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Abstract

The work stems from the industrial
project which aims to build the highly
precise micro components assembly
machine. The components are positioned
via locating the edges in the image.
The overview of the edge detection tech-
niques and the design of the Shape-from-
Focus algorithm in the microscopic envi-
ronment are presented.

The images used were captured with
telecentric optics with a shallow Depth-of-
Field. The Shape-from-Focus algorithm
is developed together with the 3D con-
volutional mask and approximation of
the surface in the textureless areas. The
developed 3D convolutional filter is based
on the seconds derivative of the image
function.

Various edge detection techniques are
used in experiments to calibrate the
camera and to refocus the optics. The
experiments also show the surface recon-
struction obtained by the Shape-from-
Focus algorithm.
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Abstrakt

M4 préace prumyslového
projektu, jehoz cilem je postavit stroj
pro presnou manipulaci mikrokomponenty.
Zminéné mikrokomponenty jsou sledovany
na zakladé hleddni hran v obraze. Ma
prace popisuje prehled postupit pouzi-
vanych pro detekci hran v obraze a za-
roven navrh algoritmu pro rekonstrukci
povrchu mikrokomponent pomoci Shape-
from-Focus v mikroskopickém prostiedi.

Pouzité obrazky byly porizeny kamerou
s telecentrickym objektivem s malou
hloubkou ostrosti. Vyvinul jsem Shape-
from-Focus algoritmus, ktery pouziva 3D
konvolu¢ni masku pro detekci hran a je
schopny aproximovat povrchy bez struk-
tury. Vyvinuté 3D konvoluc¢ni maska je za-
loZzena na druhé derivaci obrazové funkce.

V pokusech popisujicich kalibraci
kamery a pro opétovné zaostreni optické
soustavy byly pouzity rozlicné metody
pro detekci hran v obraze. V pokusech
se také prezentuji vysledky rekonstrukce
povrchu pomoci navrzeného Shape-from-
Focus algoritmu.

vychézi z

Kli¢ova slova: 3D rekonstrukce,
hledani hran v obraze, Shape-from-Focus,
telecentricky objektiv

Preklad nazvu: Detekce hran a 3D
rekonstrukce na zakladé rozostreni
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Chapter 1

Introduction

My work stems from the industrial project Control Platform for High- Accuracy
Microelectronics (CoPA) supported by the Technological Agency of the Czech
Republic (TACR). The project aims to build a precise assembly machine
for micro-components. Example of such a component is a laser transmitter
for optical communication. The machine must be able to precisely pick the
components from the source position, place them, and weld them to the
target position. The machine will be applied in production.

Neither the position of components nor the position of welding place
are precisely known in advance. Both places are observed by a camera.
The component and the welding place are localized in the image. Both the
component and the welding place are designed in a way that their approximate
positions are obtained via detecting placement markers. The precise position
of the component is given by edges in the placement region. The detection
requires one pixel precision on the source side and possibly a subpixel precision
on the target side. My contribution to the project is an edge detection
mechanism for the precise micro-components placement.

The camera on the target side has a shallow Depth-of-Field and the images
could be slightly defocused. I was interested in how defocussing the image
affects the subpixel edge detection. I conducted experiments on how the
defocussing of an edge affects the confidence of its position (Section 5.1.2).
I decided to detect the edges in the whole sequence of defocused images. 1
obtained a sequence of images with detected edges and the value of confidence
of the edge position. I discussed the results with my supervisor and we decided
to apply the Shape-from-Focus algorithm on the sequence to reconstruct the
shape of the micro-components.

My thesis is primarily focused on the Shape-from-Focus algorithm intro-
duced in the following Section [1.1. The other work related to the Shape-from-
Focus algorithm is discussed in Chapter 2l The edge detection serves as an
introduction to this algorithm. The edge detection in the images is a well-
established problem in image processing and it is described in Section[3.1. My
Shape-from-Focus algorithm is presented in detail in Section 3.3l Chapter 4
describes the used hardware and software. Chapter [5| shows and discusses
the experiments.



