is a reformulation of the Generative
adversarial networks (GANs) to the Generative Adversarial Network Games
(GANGs). GANs are well known adversarial settings, where two neural
networks compete against each other. The adversarial one tries to generate
data, which are not distinguishable from the original training set. The second
network produces the likelihood that the attacker has generated the data
[27]. In GANGs, this problem is reformulated as a two-player game, which
is solved to find a Resource-Bounded Nash equilibrium as a robust solution.
The second example, we mention, is the usage of Double-Oracle algorithm
[28] in multiagent reinforcement learning, which performs with good results
in large environments [29]. It gives us hope that game theory can employ
algorithms for finding the guaranteed robust classifier for large problems.

1.2 Outline and Contributions

In this thesis, we have focused on the adversarial classification problem in the
most general form. We have formalized the problem, and we have outlined
some algorithmic approaches, how to find a robust classifier against the
adversary.

In Chapter 2, we have defined some basic game concepts necessary for the
problem formalization, and in Chapter 3, there are definitions of solution
concepts as Nash equilibrium and basic algorithms to find them.

Chapter 4 focuses on the possibilities, how to formalize adversarial classifi-
cation problem in terms of game theory and outlines some possibilities, how
to solve it. There is also a discussion of described formalizations, which leads
to a selection of the one used in the next parts.

After the formalism, Chapter 5 describes our framework for finding a Nash

2

................................... 1.2. Outline and Contributions

equilibrium in the adversarial classification problems and all possibilities, how
to use it.

Chapter 6 contains the main contribution of this work. There are described
experiments, which map the space of all configurations and find out the
difficulties of our chosen method.

The last Chapter 7 concludes all the results and proposes several ways,
how to build on this work and a few potentially interesting connections to
other works.

3

4

Chapter 2
Introduction to Game Theory

In this chapter, we will introduce the basic concepts of game theory. We will
focus on discrete games in a normal form, which are the most fundamental
part of game theory. Furthermore, we will generalize this concept to the
games with a continuous strategy space called infinite games.

Game theory is designed for rational decision making under defined con-
ditions. There are one or more players, which form a coalition (cooperative
games) or compete (non-cooperative games). A utility function expresses the
will of the players. It maps from all possible combinations of player’s actions
to the real numbers and represents the satisfaction of the player after the
move.

The important factor in the game analysis is the correlation between utilities
of players. When the sum of utilities of all players in all states is the same
(constant-sum games), it is simpler to find of the solution. Especially, games,
where all the utilities always sum to zero (zero-sum games), are analyzed much
easier than games without any relation between player’s utilities (general-sum
games).

Generalization into infinite games causes several problems. There is an in-
finite space of possible actions, which makes the analysis more complicated.
Moreover, optimal strategies may be infinitely large. Thus, we will introduce
concrete subclasses of infinite games called continuous games and separable
games. The restriction gives us a guarantee of the existence of optimal
strategies and its finiteness.

2.1 Normal-Form Games

The normal-form game is the simplest concept of formalization of games. In
these games, players move only once and simultaneously. A final reward or
a penalty for a player comes from a combination of played actions.

Definition 2.1 (Normal-form game [30]). A (finite, n-person) normal-form
game (NFG) is a tuple (N,A, u), where:.N is a finite set of n players, indexed by i ∈ {1, . . . , n};. A = A1 × · · · ×An, where Ai action is a finite set of actions available to

player i. Each vector a = (a1, . . . , an) ∈ A is called an action profile;

5

2. Introduction to Game Theory..................................
. u = (u1, . . . , un), where ui : A → R is a real-valued utility (or payoff)

function for player i

The utility function and possible actions are usually displayed as a matrix.
Each dimension corresponds to one of the players with his possible actions,
and in each cell, there is a tuple of rewards for all the players.

Example 2.2. We show it on an example of well known Rock, Paper, Scissors
game in Figure 2.1.

P
la
ye
r
1

Player 2
Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

Figure 2.1: A payoff matrix for Rock, Paper, Scissors game

In this game, each player has three possible actions: rock, paper, and
scissors. If the first player plays rock and the second plays paper, the final
payoff is taken from the first row and the second column. It means the first
player gains -1 and the second one gains 1.

This game is an example of a two-player zero-sum game because there are
only two players, and the sum of rewards in each cell of the matrix is 0.

The players move according to some strategy. The simplest one is to
play only one action. It is called pure strategy. The other and more general
possibility is that the player randomly chooses an action based on a predefined
distribution. This concept is called mixed strategy.

Definition 2.3 (Mixed strategy [30]). Let (N,A, u) be a normal-form game,
and for any set X let Π(X) be the set of all probability distributions over X.
Then the set of mixed strategies for player i is Σi = Π(Ai).
The set of mixed-strategy profiles is the Cartesian product of the individual
mixed-strategy sets, Σ1 × · · · × Σn.

The actions that are played in a mixed strategy with non-zero probability
are called the support of mixed strategy for player i. [30]

Example 2.4. Let us continue with our example and the Rock, Paper, Scissors
game. We can define a strategy, where the player chooses paper with the
probability 1

2 and rock with the probability 1
2 , scissors are played with the

probability 0. The support for this mixed strategy is {paper, rock}.

In the game analysis, we need to be able to compare the strategies to find
the best one. It is possible with the expected utility. It is a generalization of
a utility function from a pure strategy profile to a mixed strategy profile.

Definition 2.5 (Expected utility [30]). Given a normal-form game (N,A, u),
the expected utility ui for player i of the mixed-strategy profile σ = (σ1, . . . , σn)
is defined as

6

.. 2.2. Infinite Games

ui(σ) =
∑
a∈A

ui(a)
n∏
j=1

σj(aj) (2.1)

Example 2.6. As an example, we compute the expected utility in Rock,
Paper, Scissors game for the first player and the strategy profile σ = (σ1, σ2),
where σ1 = (0, 1

2 ,
1
2) and σ2 = (1

2 ,
1
2 , 0). It means, player 1 plays paper and

scissors with the probability 1
2 and player 2 plays only rock and paper with

the same probability.

u1(σ) = 1 · 1
4 + 0 · 1

4 − 1 · 1
4 + 1 · 1

4 = 1
4 (2.2)

The expected utility for the first player is 1
4 . Moreover, Rock, Paper,

Scissors is a two-player zero-sum game, which enables us to compute the
expected utility for the second player: u2(σ) = −u1(σ) = −1

4 .
The game analysis strongly depends on the properties of the game. In

this work, we will focus on two-player games [30], because it corresponds to
the adversarial classification problem, where there are one attacker and one
defender.

The second important property is the relation between the player’s utilities.
The most general type is the general-sum game. There can be any relation
between utilities. The analysis of this type of game is relatively complex.
Thus, there exists a constant-sum game. Normal-form game is constant-sum,
if
∑
i∈N ui(a) = c holds for all a ∈ A. A special case of constant-sum games is

the zero-sum game, where c = 0. [30] The adversarial classification problem
can be formalized as both, a general-sum game and a zero-sum game. In this
work, we will focus mainly on the zero-sum representation. A deeper insight
into this decision is in Chapter 4.

2.2 Infinite Games

The concept of finite normal-form games is not enough to describe all the
problems. In our work, we need to formalize the problem, where the set of
pure strategies is infinite and continuous. It leads to a generalized model of
infinite games.

Definition 2.7 (Infinite game). A two-player infinite game is a tuple (N,C, u),
where:. N is a set of two players, indexed by i ∈ {1, 2}. C = C1 × C2, where Ci is a compact metric space corresponding to the

ith player’s set of pure strategies.. u = (u1, u2), where ui : C → R is a real-valued utility (or payoff) function
for player i

Before the definition, we have talked about the generalization of normal-
form games. Every finite space is a compact metric space under the discrete

7

2. Introduction to Game Theory..................................
metric. Thus, any finite normal-form game is also an infinite game under this
definition. Another demonstrative example of an infinite game is a polynomial
game. [31]

Definition 2.8 (Polynomial game [32]). A two-player infinite game is a poly-
nomial game, if a set of actions Ci is a closed one-dimensional interval from
R, and utility ui is a multivariate polynomial function ui : C → R.

Example 2.9. For a demonstration, there is a simple two-player zero-sum
polynomial game. The strategy space is C = {[0, 1] , [0, 1]}. The utility
for player 1 is a polynomial function u1(σ) = (σ1 − σ2)2. It is a zero-sum
game, thus the utility for player 2 is u2 = −u1. Both utilities are shown in
Figure 2.2.

(a) : The utility function for player 1 (b) : The utility function for player 2

Figure 2.2: An example of a polynomial game

Similarly, as in the previous part, the next step is a definition of a mixed
strategy and a strategy profile.

Definition 2.10 (Mixed strategy [33]). Let (N,C, u) be an infinite game, and
for any set X let ∆(X) be the set of Borel probability measures over X. Then
the set of mixed strategies for player i is Σi = ∆(Ci).
The set of mixed-strategy profiles is the Cartesian product of the individual
mixed-strategy sets, Σ1 × Σ2.

This definition of mixed strategies allows us to identify the pure strategy
si ∈ Ci with the atomic probability from ∆(Ci).

Example 2.11. Further to our example with the polynomial game, we choose
a mixed strategy profile σ. In the σ, player 1 plays 0 with the probability of
1
2 and 1 with the probability of 1

2 . Player 2 plays a pure strategy of 1
2 .

Eventually, we can define the expected utility for the player of the mixed
strategy profile.

Definition 2.12 (Expected utility [33]). Given an infinite game (N,C, u), the
expected utility ui for player i of the mixed-strategy profile σ = (σ1, . . . , σn)
is defined as

ui(σ) =
∫
C
ui(c)dσ (2.3)

8

.. 2.2. Infinite Games

Example 2.13. Following up on the example of the mixed strategy, we can
compute the expected utility for the first player. The computation for strategy
profiles with finite support is the same as computation for finite games.

u1(σ) = 1
2 ·

1
4 + 1

2 ·
1
4 (2.4)

Unfortunately, in the infinite games a solution in the form of Nash equi-
librium does not need to exist. It leads us to the specification of the utility
function and to the definition of continuous games.

Definition 2.14 (Continuous game [31]). A two-player continuous game is
an infinite game (N,C, u), where:

. u = (u1, . . . , un), where ui : C → R is a continuous real-valued utility
(or payoff) function for player i

A typical example of a continuous game is a polynomial game because
multivariate polynomial functions are continuous. Since every function defined
on a discrete metric space is continuous, even a finite normal-form game is
a continuous game. [31]

The concept of continuous games gives us a guarantee of the existence of
a solution (Nash equilibrium). Unfortunately, the support of strategies in
this solution can be infinitely large, which is practically unusable. Therefore,
it is necessary to reduce the space of possible utility functions even more.

Definition 2.15 (Separable games [31]). A separable game is an infinite game
with utility functions ui : C → R taking the form

ui(σ) =
m1∑
j1=1
· · ·

mn∑
jn=1

aj1···jni f j11 (σ1) · · · f jnn (σn) (2.5)

where aj1···jni ∈ R and the f ji : Ci → R are continuous.

Separable game is a continuous game, and it can be seen as a generaliza-
tion of a polynomial game, where different continuous function replaces the
polynomials in one variable. Moreover, the finite normal-form games are also
separable because f ji can be replaced by Kronecker delta function.[31]

Example 2.16. Let us demonstrate the difference between continuous games
and separable games on an example of a two-player zero-sum non-separable
game. The strategy space is C = {[−35, 35] , [−35, 35]}. The utility for
player 1 is a non-separable Ackley N.2 function u1(σ) = −200e−0.2

√
σ2

1+σ2
2

[34]. The utility for player 2 is u2 = −u1. Both utilities are shown in
Figure 2.3

9

2. Introduction to Game Theory..................................

(a) : The utility function for player 1 (b) : The utility function for player 2

Figure 2.3: An example of a non-separable game

10

Chapter 3
Solution Concepts

This chapter describes the stable and optimal strategies of rational players
and the algorithms for exact or approximate computation of it.

The main focus of this work is on the Nash-equilibrium strategies and its
finding in adversarial classification games. Thus, this chapter describes the
standard algorithms for computation of a Nash equilibrium in normal-form
games and in continuous games. The emphasis is given on solving zero-
sum games, which are studied in this work. Further, there are mentioned
algorithms for solving general-sum games. It helps us to understand different
representations of adversarial classification problem as a game and supports
our choice for experiments.

