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Abstract
In this thesis, we present a method for
solving a single machine total tardiness
problem a classical NP-hard scheduling
problem. We investigate the use of deep
learning method for this problem. We uti-
lize known decomposition method from
operation research, and we derive data-
driven method. We introduce a deep neu-
ral network that predicts the objective
value and acts as a polynomial-time ora-
cle. Oracle drive decomposition method
in each step. Our data-driven method
outperforms the state-of-the-art heuristic
in terms of optimality gap.

Keywords: single machine total
tardiness, data-driven method, deep
neural network

Supervisor: Ing. Antonín Novák

Abstrakt
V této práci představuje metodu pro ře-
šení problému Single machine total tardi-
ness problem. Analyzovali jsme užití Deep
learning metod, pro Single machine to-
tal tardiness problem. Využili jsme rozděl
a panuj algoritmu a odvodili z něj data-
driven přístup. Vytvořili jsme hlubokou
neuronovou síť se schopností predikovat
hodnotu kritéria problému. Tato neuro-
nová síť jedná jako optimální orákulum s
polynomiální dobou běhu. Orákulum řídí
rozděl a panuj metodu v každém kroku.
Náš data-driven přístup překonává state-
of-the-art heuristiku ve kvalitě řešení.

Klíčová slova: rozvrhování na jednom
stroji, daty řízená metoda, hluboké
neuronové sítě

Překlad názvu: Daty řízený algoritmus
pro rozvrhování na jednom stroji
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Chapter 1
Introduction

For the last 40 years, Machine Learning (ML) has been the go-to tool for
various engineering and scientific problems for which designing the handcrafted
algorithms is a complicated process. The general idea of ML is to learn from
data and then use the learned knowledge for predictions. Although several
ML paradigms and models have been proposed over the years, the current
attention is mainly on deep neural networks (DNNs) [Sch15]. Inspired by the
success of DNNs, AI researchers have become attracted in the recent years
by applications of DNNs to the problems of Combinatorial Optimization and
Operations Research (OR), such as Traveling Salesman Problem (TSP).

Traditionally, the OR community is focused mostly on developing algo-
rithms exploiting properties and the structure of these optimization problems.
Over the course of the past 70 years, many sophisticated algorithms were
developed for these classical problems. Typically, the design of an efficient
classical algorithm utilizes two components. The first one is rigorous knowl-
edge of problem structure, such as decomposition rules, dominance theorems,
and bounds that help to prune useless part of search space and mitigate
symmetries. The second component is a heuristic, often incorporating ad-hoc
strategies and rules of thumb acquired by the designer of the algorithm
based on the experience and behavior of the algorithm with solving realistic
instances. While the rigorous component provides essentially free speed-up of
the algorithm, the design of guiding rules is a tedious job for the designer, of-
ten limited by the experience and resources. Moreover, heuristics are tailored
to a specific class of problem instances, and, due to no free lunch theorem,
they are likely to perform poorly on other classes of instances.

On the other hand, a significant part of the ML community tackles these
problems more or less blindly. They often design end-to-end machine learning
models that try to solve the problem as a whole. These models do not utilize
state-of-the-art knowledge from OR, and, hence, the models are handicapped
due to ignoring the known rigorous knowledge, or they are unable to figure out
these theorems from the data by themselves. In both cases, often the result
is that these methods frequently fall short behind state-of-the-art algorithms
from OR in terms of speed and quality of solutions. However, it is clear
that ML has its potential in the second component of successful algorithms –
the heuristic component. Hence, the successful application of ML to solving
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1. Introduction .....................................
combinatorial problems lies in efficient integration with existing classical
state-of-the-art methods.

1.1 Motivation

The classical approach for solving combinatorial problems have several un-
decisable properties. First, solving an instance of NP-Hard problem to
optimality consumes an unfruitful amount of computer time. Second, there
is no well-established way how to utilize the found solution for improving
the algorithm or recycling solution for the next instances. Heuristic rules
from expert knowledge are often developed for worst case, only from a few
instances and it takes a massive amount of expert time. We are expecting
that the neural network has a prerequisite for estimating criterion of well
known scheduling problem and we are evaluating ability to estimate criterion
by neural network on 1||

∑
Tj . Additionally, there exists decomposition rule

for the 1||
∑
Tj problem, which enables to utilize of criterion estimation of

neural network. This property avoids the end-to-end approach, and instead
of this, it effectively builds solution only from criterion estimation.

1.2 Related work

This section will be split into two subsections. The first subsection introduces
classical methods of solving the total tardiness scheduling problem. The
second section subsection summarizes the current research of applying data
driven approaches to combinatorial problems.

1.2.1 Single Machine Total Tardiness Problem

There is a large volume of published studies investigating the exact algorithm
for the single machine total tardiness problem. In 1977 it was shown [Law77]
that weighted single machine total tardiness problem is NP-Hard problem.
However it took more than 20 years to prove, the unweighted variant of
the problem is NP-Hard problem too [DL90]. [Kou10] introduce exhaustive
survey for 1||

∑
Tj , we are bellow presenting most important part of this

survey. And extend information with new state-of-the-art algorithm.
Lawler et al. [Law77] proposes a pseudo-polynomial (in the sum of

processing times) algorithm for solving single machine total tardiness problem.
This algorithm is based on a decomposition of the problem into subproblems,
where the decomposition selects the job with maximum processing time
and tries all eligible position. Lawler decomposition split problem to two
subproblems, first subproblem contains all jobs preceding job with maximum
processing time and second subproblem contains all jobs following job with
maximum processing time, and this split generate for all position of job with
maximum processing time, where this job can be place to position following
his original position in EDD. Also Lawler introduces rules for filtering possible

2



.....................................1.2. Related work

position of job with maximum processing times. This algorithm can solve
instances up to one hundred jobs. Mukhopadhyay et al. [SM96] introduces
a technique for solving the special cases of instances where it is possible to
find an optimal solution by Lawler rules. F. Della Croce et al. [DCTBG98]
proposed a new approach, which is based on Lawler decomposition, but in
one step applies decomposition over maximum processing time job. Moreover,
the decomposition was generalized to work over due dates. Szwarc et al.
[SDCG99] combines double decomposition from [DCTBG98] and split from
[SM96], and also improves runtime of split procedure to quadratic time. This
algorithm was for a long time state-of-the-art with the ability to solve instance
up to 500 jobs. Recently, Tkindt et al. [GSDCT18] proposes branch and
merge algorithm with inferring information about nodes of the search tree
and merge nodes related to the same subproblem. This algorithm is able to
solve instances up to 1300 jobs.

Exact algorithms have very large computation times for large instances and
the optimal solution is rarely needed in practice. Hence, heuristic algorithms
are often more practical. Existing heuristics algorithm can be derived into
three major groups.

The first group of heuristics creates a job order and schedule jobs according
this order, i.e., list schedule algorithms. There are various methods for
creating a job order. The easiest one, although not very efficient is sort job
by Earliest Due Date rule (EDD). A more efficient algorithm called NBR
was proposed in [HR92]. This heuristic is initialized with EDD order and
repeatedly try to swap the last job with previous job to minimize tardiness.
NBR heuristic overcome older heuristic approaches both in quality and
runtime. Panwalkar et al. [PSK93] propose PSK heuristic which starts with
jobs sorted by shortest processing time and iteratively swaps unscheduled
job with shortest processing time to later positions. Rusell et al. [RH97]
compares PSK and NBR heuristic, and conducted that neither heuristic is
inferior to the another one. However, NBR returns a better result in more
cases. The second group of heuristics is based on Lawler decomposition rule
[Law77]. In this case, heuristic is evaluated each child of tree search node and
most promising child is expanded. This heuristic approach is evaluated in
[PVW91] with EDD heuristic. The third group of heuristic is metaheuristics.
[KGV83], [PVW91], [AK96], [BDAF96] present using of simulated annealing
for 1||

∑
Tj , [DZ99], [SYA+12] present using of genetic algorithm for 1||

∑
Tj

and [DDC99], [BBHS99], [CLG09] present using of ant colony optimization
for 1||

∑
Tj .

1.2.2 Existing data driven approach

Application of ML in OR has its challenges, namely handling inputs of
variable size and obtaining training data. Obtaining training data can be
difficult procedure, usually obtaining one training instance request to solve
problem with same complexity like final problem. The first issue can be
addressed by recurrent networks and, more recently, by encoder-decoder type
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1. Introduction .....................................
of architectures. [VFJ15] applied an architecture called Pointer Networks
that, given a set of graph nodes, outputs a solution as a permutation of
these nodes. The authors applied the pointer networks to TSP, however, this
approach for TSP is still not competitive with the best classical solvers such
as Concorde [ABCC06], that can find optimal solutions to instances with 50
nodes in a fraction of second. Moreover, the output from the Pointer Network
needs to be corrected by the beam search procedure, which indicates the
weaknesses of Pointer Networks in approximating the problem well on its
own. Pointer network has gap around 1% for instance with 20 nodes from
optimum.