1. Introduction

B 11 Principle description

A camera with a limited Depth-of-Field (DoF') observes the scene. The camera
is moving in such a way that its DoF flows thru the scene from the closest
to the furthest point in the scene. The images from the camera are taken in
equidistant distances. Such images create an image sequence. The Shape-
from-Focus algorithm is a 3D reconstruction technique which seeks for the
best-focused texture in depth for each pixel in the sequence. The result
of Shape-from-Focus reconstruction is a depth map with the same size as
the original image. A single fully in-focus image can be extracted from the
sequence based on the depth map. The simple Shape-from-Focus algorithm
requires a textured area to work correctly. My images have a lot of textureless
areas. On the other hand, they provide a lot of well-defined edges and
the surface between edges can be considered flat due to the manufacturing
process of the components, i.e. the foundation is a flat circuit board, and the
components are shaped as a cuboid or a frustum. An example of the used
image is displayed in Figure

The Shape-from-Focus algorithm was modified to detect the edges in the
sequence, which results in the edge depth map. The prior knowledge about
the flatness of the surface between edges was used and the edge elements
were connected by a full triangulation. The resulting triangulation provided a
sufficient depth estimation in the textureless areas in the case of flat surfaces.

Figure 1.1: Example of my image with large textureless areas and high contrast
edges.



1.2. Task formulation

. 1.2 Task formulation

The aim my master thesis was to create and to test the algorithm for 3D
reconstruction in microscopic images with textureless areas based on the
Shape-from-Focus algorithm. The task can be formulated as follows:

1. Study the edge detection techniques.

2. Find or create my edge detection algorithm in a sequence of differently
focused images.

Smooth the edges positions in depth.

Approximate the surface between the edges and find the depth in tex-
tureless areas.

5. Remove the implausible surfaces and reassign texture/color to the plau-
sible ones.






Chapter 2

Related work

The Shape-from-Focus algorithm is a 3D surface reconstruction technique for
the optical systems with a shallow Depth-of-Field. The algorithm is also called
Shape-from-Defocus or the Depth-From-Focus in literature. The algorithm
has multiple modifications. The Shape-from-Focus algorithm modification
could be a use of the different operators for focus measuring, minimizing the
variance of the depth, deconvolution of the Point Spread Function ect.

Pertuz [2] compares some of the commonly used focus measuring operators
for the Shape-from-Focus algorithm. The compared operators are the image
gradient, Laplacian-based masks, gray-level variance, the wavelet transform.
Perutz suggests using the relative quality of the reconstructed surface to
compare the quality of the reconstruction. The modified Laplacian has the
overall best performance in low noise images. However, Perutz states that it
is hard to compare operator performance since the operator response depends
on the imaging conditions.

Nayar [3] also suggests to use the sum of the modified Laplacian (MLap)
for the depth estimations. Nayar says that his method can directly be applied
to the smooth textured surfaces. He also states that a special illumination
technique is required for the textureless surface.

Moeller [4] uses Nayar’s MLap for the initial depth estimation in his work.
Moller proposes a function mapping the depth function to the energy func-
tion. The resulting energy function is numerically minimized. The resulting
minimized energy provides a smooth depth map. Moller also provides the
implementation of the energy minimizing algorithm. However, the implemen-
tation does not behave well in textureless areas.

Faro [0] tries to find an inverse convolution of the Point Spread Function.
Faro tries to find the operator with the lowest energy cost. His approach
works well in the textured areas. From his experiments, we can see that his
approach does not deal with textureless areas.

Suwajanakorn [6] suggests a two-step Depth-from-Focus algorithm for a
device held in hand. Suwajanakorn’s algorithm first aligns the images and then
it performs the auto-calibration with the depth reconstruction. The calibration
part is based on the guess of the focal length of a lens. The cameras used in
my work are equipped with a telecentric lens and guessing its focal length is
not possible (i.e. it is close to infinity).

7



2. Related work

Tang [7] tries to find a depth flow between two differently focused images.
Tang’s approach uses only two images and they must preserve a tiny blur
condition explained in the article. My scene does not satisfy this condition if
only two images of the scene are used.

The Shape-from-Focus algorithm can also be modified to extract a single
fully in-focus image from the collection of differently focused images. This
modification is commonly used in the micro and product photography of a
static scene. This technique allows to extend the Depth-of-Field of the lens
and it allows to overcome limitation caused the diffraction of the light in
the iris. This technique is implemented in professional cameras and camera
software nowadays.

The capability of collecting the series of defocus images is present in Nikon
D850 [8]. Nikon calls the functionality as the Focus Stacking. Nikon suggests
joining images together using Adobe CC software [9]. Software tool made by
HeliconSoft can also be used [10].



Chapter 3

Theory and proposed solution

B 31 Edge detection techniques overview

My scene is illumined by a monochromatic light source and the camera used is
also monochromatic. The images provided by this setup are intensity images
I(z,y).