Eventually, we outline the concept of Stackelberg equilibrium, which is
closely related to the adversarial classification problem and can give a mean-
ingful alternative to Nash equilibrium. Moreover, some experiments confirm
the Stackelberg character of this problem.

3.1 Nash Equilibrium

In games with more players, it is impossible to talk about the best strategy for
one player, since the expected utility of the player depends on the strategies
of the others. Thus, we need to talk about the best strategy against the
strategies of all opponents. It is called the best response strategy.

Definition 3.1 (Best response [30]). Let σ = (σ1, . . . , σi, . . . , σn) be a strategy
profile. Player i’s best response to the strategy profile σ−i = (σ1, . . . , σi−1,
σi+1, . . . , σn) is a mixed strategy σ∗i ∈ Σi such that ui(σ∗i , σ−i) ≥ ui(σi, σ−i)
for all strategies σi ∈ Σi.

All the actions in support of the best response strategy have to have the
same expected utility. Otherwise, the action with lower output would be
dismissed to be played with zero probability. Therefore, the best response is
a unique pure strategy, or there exist infinitely many of them. [30]

When the player plays the best response, he cannot gain more by changing
his strategy. It leads us to the concept of Nash equilibrium, where all players
play the best response. Thus, it is not beneficial to change the strategy for
anyone.

11

3. Solution Concepts.......................................
Definition 3.2 (Nash equilibrium [31]). A mixed strategy profile σ is a Nash
equilibrium if ui(σ′i, σ−i) ≤ ui(σ) for all i and all σ′i ∈ Σi.

Example 3.3. The simplest example is a pure Nash equilibrium, where both
players play a pure strategy. Let us have Prisoner’s dilemma game. There
are two prisoners, which can either cooperate or defect. The utility is given
by the matrix shown in Figure 3.1.

P
la
ye
r
1

Player 2
Cooperate Defect

Cooperate 3, 3 0, 5
Defect 5, 0 1, 1

Figure 3.1: A payoff matrix for the Prisoner’s dilemma game [2]

The Nash equilibrium is the {defect, defect} strategy profile. Both players
gain utility 1 and by changing to cooperate they get only 0.

Example 3.4. In Rock, Paper, Scissors game, which is shown in the previous
chapter in Table 2.1, there is one unique mixed-strategy Nash equilibrium
σ1 = (1

3 ,
1
3 ,

1
3) and σ2 = (1

3 ,
1
3 ,

1
3). When one of the players changes his

strategy, his expected utility stays the same.
This example shows that a pure strategy Nash equilibrium does not always

exist, but in mixed strategies, a Nash equilibrium in a normal-form game
exists all the time.[35] The proof is done by using Brouwer’s Fixed-point
Theorem. [35, 36]

A Nash equilibrium, given by the definition, can also be found in infinite
games.

Example 3.5. As an example, we can use the polynomial game from the
previous section, shown in Figure 2.2. The Nash equilibrium in this game is
a strategy profile, where player 1 plays 0 with the probability of 1

2 and 1 with
the probability of 1

2 . Player 2 plays a pure strategy of 1
2 . For neither one of

the players, it is beneficial to switch to any other strategy.
Since Glicksberg generalizes the Fixed-point Theorem, the similar argument

as for finite normal-form games proves the existence of a Nash equilibrium in
continuous games.[37] Unfortunately, the absence of continuity of the utility
allows us to create the game without a Nash equilibrium. Therefore, it does
not need to exist in infinite games. The same importance has the condition
of compactness of the strategy space.

Example 3.6. [31] This problem can be shown on a one-player game example.
Consider a game with C1 = [0, 1] and a utility function:

u1(x) =
{
x, x < 1;
0, x = 1.

(3.1)

An inequality u1(σ1) < 1 for all strategies σ1 ∈ Σ1 holds, otherwise there

12

...............................3.2. Finding of a NE in a Zero-Sum NFG

exists a point S1 ∈ C1, such that u1(s1) ≥ 1. Thus, for every strategy σ ∈ Σ1
we can find a point s ∈ C1, such that σ < s < 1. Then u1(σ) < u1(s), so
there cannot be a Nash equilibrium.

Similar argument holds for a continuous utility defined in the same way on
non-compact action space C1 =

[
0, 1).

Moreover, infinitely large strategy spaces can cause problems with an infinite
size of the support of equilibrium strategies. It is problematic especially in
the algorithmization and during the numeric computations. Thus, we have
introduced separable games. The additional conditioning of utility function
causes that all Nash equilibria in these games always have finite support. [38]

3.2 Finding of a NE in a Zero-Sum NFG

In the previous part, we have introduced the concept of Nash equilibrium and
presented various guarantees for different types of games. In the next parts
of this chapter are focus on algorithms for finding the exact Nash equilibria
or its approximations in two-player games.

The first and most simple type is the zero-sum game. There holds that the
loss of one player is a profit of the opponent. This intuition is confirmed by
the von Neumann’s Minmax Theorem [39, 30]. It shows that the utility U∗1
for player 1 is the same in all the Nash equilibria. This value is called the
value of the game and can be solved by finding a minmax strategy of player 2.
This result leads to the linear program. [30]

minimize U∗1 (3.2)
subject to

∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (3.3)

∑
k∈A2

sk2 = 1 (3.4)

sk2 ≥ 0 ∀k ∈ A2 (3.5)

In a Nash equilibrium, all players play the best response, and in the
best response all actions from the support have the same expected utility.
Moreover, the actions, which are not in the support, have lower the expected
utility. Therefore, the constraint (3.3) is tight in actions, which are in the
support of the best response to the strategy profile s2. By minimization of
U∗1 the program finds the optimal strategy of player 2 – the best response of
player 1 has the lowest expected utility. The last two constraints only satisfy
the conditions on the probability distribution.

Similarly, we can form an algorithm producing a strategy of the opponent.
The players swap the role in the program, which has only two changes. Player
1 maximizes U∗2 , and the inequality sign in the constraint (3.3) has to be
reversed.

13

3. Solution Concepts.......................................

maximize U∗2 (3.6)
subject to

∑
j∈A1

u2(aj1, ak2) · sj1 ≥ U∗2 ∀k ∈ A2 (3.7)

∑
j∈A1

sj1 = 1 (3.8)

sj1 ≥ 0 ∀j ∈ A1 (3.9)

This program corresponds to the dual of the first linear program [40]. It is
great because we can get a Nash equilibrium strategy profile as a solution to
a simple linear program and they are solvable in polynomial time [41].

3.3 Finding of a NE in a General-Sum NFG

General-sum games do not have directly competitive character. Thus, the
solution cannot be expressed as a linear program. The most straightforward
approach is to construct a linear complementarity problem [30] or it can be
reformulated as a mixed integer linear program [42]. The most used approach
to solve general-sum games is the Lemke-Howson algorithm [43].

Since the mixed integer linear programming is NP-hard, it can be expected
that finding a Nash equilibrium in general-sum games is harder than finding
it in zero-sum games. Christos Papadimitriou proves that the complexity
of finding a Nash equilibrium in general-sum normal-form games is PPAD-
complete [44]. Intuitively, it is faster than NP-complete because we know that
the solution exists, but it is exponential in the number of actions. There is no
proof whether the PPAD complexity class is not P or NP, but it is expected.

3.4 Finding of a NE in Infinite Games

There are not many works and computation results in this part of game
theory. The first significant result is the generalization of the linear program
for a two-player zero-sum game to zero-sum polynomial games [45]. This
approach shows that it is possible to find a Nash equilibrium in infinite games
efficiently. Unfortunately, the restriction of the game class does not allow the
usage of the algorithm in real-world situations, where the polynomial cannot
approximate the will of the players.

The second promising result is the generalization of a rank from NFG to
separable games. The rank in normal-form games is identical with the rank
of its utility matrix. With the notion of this term and results from [46], we
can find a Nash equilibrium with support with the size of rank + 1 or smaller.
It results in algorithms, which can approximate a Nash equilibrium in time
polynomial in the rank. [38]

Unfortunately, there are no known algorithms for solving general infinite
games.

14

....................................3.5. Double-Oracle Algorithm

3.5 Double-Oracle Algorithm

All the algorithms for solving NFG are usable only for small enough games.
With the growing size of the game matrix, the duration of the computation
grows fast. It creates a demand for an algorithm with better scalability. One
of them is the iterative algorithm called Double Oracle. [28]

The basic idea of Double Oracle is simple. The algorithm solves multiple
smaller games, which is faster than solving the LP or the MILP of the original
game G. The computation starts with a restricted game Gr, where each player
has only a subset of all possible actions. Usually, the subset is one action.
This game is solved by one of the baseline methods introduced in the previous
sections. It gives us strategies σ1, σ2 for both players. In the next step best
responses are found to the strategies σ1, σ2 in the original game G. These
best response actions expand the game Gr and all the procedure repeats. It
is done until Gr does not contain the new best responses and stays the same
after the expansion.

The main steps are visualized in Figure 3.2.

Figure 5: Schematic of the double-oracle algorithm for a normal-form game.

3. For each player, compute a pure best response strategy against the
equilibrium strategy of the opponent; pure best response can be any
action from the original unrestricted game.

The best response strategies computed in step 3 are added to the restricted
game, the game matrix is expanded by adding new rows and columns, and the
algorithm follows with the next iteration. The algorithm terminates if neither
of the players can improve the outcome of the game by adding a new strategy
to the restricted game; hence, both players play best response strategies to
the strategy of the opponent. The algorithm maintains the values of the best
expected utilities of the best-response strategies for each player throughout
the iterations of the algorithm. These values provide bounds on the value of
the original game V (from Equation 1), and their sum represents the error
of the algorithm which converges to zero.

4.3.2. Integrating Double-Oracle with Backward Induction

The double-oracle algorithm for matrix games can be directly incorpo-
rated into the backward induction algorithm: instead of immediately evalu-
ating each of the successors of the current game state and solving the linear
program, the algorithm can exploit the double-oracle algorithm. Pseudocode
in Algorithm 3 details this integration.

Similarly to BIαβ, the algorithm first tests, whether the whole game can
be solved by using the serialized variants of the game (line 3). If not, then
in each state of the game the algorithm initializes the restricted game with
an arbitrary action (line 5)3 – A′ represents the restricted matrix game, A′i
represents the restricted set of available actions to player i. The algorithm

3In practice we use the first action of a shuffled ordered set Ai for each player i. This
initialization step can be improved with domain knowledge and by adding more actions.

Figure 3.2: Schematic of the Double-Oracle algorithm. [3]

It is proven that this procedure always finds a Nash equilibrium. In the
worst case, the algorithm appends all the actions into the restricted game,
which leads to the significantly worse computation time than the LP or the
Lemke-Howson algorithm. Fortunately, it is not usually the case. Commonly,
the Double-Oracle algorithm terminates fast and expands a small subset of
possible actions. [3, 28] Because of this conclusion, the convergence time is
usually measured in the number of iterations of the algorithm.

This algorithm is usable in various scenarios and many types of practical
problems. [29, 47, 48] It is useful even in the problems, where the exact Nash
equilibrium is almost unreachable. We can use it for finding an approximation
of the optimal solution. In the zero-sum games, the best responses calculated
during the iteration give us an upper bound and a lower bound on the value
of the game [28].

There exist some modifications of the main loop of the algorithm, which
can lead to faster convergence. In the first modification, the players do not
find the best response and expand the game in each iteration. The player,
which will update the restricted game, is selected by some strategy. For
example, they can alternate in the expansion [3]. The second change modifies
the strategy to which the best response is found. There are usually being
mixed the few last strategies according to predefined weights [29].

15

3. Solution Concepts.......................................
3.6 Stackelberg Equilibrium

The last topic outlined in this chapter is the Stackelberg equilibrium. It is
a game-theoretical concept, where one player has a dominant position in the
game. The dominant player (leader) commits his strategy, and the opponents
react to it. The reaction is the best response to the strategy of the leader.
[49]

Definition 3.7 (Stackelberg equilibrium [50]). Let (N,A, u) be a normal-form
game, player 1 is the leader, and let Σ be a set of all mixed strategy profiles
and BRi : Σ1×· · ·×Σi−1×Σi+1×· · ·×Σn → Σi returns the best response
of player i. Then a mixed strategy profile σ is Stackelberg equilibrium if
satisfies:

argmax
σ∈Σ;∀i∈N\{1}:σi∈BRi(σ−i)

u1(σ) (3.10)

This solution concept can be useful in an adversarial classification problem
because the defender commonly has the leader’s position. He trains some
classifiers, and the attacker tries to break them. In this work, we focus on
the Nash equilibrium in an adversarial classification problem, but even there
the Stackelberg character of this problem is significant.