The problem with obtaining the training set can be addressed with rein-
forcement learning paradigm. [DCL+18] used encoder-decoder architecture
trained with REINFORCE algorithm to solve 2D Euclidean TSP with up
to 100 nodes. It is shown that (i) repetitive sampling from the network
is needed, (ii) applying well-known 2-opt heuristic on the results still im-
proves the solution of the network, and (iii) both the quality and runtime are
worse than classical exact solver. Similar approach is described in [KW18],
which, if treated as greedy heuristic, beats weak baseline solutions (from OR
perspective) such as Nearest Neighbor or Christofides algorithm on small
instances. To be competitive in terms of quality with more relevant baselines
such as Lin-Kernighan heuristics, they perform multiple sampling from the
model and output the best solution. Moreover, they do not compare directly
their approach with state-of-the-art classical algorithms while admitting, that
off-the-shelf Integer Programming solver Gurobi solves optimally their largest
instances within 1.5 s.

[KDZ+17] present an interesting approach for learning greedy algorithms
over graph structures. The authors show that their S2V-DQN model can
obtain competitive results on MAX-CUT and Minimum Vertex Cover prob-
lems. For TSP, S2V-DQN performs about the same as 2-opt heuristics.
Unfortunately, the authors do not compare runtimes with Concorde solver.

[MRG+17] presents a data-driven approximation of solvers for NP-hard
problems. They utilized an LSTM network with a modified supervised setting.
The reported results on the Quadratic Assignment Problem show that the
network’s solutions are worse than general purpose solver Gurobi while having
the essentially identical runtime.

Integration of ML with scheduling problems has received a little attention so
far. Earlier attempts of integrating neural networks with job-shop scheduling
are [ZCBO91] and [JM98]. However, their computational results are inferior
to the traditional algorithms, or they are not extensive enough to assess
their quality. An alternative use of ML in scheduling domain is focused on
the criterion function of the optimization problems. For example, authors
in [LBQ12] address a nurse rostering problem and describe a way to evaluate
the quality of the solutions without calculating their exact criterion values.
They propose a classifier, implemented as a simple 1-layer or 2-layer neural
network, able to determine whether a certain change in a solution leads to a
better solution or not. This classifier is then used in a local search algorithm

4



.............................1.3. Contribution and thesis outline

to filter out solutions having a low chance to improve the criterion function.
Their approach was later on improved by a faster and more accurate neural
network classifier proposed in [VŠH16]. Nevertheless, both approaches are
sensitive to changes in the problem size, i.e., the size of the schedule of
nurses. If the size is changed, a new neural network must be trained. Another
method, which does not directly predict a solution to the given instance,
is proposed in [VNŠH18]. In this case, online ML technique is integrated
into an exact algorithm where it acts as a heuristic. Specifically, the authors
use regression for predicting the upper bound for a pricing problem in a
Branch-and-Price algorithm. Correct prediction leads to faster computation
of the pricing problem while incorrect prediction does not affect the optimality
of the algorithm. This method is not sensitive to the change of the problem
size; however, it is designed specifically for the Branch-and-Price approach
and cannot be generalized to other approaches.

1.3 Contribution and thesis outline

Combinatorial optimization is massively studied part of science for a long time
and attention for the neural network in the last decade is heavy. Combination
of these two approaches is relatively new and not studied into depth. In the
literature, few works are applying the only end-to-end technique for solving
combinatorial problem [VFJ15], [DCL+18]. The end-to-end approach is in
this time ineffective and not comparable to long developed methods from
the literature. An alternative way to end-to-end approach is to combine
knowledge from combinatorial problem with the neural network. In this
case, work on solving the problem can be distributed between the classical
algorithm and neural network. We have introduced a heuristic method for
1||

∑
Tj , based on a combination of decomposition approach from [Law77]

and neural network as a regressor. The method can scale to the state of the
art size of instances, and it is comparable with the result of state-of-the-art
heuristic.
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Chapter 2
Problem statement

The problem addressed in this thesis is denoted in the literature as 1||
∑
Tj ,

i.e., single machine total tardiness problem. Let J = {1, . . . , n} be a set
of jobs that have to be processed on a single machine, each job j ∈ J has
processing time pj ∈ N and due date dj ∈ N0. All jobs are available at
time zero, machine can process only one job at the time and the preemption
of the job is not allowed. Let π : {1, . . . , n} 7→ {1, . . . , n} be a bijective
function representing a sequence of the jobs, i.e., π(k) is the job on position
k in sequence π. For a given sequence π, completion time of job π(k) is
defined as Cπ(k) =

∑k
k′=1 pπ(k′). Finally, tardiness of job π(k) is defined

as Tπ(k) = max(0, Cπ(k) − dπ(k)). The problem is to find a sequence which
minimizes the total tardiness, i.e.,

∑
j∈J Tj . It is good to stress that every

order of jobs is sustainable. For easier notation we assume jobs having ordered
according to EDD (Earliest Due-date First).

2.1 ILP formulation

Problem can be formalized by Integer Linear Programing (ILP), ILP is
mathematical framework for formalizing and solving problem by set of integer
linear equation. Problem is formalized in a relative order ILP model.

minimize
n∑
i=1

ti (2.1)

s.t. ti ≥ 0 ∀i ∈ J (2.2)
ti ≥ si + pi − di ∀i ∈ J (2.3)
pi + si − sj ≤M · xi,j ∀i ∈ J, ∀j ∈ {1, . . . , i− 1} (2.4)
sj + pj − si ≤M · (1− xi,j) ∀i ∈ J, ∀j ∈ {1, . . . , i− 1} (2.5)

where xi,j ∈ {0, 1} (2.6)
ti ∈ N0 (2.7)

Variable si represents start time of job i, variable ti represents tardiness of
job i, variable xi,j defines order of job i and j and constant M is equal to
sum of all processing times. Equations (2.2) and (2.3) transform start time
of a job to tardiness of the job. Equations (2.4) enforce that if job i precedes
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0 1 2 3 4

d0 d1 . . . d5

time0 1 2 3 4 5 6 7 8 9
(a) : Visualization of the EDD schedule with total tardiness equal to 31.

01 2 3 4

d0 d1 . . . d5

time0 1 2 3 4 5 6 7 8 9
(b) : Visualization of the optimal schedule with total tardiness equal to 18.

Figure (2.1): Visualization of 1||
∑
Tj instance.

to job j, then the completion time of job i is at most the start time of job j.
Equations (2.5) solve the opposite case to (2.4). But it is important to note,
that ILP is able to solve only small instance.

2.2 Example

An example bellow illustrates an instance of problem 1||
∑
Tj with 5 jobs.

Their processing times and due dates are described in Table 2.1. Figure 2.1a
shows a solution obtained by the EDD rule while Figure 2.1b shows the
optimal solution. Although the problem has a straightforward structure,
contains only one long job and four short jobs with the same due dates, EDD
provides almost two times worst criterion value. It is because this instance
is an example of a scenario when EDD may return an arbitrary bad result
[DCGP04].

i 1 2 3 4 5

pi 5 1 1 1 1
di 0 1 1 1 1

Table (2.1): Table of processing times and due dates for the example instances
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Chapter 3
Scheduling algorithms for 1||∑ Tj

In this chapter, the individual solvers for 1||
∑
Tj will be described. In

section 3.1 we describe an algorithm based on decomposition over the job
with the longest processing time. In the next chapter, we are utilizing this
algorithm in our data-driven heuristic approach [Law77]. In section 3.2
we describe algorithm based on double decomposition over a job with the
longest processing time and also a job with the minimal due date, state-of-the-
art algorithm is based on decomposition from this algorithm [SDCG99]. In
section 3.3 we describe the state-of-the-art algorithm based on memorization of
states, we are using this algorithm for comparing with our heuristic approach
[GSDCT18]. In section 3.4 we describe state-of-the-art heuristic.

For the purpose of this chapter, we need to define a few terms.
Definition 3.1. Jobs J are sorted according to the EDD, if d1 ≤ d2 ≤ · · · ≤ dn.
In case of ties (di = di+1), the jobs are sorted according the processing times,
i.e., pi ≤ pi+1.
Definition 3.2. Jobs J are sorted according to the SPT, if p1 ≤ p2 ≤ · · · ≤ pn.
In case of ties (pi = pi+1), the jobs are sorted according the processing times,
i.e., di ≤ di+1.

Let us denote the k-th job in jobs set according EDD or SPT rule as EDDk

or SPT k, respectively. And SPTEDDk is position in SPT of job k from EDD
order. From example in Table 2.1 for example EDD1 is job with processing
time 5 and due date 0, SPT 1 is job with processing time 1 and due date 1
and SPTEDD1 is 5.

3.1 Lawler decomposition

The main idea proposed by [Law77] is look on 1||
∑
Tj problem over a job

with the longest processing time. [Law77] proves, that for jobs set ordered
in EDD and job j∗ with the longest processing time at least one optimal
solution exists with j∗ between position j∗ and n. This property leads to the
decomposition of the problem, where for each eligible position k for job j∗,
the problem is decomposed into two subproblems — one with k− 1 preceding
jobs, and second with n − k following jobs. Both subproblems are solved
recursively using the same decomposition algorithm.

9
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More formally let J be indexed by EDD. Let j∗ = arg maxj∈J pj be most
right job with longest processing time. [Law77] prove that there exists
position k ∈ {j∗, . . . , n} such that at least one optimal solution exist where j∗
is preceded by all jobs {1, . . . , k}\{j∗} and followed by all jobs {k+ 1, . . . , n}.
This property leads to the following exact decomposition algorithm. In each
node of the search tree, find the longest job j∗. For each eligible position
k ∈ {j∗, . . . , n}, the problem is decomposed into two subproblems Pk and Fk
with jobs {1, . . . , k}\{j∗} and {k+ 1, . . . , n}, respectively. Both subproblems
are solved recursively using the same decomposition algorithm; let Z(Pk)
and Z(Fk) denote the optimal criterion value for subproblem Pk and Fk,
respectively.

The speed of searching optimal solution is rapidly affected by the branching
factor in decomposition. Here, the branching factor is equal to the number of
eligible positions where it is possible to place a job with the longest processing
time. [PW82] propose rules (3.1) and (3.2) that reduce the number of position
where it is possible to place that job and the resulting algorithm is still optimal.
If any of the following rules hold for k, it is not necessary to decompose this k

k ∈ {j∗, . . . , n− 1} and
k∑
i=1

pi ≥ dk+1 [PW82] (3.1)

k ∈ {j∗ + 1, . . . , n} and
k−1∑
i=1

pi < dk. [PW82] (3.2)

[SDCG99] add additional three rules for filtering eligible positions of the job
with the longest processing time. [SDCG99] also consider same rules with
modified due dates, where due dates are replace with maximally increased
due dates defined in [Law77]. Define TT (n, l) as the tardiness of a sequence
ordered in EDD, but with job n moved to position l, then we have:

∃l ∈ {j∗ + 1, . . . , i− 1} and
k∑
i=1

pi < dl + pl [SDCG99] (3.3)

k ∈ {j∗, . . . , n} and T (n, k) > T (n, k + 1) [SDCG99] (3.4)
k ∈ {j∗, . . . , n},∃l ∈ {j∗ . . . k} and T (n, k) ≥ T (n, l) [SDCG99] (3.5)

3.2 SDD by Swartz et al.

[SDCG99] propose an algorithm for 1||
∑
Tj that has been state-of-the-art

till year 2018. This algorithm is based on two ideas, the first one is called
double decomposition introduced in [DCTBG98], and the second one called
split originally introduced in [SM96] and improved by [SDCG99] to run in
time O(n2).

For us, the most important is the idea of double decomposition, since we
will utilize it later. [DCTBG98] define double decomposition as follows. Select
the first job in EDD order, and denote it as α = SPTEDD0 . Let Jα be
a subset of J , defined as Jα = {JSPT 1 , . . . , JSPTα}. Now job α can be at
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position k = {1, . . . , JαSPTα = |Jα|} and preceding subproblem P is defined
as Pα = {JαEDD1

, . . . , JαEDDk−1
}, and following subproblem is defined like

Fα = {JαEDDk+1
, . . . , |Jα|}. [DCTBG98] show that from rules introduced in

[Emm69] is implied that α have to precede j∗, or have to be the same job
in optimal sequence. Due to this, we can decompose J \ {α, j∗} into three
subset Pα, Fα ∩ Pj∗ and Fj∗ . This subset we solve recursively with same
decomposition rules.

3.3 TTBR by T’Kint et al.

[GSDCT18] utilize double decomposition and rules to prune possible position
of job j∗ and α and propose algorithm based on merging of search space
states of double decomposition.

.
Figure (3.1): The branching scheme [GSDCT18]

To illustrate the idea behind the merging technique consider Figure 3.1. In
this example, nodes P2 and P1,2 are identical except for the initial subsequence
(21 vs 12). This fact implies, in this particular case, that the problem of
scheduling jobset {3 . . . n} at time p1 + p2 is solved twice. This kind of
redundancy can however be eliminated by merging node P2 with node P1,2
and creating a single node in which the best sequence among 21 and 12 is
scheduled at the beginning and the jobset {3 . . . n} [GSDCT18].

3.4 NBR

NBR algorithm proposed in [HR92] is based on reallocation last job (in EDD)
to position with the biggest reward. Reward is called NBR and it is derived
from Emmons rules [Emm69]. In each iteration, algorithm takes the latest job
by EDD, calculate NBR for preceding positions and swap latest job with job
on position with the biggest NBR-criterion. At the end of iteration, algorithm
removes last job from job set. Algorithm is described by Python like pseudo
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code in algorithm 1. As an input, the algorithm gets an array of due dates
due and processing times proc and return NBR order.
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Algorithm 1: NBR
Data: due, proc
Result: NBR order

1 n ← len(due)
2 order ← list(range(n))
3 for 0 ≤ i < n do
4 due[i] ← max(due[i], proc[i])
5 end
6 due, proc, order = sort_arrays(due, proc, order)
7 for k from n to 0 do
8 completeness ← cumulative_sum(proc)
9 tardiness ← [max(0, comp - tard) for comp, tard in

zip(completeness, due)]
10 pk ← proc[k]
11 if tardiness[k] > pk then
12 for j from k to 0 do
13 pj ← proc[j]
14 dj ← due[j]
15 cj ← completeness[j]
16 if pj > pk then
17 nbrj ← max(0, dj - cj)
18 for l from j+1 to k+1 do
19 nbrj ← nbrj + min(pj , tardiness[l]) - proc[l]
20 end
21 if nbrj > nbr_max then
22 nbr_max ← nbrj
23 best_pos ← j
24 end
25 else if nbrj == nbr_max and proc[best_post] < pj

then
26 best_post ← j
27 end
28 end
29 if nbr_max > 0 then
30 due.insert(k, due.pop(best_post))
31 proc.insert(k, proc.pop(best_post))
32 order.insert(k, order.pop(best_post))
33 end
34 end
35 end
36 end
37 return order
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Chapter 4
Data-driven approach

Let us recall the main disadvantages of the classical approach for NP-hard
problems. Solving of NP-hard problem instance to optimality consume an
unfruitful amount of time. A heuristic approach is derived to work in the
worst case, in many application is more useful to focus on the most common
case. Classical algorithm is not able to reuse solution of older instances
and improve results or runtime. We introduce a data-driven approach for
the 1||

∑
Tj problem, which utilizes the known solution of instances to solve

instances efficiently in time.
In this chapter, we introduce an approach to use Lawler decomposition as a

heuristic utilizing data-driven approach. In section 4.1, we compare different
algorithm sand possibility to integrate these algorithms with data-driven
approach. In section 4.2, we present changes in Lawler decomposition to be
able work with regressor presented in section 4.3.

4.1 Analysis of state-of-the-art-algorithms
concerning use of a data-driven approach

In this section, we will describe ways of integrating data-driven approach into
existing classical algorithms and shortly discuss advantages and disadvantages
of integration of algorithms. On the other hand it is possible to develop
heuristic for 1||

∑
Tj by restriction of evaluated position in decomposition.