16

Chapter 4
Adversarial Classification as a Game

In the previous chapters, we have introduced the basics of game theory. It
explains the basic game models, solution concepts, and algorithms to find it.
This chapter formalizes the adversarial classification problem in the game-
theoretic framework and describes approaches used to find optimal defending
strategies or its approximations.

Example 4.1. Let us begin with an example of an adversarial classification
problem. We are managing a part of the computer network, and we want to
create a security system, which detects a malicious traffic. We can measure
only the size of the data transferred during one connection. Let us assume
that the attacker tries to transfer as much data as possible. Thus, he has
a utility, which linearly grows with the size of the data. When we detect the
attack, we can stop it, and the attacker transfers nothing. Finally, we can
limit the maximal payload on 10 GB for simplicity.

In this example, there are two players – the attacker and the defender. It
holds for all adversarial classification problems. The adversary tries to play
the strategy with the highest utility, and the defender tries to classify these
points as attacker’s.

Example 4.2. In our example, we can find a threshold, which divides the
points into the benign on the left side and attacker’s on the right side. Now we
can write it as a game. The adversary selects the optimal size of transferred
data, and the defender finds the optimal threshold. Both play a value from
the interval I = [0, 10]. The attacker has utility u2(x) = x. He gains it unless
his point is not on the right side of the defender’s threshold. We define this
game as zero-sum. Both player’s utility functions are shown in Figure 4.1.

Adversarial classification game is infinite since the space of the points and
the space of the possible classifiers is infinite. Unfortunately, the game is
not separable. The utility function of the attacker does not need to be from
the class of separable functions. Thus, the support of a Nash equilibrium
does not need to be finite. Moreover, our example demonstrates that the
utility of the players is not continuous. Therefore, a Nash equilibrium does
not need to exist in these games, because it can be in the one-side limit of
the discontinuity as in Example 3.6.

17

4. Adversarial Classification as a Game...............................

(a) : The utility for the adversary (b) : The utility for the defender

Figure 4.1: An example of an adversarial classification game.
The utility function is linear until the diagonal, where the defender’s threshold is.
Behind the diagonal there is utility 0. Vertical lines stand for the discontinuity.

4.1 General-Sum Game

The game defined in the previous section is trivial to solve. Since the defender
can classify all the space as adversarial, the attacker cannot gain any profit.
Therefore, his optimal strategy is to set the threshold on 0. The Nash
equilibrium in this game is the strategy profile (0,0). None of the players can
get more than 0 by a change of the strategy.

Example 4.3. We can modify the game from Example 4.2 by adding data,
which correspond to the regular traffic. We add two benign points at 3 and
5. When the defender misclassifies the point, he gets penalty equal to 1.
The utility functions are shown in Figure 4.2, where the benign points are
visualized as the black lines.

(a) : The utility for the adversary (b) : The utility for the defender

Figure 4.2: An example of an adversarial classification general-sum game.
Black lines correspond to the benign points, and vertical lines stand for the
discontinuity.

We can see that the game from Example 4.3 is general-sum. It is because
the set of benign points reflects only the utility of the defender. The attacker’s
utility is the same for any set of benign points.

18

................................. 4.2. Finding a NE by Discretization

Definition 4.4 (Adversarial classification game). Adversarial classification
game is a two-player infinite game, where:. N = {defender, attacker}, indexed by i ∈ {1, 2}. C = C1 × C2, where. C1 is a compact metric space to the set of classifier’s parameters. C2 is a compact metric space to the set of attacker’s pure strategies. P ⊆ C2 is a set of benign points. f : C1 × C2 → [0, 1] is a defender’s classification function, where:. 0 corresponds to a benign point. 1 corresponds to an attacker’s point. l : C2 → R is a loss function for a benign point misclassification. u2 : C2 → R is an attacker’s default payoff function. u = (u1, u2), where:. u2 : C1 × C2 → R is defined as

u2(c1, c2) = (1− f(c1, c2)) · u2(c2). u1 : C1 × C2 → R is defined as

u1(c1, c2) = −u2(c1, c2)−
∑
p∈P

f(c1, c2) · l(p)

Example 4.5. Now, we can formally describe the previously developed game:. C1 = C2 = [0, 10]. P = {3, 5}. f : C1 × C2 → [0, 1] is:

f(c1, c2) =
{

0, c2 < c1;
1, c2 ≥ c1. l(p) = 1. u2(c2) = c2

4.2 Finding a NE by Discretization

The first algorithm for the approximation of a Nash equilibrium is a simple
discretization. We can sample the infinite strategy space to get a normal-form
game. In this new game, it is not complicated to find a Nash equilibrium by
algorithms from the previous chapter. The solution of the discretized game
can be used as an approximation of a Nash equilibrium in the original infinite
game.

Unfortunately, since the derivation of the utility function can be unbounded
or even does not need to exist in some points, the density of the samples does
not directly relate to the accuracy of the found solution.

The second and even more fundamental problem is the time complexity.
The duration grows exponentially with the size of the game matrix. It

19

4. Adversarial Classification as a Game...............................
strongly complicates the usability of this algorithm in bigger games, especially
in games with strategy spaces, which have a higher number of dimensions.
An illustrative experiment is in Appendix B.

Both of these complications can be overcome by smart discretization, which
would allow us to create a much smaller matrix, and the samples would be
more frequent around the critical regions.

4.3 Finding a NE by Double Oracle

The Double-Oracle algorithm has two phases – finding the best responses and
solving a restricted game. The restricted game is a finite game in a normal
form. Therefore, we can understand the algorithm as a variant of the smart
discretization mentioned in the previous section. In each iteration, Double
Oracle adds the best responses to the restricted game, which corresponds
to addition of new samples to the discretization. Since these samples are
the best responses to the best strategies in the actual discretized game, we
can expect that the algorithm adds more samples into the critical regions
then into the strategically uninteresting regions. Moreover, in discrete games,
Double Oracle often converges after several iterations, which gives us a hope
that Double Oracle in infinite games would terminate in a reasonable time.

The additional question is, how to realize the two phases in infinite games.
Solving of a restricted game is straightforward. We can use the standard
methods from game theory. Computation of the best response strategies is
an optimization problem. Thus, we can use standard global optimization
methods to find it. Theoretically, we can get an exact value of the best
response and not only its approximation. Unfortunately, methods for finding
a global optimum of not strictly convex or concave functions are stochastic,
and its computation time is unbounded. Thus, we need to settle for the
approximate optimum found after a limited time. It can be sufficient in
Double Oracle to find an approximation of a Nash equilibrium.

Moreover, the defender can use the standard classifiers like Support Vector
Machines, decision trees, or neural networks, as a strategy space and their
training methods as an optimization function to find the best response
strategy.

4.4 Zero-Sum Game

In previous sections, we have exactly formalized the adversarial classification
problem as a general-sum game and proposed a method to find a Nash equilib-
rium in it. Unfortunately, all the algorithms can give us only an approximate
solution. With this notion, we would like to create the algorithm at least as
fast as possible.

Since the solving of general-sum games is by far slower than solving zero-sum
games in most cases, we would like to replace the MILP or the Lemke-Howson
algorithm in Double Oracle by the linear program for solving zero-sum games.

20

....................................... 4.4. Zero-Sum Game

(a) : The utility for the adversary (b) : The utility for the defender

Figure 4.3: An example of a zero-sum adversarial classification game with
a restricted false-positive rate of the classifiers

It forces us to reformulate the game as a zero-sum.
Only the loss for misclassification of benign points creates the game general-

sum. To fix it, we need to consider the negative points in another way.
There are three approaches: 1) hard constraint in classification, 2) hard
constraint in expectation, and 3) soft constraint in expectation. They limit
or minimize a false-positive rate of the defender’s strategies and make the
game model zero-sum or almost zero-sum. A detailed explanation is in the
following sections. Finally, the false-positive rate restriction creates the model
useful in security applications, where the benign data almost should not be
misclassified.

4.4.1 Hard Constraint in Classification

The first alternative is to limit the pure-strategy space of the defender strictly.
We can use only classifiers, which have limited the false-positive rate. It
restricts the strategies, which are strongly influenced by the penalty for the
misclassification of the benign points. Moreover, it creates a meaningful
zero-sum variant of the problem formalization.

Example 4.6. Let us continue with the game from Example 4.3. We formulate
it as a zero-sum game (l(p) = 0), and we restrict classifiers by the false-positive
rate equal to 0.5. It allows classifying one benign point wrongly. Utilities are
plotted in Figure 4.3.

Since the restriction of the false-positive rate in the classifier training is
not always crucial, there only exists a small number of classifiers, which
support this condition, and they are not usually the most used state of the
art classifiers. Therefore, we do not focus on this game representation.

4.4.2 Hard Constraint in Expectation

The second possibility, how to bring the negative data into the zero-sum
adversarial classification game, is to constrain the mixed strategies by the
false-positive rate. It does not affect the space of pure strategies, but it allows

21

4. Adversarial Classification as a Game...............................
players to play strategies with a high false-positive rate only with a small
probability. It means, the worst expected false-positive rate is the same as
in the previous solution, but sometimes, we can play a strategy, which in
general misclassifies a lot of benign points.

A game from our definition is not purely zero-sum or even in the normal
form, but we can find a Nash equilibrium by a small modification of the linear
program.

minimize U∗1 (4.1)
subject to

∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (4.2)

∑
k∈A2

sk2 · fp(ak2) ≤ FP (4.3)

∑
k∈A2

sk2 = 1 (4.4)

sk2 ≥ 0 ∀k ∈ A2 (4.5)

The linear program is expanded by the constraint (4.3). FP is constant
limiting the overall false-positive rate and fp(aj1) is the false-positive rate
of the action aj1. A Nash equilibrium strategy for the opponent is gained as
a solution to the dual problem to this LP.

In this work, we evaluate this variant, because it can be used with the most
popular classifiers these days. Unfortunately, there can be some complications
with using this in Double Oracle. First of all, it is necessary to start the
algorithm with a restricted game, which contains a classifier classifying
everything as benign. Otherwise, the linear program can be infeasible.

Example 4.7. For example, we have the following game:. C1 = C2 = [−5, 5]. P = {−2, 2}. f : C1 × C2 → [0, 1] is:

f(c1, c2) =
{

0, c2 < c1;
1, c2 ≥ c1. u2(c2) = c2

2. FP = 0.1

Attacker’s initial point is 0. The points {-2, 2} and {0} are not separable.
Thus, without loss of generality, the best response classifier classifies the point
{-2} as benign and points {0, 2} as adversarial. The restricted game contains
adversarial point 0 and the classifier, which has a false positive rate higher
than FP. Linear program for this game is infeasible.

The second and more severe problem is that the classifier found by some
training algorithm does not need to correspond to the best response strategy

22

............... 4.5. Specialized Discretization for Game with Hard Constraint in Expectation

in the game with false-positive constraint in expectation. The classifier can
find a strategy with a high false-positive rate and with a high utility, but
there can exist a slightly worse classifier with a much lower false-positive
rate. Thus, in the final game, the second classifier brings much more to the
expected utility than the first one. Moreover, the best response strategy does
not need to exist there, in pure strategies, and in some cases, it would be
necessary to find a mixed one.

4.4.3 Soft Constraint in Expectation

The last option of reduction of the false-positive rate is the soft constraint in
expectation. It is done by moving the constraint from the previous subsection
to the objective function of the linear program.

minimize U∗1 − C ·
∑
j∈A2

sj2 · fp(a
j
2) (4.6)

subject to
∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (4.7)

∑
k∈A2

sk2 = 1 (4.8)

sk2 ≥ 0 ∀k ∈ A2 (4.9)

This modification does not strictly limit the false-positive rate of the final
solution, but it only prefers strategies with the lower number of false positives.
It is great because we do not need to set the threshold on the false-positive
rate. However, there is another constant C, which balances the utility and the
false-positive regret. Unluckily, this constant can be hardly chosen without
tests or good insight into the concrete problem. Therefore, we have left this
option out, and we have evaluated only the previous one.