As first let us recall the common property of Lawler, SDD and TTBR.
These algorithms are exact algorithms based on the decomposition rules. This
common property implies that the integration with data driven approach
is possible in a similar way with all of these algorithms. The integration
of a data driven-approach and Lawler algorithm is possible with an oracle
estimating criterion value of jobs set J . With this oracle, we can estimate
criterion of each eligible decomposition and the select best one. We introduce
in details this approach in section 4.2. Criterion oracle is also applicable
for SDD an TTBR. The major advantage of integration Lawler with data
driven approach is simplicity of Lawler decomposition, but still, Lawler de-
composition provides powerful framework to utilize data-driven approach.
SDD introduces double decomposition for which it is possible to use the same
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k⇤ = j⇤ + 1k⇤ = j⇤ + 1

j⇤ = arg maxj2J pjj⇤ = arg maxj2J pj

bZ(Pj⇤+1)bZ(Pj⇤+1) bZ(Fj⇤+1)bZ(Fj⇤+1) bZ(Fn)bZ(Fn)bZ(Pn)bZ(Pn)bZ(Fj⇤)bZ(Fj⇤)bZ(Pj⇤)bZ(Pj⇤)

j⇤j⇤ j⇤j⇤ j⇤j⇤

k = j⇤k = j⇤ k = j⇤ + 1k = j⇤ + 1 k = nk = n

Pj⇤Pj⇤ Fj⇤+1Fj⇤+1 PnPnFj⇤Fj⇤ Pj⇤+1Pj⇤+1 FnFn

Figure (4.1): An evaluation of one node of the search tree in the algorithm
integrating the decomposition with the DNN. Position k∗ is the position that
minimizes the approximated criterion value for job j∗.

Oracle for each decomposition. However, double decomposition complicate
implementation, and therefore Lawler is a better candidate for data driven
approach. TTBR utilizes memorization in double decomposition. In combina-
tion with oracle as heuristic, there is no possibility of memorization and due
to that TTBR is likely not good candidate for data driven-approach. NBR
have different position from algorithms above. NBR is heuristic and do not
utilize decomposition approach. To combine NBR with data driven approach
we have to implement oracle returning NBR-criterion. But it is important to
denote that this oracle have to be better than function from NBR in sense of
final schedule criterion. Due to this, this method is not appropriate for data
driven approach.

4.2 Lawler heuristic search

In this section, we present an efficient greedy heuristic combining Lawlers
decomposition, introduced in previous chapter, with a DNN acting as an
aproximation of the criterion oracle. Let us call it Lawler heuristic search
(LHS).

We begin by observing that the exact algorithm described in section 3.1 can
be easily turned into a heuristic one by not branching on every eligible position.
For example, if we approximate the values Z(Pk), Z(Fk) by Ẑ(Pk), Ẑ(Fk),
respectively, then the heuristic may expand only a few, selected branches that
have the smallest approximated criterion value

Ẑ(Pk) + max

0,
∑

j∈{1,...,k}\{j∗}
pj − dj∗

 + Ẑ(Fk) (4.1)

thus decreasing the overall runtime of the algorithm. Moreover, if only one
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branch having the smallest approximated criterion value is expanded, we
say that such a heuristic is greedy. Notice, that if the approximation is
exact, i.e., Z(Pk) = Ẑ(Pk) and Z(Fk) = Ẑ(Fk), the greedy heuristic always
finds an optimal solution thus it would be an exact algorithm. However,
computing these exact quantities is an NP-hard problem. Therefore, we use
a deep neural network as a polynomial-time approximation of the oracle, that
“knows” the exact value.

The idea of the proposed integration of the DNN into the decomposition
algorithm is simple: in every node of the search tree, use the DNN to compute
the approximated values Ẑ(Pk), Ẑ(Fk) for every eligible position, i.e., use
the DNN to predict the values Z(Pk), Z(Fk). The heuristic then greedily
selects eligible position k∗ which minimizes the approximated criterion value,
fixes the position of the longest job j∗ to k∗ and recursively solve two new
subproblems Pk and Fk; see a visualization in Figure 4.1. In algorithm 2
is proposed python like pseudo code for this heuristic, as input is expected
array of processing times and due dates and regressor function which return
expectation for criterion value for given subproblem defined by arrays of
processing times and due dates. The total O(n2) predictions are made during
the run of the algorithm.

Similar approach is proposed in [OSL17] they are defeat DQN architecture
in Atari Games with neural network used as oracle, where this neural network
predict future rewards. Major differences from our approach are that theirs
instance represent states of game instead of subproblems and they are train
Q-Value as criterion.

4.2.1 State space search

In our algorithm we want to rate every possible decomposition, with our
oracle Z, (every positions of job j∗) of J but we want to visit just small
subset of this decompositions, because in other case we are on complexity
of optimal algorithm. Let us denote the search tree of the 1||

∑
Tj as a tree

where every node is subproblem of J defined by jobs and a start time. In
Lawler decomposition for one node of the search tree and for each eligible
position of j∗, there are two nodes in tree. One consist from preceding jobs P
and starting time is equal to parent node. The second consists from following
jobs F and start time is equal to starting time of the parent node plus the
sum of processing times of jobs in the first child. Let us call this two child as
child pair. We assume, that each child of node is rated by oracle Z.

There are several methods how to select a child to be expanded by Lawler
decomposition. The first is a greedy method, that selects only the best
rated pair of child to expand. A small change of the greedy method leads
to k-greedy method. This method selects in every node k best child pairs
to expand. Unfortunately, this method is still computationally expensive
because the count of expanded nodes grow exponentially with the size of
the instance. Usually it is possible to address this behaviour by limiting the
maximal number of nodes in the queue. However in case of our usage of
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Algorithm 2: Lawler heuristic

Data: proc, due, regressor
Result: jobs order

1 Function Main(proc, due):
2 n ← len(due)
3 j∗ ← right_argmax(proc)
4 minimal_criterion ← inf
5 for k from j∗ to n do
6 left_processing_times ← proc[0:j∗] + proc[j∗+1:k]
7 left_due_dates ← due[0:j∗] + due[j∗+1:k]
8 right_processing_times ← proc[k+1:n]
9 right_due_dates ← due[k+1:n]

10 c ← max(0, sum(left_processing_times) - due[j∗])
11 c ← c + regressor(left_processing_times, left_due_dates)
12 c ← c + regressor(right_processing_times, right_due_dates)
13 if minimal_criterion < c then
14 left_min_proc ← left_processing_times
15 left_min_due ← left_due_dates
16 right_min_proc ← right_processing_times
17 right_min_due ← right_due_dates
18 min_pos ← k
19 minimal_criterion ← c
20 end
21 end
22 left_order = main(left_min_proc, left_min_due)
23 right_order = main(left_min_proc, left_min_due)
24 return join_order(min_pos, left_order, right_order)
25 return main(proc, due)

Lawler decomposition it is limited by child pair. Because it is necessary to
hold both child of child pair in queue, or remove both childs from child pair
from queue and check this property recursively to top of tree search. The
other option is Limited discrepancy search (LDS). This method introduced
in [HG95] is based on limiting the number from greedy approach. LDS is
characterized by the count of allowed discrepancies d. LDS with d = 0 yields
the same solution as the greedy method. LDS with d = 1 yields a solution
from greedy method and in each node of greedy solution expand one more
child pair. In general sense, LDS with d enables in each node to expand
one more child pair than LDS with d − 1, where next child to expand is
selected by heuristic. New expanded child pair continue in expanding only
for best child pair by rank. LDS in [HG95] is defined for binary search tree
(search tree where every node have maximally two child), let us define that
position i in rating is equal to discrepancy i− 1. See Figure 4.2 for LDS with
d ∈ {0, 1, 2, 3} and with search tree with only two child for node.
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Figure (4.2): Execution trace of LDS [HG95]

4.3 Regressor

In this section, we propose regressor architecture that acts as a criterion
oracle. Our motivation to propose regressor is to predict the optimal criterion
value for a set of jobs, i.e., Pk and Fk.

Regressor consists from a basic neural network model, this model is proposed
in the following subsection. The result of a neural network model can
be strongly affected by the prepossessing of input data. Types of input
normalization for neural network are discussed in the following paragraphs.
Types of canonical form for neural network are discussed in the following
paragraphs. Types of criterion normalization for neural network are discussed
in the following paragraphs.

Network architecture

The network in its own setting solves a regression problem — predicting
values from a continuous interval. Since the sizes (i.e., the number of jobs) of
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{(pi, di|i ∈ I)}
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LSTM (256)

dense (1)
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Figure (4.3): Visualization of the regressor with criterion normalization by
constant.

the subproblems change during the execution of the decomposition algorithm,
we propose a recurrent neural network to deal with varying input size; see its
architecture in Figure 4.3 The input is given by a set of jobs I such that I is
either Pk or Fk. Each job j ∈ I is iteratively passed to the Long Short-Term
Memory (LSTM) layer [HS97]. Job j is characterized by two features —
processing time pj and due date dj . The LSTM has a hidden layer of size
equal to 256 and is followed by a dense layer with one bias unit. After the
last job of I is passed, the network outputs a single scalar value.

Normalization of network inputs

The result of the neural network is likely to be affected by normalization of
input data. For neural networks it is often good choice to have the input
feature values in interval from zero to one. We are introduce two methods
for input normalization. Let us recall, that the input consists from jobs J ,
n = |J | Each job j ∈ J has a processing time pj ∈ N and a due date dj ∈ N0.
It is unfruitful to normalize processing times and due dates with different
constant, since there is direct connection between processing times and due
dates over all J .

Let us define method a 1PSMD (processing time sum and due dates
maximum). This method divides all processing times and all due dates in J
by a value max{

∑
i∈J pi,maxi∈J di}. Method 1PSMD normalizes processing

times and due dates to interval from zero to one. Next, let us define a
method NPS0D (n times processing time sum). This method divide all
processing times and all due dates in J by n ·

∑
i∈J pi). Method NPS0D

normalizes processing times and due dates in benchmark instances (introduced
in section 4.4) to the interval from zero to one.
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Canonical forms of input data

Neural networks are often sensitive to the form of input data. Even it is
possible to input raw data to neural network, it usually benefits from a
prepossessing step. We propose two prepossessing steps, the first part of
prepossessing data for neural network is sorting of jobs set J . The second
prepossessing step is to add some additional information for neural network,
like add information about position of job in instance.

There are several methods for presorting of job set J . Two of the possible
method are denoted above EDD and SPT. Furthermore it is possible to reverse
order of these methods, i.e., LDD, and LPT respectively. Let us remark, that
neural network iteratively reads the input vector of processing times and due
dates over all jobs set J . We can add to the vector of processing times and
due dates an additional item representing position in the instance. Let us
define linear position embedding as a method adding number from 0 to n− 1
divided by n. It is possible to transform vector of embedding by function. Let
us denote logarithmic embedding as embedding where embedding on position
i is equal to ei = logn(i+ 1). This embedding make big differences between
starting position and small differences between end position. Let us denote
reversed logarithmic embedding as embedding where embedding on position
i is equal to ei = 1 − logn(n − i). This embedding make small differences
between starting position and big differences between end position. Let us
denote combined logarithmic embedding as embedding where embedding on
position i is equal to ei = 1−logn(i+1)+logn(n−i)

2 . This embedding makes big
differences between starting position, big differences between end position
and small difference between middle position.

Criterion normalization

In similar way like subsubsection 4.3 it is fruitful to normalize the target
value. First way how to normalize the criterion is to divide it by the same
number which is used the normalization of the input. This approach preserves
information between processing times, due dates and criterion. But to the
detriment of either dividing relatively small number of processing times and
due dates by number near to criterion. In this case, the criterion value is near
to one, or dividing instance by a relatively small number near to each of due
dates and processing times, but have criterion much larger than one. Let us
remark, that we can use 1PSMD and NPS0D.

The second way is introduce a different function of normalization and
therefore lose connection between processing times, due dates and criterion.
Let us define gap value as ŷ−y

ŷ · 100. Let us denote inverse gap as 1
1+gap . It is

important to denote, that inverse gap is in range from zero to one. Now we
can calculate inverse gap of EDD and use it as criterion to train by neural
network. From our experiments, we know that average gap of EDD is under
40%, in case that maximal gap is 2 it will be criterion on interval from 0.5 to
1. Diagram of regressor with EDD inverse gap is illustrated in Figure 4.4. In
principle it is possible as well to create the inverse gap of NBR or different
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Figure (4.4): Visualization of the regressor scheme, with estimation of inverse
gap criterion

heuristic, but we note that this calculation should not be significantly slower
than neural network.

4.4 Data set generation

In this section, we introduce a way how to generate data set, define data set
parameters and discuss the estimation of required data set size.

In the literature, the standard benchmark for 1||
∑
Tj is defined over three

parameters RDD, TF and pmax. Random benchmark instance of 1||
∑
Tj

with size n is generated as n random numbers. Processing time are in interval
[0, pmax]. Define P as the sum of processing times. Now due dates are
generated as random numbers from interval [P (1−TF− RDD

2 ), P · (1−TF +
RDD

2 )]. In benchmark instances RDD and TF goes from 0.2 to 1 with step
0.2, this make 25 pairs of parameters. pmax is typically consider to be 100.

Usually it is hard to collect bigger data set for other machine learning
problems. For us is relatively easy to generate data set, since generation
of new instance consume only computer time. We have generated data set
only with standard benchmark parameters RDD, TF and pmax.. But from
our experiments implies, that RDD for subproblem generated by Lawler
decomposition can grow to higher number than 1.

4.4.1 Generate and evaluate

Classical approach to generate data set is to generate instance and solve
it by solver. This approach is straitforward but consume huge amount of
computer time. We are implemented Lawler and SDD solver for generating
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data training set, also we are used TTBR solver for data set generation. All
implemented algorithm run in single thread, we are using Xeon R© Gold 6140
and limiting memory to 32 GB.

External implementation of TTBR solver is able to solve instance up to
1200 jobs with average time 120 s. It is important to denote, that time of
solving instance is strongly influenced by instance parameters RDD and TF.
For RDD = 0.2 and TF = 0.6 and size 1200 is average time 1500 s. We
have generate our training data set by TTBR solver, with one CPU core and
32 GB ram. Data set generation consume 77 Ms CPU time, which is around
900 days.

Our best implementation of Lawler is able to solve instance up to 200 jobs
with average time 20 s, and likewise TTBR there is differences of solution
time over parameters RDD and TF. For ilustration TTBR is able to solve
instance with 800 jobs under 20 s. This implementation returns also order
of jobs in optimal solution.

4.4.2 Partial generator of training instances

In this section, we propose an alternative way of how to generate a training set.
Although Tkindt introduces an efficient and optimized algorithm, obtaining
training data set with over this algorithm is extremely slow. However, Lawler
decomposition gives us an alternative way of how to generate training data
set with much less effort.

The basic idea is to limit the maximal span where it is possible to place a
job with maximal processing time. Let us generate random array of processing
time and due dates. Fix span ∈ N and expect due dates and processing times
sorted increasingly, call this as input set. Define a schedule as an empty
sequence. Define the j∗ as a job with the biggest processing time from the
input set and select due date of this job as span biggest one from the input
set. Generate span− 1 random job with smaller processing time and bigger
due dates from the input set, call this active set. Remove these jobs from the
input set. Find the optimal solution for this subproblem with starting time
equal to the sum of remaining processing times. This will generate partially
schedule. Split generated partial schedule to two parts, first preceding j∗ and
second following j∗ and also including j∗. Pre extends existing schedule with
the second part of the partial schedule, remove the first part of the partial
solution from the active set. If the first part of partial schedule contains job
with longer processing time than input set solve this part, else repeat this
from including jobs to input set, but include jobs only to the size of the input
set to the span. The algorithm is described in algorithm 3.
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Algorithm 3: Partial instance generator
Data: input_set, slack, solve_from_time
Result: jobs set, jobs order

1 active_set ← set()
2 p_max_task ← input_set.get_task_with_higher_p(slack)
3 active_set.append(p_max_task)
4 for i in range(slack-1) do
5 active_set.append(input_set.get_next_task())
6 end
7 while len(active_set) > 0 do
8 starting_time ← sum(input_set.proc)
9 p_max_position, order ← solve_from_time(start_time,

active_set)
10 for k in range(len(order) - 1, p_max_position, - 1) do
11 schedule.insert(active_set[k])
12 active_set.remove[k]
13 end
14 if max(active_set) >= input_set.p[-1] then
15 continue
16 end
17 offset ← min(len(input_set), max(1, - len(active_set)))
18 tj ← input_set.get_task_with_higher_p(offset)
19 while len(active_set) < slack do
20 active_taskset.append(input_set.get_next_task())
21 end
22 end
23 return main(proc, due)
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Chapter 5
Experimental Results

In this section we evaluate the ability of our data-driven approach to solve
1||

∑
Tj problem. In the first part, we describe the testing environment. In

the second part, we evaluate the ability of the neural network to estimate the
optimal value criterion of an instance of 1||

∑
Tj problem. In the third part,

we evaluate the quality of the estimated solution created by Lawler heuristic
search.

Let us define several key metrics for the evaluation of estimators for
assessment of the quality of results.
Definition 5.1. Mean absolute error (MAE) of vectors of estimations ŷ and

optimal values y with length l > 0 is defined as
∑l

i=1 |yi−ŷi|
l .

Definition 5.2. Relative mean absolute error (RELMAE) of vectors of esti-

mations ŷ and optimal values y with length l > 0 is defined as
∑l

i=1 |yi−ŷi|
l·
∑l

i=1 yi
.