4.5 Specialized Discretization for Game with Hard
Constraint in Expectation

The zero-sum adversarial classification game representations with false-positive
constraint in expectation allow us to introduce a simplified discretization algo-
rithm. The attacker divides his strategy space into intervals. These intervals
correspond to the strategies in the discretized game. The defender uses the
same intervals for the classification. To each interval, he sets a probability,
that he classifies it as adversarial. The probabilities are constrained only by
the constraint on false-positives. The following LP can solve this task:

23

4. Adversarial Classification as a Game...............................

minimize U∗1 (4.10)
subject to u1(sj2) · (1− sj2) ≤ U∗1 ∀j ∈ I (4.11)∑

j∈I
sj2 · fp(j) ≤ FP (4.12)

1 ≥ sj2 ≥ 0 ∀j ∈ I (4.13)

The set I is a set of intervals, sj2 is the probability of the classification of
interval j as adversarial, u1(s) is the attacker’s utility gained from the interval
s, and fp(j) is a false-positive rate of interval j.

When we look at the linear program deeper, we can see that sj2 is always
1 for intervals with fp(j) = 0. Thus, we can leave them out and rapidly
reduce the size of the linear program. Owing to this trick, we can increase
the density, and the linear program grows slowly. When we set the density to
infinity, the intervals exactly correspond to the points in the space. In this
case, only the benign points have nonzero fp rate. Therefore, we can identify
the set I in the linear program with the set of benign points and fp(j) = 1

|S| .
In these settings, the linear program computes the exact Nash equilibrium
because the density cannot be higher.

We have an algorithm for finding the exact Nash equilibrium in adversarial
classification problem with hard constraint in expectation, which is polynomial
in the size of the set of benign points. Unfortunately, this method overfits
the data. Therefore, it is not usable for real-world problems.

24

Chapter 5
Framework Details and Setting of
Experiments

The previous sections describes the basics of game theory and its application
to solve an adversarial classification problem. We have decided to use the
zero-sum game representation with hard constraint in expectation. It allows
us to get the exact value by specialized discretization and use the standard
classification methods in Double Oracle.

5.1 Datasets

The datasets, which we have produced for the experiments, have two parame-
ters: 1) the number of dimensions of the space of the attacker, and 2) the
number of local maxima of the attacker’s utility function. Thus, we have
introduced three functions parametric in the number of dimensions, where the
first one is linear in all dimensions, the second one has one local maximum in
the middle of the interesting interval, and the third one has two local maxima
on the diagonal in all dimensions. All these functions are defined on intervals
[0, 10] in each dimension, and the range is normalized on the interval [0, 10].

f(x) = 1
dim

dim∑
n=i

xi (Linear function)

f(x) = 10−

dim∑
n=i

(xi − 5)2

dim · 5
2

(Function with one maximum)

f(x) = max


−

dim∑
n=i

((xi − 5) · dim)4 − 25 · dim ·
(
dim∑
n=i

(xi − 5) · dim
)2

625
40 · dim5 , 0


(Function with two maxima)

These functions are displayed for dimensions 1 and 2 in Figure 5.1.
The benign data are generated randomly form normal distributions corre-

sponding to the lower values of the utility function. The first and the third one

25

5. Framework Details and Setting of Experiments

(a) : Linear function with
dim=1

(b) : Function with one
maximum and dim=1

(c) : Function with two
maxima and dim=1

(d) : Linear function with
dim=2

(e) : Function with one
maximum and dim=2

(f) : Function with two
maxima and dim=2

Figure 5.1: The functions displayed for dimensions 1 and 2

have points generated only from one distribution, and points corresponding to
the second function are generated from 1 + dim normal distributions around
the local maximum. All the points are forced to be on the intervals [0, 10].

The first dataset is generated from normal distribution with mean µ = ~1
and covariance matrix Σ = I. The third dataset is generated from normal
distribution with mean µ = ~5 and covariance matrix Σ = 9 · I+(−9

dim−1 +0.5) ·
(1−I). For the one-dimensional case the covariance matrix is Σ = I ·0.5. The
second dataset is generated from normal distributions with equal covariance
matrices Σi = I and means µ1 = [1, 1, . . .], µ2 = [9, 1, . . .], µ3 = [1, 9, . . .], etc.
The number of points generated from each distribution is calculated using
equations written in Table 5.1.

Dataset 1 Dataset 2 Dataset 3
10 + 40 · (dim− 1) 5 + 30 · (dim− 1) 5 + 50 · (dim− 1)2

Table 5.1: Expressions for computation of numbers of points generated by each
distribution in datasets

The datasets generated for dimension 1 and 2 are displayed in Figure 5.2.
These functions and datasets cover all interesting situations, which can

be solved. The linear utility is the most straightforward situation. The
defender needs to separate two of the most distant points. The function
with one local maximum complicates the situation because the benign points
almost surround the attacker’s optimum. Thus, it has higher demands on
the classifier. Finally, the third utility function switches the situation, and
the attacker’s maxima surround the benign points.

26

................................... 5.2. Specialized Discretization

(a) : Dataset 1 for dim=1 (b) : Dataset 2 for dim=1 (c) : Dataset 3 for dim=1

(d) : Dataset 1 for dim=2 (e) : Dataset 2 for dim=2 (f) : Dataset 3 for dim=2

Figure 5.2: The datasets displayed for dimensions 1 and 2

5.2 Specialized Discretization

First of all, we run the exact specialized discretization on introduced functions
and datasets. It gives us the exact value of a Nash equilibrium with optimal
classifier. We have used the FP threshold equal to 0.01. The results are
shown in Table 5.2.

dim 1 Linear 1 maximum 2 maxima
1 1.39609 7,11946 0,79075
2 2,00348 6,22406 0,92138
3 1,84211 5,95752 0,87073
4 1,84884 5,73538 0,43125
5 1,71698 5,27989 0,54156

Table 5.2: The exact value of a Nash equilibrium computed by the specialized
discretization

All the runs have ended almost immediately. The longest time was necessary
for the second function in five dimensions, where the average from 20 runs has
taken 1,051 s, and the standard deviation has been 0.029. Unfortunately, the
final strategy is unusable in real situations, because this algorithm overfits
the set of benign points.

5.3 Double Oracle Setup

The previous chapters describe the main loop of the Double-Oracle algorithm
and its application on the adversarial classification problem. Now, we will
focus on possibilities, how to implement the best response algorithms.

In the adversarial classification problem, we can interpret Double Oracle

27

5. Framework Details and Setting of Experiments
as follows. In each iteration, the attacker generates new data point, for which
the actual utility is maximum, and the defender finds the best classifier to
separate the currently played attacker’s data from the benign ones. When the
algorithm solves the linear program, it changes the currently played attacker’s
points and currently played classifiers, which are reflected on the actual utility.
When no new point and no new classifier is added, we have the optimum in
the predefined settings.

5.3.1 Attacker’s Best Response

The attacker optimizes the actual utility, which corresponds to the initial
utility multiplied by the classification, weighted by probabilities of individual
classifiers. The benign points have to be classified as 1, and the adversarial
points have to be classified as 0. Thus, we need to find the global optimum
of a discontinuous function. There exist standard methods to solve it.

Basin-Hopping

In our implementations, we select Basin-Hopping global optimization. This
stochastic method uses surface transformation into the energy function. Then
the algorithm randomly changes the coordinates and runs the local gradient
optimization [51]. We have used this method because it performs with good
results, and there exists a package with the standard implementation. For
the local gradient optimization, we have used the L-BFGS-B algorithm [52].

The usage of this algorithm has a disadvantage. During the computation,
it calls the optimized function many times. In our problem, each call needs
to classify the point by all the classifiers. It is proven to be a distinctive
bottleneck of the algorithm.

Basin-Hopping with Discretization

The first improvement is to start with a reasonable estimation of the maximum.
This step can cut off some evaluations of the utility function at the beginning
of the computation.

We can compute a value of the utility function in points from a grid. In
each iteration of Double Oracle, we need to save the classification of the
points by the newly added classifier. The optimization algorithm starts with
a multiplication of the utilities, with the classification and the actual support
of the defender. It gives us the actual utility in all points from the raster, and
by a simple selection, we can choose a good starting point for the optimization
algorithm.

We select multiple points and use them as a starting point for a parallel run
of the Basin-Hopping algorithm. Unfortunately, in some runs, the stochastic
optimization evaluates the utility function between the precomputed points
many times.

28

..................................... 5.3. Double Oracle Setup

Discretization with a Gradient Optimization

The speedup of the algorithm can be done by replacement of the stochastic
optimization by a gradient method. This exchange removes the correctness of
the algorithm - the found value is only an approximation of the maximal value.
On the other side, this modification speeds up the computation, because the
gradient optimization needs fewer evaluations of the function.

The discretization causes complications. To save the points, the demands
on the memory grow exponentially with the dimension of the discretized space.
For example, when we use 100 samples in each dimension, the five-dimensional
table contains 1005 points. When we use 4 bytes to store the coordinates of
the point, we need 4 · 5 · 1010 = 2 · 1011 bytes ∼ 200 Gigabytes.

The exponential memory complexity forces us to the trade-off between
the memory needed for caching points and a longer run of the optimization
function with a higher risk of error.

The gradient optimization algorithm used in this work is the L-BFGS-B
algorithm [52].

Additional improvements

In the adversarial classification problem, benign points play an essential role
in the solution. Thus, the convergence of the Double-Oracle algorithm could
be sensitive to the exact results of the optimization in the neighborhood of
these points. Unfortunately, all the algorithms have numerical inaccuracies,
which can lead to the incorrect convergence of Double Oracle. Therefore, we
add the benign points to the set of discretized points.

5.3.2 Defender’s Best Response

The attacker generates new points as the best response. The defender reacts
by finding a classifier. The expected value of classifier depends on the utility
and the probability of playing of misclassified attacker’s points. Thus, we
need to find classifiers, which minimizes weights of misclassified attacker’s
points with respect to the number of misclassified number of benign points. It
leads us to the usage of the standard classification methods, which supports
weighting of training points.

There is a question, how to weight the benign points during the classification
to get the best approximation of the best response classifier. We tried two
variants: 1) all benign points have weight 1, 2) benign points has weight 1

n ,
where n is a count of the benign points.

In this work, we start with the decision-tree algorithm, which is the simplest
concept of the classifiers. Then, we move to the Support Vector Machines,
which represent classifiers with a simple structure - linear or polynomial
classifiers, and it can give reasonable results in real-world problems. The last
examined classifier is the neural network, which is the most used classifier
these days.

29

5. Framework Details and Setting of Experiments
Decision Tree

The depth of decision tree is a parameter, which determines the strength of
the algorithm. We have tested three possible settings. The first one limits
the maximal depth of the tree, and the training is based on the impurity. In
the second approach, we check the expected utility of the tree in each depth
change. When the classifier is slightly better than all classifiers that already
are in the restricted game, we use it as the best response. The third one also
checks the expected utility in each depth, but the tree is being extended until
the weighted change of misclassified points is higher than the threshold. The
second and the third approach has not limited the maximal depth.

Support Vector Machine

We have used the support vector machine with a polynomial kernel. There is
the degree of the kernel, the parameter, which determines the complexity of
the classifier. In the SVM, it is necessary to set there the C parameter, which
makes a trade-off between the misclassification penalty and complexity of the
classifier. In Double Oracle, we need to separate the attacker’s points exactly
– they cannot be overfitted. Thus we set the C = 10000, which corresponds
to the huge penalty for misclassification, compared to the penalty for the
classifier structure gap.

Neural Network

The tested neural network is a multilayer perceptron with one hidden layer.
The input layer has the number of neurons corresponding to the number of
dimensions of the attacker’s space. The number of neurons in the hidden layers
is the parameter determining the strength of the classifier. The structure
is shown in Figure 5.3 The loss function used in training is the weighted
cross entropy. There are two options when the learning is ended. The first
option is that the classifier is used when its expected utility is higher by the
threshold than the expected utility of all previous classifiers. The second
option continues learning until the change of the loss is smaller than the
defined constant.