Definition 5.3. Gap of estimate ŷ and the optimal value y is defined as
100 · ŷ−yŷ . Optimality gap expects only estimation ŷ greater than optimal
values y.

5.1 Experimental setup

We are use a computer cluster for generation of training, testing and validation
data sets. This cluster is contain from node with two Xeon R© Gold 6140 and
192GB. For generating optimal solutions of data set instances we utilized
TTBR algorithm single CPU core and 32GB of RAM. We trained neural
network on Tesla V100 graphic card. For training we have use TensorFlow in
version 1.12. For the evaluation of neural networks we have use single CPU
core of Xeon R© Gold 6140 and 32GB of RAM, same as setup for generating
of training data set. The code is implemented in Python in version 3.7.

5.2 Instance space

Let us recall, that the standard benchmark for instances 1||
∑
Tj problem are

characterized by RDD, TF and pmax parameters. We generate instance with
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parameter for RDD equal to {0.2, 0.4, 0.6, 0.8, 1.0}, TF equal to {0.2, 0.4,
0.6, 0.8, 1.0} and pmax equal to 100, for n from 5 to 100 for the training set.
Where n is count of job in instance. For testing set we generate instances
with n from 5 to 1200. Our training data set consists from 5000 instances for
each combination of RDD, TF and n. The process of generation of instances
with defined RDD, TF and pmax is defined in section 4.4. Optimal criterion
of 1||

∑
Tj problem is directly impacted by the size of jobs set n. Let us

demonstrate mean value of criterion in Figure 5.1. In this figure, the growing
character of 1||

∑
Tj criterion on instance with size from 5 to 100 is shown.

This characteristic has impact on the performance metrics of the regressor.
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Figure (5.1): Mean value of optimal criterion on instance with respect to size.

5.3 Evaluation of the network

In this section, we will introduce end evaluate the individual experiments
with the neural network. Let us define the baseline for experiments as follows.
Training set contains instances with n from 5 to 100, with pmax equal to 100
and RDD equal to {0.2, 0.4, 0.6, 0.8, 1.0}, TF equal to {0.2, 0.4, 0.6, 0.8, 1.0}
generated by method Generate and evaluate. For each combination of RDD,
TF and n we have 5000 training instances. The total number of samples is
11 875 000. The impact of input normalization described in subsubsection 4.3
by 1PSMD. Also criterion normalization described in subsubsection 4.3 by
1PSMD. Data is sorted in EDD and there is no information about position
in instance on input. LSTM layer has a size 256. For training, we use Adam
optimizer with learning rate 0.0001. Batch size is 250 instances per batch.
We train the neural network with 100 epochs and a select epoch with the
smallest error on the test set. All results described below are measured on
the validation data set.
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............................... 5.3. Evaluation of the network

We have proposed several experiments to test the abilities of the network,
the first experiment is focused on measuring the ability of neural network
estimation with different data set size. The second experiment is focused on
measuring the influence of input data sorting. The third experiment is focused
on measuring the influence of position embedding. The fourth experiment
is focused on measuring the influence of criterion normalization. The fifth
experiment is focused on measuring the influence of training set generated
by the partial generator. The sixth experiment is focused on measuring the
ability of the neural network to extrapolate results on testing set generated
with different parameters than the training set.

5.3.1 Impact of the Data set size

We expect that with the growing number of instance used for training the
mean absolute error of neural network on the test set will decrease. We trained
neural network with 200, 500, 1000, 2000, 5000, 10000 training samples for
each combination of RDD, TF and n. All other parameters are the same like
in the baseline defined in section 5.3.
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Figure (5.2): Mean absolute error of neural network trained on 500, 1000, 2000
and 10000 samples. For n from 5 to 25.
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Figure (5.3): Mean absolute error of neural network trained on 2000, 5000 and
10000 samples. For n from 5 to 100.
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Figure (5.4): Relative mean absolute error of neural network trained on 2000,
5000 and 10000 samples for combination of RDD, TF and n

Mean absolute error of neural network trained only on 200 samples per
combination of RDD and TF grow rapidly in comparison to the other neural
networks. Due to this, we have excludeed it from the comparison. In Figure 5.2
is shown mean absolute error of neural network trained on 500, 1000, 2000,
10000 samples in detail for n on interval from 5 to 25. In Figure 5.3 is shown
the mean square error of neural network trained on 500, 1000, 2000, 10000
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samples for each combination RDD, TF , n for n on interval from 5 to 100. It
is important to note, that optimal value of criterion grow with size of instance
(see Figure 5.1), due to this it is expectable that mean absolute error grows
with size of instanc as well.

From our experiment it is shown, that mean absolute error of neural network
on the validation set decreases to zero with the growing data set size. Without
one exception, that neural network trained on 5000 samples is better than
neural network trained on 10000 samples.

In Figure 5.4 is shown RELMAE of neural networks. It is important to note
that MAE of criterion grows for all neural networks, in contrast to RELMAE
which is relatively constant over all n.

5.3.2 Input data sorting

We expect, that EDD sorting of input data is not inferior to another possible
sorting of instance. We have proposed several sorting methods for the 1||

∑
Tj

problem in subsubsection 4.3. The results of neural networks trained with
different sorting methods are presented in Figure 5.5. All other parameters
of the neural network are the same as in the baseline model.
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Figure (5.5): Mean absolute error of neural network trained with input sample
sorted by EDD, SPT, LPT, LDD, NBR.

Neural network trained with EDD has average MAE of criterion 70, neural
networks trained with LDD and SPT sorting have MAE of criterion around
100, NBR has average MAE around 120 and LPT has average MAE around
150. In this experiment, the EDD sorting has the best performance over all
sorting methods.
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5.3.3 Positional encoding

We proposed several methods to encode position. We train neural network
with all method introduced in subsubsection 4.3. All other parameters of the
neural network are the same as in the baseline model.
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Figure (5.6): Mean absolute error of neural network trained with linear, loga-
rithmic, reversed logarithmic and combined logarithmic position encoding.

In our experiments, the best results were obtained with neural network
without position encoding followed by a neural network with linear position
encoding and combined logarithmic position encoding. Visualization of MAE
aggregated by n is in Figure 5.6.

5.3.4 Criterion normalization

In this experiment we expected, that 1PSMD criterion normalization func-
tion is not inferior to other possible criterion normalization function. We
proposed two alternative function of 1||

∑
Tj criterion normalization in sub-

subsection 4.3. The result of neural network trained with different criterion
normalization function is presented in Figure 5.7. All other parameters of
neural network are same as in baseline model.
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Figure (5.7): Mean absolute error of neural network trained with input sample
sorted by 1PSMD, NPS0D, EDD INV GAP.

Neural network trained with 1PSMD has average MAE of criterion 70,
neural networks trained with EDD INV GAP has average MAE of criterion
around 270 and neural network trained with NPS0D has average MAE of
criterion around 700. In this experiment, 1PSMD criterion normalization
function has the best performance over all sorting methods.

5.3.5 Partial data generator

We trained the neural network on data set generated by partial generator
with span set to 20. We expected that neural network trained on data set
generated by partial generator is able to predict criterion on validation data
set generated by generate and evaluate approach. In Figure 5.8 there is
evaluation of model trained on partial and generate and evaluate data set.
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Figure (5.8): Mean absolute error of neural network trained on data set generated
by generate and evaluate method and on data set generated by partial generator.

Neural networks trained on partial data set have worse ability to estimate
criterion than neural network trained on generate and evaluate data set.
Neural networks trained on 1000 and 2000 samples have a better ability than
a neural network trained on 500 samples. However, there are no improvements
between 1000 and 2000 samples.

5.3.6 Extrapolation

Motivation for extrapolation is easy, we want to use neural network on
different instance than from training data set. Usually it is too hard to collect
data set for some part of instance space. In our case time to compute instance
is grow with growing n. Also time to compute instance is grow with pmax.
There are two way how to save time and use neural network for extrapolation.
First way is use neural network for estimation on bigger n, than maximal n
from training data set. Second way is to use neural network for estimation
on instances with different pmax, than pmax from training data set. Let us
recall, that pmax is set to 100 in training data set.

Best result for the extrapolation over n have the baseline model and model
with EDD inverse gap criterion normalization. Extrapolation ability of neural
network to estimate criterion on n bigger than in training data set is shown
in Figure 5.9.
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Figure (5.9): Mean absolute error of neural network for n from 5 to 200.