In each iteration of Double Oracle, we use the neural network from previous
learning as the initialization of weights.

5.4 Implementation Details

We have implemented a framework for the usage of Double Oracle in adver-
sarial classification problem. It is based on a simple modification of classifiers,
utility functions, and attacker’s best-response optimizers. The main loop is
written in Python 3, using NumPy. The classifier, optimizer, utility function,
and benign points enter the main loop as parameters.

Based on the related work [3, 29], the main loop has three alternatives:
1) the best responses are calculated simultaneously, 2) players alternate in

30

.................................... 5.4. Implementation Details

...

...

I1

I2

I3

Idim

H1

Hn

O1

Input
layer

Hidden
layer

Output
layer

Figure 5.3: Schema of the used neural network

the calculation of the best responses, 3) the best responses to the mixture of
last few strategies are calculated simultaneously.

Before the calculation of the best responses, the framework solves the LP.
It can be done by implemented Gurobi solver or by using CVXOPT solver.
The linear program is prepared for solving games with hard constraint in
expectation and with hard constraint in classification. The chosen option
depends on the user’s preferences.

In the framework, there are prepared two options of attacker’s best-response
optimizers: 1) Basin-Hoping with discretization, and 2) Discretization with
local L-BFGS-B optimization. They are implemented according to the de-
scription in Section 5.3.1. However, the user can simply replace the optimizer
by others, for example, the default Basin-Hoping stochastic optimization. All
the algorithms are using SciPy.

There are implemented three classifier options: 1) SVM classifier using
SVC classifier from scikit-learn, 2) decision tree using the implementation
from scikit-learn, and 3) neural networks using the implementation from
PyTorch. All the classifiers are implemented according to the description in
Section 5.3.2

The versions of used libraries are listed in Table 5.3. Gurobi is used via its
Python interface called GurobiPy.

Library version
Python: 3.6.2
NumPy: 1.16.1
SciPy: 1.1.0

Gurobi: 7.5.2
CVXOPT: 1.2.3
scikit-learn: 0.19.1

PyTorch: 0.3.0
matplotlib: 3.0.3

Table 5.3: The version of software used in the framework

More implementation details are in Appendix C.

31

5. Framework Details and Setting of Experiments
All the experiments have been performed at the cluster ELIXIR, operated

by MetaCentrum VO, whom we want to thank. All computers in the cluster
have CPU Intel R© Xeon R© Gold.

32

Chapter 6
Experiments

In Chapter 5, we have described the Double-Oracle framework for an adver-
sarial classification problem. Chapter 6 describes the experiments performed
on this framework. The experiments have been performed to evaluate the
usage of Double Oracle in adversarial classification problem with various
settings. We have evaluated the simultaneous and alternating computation
of player’s best response in the main loop of the algorithm, the multiple
optimization functions to get the attacker’s best response, and classifiers
with different settings of parameters. We have performed experiments with
the decision tree classifier, with SVM, and with a neural network. All the
experiments have used the game representation with a hard false-positive
constraint in expectation with FP threshold equal to 0.01. The algorithm has
ended, when the difference between the actual utility of the best response and
actual utilities of all actions in the restricted game was smaller than 0.5 % of
the maximum of the utility function.

6.1 Alternating or Simultaneous BR Computation

The Double-Oracle algorithm has multiple options, how to form the main
loop of the algorithm. In the first and the original setting, players calculate
the best response in the same time, and each iteration is the game expanded
in both dimensions – in the dimension of the attacker and the dimension of
the defender. In the second option, the players alternate in the calculation of
the best response. The first experiments expose the difference between these
options in an adversarial classification problem.

We have performed an experiment with two-dimensional utility function
with two local maxima and the third dataset of benign points. We have used
the discretization containing 100 samples in each dimension and with a local
gradient optimization as the attacker’s best-response function. Then we have
used the SVM classifier with a polynomial kernel with degree 2, and with the
weights of benign points equal to 1.

The run with the simultaneous BR computations has ended after 104 it-
erations with value 0.92138, which is almost equal to the optimal value.
In contrast, the run with alternating computations of BR has ended after
8 iterations with value 4.99999.

33

6. Experiments ...
The difference is demonstrated in the first few iterations which are plotted in

Figures 6.1 and 6.2. The benign points have a green color, newly added point
and classifier have a yellow color, classifiers in the support are green, points
in the support are magenta, the other points are red, and other classifiers are
blue. The height of the depiction corresponds to the probability of playing.
The initial classifier classifies all the space as benign, and it is not displayed.

When the computation of BR alternates, the classifier always reacts only on
one adversarial point. In the fourth iteration, the attacker and the defender
mix up between two points and classifiers, but on this strategy only the
attacker interacts. The defender computes the best response only against the
newly added point. In the simultaneous version, both players interact with

(a) : Iteration 1 (b) : Iteration 2

(c) : Iteration 3 (d) : Iteration 4

(e) : Iteration 5 (f) : Iteration 6

Figure 6.1: A few iterations of the run with simultaneous BR computation

34

...........................6.1. Alternating or Simultaneous BR Computation

(a) : Iteration 1 (b) : Iteration 2

(c) : Iteration 3 (d) : Iteration 4

(e) : Iteration 5 (f) : Iteration 6

(g) : Iteration 7 (h) : Iteration 8

Figure 6.2: A few iterations of the run with alternating BR computation

35

6. Experiments ...
the strategy, which mixes between points or classifiers on both sides of benign
points. Therefore, in the restricted game, there are classifiers, which separate
both sides at once.

Because of the robustness, we have decided to use the simultaneous com-
putation of the best response in all the experiments. However, in some cases,
the alternating computation can speed up the algorithm. For example, in
the experiment with the two-dimensional linear utility and with the first
dataset, the alternating computation of best-responses accelerates the run
of the algorithm by almost a third. It has about a quarter more iterations
(122 vs. 90), but the alternating ones need only a half of BR computations.

6.2 Comparison of Optimization Algorithms

In our framework, there are three possible optimization methods: 1) Basin-
Hopping, 2) Basin-Hopping with initial discretization, and 3) discretization
with gradient optimization. In this section, we compare the performance of
these three optimization methods.

The tests have run with the two-dimensional linear utility function and
the first dataset of benign points. The defender’s best response has been
calculated by SVM classifier with a polynomial kernel with degree 2. The
benign points are weighted by 1

n , and the discretization algorithms use a grid
with 100 points in each dimension. The results plotted in Figure 6.3 display
the average time of all the runs. The time is summed up over all iterations.
The standard deviation of all experiments is smaller than 5 %.

BH
BH wiht d

isc.

disc. w
ith L-BFG

S-B

500

1,000

1,500

2,000

T
im

e
[s

]

Figure 6.3: Time duration of the optimization algorithms

We have repeated the experiments with the same settings to evaluate
the error of discretization with L-BFGS-B compared to the discretization
algorithm with Basin-Hopping. The maximal error of all runs was 0.0635.
The average maximal error of all runs was 0.0482 with the standard deviation

36

.......................... 6.3. Weights of Benign Points for Classifier Training

equal to 0.0095. Since the errors are smaller than 1 % of the maximum utility,
we can consider them negligible.

Based on these experiments, we have used the discretization algorithm
with L-BFGS-B in all later experiments.

6.2.1 Insertion of Benign Points to the Optimization

As an improvement of the optimization algorithm, we have inserted the benign
points to it as a baseline value of the result. We have performed two equal
experiments to demonstrate the impact on the convergence of Double Oracle.
We have used the one-dimensional linear utility function and the first dataset
of benign points, and the decision tree classifier with maximal depth 3. The
optimization function has been the discretization with L-BFGS-B, with 100
samples.

Double Oracle with benign points added to the optimization converges
after 41 iterations to the value 1.39609, which exactly corresponds to the
optimal value calculated by the specialized discretization.

Double Oracle without benign points added to the optimization converges
after 169 iterations to the value 1.05222, which is lower than the optimal
value.

By examining of the computation course, we can find out a problem in the
second run, when the best responses approach to the benign point with the
highest utility, equal to 1.5512166. The attacker’s optimizer finds the point
1.55124279, which is slightly higher than the benign one. The decision tree
precisely crops it at 1.55122995. In the next iteration, the optimizer does
not find the optimal value, but only the point 1.55121551. In the next step,
the decision tree finds a classifier with cuts in 1.43356001, 1.55121648, and
1.55122995. The interval between the first two cutting points is classified as
adversarial and every point higher than the third point is also adversarial.
This classifier has false-positive rate 0, and it correctly classifies all added
attacker’s points. Moreover, the gap between the second and the third cutting
point cannot be found by the optimization, although the maximum of the
utility function is in it. Since the benign point with the highest utility is in
this interval, it is a better approximation of the attacker’s best response than
the value given by the discretization algorithm.

A similar error appears in other experiments and the addition of the set of
benign points into the optimization definitively solves it.

6.3 Weights of Benign Points for Classifier
Training

In Section 5.3.2, we have discussed the possibilities of weighting the benign
points for the training of classifiers. This section illustrates the experimental
differences between these two cases.

We have performed an experiment with one-dimensional utility function
with two local maxima and with the third dataset and the decision tree

37

6. Experiments ...
classifier with maximum depth 2. The first run was with the weights equal
to 1 for all points. The second experiment was with weights equal to 1

n for
all points, where n in the number of points.

The first run with the weights of 1 has converged to the value 0.83237,
and the second run has ended with the value 0, 79168, which corresponds to
the optimal value gained from the specialized discretization. The difference
between these two runs occurs at the moment, when the attacker plays
precisely the same point as the benign one, with the highest utility. In this
situation, the classifier prefers to misclassify the point with the lower weight.
Since the weight of the benign point is 1 and the point has utility 0.83237,
it is preferred not to misclassify the adversarial point. Thus, the classifier
misclassifies the adversarial one, which remains the best response strategy.
The value of the game, in this case, is equal to the utility of the benign point.
In the second run, the weight of the benign point is lower than its utility.
Therefore, the algorithm adds to the restricted game the classifier, which
misclassifies the benign point. It is played with a small probability not to
violate the false-positive constraint. This strategy is the final one.

From this experiment, we can observe that the classifier does not prefer
the misclassification of benign points when the weights are high. Thus, the
weights equal to 1 can lead to higher final values. On the other hand, when
the weights are too small, the classifier ignores the benign points, and the
new classifier has a significant false-positive rate. Thus Double Oracle also
ends with a high value. We can observe that the result also depends on the
utilities of the benign points. Therefore, the optimal weights might depend
on it.

We have used in all the experiments weights equal to 1, despite the worse
results in the previous experiment. However, classifiers trained with these
weights have a lower false-positive rate, which can cause an error during the
convergence.

6.4 Decision Tree

In this section, we will describe experiments with the decision tree classifier.
All the experiments have used the simultaneous best-response computation in
the main loop of Double Oracle, discretization with local gradient optimization
as the attacker’s best-response algorithm, and weights of benign points equal
to 1. The defender’s best response is the decision tree, which has limited
the maximal depth. We have tested the algorithm with different depths of
the tree, with all three utility functions, and with the different number of
dimensions of attacker’s space. The results are shown in Tables 6.1, 6.2, and
6.3. For comparison, the optimal values are in Table 5.2.

We can observe that the experiments have converged close to the optimal
value when the depth of the decision tree is large enough. With the increasing
complexity of the utility function and with an increasing number of dimensions,
the maximal depth of the decision tree necessary to converge close to the
optimal value grows. Similar is the growth of the number of iterations needed

38

...6.4. Decision Tree

1 2 3
1 41 490 302
2 41 149 177
3 41 157 248
4 41 425 290
5 41 227 401
6 41 264 432
7 41 283 416
8 41 294 396
9 41 465 390

(a) : Number of iterations

1 2 3
1 1.396 2.928 3.163
2 1.396 2.456 3.191
3 1.396 2.664 2.370
4 1.396 2.003 1.993
5 1.396 2.003 1.881
6 1.396 2.003 1.842
7 1.396 2.003 1.842
8 1.396 2.003 1.842
9 1.396 2.003 1.842
(b) : Final value of the game

Table 6.1: Results of experiments with the decision tree and the linear utility
function. The columns are dimensions, the rows correspond to the maximal
depth.

1 2 3
1 2 9 10
2 50 167 463
3 50 273 407
4 50 257 497
5 50 197 422
6 50 339 409
7 50 308 557
8 50 536 792
9 50 362 833

(a) : Number of iterations

1 2 3
1 9.799 9.699 9.599
2 7.119 7.204 7.254
3 7.119 6.891 6.824
4 7.119 6.645 6.699
5 7.119 6.634 6.648
6 7.119 6.371 6.810
7 7.119 6.224 6.591
8 7.119 6.224 6.236
9 7.119 6.224 6.111
(b) : Final value of the game

Table 6.2: Results of experiments with the decision tree and the utility function
with one maximum. The columns are dimensions, the rows correspond to the
maximal depth.

1 2 3
1 5 41 38
2 133 11 18
3 133 68 52
4 133 250 56
5 133 281 65
6 133 367 138
7 133 365 133
8 133 447 N/A
9 133 436 N/A

(a) : Number of iterations

1 2 3
1 5.892 9.891 9.879
2 0.832 9.878 9.868
3 0.832 9.332 9.825
4 0.832 4.126 9.734
5 0.832 3.335 9.571
6 0.832 1.403 8.819
7 0.832 1.956 8.692
8 0.832 1.191 N/A
9 0.832 1.301 N/A
(b) : Final value of the game

Table 6.3: Results of experiments with the decision tree and the utility function
with two maxima. The columns are dimensions, the rows correspond to the
maximal depth.

39

6. Experiments ...
for the convergence. We can see some deviations from this rule. For example,
in the sixth and seventh row of Table 6.3. It is caused by the randomness
of the selection of the dimension for a cut during the decision tree building.
Thus, the computations differ even in the situations, where it is not necessarily
the maximum depth of the tree. In the experiment with the utility with two
maxima, two-dimensional attacker’s space and maximal depth 7, the random
selection of the dimension causes the earlier usage of trees, which misclassifies
some benign points, and the algorithm ends before reaching the optimal value.
The cells filled with N/A correspond to the runs when the algorithm has not
ended in the limit time, 24 hours.

A bottleneck of the algorithm is the optimization method for BR of the at-
tacker. With the growing dimension, the memory needed for the discretization
and the time complexity of the optimization algorithm grow exponentially.
We demonstrate the time complexity on experiments with linear utility and
with the maximal depth of the decision tree, equal to 5. The results can be
seen in Figure 6.4. The calculation times are averaged over five runs, and the
standard deviations are always smaller than 5 %.

101 102 103 104

1

2

3

Time [s]

Figure 6.4: Time duration of the BR algorithm, depending on the dimension of
the attacker’s space

The progress of convergence considerably varies among all three utility
functions. We have plotted utility values of adversarial points, which have
been added to the restricted game as the attacker’s best response. These
values give us a curve of convergence of Double Oracle during the iterations.

The typical course of the convergence of Double Oracle with the linear
utility looks like on Figure 6.5, where the convergence of experiment with the
decision tree with maximal depth 6 and three-dimensional utility function
is plotted. The y-axis corresponds to the utility of added adversarial point,
and the x-axis corresponds to the iteration, in which the point was added.
The green line in the graph corresponds to the value given by the smart
discretization.

The oscillation at the beginning of the graph corresponds to the alternation
of reactions to the newly added linear classifier and reactions to the mixture of
previously added linear classifiers. Since the defender adds a classifier, which
correctly classifies all previously added points, there usually is an attacker’s
reaction with high utility. Thus, the optimal strategy in the next step mixes up
between decision trees, which cut a different dimension. Optimal adversarial
point reacting to the new strategy lies on the crossing of the two cuts and

40

...6.4. Decision Tree

has a lower utility than the previous best response.

Figure 6.5: Convergence of DO with the three-dimensional linear utility and
DT with max depth 6

The typical convergence course of the algorithm with the utility function
with one maximum is plotted in Figure 6.6. The curve consists of three parts.
In the first part, the utility is decreasing slowly. The points are separated by
a shallow tree. In our example, the data are separated by a tree with depth 2.
The breakpoint between the first and the second phase is the iteration of 50.
In the second phase, the utility falls quickly. There are the spaces between
the point clusters, which has a significant utility, cut out. The last part of the
run starts around the iteration of 180. The decreasing slows down, and the
defender generates deeper trees to cut a smaller space between the points.

Figure 6.6: Convergence of DO with the two-dimensional utility with one
maximum and DT with max depth 7

41

6. Experiments ...
The hardest task for the decision tree is the utility function with two

maxima. The benign points in these settings lie around the diagonal, which
is complicated to separate by cuts in axes of individual dimensions. Thus,
the maximal depth needed for optimal separation rapidly grows, and we do
not reach it even in two dimensions. In Figure 6.7, the typical convergence of
Double Oracle with the third utility function is displayed. We can see three
similar phases as with the utility with one maximum, but the transitions are
in this case smoother, and the first part of the curve is more significant than
in the previous case. The courses, which do not converge near the optimal
value, have progress looking like the first part of the typical run.

(a) : The two-dimensional utility and DT
with max depth 6

(b) : The three-dimensional utility and
DT with max depth 7

Figure 6.7: Convergence of DO with the utility with two maxima

6.4.1 Unlimited Decision Tree

We have run multiple experiments with different learning conditions. In the
first one, we are increasing the depth of the tree, until the utility of it is higher
than the utility of all classifiers added in the restricted game. In the other
setting, we are increasing the depth of the tree, until the weighted change of
misclassified points is higher than 0.1.

The version, where the first better classifier is added, has failed almost every
time. We can demonstrate it on the experiment with the one-dimensional
utility with one maximum. The attacker adds a point in between two clusters
of benign points. The defender finds a decision tree, which separates the
adversarial point from one of the clusters. The second cluster is misclassified.
Since the tree has the utility 0, it is added to the restricted game. However,
it has a high false-positive rate so it can be played with a small probability.
The attacker’s best response stays the same, and the algorithm ends with
utility almost 10.

When we change the depth of the tree until the negligible improvement of
the classification (smaller than 0.1), the algorithm always converges to the
optimum. In this case, the tree does not misclassify a benign point, unless the
deeper tree misclassifies it also. Therefore, the algorithm has converged in all
runs to the optimal value. The curve of convergence has a similar shape as
the curve of convergence of DO with decision tree with the smallest maximal
depth, which ended near the optimal value. This allows us to find the best
classifier with the smallest possible depths of the tree.

42

.................................... 6.5. Support Vector Machine

6.5 Support Vector Machine

This section describes experiments with Support Vector Machine classifier. All
the experiments have used the simultaneous best-response computation in the
main loop of Double Oracle, discretization with local gradient optimization as
an attacker’s best-response algorithm, and weights of benign points equal to
1. The defender’s best response is SVM classifier with the polynomial kernel.
We have tested the algorithm with different degrees of the polynomial kernel,
with all three utility functions, and with a different number of dimensions of
the attacker’s space. The results are shown in Tables 6.4, 6.5, and 6.6. For
comparison, the optimal values are in Table 5.2.

1 2 3
1 22 75 118
2 30 95 225
3 36 119 358
4 43 175 342
5 50 141 408
6 54 145 424
7 62 175 446
8 66 183 N/A
9 72 195 N/A

(a) : Number of iterations

1 2 3
1 1.398 2.087 1.8939
2 1.402 2.037 1.8638
3 1.399 2.007 1.8421
4 1.396 2.003 1.8421
5 1.396 2.003 1.8449
6 1.396 2.003 1.8421
7 1.396 2.003 1.8421
8 1.396 2.003 N/A
9 1.396 2.003 N/A
(b) : Final value of the game

Table 6.4: Results of experiments with the SVM and the linear utility function.
The columns are dimensions, the rows correspond to the degree of kernel.

1 2
1 2 2
2 14 107
3 22 113
4 28 136
5 31 116
6 33 N/A
7 36 N/A
8 37 N/A
9 39 N/A

(a) : Number of iterations

1 2
1 9.799 9.737
2 7.186 6.318
3 7.123 6.378
4 7.122 6.330
5 7.126 6.325
6 7.910 N/A
7 7.515 N/A
8 7.515 N/A
9 7.119 N/A

(b) : Final value of the game

Table 6.5: Results of experiments with the SVM and the utility function with
one maximum. The columns are dimensions, the rows correspond to the degree
of kernel.

In the results, we can observe the expected trends, similar to trends with the
decision tree. With a growing degree of the kernel, the number of iterations
grows, and the final value is approaching the optimal value calculated by the
smart discretization. However, the SVM classifier is sensitive to positions

43

6. Experiments ...
1 2 3

1 5 5 5
2 122 104 181
3 161 121 324
4 112 161 298
5 130 139 253
6 66 212 373
7 70 N/A N/A
8 86 N/A N/A
9 85 N/A N/A
(a) : Number of iterations

1 2 3
1 5.892 6.694 6.739
2 0.819 0.921 0.751
3 0.791 0.921 0.868
4 0.791 0.921 1.169
5 0.791 0.921 1.297
6 0.791 0.926 1.218
7 0.791 N/A N/A
8 0.791 N/A N/A
9 0.791 N/A N/A
(b) : Final value of the game

Table 6.6: Results of experiments with the SVM and the utility function with
two maxima. The columns are dimensions, the rows correspond to the degree of
kernel.

and weights of the benign data, because there is a component affecting
the structure of the classifier in training. Thus, the defender can prefer to
misclassify points, even when they are separable. It can lead to the "failure"
of the classifier, and the value does not reach the expected value.

The progress of the convergence during the time is similar for the first and
the third utility function. We can see it in Figure 6.8. SVM classifier crops
the extremes of the utility function quickly and then slightly improves the
classifiers to get the optimum.

Figure 6.8: Convergence of DO with the three-dimensional linear utility and
SVM with polynomial kernel with degree 6

The interesting difference appears in runs with the utility function with
two maxima and with SVM classifier with a kernel with a degree higher than
needed. Such a course is shown in Figure 6.9. In these cases, the classifier
overfits the data, which causes the oscillation at the beginning, and the
convergence is slowed down.

44

.................................... 6.5. Support Vector Machine

Figure 6.9: Convergence of DO with the three-dimensional utility with two
maxima and SVM with polynomial kernel with degree 6

Experimental results show that the problems with the utility function with
one maximum are the hardest for SVM classifier. The typical run is plotted
in Figure 6.10. The drop at the beginning of the run is much smaller than in
the previous cases. In the situation, with one local maximum, the classifier is
forced to cut out the space between the clusters of benign points generated
in corners. Therefore, the curve linearly decreases.

Figure 6.10: Convergence of DO with the two-dimensional utility with one
maximum and SVM with polynomial kernel with degree 4

The training of the SVM classifier, cutting out the space between the points
in corners, takes longer than in experiments with other utility functions. For
example, we can compare training times of SVM with a polynomial kernel with
degree 5, during experiments with two-dimensional utility function with one

45

6. Experiments ...
maximum and with two maxima. The training times are shown in Figure 6.11.
In the problem with two local maxima, the defender needs to train a classifier
separating the benign points and the maxima, which can be done with two
straight lines around the benign points. By contrast, the cutting of the space
between point clusters needs more complex decision boundary.

102 103

2 maxima

1 maximum

Time [s]

Figure 6.11: Time duration of training of SVM in seconds, depending on the
utility function

6.6 Neural Network

Double Oracle with the neural network has multiple parameters to be set.
The first parameter is the number of neurons in the hidden layer. It is the
only used parameter, which affects the strength of the classifier. The other
two parameters are the number of epochs and the number of iterations. The
training of the neural network is done in loops. In each iteration, the neural
network learns for epochs, and then the algorithm checks the actual utility of
the classifier. We run experiments with setting 1000 epochs and 100 iterations.
As the initialization of weights in NN, the network from the previous iteration
of Double Oracle is used.

In the first experiments, we have added the first neural network, which
has by 0.5 % better utility than all classifiers in the restricted game. These
experiments have two possible scenarios. In the first one, the algorithm
quickly fails because it finds a classifier, which has a high false-positive rate
and classifies all adversarial points correctly. Thus, the utility of such classifier
is 0, but it cannot be played with a significant probability. The probability
of this failure rapidly grows with random initialization of weights in each
iteration of the Double-Oracle algorithm.