The neural network trained with EDD inverse gap provides better esti-
mation of the optimal value in interval from 125 to 160, although that the
baseline mode has better prediction for n ≤ 100, i.e. the range of the training
set. NBR heuristic outperforms both neural networks on n greater than 125.
From our later experiment conclude that prediction to n equal 150 is good
enough for use in Lawler heuristic search.

The ability of neural network to estimate optimal value for instances with
pmax = 2000 is shown in Figure 5.10 and Figure 5.11. Let us recall that in
the training set the pmax equals to 100.
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Figure (5.10): Mean absolute error of neural network for n from 5 to 100.
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Figure (5.11): Relative mean absolute error of neural network for n from 5 to
100.

It is important to note, that the average optimal value of instances with
pmax = 2000 is bigger than for standard instance. Instance with pmax = 200
and n = 100 has average optimal value 1000000, let us recall that standard
instance has average optimal value 50000. We judge results of the neural
network on instances with pmax = 2000 as successful, MAE grows around 15
times in comparison with pmax = 100 instances. However, the average optimal
value grows around 20 times. It means that the relative mean absolute error
decrease.

5.4 Evaluation of the data-driven algorithm

In this section, we evaluate our approach and its ability to solve the problem.
First, we analyze a weak point of TTBR optimal solver considered as the
state-of-the-art exact method. Then, we compare the results of this optimal
solver with ours approach. As the second, we analyze state-of-the-art classical
heuristic and compare optimality gaps between the heuristic and our approach.
As the third, we compare the integration of classical heuristic into Lawler
heuristic search with the integration of neural network into Lawler heuristic
search. As the fourth, we evaluate Lawler heuristic search enhanced with
limited discrepancy search.

5.4.1 TTBR

First, let us demonstrate the runtime of TTBR. In Figure 5.12 is shown
average solving time for TTBR, with respect to growing n.
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Figure (5.12): Runtime of the TTBR.

It is known, that TTBR algorithm needs different time to solve the instance
over parameters RDD and TF . In Table 5.1 there are average times for all
RDD and TF combination for n from 5 to 500.

RDD/TF 0.2 0.4 0.6 0.8 1.0

0.2 0.075 2.155 5.160 1.643 0.035
0.4 0.036 0.362 1.635 0.051 0.036
0.6 0.036 0.056 0.473 0.035 0.036
0.8 0.036 0.038 0.068 0.035 0.037
1.0 0.039 0.035 0.036 0.035 0.038

Table (5.1): TTBR runtimes with respect to instance parameters.

Combination of RDD equals to 0.2 and TF equals to 0.6 is the hardest for
TTBR. Let us demonstrate in Figure 5.13 the average runtime of TTBR for
RDD = 0.2 and TF = 0.6.
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Figure (5.13): Runtime of the TTBR for RDD = 0.2 and TF = 0.6 with respect
to n.

TTBR is pseudo-polynomial algorithm in terms of pmax parameters. Let
us demonstrate it in Figure 5.14, where the average runtime of the TTBR for
RDD = 0.2 and TF = 0.6 with pmax grows from 100 to 6400. The average
runtime of the TTBR for RDD = 0.2 and TF = 0.6 and pmax changed from
100 to 2000 is shown in Figure 5.15.
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Figure (5.14): Runtime of the TTBR for RDD = 0.2 and TF = 0.6 with respect
to pmax.
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Figure (5.15): Runtime of the TTBR for RDD = 0.2, TF = 0.6 and pmax = 2000
with respect to n.

The execution time of the TTBR grows rapidly with the pmax until 2000.
Also, the execution time of the TTBR is more than 10 times greater with
pmax = 2000 than with pmax = 100.

Let us demonstrate the execution time of TTBR and Lawler decomposition
search with the neural network as a regressor. As first, we demonstrate
execution times on instances with RDD = 0.2, TF = 0.6 and pmax = 100 in
Figure 5.16. As second, we demonstrate execution times on instances with
RDD = 0.2, TF = 0.6 and pmax = 100 in Figure 5.17.
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Figure (5.16): Runtime of the TTBR and Lawler heuristic search with neural
network as regressor for RDD = 0.2, TF = 0.6 and pmax = 100 with respect to
n.
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Figure (5.17): Runtime of the TTBR and Lawler heuristic search with neural
network as regressor for RDD = 0.2, TF = 0.6 and pmax = 2000 with respect to
n.

Lawler heuristic search is faster from n 380 on instances with parameters
RDD = 0.2 and TF = 0.6 and pmax = 100. And Lawler heuristic search is
faster from n 180 on instances with parameters RDD = 0.2 and TF = 0.6
and pmax = 2000.
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5.4.2 Comparison to classic heuristics

In the following experiment, we compare the gap from the optimal solution
of EDD, NBR, and Lawler heuristic search with the neural network as a
regressor. In Figure 5.18 we present result on parameters RDD = 0.2 and
TF = 0.6 and pmax = 100 and n to 200. In Figure 5.19 we present result on
parameters RDD = 0.2 and TF = 0.6 and pmax = 2000 and n to 200.
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Figure (5.18): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 100.
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Figure (5.19): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 2000.
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Lawler heuristic search with baseline neural network outperforms NBR and

Lawler heuristic search with the neural network with edd inverse gap criterion
normalization for either instance with pmax = 100 and pmax = 2000.

5.4.3 Lawler heuristic search with classic regressor

In the following experiment, we compare the gap from the optimal solution
of Lawler heuristic search with the EDD and NBR as a regressor and Lawler
heuristic search with the neural network as a regressor. In Figure 5.22 we
present result on parameters RDD = 0.2 and TF = 0.6 and pmax = 100 and
n to 200. In Figure 5.23 we present result on parameters RDD = 0.2 and
TF = 0.6 and pmax = 2000 and n to 200.
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Figure (5.20): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 100.
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Figure (5.21): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 2000.

Lawler heuristic search with baseline neural network outperform NBR and
Lawler heuristic search with neural network with EDD inverse gap criterion
normalisation for either instances with pmax = 100 and pmax = 2000.

In Table 5.2, there is the comparison of NBR, Lawler heuristic search with
NBR as a regressor, Lawler heuristic search with our baseline neural network
model as regressor and TTBR. In the table, there is a comparison of the
optimality gap, optimality gap standard deviation, and runtime. Results in
tabs are reported for instances with RDD = 0.2, TF = 0.6 and pmax = 2000.
Lawler heuristic search with the neural network as regressor outperform all
other heuristics in quality of solution and outperform TTBR on instances
bigger than 180.

5.4.4 Dependency between MAE and GAP

In the following experiment, we compare the gap from the optimal solution of
Lawler heuristic search with the neural networks trained with different size of
training sets. We expect that the gap of Lawler heuristic search depends on the
MAE of the used neural network as a regressor. In Figure 5.22 and Figure 5.23,
there are evaluations of Lawler heuristic search with neural networks trained
on 200, 500, 1000, 2000, and 5000 samples per each combination of RDD,
TF , and n. MAE of neural network is shown in subsection 5.3.1.
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Figure (5.22): Gap of estimators on instance with RDD = 0.2, TF = 0.6 and
pmax = 100.
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Figure (5.23): Gap of estimators on instance with RDD = 0.2, TF = 0.6 and
pmax = 2000.

On either instances with pmax = 100 and pmax = 2000 has best result
model with 5000 training samples, this model also has the smallest MAE
of all models. What is surprising is that the neural network trained on
200 outperform neural network trained on 500, 1000, and 2000 samples for
extrapolation on n greater than 150.
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5.4.5 Lawler search space alternatives

In the following experiment, we show the influence of limited discrepancy
search in Lawler heuristic search. We compare gap to the optimal solution
and runtime of algorithms. In the first experiment, we show the influence of
limited discrepancy search on Lawler heuristic search with EDD as a regressor.
In the second experiment, we show the influence of limited discrepancy search
on Lawler heuristic search with baseline neural network as a regressor.
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Figure (5.24): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 100 with respect to allowed discrepancy.
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Figure (5.25): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 2000 with respect to allowed discrepancy.
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Figure (5.26): Runtime of estimators on instance with RDD = 0.2, TF = 0.6
and pmax = 2000 with respect to allowed discrepancy.

Discrepancy equals to 1 decrease gap of Lawler heuristic search with EDD
regressor from around 3% to around 1%. Also, this estimator has still
better runtime than TTBR on the instance with RDD = 0.2, TF = 0.6 and
pmax = 2000. Discrepancy equals to 2 decrease gap to around 0.5%, but
runtime of this estimator is longer than the runtime of TTBR.