The convergence course in the second scenario is plotted in Figure 6.12.
It quickly drops near to the optimal value, but the decreasing of the value
quickly slows down. In this part of the convergence, the training is very
sensitive to the weights of benign data. When the weights are lower, the curve
approaches to the optimum at the shorter distance, but there is a higher
risk of misclassification of a lot of benign points, which leads to the absolute
failure of Double Oracle.

46

..6.6. Neural Network

Figure 6.12: Convergence of DO with the two-dimensional linear utility and
NN with 10 neurons in hidden layer, adding first better

The second batch of experiments has continued in the training of the neural
network, until the loss drops under the value of 0.01. This modification elimi-
nates the failure caused by the misclassification of benign points. However,
we do not observe any other significant difference between the courses of
convergence in these experiments and in the previous ones.

The exemplary results are shown in Tables 6.7, 6.8, and 6.9. In these
experiments, we have used the second training condition with the threshold
on the change of the loss equal to 0.01. For comparison, the optimal values
are in Table 5.2.

1 2 3
1 2 2 3
2 7 9 9
4 36 70 152
7 67 182 256
9 72 108 319
10 85 230 N/A
20 105 657 N/A
(a) : Number of iterations

1 2 3
1 9.899 9.872 9.158
2 1.720 4.454 8.937
4 1.862 3.404 3.943
7 1.600 2.878 3.547
9 1.558 2.992 3.536
10 1.506 2.496 N/A
20 1.503 2.376 N/A
(b) : Final value of the game

Table 6.7: Results of experiments with the NN and the linear utility function.
The columns are dimensions, the rows correspond to the number of neurons in
hidden layer.

In Double Oracle with a neural network, the time necessary for training
nearly competes with the time complexity of the attacker’s best response.

47

6. Experiments ...
1 2 3

1 3 1 1
2 5 2 1
4 12 79 97
7 9 286 240
9 14 551 N/A
10 18 738 N/A
20 27 N/A N/A
(a) : Number of iterations

1 2 3
1 9.866 10.00 10.00
2 9.873 9.998 10.00
4 9.788 9.309 9.867
7 9.799 8.344 9.741
9 8.876 7.135 N/A
10 8.769 6.835 N/A
20 7.644 N/A N/A
(b) : Final value of the game

Table 6.8: Results of experiments with the NN and the utility function with
one maximum. The solumns are dimensions, the rows correspond to the number
of neurons in hidden layer.

1 2 3
1 4 2 3
2 5 4 1
4 12 41 83
7 17 293 N/A
9 34 416 N/A
10 29 N/A N/A
20 53 N/A N/A
(a) : Number of iterations

1 2 3
1 9.900 10.00 10.00
2 6.636 9.891 10.00
4 5.014 7.505 8.610
7 4.950 5.420 N/A
9 2.846 4.598 N/A
10 3.195 N/A N/A
20 1.765 N/A N/A
(b) : Final value of the game

Table 6.9: Results of experiments with the NN and the utility function with
two maxima. The columns are dimensions, the rows correspond to the number
of neurons in hidden layer.

6.7 Final Observations

At the end of the chapter with experiments, we would like to introduce two
general observations about the adversarial classification games.

The adversarial classification problem seems to be in close association with
the Stackelberg structure of the problem. In the majority of experiments, the
attacker has the support smaller than 10. Moreover, in almost half of the
experiments, the attacker plays a pure point. It is because the defender makes
a commitment to use the classifiers, which separates the benign data from
the maxima of the utility function, and the attacker finds the best reaction
to it. For these reasons, it would be interesting to look at the problem from
the view of Stackelberg equilibrium.

The second interesting observation is the size of the support of the defender.
He usually mixes over tens or hundreds of classifiers. It leads to two ideas.
The defender in practical cases would like to use as few classifiers as possible
because each classification in the application costs something. Therefore, we
have to add the number of classifiers into the objective of the linear program
in order to minimize it.

48

...................................... 6.7. Final Observations

With a deeper look, we can find out, that many of the classifiers are
dominated by others. Since none of them classifies the adversarial points
correctly, it does not matter, which one has a nonzero probability. Thus, we
can modify the defender’s strategy to minimize the support, without a change
of the expected value. Moreover, we can filter dominated classifiers during
Double Oracle, which would speed up the run of the algorithm. We would
have to be aware of the false-positive rate and not only of the game matrix.

49

50

Chapter 7
Conclusions

In this work, we have decided to study the usage of the Double-Oracle
algorithm for finding an approximation of a Nash equilibrium in infinite games,
with motivation to find a robust solution of the adversarial classification
problem. Therefore, we have summarized the definitions from game theory,
which are related to problems with the games with infinite strategy space. In
the second chapter, we have introduced the solution concept Nash equilibrium
and a few algorithms, how to find it in finite normal-form games. Especially,
we have focused on Double Oracle, which can be generalized to infinite games.

Next part of the work is focused on the problem of adversarial classification
from the game theoretic view. We have formalized the problem as a general-
sum game, and we have shown pitfalls of using Double Oracle and of finding
the Nash equilibrium in it. Thus, we have proposed three alternatives, how to
redefine it as a zero-sum or an almost zero-sum game. From these definitions,
we have selected the adversarial classification game with hard false-positive
constraint in expectation for experiments. For this representation, we have
found a linear program, which computes an exact value of the game, but it
overfits the data.

Based on this theoretical background, we have prepared a framework for
simple usage of Double Oracle in adversarial classification problems. The
framework is easily modifiable by exchanging the classifier or the utility
function of the attacker. We have implemented two options for calculation
of the attacker’s best response and prepared the decision tree, the SVM,
and the neural network classifier for its usage in the framework. Finally, we
have prepared three different utility functions and datasets of benign points
parametric in the number of dimensions.

The main part of the work consists of the results of the experiments
on our framework, which map the usability of Double Oracle in infinite
games, specifically, in adversarial classification problem games with hard
constraint in expectation. Double Oracle converges near to the value gained
by the exact algorithm in all cases, where the classifier has sufficient strength.
Unfortunately, there is a bottleneck in the form of the attacker’s BR algorithm.
In large measure, it is probably caused by the implementation in Python.
Therefore, Double Oracle solves problems with the dimension of the attacker’s
space smaller than 4.

51

7. Conclusions ...
On the other hand, in some experiments, the training of a classifier takes

a significant part of the computation time, especially in experiments with
neural network, and in experiments with SVM and the utility function with
one maximum.

We have evaluated experiments, which have shown the difference between
the alternating and the simultaneous computation of the best response in the
main loop of Double Oracle. Based on these experiments, we decided to use
the standard simultaneous form, which is robust and works correctly in all
cases.

We have also performed experiments, which examine the weighting of
benign points for the training. Different weights have an impact on the fact,
how well the trained classifier approximates to the defender’s best response.
We have found out that with lower weights, Double Oracle can converge to
the optimum, but there is a higher risk of absolute failure.

The next experiments have been focused on the question, if it is better
to use the first classifier with better utility than all others in the restricted
game, or if it is better to train the classifier longer. Since the expected utility
does not reflect the misclassification of the benign points, it is beneficial to
train the classifier longer, so it gets a lower false-positive rate.

Eventually, we have discussed the structure of the strategy, which has been
usually found. There is interesting the Stackelberg character of the problem,
which is noticeable even in an approximation of a Nash equilibrium, where
the attacker mixes between only a few points. On the other hand, the support
of the classifier is usually large, which can be in contrast with the need for
a small and fast solution.

7.1 Future Work

This work opens many ways in the field of usage of Double Oracle for solving
infinite games and in the field of game theoretic approaches to the problems
of adversarial classification.

First steps could lead to the improvement of scalability of the algorithm.
The optimization algorithm used for finding the best response of the attacker
could be implemented in another programming language, and the implemen-
tation could be parallelized to be run on GPU. The same way, we could use
the more specialized implementations of classifiers.

The next step could be an improvement of the main loop of Double Oracle.
For example, we could remove old dominated classifiers during the run.

Since we have an algorithm, which calculates the exact value of a Nash
equilibrium, the main advantage of Double Oracle is a generalization of
the benign points dataset. Therefore, it would be interesting to perform
experiments evaluating this statement and run Double Oracle with classifiers
using the cross-validation. It is prepared in the framework.

We have seen, the distinctness of Stackelberg structure in the problem.
Therefore, it could be interesting to find Stackelberg equilibrium in the
adversarial classification game and compare it to the found Nash equilibrium.

52

... 7.1. Future Work

Double Oracle applied on adversarial classification problem can be seen
as a kind of Boosting. In each iteration, there are added new classifiers, and
points in the space are reweighted. Probably, there can be found a relationship
between these two approaches.

53

54

Appendix A
Bibliography

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” CoRR, vol. abs/1412.6572, 2015.

[2] R. Axelrod, “Effective choice in the prisoner’s dilemma,” Journal of
Conflict Resolution – J CONFLICT RESOLUT, vol. 24, pp. 3–25, 01
1980.

[3] B. Bosanský, C. Kiekintveld, V. Lisý, and M. Pechoucek, “An exact
double-oracle algorithm for zero-sum extensive-form games with im-
perfect information,” Journal of Articial Intelligence Research, vol. 51,
pp. 829–866, 2014.

[4] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, “Flexible, high performance convolutional neural networks for image
classification.,” International Joint Conference on Artificial Intelligence
IJCAI-2011, pp. 1237–1242, 07 2011.

[5] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “A committee
of neural networks for traffic sign classification,” The 2011 International
Joint Conference on Neural Networks, pp. 1918–1921, 2011.

[6] D. Połap and M. Woźniak, “Voice recognition by neuro-heuristic method,”
Tsinghua Science and Technology, vol. 24, pp. 9–17, Feb 2019.

[7] M. Rozenwald, E. Khrameeva, G. Sapunov, and M. Gelfand, “Prediction
of 3d chromatin structure using recurrent neural networks,” in 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 2488–2488, Dec 2018.

[8] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park,
“Flow-based malware detection using convolutional neural network,” in
2018 International Conference on Information Networking (ICOIN),
pp. 910–913, Jan 2018.

[9] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Mal-
ware detection with deep neural network using process behavior,” in
2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, pp. 577–582, June 2016.

55

A. Bibliography...
[10] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and

A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, (New York, NY, USA), pp. 506–
519, ACM, 2017.

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS P),
pp. 372–387, March 2016.

[12] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 387–402, 2013.

[13] D. Lowd and C. Meek, “Good word attacks on statistical spam filters.,”
in CEAS, 2005.

[14] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Computer Security –
ESORICS 2017 (S. N. Foley, D. Gollmann, and E. Snekkenes, eds.),
(Cham), pp. 62–79, Springer International Publishing, 2017.

[15] J. W. Stokes, D. Wang, M. Marinescu, M. Marino, and B. Bussone,
“Attack and defense of dynamic analysis-based, adversarial neural mal-
ware detection models,” in IEEE Military Communications Conference
(MILCOM), pp. 1–8, Oct 2018.

[16] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer en-
coding: One hot way to resist adversarial examples,” in International
Conference on Learning Representations, 2018.

[17] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” CoRR, vol. abs/1611.01236, 2016.

[18] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protect-
ing classifiers against adversarial attacks using generative models,” in
International Conference on Learning Representations, 2018.

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[20] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend:
Leveraging generative models to understand and defend against adversar-
ial examples,” in International Conference on Learning Representations,
2018.

56

..A. Bibliography
[21] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and

D. Mukhopadhyay, “Adversarial attacks and defences: A survey,” CoRR,
vol. abs/1810.00069, 2018.

[22] D. Balduzzi, S. Racanière, J. Martens, J. N. Foerster, K. Tuyls, and
T. Graepel, “The mechanics of n-player differentiable games,” in Pro-
ceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pp. 363–372, 2018.

[23] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pp. 274–283, 2018.

[24] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” The Journal of Machine Learning
Research, vol. 13, pp. 2617–2654, 09 2012.

[25] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” pp. 547–555, 08 2011.

[26] S. R. Bulò, B. Biggio, I. Pillai, M. Pelillo, and F. Roli, “Randomized
prediction games for adversarial machine learning,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 28, pp. 2466–2478, Nov
2017.

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.),
pp. 2672–2680, Curran Associates, Inc., 2014.

[28] H. B. McMahan, G. J. Gordon, and A. Blum, “Planning in the presence
of cost functions controlled by an adversary.,” in ICML (T. Fawcett and
N. Mishra, eds.), pp. 536–543, AAAI Press, 2003.