44



......................... 5.4. Evaluation of the data-driven algorithm

0 25 50 75 100 125 150 175 200
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ga
p 

[%
]

LHS + baseline NN
LHS + baseline NN + LDS 1
LHS + baseline NN + LDS 2

Figure (5.27): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 100 with respect to allowed discrepancy.
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Figure (5.28): Optimality gap of estimators on instance with RDD = 0.2,
TF = 0.6 and pmax = 2000 with respect to allowed discrepancy.
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Figure (5.29): Runtime of estimators on instance with RDD = 0.2, TF = 0.6
and pmax = 2000 with respect to allowed discrepancy.

Discrepancy equals to 1 decrease gap of Lawler heuristic search with EDD
regressor to maximally 0.4% on n up to 200. But runtime of this estimator is
longer than the runtime of TTBR. Discrepancy equals to 2 decrease gap of
Lawler heuristic search with EDD regressor to maximally 0.25% on n up to
200.

5.5 Experiment summary

The experiment results show the following:.MAE of the proposed neural network decreases with growing size of the
training data set.. The proposed neural network has ability to generalize its predictions for
instances up to 25% larger than used during the training.. Lawler heuristic search is faster than TTBR for instances with pmax =
2000 and for n larger than 180.. The optimality gap of Lawler heuristic search decreases with decreasing
MAE of the regressor.. Lawler heuristic search with the proposed neural network as regressor is
better both than NBR and Lawler heuristic search with EDD or NBR.. Lawler heuristic search with the proposed neural network as regressor has
average optimality gap 1% on instances for n to 200 and pmax = 2000.
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n TTBR
time

NBR
gap

NBR
time

LHS
NBR
gap

LHS
NBR
time

LHS
NN gap

LHS
NN
time

[s] [%] [s] [%] [s] [%] [s]

5 0.02 0.00 (±0.00) 0.00 0.00 (±0.00) 0.00 0.00 (±0.00) 0.00
10 0.02 0.00 (±0.00) 0.00 0.00 (±0.00) 0.00 0.00 (±0.00) 0.01
15 0.02 1.28 (±1.74) 0.00 0.00 (±0.00) 0.01 0.36 (±0.45) 0.02
20 0.02 0.29 (±0.51) 0.00 0.00 (±0.00) 0.01 0.17 (±0.32) 0.03
25 0.02 0.47 (±0.81) 0.00 0.11 (±0.21) 0.01 0.32 (±0.41) 0.05
30 0.04 0.41 (±0.41) 0.00 0.08 (±0.16) 0.02 0.10 (±0.13) 0.18
35 0.02 0.38 (±0.32) 0.00 0.02 (±0.05) 0.02 0.52 (±0.87) 0.09
40 0.02 0.50 (±0.85) 0.00 0.25 (±0.69) 0.03 0.08 (±0.10) 0.12
45 0.03 0.86 (±0.66) 0.00 0.27 (±0.47) 0.04 0.18 (±0.29) 0.89
50 0.03 1.04 (±0.98) 0.00 0.30 (±0.53) 0.05 0.15 (±0.24) 0.17
55 0.02 1.32 (±1.41) 0.01 0.22 (±0.37) 0.07 0.44 (±0.60) 0.19
60 0.02 1.29 (±0.99) 0.01 0.68 (±0.66) 0.07 0.24 (±0.35) 0.23
65 0.02 1.81 (±1.29) 0.01 0.74 (±0.70) 0.08 0.12 (±0.13) 1.08
70 0.03 1.10 (±0.63) 0.01 0.30 (±0.42) 0.11 0.08 (±0.08) 0.29
75 0.06 1.45 (±0.95) 0.01 0.53 (±0.49) 0.13 0.27 (±0.30) 0.36
80 0.06 1.31 (±0.74) 0.01 0.58 (±0.37) 0.16 0.13 (±0.11) 0.41
85 0.04 1.57 (±0.72) 0.01 0.76 (±0.51) 0.17 0.13 (±0.13) 0.47
90 0.09 1.67 (±0.75) 0.01 0.80 (±0.71) 0.17 0.11 (±0.14) 0.55
95 0.06 1.17 (±0.64) 0.01 0.47 (±0.41) 0.24 0.14 (±0.15) 0.56
100 0.06 1.16 (±0.59) 0.05 0.47 (±0.35) 0.25 0.31 (±0.29) 1.41
105 0.09 1.50 (±0.58) 0.02 0.55 (±0.28) 0.27 0.20 (±0.14) 1.38
110 0.08 1.48 (±0.75) 0.02 0.58 (±0.38) 0.32 0.19 (±0.11) 0.71
115 0.22 2.00 (±0.62) 0.05 0.96 (±0.57) 0.35 0.22 (±0.27) 0.75
120 0.15 1.27 (±0.42) 0.02 0.62 (±0.35) 0.43 0.37 (±0.24) 0.84
125 0.16 1.15 (±0.51) 0.02 0.69 (±0.34) 0.39 0.37 (±0.34) 0.90
130 0.21 1.65 (±0.81) 0.14 0.95 (±0.83) 0.54 0.26 (±0.22) 0.98
135 0.44 1.97 (±0.66) 0.03 0.91 (±0.42) 0.54 0.35 (±0.25) 1.04
140 0.53 1.53 (±0.61) 0.03 0.67 (±0.40) 0.63 0.50 (±0.20) 1.07
145 0.26 1.81 (±0.92) 0.03 0.92 (±0.64) 0.62 0.35 (±0.24) 1.11
150 0.37 1.73 (±0.54) 0.03 0.95 (±0.45) 0.61 0.37 (±0.34) 1.25
155 0.78 1.82 (±0.42) 0.03 1.06 (±0.27) 0.77 0.40 (±0.26) 1.37
160 0.80 1.93 (±0.41) 0.03 1.11 (±0.51) 0.78 0.56 (±0.39) 2.20
165 0.77 1.81 (±0.43) 0.04 1.05 (±0.43) 0.83 0.45 (±0.34) 1.49
170 1.75 1.71 (±0.61) 0.04 0.97 (±0.52) 0.99 0.56 (±0.36) 1.61
175 1.28 1.65 (±0.51) 0.04 0.85 (±0.39) 1.07 0.62 (±0.38) 1.62
180 1.57 1.72 (±0.71) 0.04 0.84 (±0.40) 1.02 0.67 (±0.47) 1.57
185 1.91 1.93 (±0.59) 0.04 1.30 (±0.68) 1.21 0.55 (±0.29) 1.78
190 1.89 2.07 (±0.56) 0.05 1.24 (±0.57) 1.22 0.61 (±0.28) 1.82
195 3.17 1.93 (±0.77) 0.05 1.02 (±0.37) 1.50 0.60 (±0.34) 1.95
200 2.73 1.74 (±0.75) 0.05 0.90 (±0.45) 1.35 0.93 (±0.48) 2.13

Table (5.2): Comparison of TTBR, NBR, Lawler heuristic search with NBR
and Lawler heuristic search with baseline neural network on instances with
RDD = 0.2, TF = 0.6 and pmax = 2000.
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Chapter 6
Conclusion

Classical approaches of solving NP-hard problems in the literature can be
divided into optimal and heuristic approaches. The optimal methods consume
unfruitful time to find an optimal solution. Heuristic algorithms often rely
on hand-crafted rules that are developed by humans which gain experience
by looking at the solutions. The aim is to automatize this process. We
introduced a data-driven approach able to find a utilizing the knowledge
gained from based on previously solved instances.

We proposed experiments for evaluating of the possibility of using a neural
network to estimate the optimal objective value of instances. In these exper-
iments, we evaluated several configurations of neural network and selected
suitable candidates. We proposed Lawler heuristic search with the neural
network as a regressor. We evaluated state-of-the-art optimal solver and
identify hard instances for this solver. Lawler heuristic search is faster than
the optimal solver on these instances, and the difference in runtime grows
rapidly with the growing size of the instance. Lawler heuristic search with
a neural network is better than state-of-the-art heuristic algorithm NBR in
the quality of the solution. Moreover, Lawler heuristic search with a neural
network is better than Lawler heuristic search with EDD or NBR in quality
of the solution. We enhanced Lawler heuristic search by limited discrepancy
search and evaluated it with EDD and neural network as a regressor.

From our point of view, there are several ways to improve the results. The
first possibility is to train the neural network on instances with a larger size.
Unfortunately, this procedure consumes a huge amount of time. We expect
from this step improved ability of the neural network to provide reasonable
estimations of optimal values on instances with larger size. Due to this, we
expect improved results of Lawler heuristic search on instances with the
bigger size. The second possibility is to improve the partial generator. We
want to introduce partial generator with flowing slack value. We expect from
this step faster generation of data set with parameters similar to the standard
data set. The third possibility is to introduce a heuristic search based on
SDD.
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