[29] M. Lanctot, V. F. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Péro-
lat, D. Silver, and T. Graepel, “A unified game-theoretic approach to
multiagent reinforcement learning,” Advances in Neural Information
Processing Systems, pp. 4190–4203, 2017.

[30] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. New York, NY, USA: Cam-
bridge University Press, 2008.

[31] N. D. Stein, P. A. Parrilo, and A. Ozdaglar, “Characterization and
computation of correlated equilibria in infinite games,” in 2007 46th
IEEE Conference on Decision and Control, pp. 759–764, Dec 2007.

57

A. Bibliography...
[32] M. Dresher, S. Karlin, and L. S. Shapley, “Polynomial games,” In

Contributions to the Theory of Games, Annals of Mathematics Studies,
vol. 24, pp. 161–180, 1950.

[33] J. Rehbeck, “Note on unique nash equilibrium in continuous games,”
Games and Economic Behavior, vol. 110, pp. 216–225, 2018.

[34] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimization problems,” IJMNO, vol. 4, pp. 150–194, 2013.

[35] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2,
pp. 286–295, 1951.

[36] L. E. J. Brouwer, “Über abbildung von mannigfaltigkeiten,” Mathema-
tische Annalen, vol. 71, pp. 598–598, Dec 1912.

[37] I. L. Glicksberg, “A further generalization of the kakutani fixed point
theorem, with application to nash equilibrium points,” Proceedings of
the American Mathematical Society, vol. 3, no. 1, pp. 170–174, 1952.

[38] N. D. Stein, A. Ozdaglar, and P. A. Parrilo, “Separable and low-rank
continuous games,” International Journal of Games Theory, vol. 37,
pp. 475–504, 12 2008.

[39] J. v. Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische
Annalen, vol. 100, pp. 295–320, Dec 1928.

[40] B. von Stengel, “Computing equilibria for two-person games,” in Hand-
book of Game Theory with Economic Applications (R. Aumann and
S. Hart, eds.), vol. 3, ch. 45, pp. 1723–1759, Elsevier, 1 ed., 2002.

[41] D. P. Dobkin and S. P. Reiss, “The complexity of linear programming,”
Theoretical Computer Science, vol. 11, no. 1, pp. 1 – 18, 1980.

[42] T. Sandholm, A. Gilpin, and V. Conitzer, “Mixed-integer programming
methods for finding nash equilibria.,” vol. 2, pp. 495–501, 01 2005.

[43] C. E. Lemke and J. T. Howson, “Equilibrium points of bimatrix games,”
Journal of the Society for Industrial and Applied Mathematics, vol. 12,
no. 2, pp. 413–423, 1964.

[44] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complex-
ity of computing a nash equilibrium,” in Proceedings of the Thirty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’06, (New
York, NY, USA), pp. 71–78, ACM, 2006.

[45] P. A. Parrilo, “Polynomial games and sum of squares optimization,”
in Proceedings of the 45th IEEE Conference on Decision and Control,
pp. 2855–2860, Dec 2006.

58

..A. Bibliography
[46] R. J. Lipton, E. Markakis, and A. Mehta, “Playing large games using

simple strategies,” in Proceedings of the 4th ACM Conference on Elec-
tronic Commerce, EC ’03, (New York, NY, USA), pp. 36–41, ACM,
2003.

[47] B. Bosansky, V. Lisy, M. Lanctot, J. Cermak, and M. Winands, “Algo-
rithms for computing strategies in two-player simultaneous move games,”
Artificial Intelligence, vol. 237, 04 2016.

[48] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pechoucek, and
M. Tambe, “A double oracle algorithm for zero-sum security games
on graphs,” in AAMAS, 2011.

[49] H. von Stackelberg, D. Bazin, R. Hill, and L. Urch, Market Structure
and Equilibrium. Springer Berlin Heidelberg, 2010.

[50] G. Leitmann, “On generalized stackelberg strategies,” Journal of Opti-
mization Theory and Applications, vol. 26, pp. 637–643, 12 1978.

[51] D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping
and the lowest energy structures of lennard-jones clusters containing up
to 110 atoms,” The Journal of Physical Chemistry A, vol. 101, no. 28,
pp. 5111–5116, 1997.

[52] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for
bound constrained optimization,” SIAM Journal of Scientific Computing,
vol. 16, pp. 1190–1208, 9 1995.

59

60

Appendix B
Experiments on Discretization Algorithm

We have tested the scalability of the basic discretization algorithm for the
approximation of a Nash equilibrium in infinite games from Chapter 4.2.

The algorithm was evaluated on randomly generated polynomial zero-sum
game with maximum degree smaller than 10. The dimension of the strategy
space of the first player is the scaled parameter, and the second player has
a one-dimensional strategy space all the time.

The algorithm had 1000 samples in each dimension. The results are plotted
in Figure B.1.

Figure B.1: Solution times of discretization algorithm for scaled dimension count
in seconds (player 1 dimensions × player 2 dimensions)

The discretization algorithm was implemented in Python 3.7.1 using NumPy
1.15.4, and linear programs were solved using Gurobi 7.5.2. All the experi-
ments run on a computer with Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz,
16GB RAM.

61

62

Appendix C
Framework Source Code

We have implemented a framework for simple usage of the Double-Oracle
algorithm in adversarial classification problem in Python 3.6. The used
libraries with versions are listed in Table C.1

Library version
Python1: 3.6.2
NumPy2: 1.16.1
SciPy3: 1.1.0

Gurobi4: 7.5.2
CVXOPT5: 1.2.3
scikit-learn6: 0.19.1

PyTorch7: 0.3.0
matplotlib8: 3.0.3

Table C.1: The version of software used in the framework

The source code consists of three main parts: main loop, optimization for
computation of the attacker’s best response and the defender’s best response
classifier.

The main loop of Double Oracle is located in DoubleOracle class. There are
multiple options adjustable with arguments of the init function. They influence
the run of the algorithm. We can set the optimizer for solving LP, negative
data weights, or the type of the main loop – alternating, simultaneous or
mixing calculation of best responses of the players. Algorithms for calculation
of best response are also the parameters of the function. Computation is
started by calling the function compute.

The attacker’s best response is calculated by a class inheriting from Opti-
mizationInterface abstract class. It has to call the parents constructor and

1https://www.python.org/
2https://www.numpy.org/
3https://www.scipy.org/
4http://www.gurobi.com/
5https://cvxopt.org/
6https://scikit-learn.org/
7https://pytorch.org/
8https://matplotlib.org/

63

https://www.python.org/
https://www.numpy.org/
https://www.scipy.org/
http://www.gurobi.com/
https://cvxopt.org/
https://scikit-learn.org/
https://pytorch.org/
https://matplotlib.org/

C. Framework Source Code....................................
implement the optimize method, which returns the optimal point and its value.
In the framework, there are prepared three options discussed in the work –
Basin-Hopping algorithm, Basin-Hopping algorithm with discretization, and
discretization with L-BFGS-B local optimization.

The defender’s best response classifier inherits from ProbabilisticClassifier
abstract class. It has to override the classify_by_one_classifier method,
which implements the prediction of the classifier, and the update method,
which trains a new classifier and tries to add it to the game using the pre-
implemented expand_classifiers method. When the classifier does not support
the hard constraining the false-positive rate during training, it has to inherit
from NotAllowHardFP class. Moreover, when the classifier can easily get
the distance of a point from the decision boundary, it has to inherit from
ProbabilisticClassifierWithBoundary, which allows transforming the distance
into the probability of the class.

In the framework, there are prepared three classifiers: decision tree, Support
Vector Machine, and neural network. Decision tree allows to restrict the
maximal depth of the tree, or it can iteratively deepen the tree until there is
an improvement of the classification higher than a threshold. SVM has an
optional kernel and all other parameters of the classifier. The neural network
has a predefined model with one hidden layer, but it can be exchanged in
parameters. Similarly, we can exchange the loss function, optimizer, and all
the parameters. The training of the neural network is executed in loops. In
one loop it runs the backpropagation for epochs and then it checks the utility
of the classifier. The number of epochs and the number of iterations can
be set with parameters. There are two options for the end of the training.
In the first option, the classifier adds the first classifier with better utility,
and in the second option, the training continues, until the change of the loss
is smaller than the threshold. The last parameter sets the initialization of
the neural network. In the first option the weights are set randomly, and in
the second one, the algorithm continues in training of the network from the
previous iteration of Double Oracle.

Next, to the framework, there is also the smart discretization solver from
Section 4.5.

We have prepared a main.py file, which enables a simple run of the frame-
work from the console. All parameters of the script are described in the
help:

Usage of the script:

python main.py function points fp_threshold algorithm *params
[optimizer] [step] [weights]

function: 0 -> Linear utility
1 -> Utility with one maximum
2 -> Utility with two maxima

points: a path to the *.npy file with the benign points

64

.....................................C. Framework Source Code

fp_threshold: float - a number between 0 and 1 to limit
a false-positive rate

None - algorithm expects classifier
with hard false-positive constraint

algorithm: discretization -> discretization algorithm
SVM -> Double Oracle with SVM classifier
NN -> Double Oracle with neural network
DT -> Double Oracle with decision tree

optimizer: 0 -> discretization optimizer
1 -> Basin-Hopping optimizer with discretization
2 -> Basin-Hopping optimizer

step: 0 -> simultaneous computation of the attacker’s BR
1 -> alternating computation of the attacker’s BR
2 -> simultaneous computation of the attacker’s BR

on weighted a few strategies in history

weights: 0 -> benign points has weight 1
1 -> benign points has weight 1/n

*params: depends on the algorithm settings

discretization:
density: int - density of sampling

None - exact computation

SVM:
degree: int - degree of polynomial kernel

NN:
hidden_size: int - number of neurons in hidden layer
epochs: int - number of epochs before check of

classifier utility
iterations: int - number of repetitions of training

and utility checks
last for init: bool - initialize the NN with weights

from previous training
gradient: float - required descent of loss,

None - the addition of the first better

DT:
max depth: int - a maximal depth of the tree

None - unlimited
gradient: float - required descent of weighted

misclassification change,
None - unlimited
First - the addition of the first better

65

66

Appendix D
CD Content

The enclosed CD contains following files and directories:. silhapro.pdf - The text of this thesis. text_source - The source code of the text. appendices - The appendices of the work. chapters - The chapters source code. img - The figures. specification - The specification of the thesis. data - The datasets used for the experiments. The generated datasets. generate_dataset.py - The script for generation of datasets. framework - The source code of the framework

The text source code is written in LATEXusing the template CTUstyle
created by Petr Olšák1.

For generation of new datasets, you can use the script generate_dataset.py.

Usage of the script:

python generate_dataset.py generator dimensions name

generator: 0 -> First dataset
1 -> Second dataset
2 -> Third dataset

dimensions: the number of dimensions of the points

name: name of the generated file

1http://petr.olsak.net/ctustyle.html

67

http://petr.olsak.net/ctustyle.html

	Introduction
	Related Work
	Outline and Contributions

	Introduction to Game Theory
	Normal-Form Games
	Infinite Games

	Solution Concepts
	Nash Equilibrium
	Finding of a NE in a Zero-Sum NFG
	Finding of a NE in a General-Sum NFG
	Finding of a NE in Infinite Games
	Double-Oracle Algorithm
	Stackelberg Equilibrium

	Adversarial Classification as a Game
	General-Sum Game
	Finding a NE by Discretization
	Finding a NE by Double Oracle
	Zero-Sum Game
	Hard Constraint in Classification
	Hard Constraint in Expectation
	Soft Constraint in Expectation

	Specialized Discretization for Game with Hard Constraint in Expectation

	Framework Details and Setting of Experiments
	Datasets
	Specialized Discretization
	Double Oracle Setup
	Attacker's Best Response
	Defender's Best Response

	Implementation Details

	Experiments
	Alternating or Simultaneous BR Computation
	Comparison of Optimization Algorithms
	Insertion of Benign Points to the Optimization

	Weights of Benign Points for Classifier Training
	Decision Tree
	Unlimited Decision Tree

	Support Vector Machine
	Neural Network
	Final Observations

	Conclusions
	Future Work

	Bibliography
	Experiments on Discretization Algorithm
	Framework Source Code
	CD Content