The edges in the image are defined as the pixels with a rapid intensity
change between the neighboring pixels [I1]. The section of the intensity image
perpendicular to the edge creates an edge function. An example of the edge
function is displayed Figure 3.1 The edges in images are discrete samples of
the edge on a real object in the scene. The discrete edge samples are called
edge elements or edgels.

The edge detection process seeks for the intensity changes in the edge
function to find the position of the edge or the edge element in the image.
There are three main groups of edge detectors:

1. Finding the extrema of the first derivative (Prewitt [I2] or Sobel [13]
operators, Canny [14], etc.)

2. Finding the zero-crossing of the second derivative (Laplacian of Gaus-

sian [I5] [16])

3. Approximation of the edge or the edge function by a parametric model [17]

[18]

My thesis primarily focuses on the first two groups (i.e., first and second
derivatives). The reason is that the derivatives can be expressed as discrete
convolutional masks and they provide a fast edge detection over the whole
image.

The last group of methods is interesting when it comes to precise edge
detection. Those methods provide a refinement of the edge position and the
relative position of the edge must be known a priori. Those methods are well
suited for the CoPA project. However, those methods are not ideal for the
Shape-from-Focus with the 5M pixel images because of their computational
complexity.



3. Theory and proposed solution

Intensity of pixels perpendicular to the edge

1.0 4 = ideal
== seen by camera
- Wwith added noise
0.8 A
= 0.6
2
N
C
g
£ 041
0.2
4
0.0 A
0 10 20 30 40 50 60

n[-]

Figure 3.1: Example of the edge function, where n is a relative position in the
image. The green line represents an ideal edge. The blue dashed line is an edge
as seen in camera. It takes into account a defocus and optics imperfections. The
red line adds a Gaussian noise to represent the noise of a camera sensor.

Bl 3.1.1 Intensity function derivative

The derivative edge detectors seek for the local extrema (i.e., maxima or min-
ima) of the first derivative of the intensity image function I(z,y). The image
function is assumed to be continuous in this case. The first derivative is
expressed as a gradient of the image function:

Vi(z,y) = (8[593; y), 815;;’ y)) , (3.1)

where 0 represents a partial derivative of a function. Such a function has a

magnitude of:
IV, )| = \/ ((”g’ﬂ) + ((”g”y”) (3.2)

and a direction:

Oz oy

The images, which are used, are discrete functions and their derivatives can
be expressed in terms of the finite differences based on the continuous case
from Equation (3.1). I will take into account only the symmetrical variant of

10



3.1. Edge detection techniques overview

the finite differences. The finite differences approximation of a single variable
function derivative f'(z) is expressed as:

Fe) — tim TEE) = @)

h—0 h

~ [~0.5, 0.0, 0.5]  f[x], (3.4)

where # represent convolution, and f[z] is a discrete function. Equation (3.1))
is expressed in terms of the finite differences in Section [3.1.2| as a Prewitt and
Sobel operators.

The problem with applying the first derivative directly to the image is the
operator response to the noise. This problem can be mitigated by filtering
the image before computing the derivative. The filtering of the image is
usually expressed as a convolution with a filter kernel h and the image I(z,y).
The derivative and the convolution are commutative. Filtering the image and
the derivative can be combined into a single convolutional operator (Vh):

V(hxI(z,y)) = (Vh)x I(z,y). (3.5)

An example of the derivation operator, Equation (3.4), response to edge
functions from Figure (3.1 is displayed in Figure The edge is in the middle
of the graph, n = 30. As you can see, there are two local extrema around

Respons of the first derivative operator

0.05 +
0.00 +
o}
=
5
©
=
5 —0.05 A
©
2
@
[
i)
£ -0.10+
- Without noise
—0.154 — with noise
- With filter

0 10 20 30 40 50 60
n[-1

Figure 3.2: Example of the first derivative operator response to edge functions
from Figure The green line is a response to the edge function without the
noise. The light blue is a response to the function with the noise. The red line
is a response to the noisy edge function with a Gaussian filtering in prior to
calculating the derivative.
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3. Theory and proposed solution

the edge position in the response to the noisy edge function, the light blue line.
The correct edge position is hidden in-between these extrema. As I mentioned
before, this can be overcome by filtering the edge function before calculating
the derivative; the filtered response is shown as the red line. The extrema
position of response to the filtered edge corresponds to the extrema of the
response to the edge without noise, the line.

B 3.1.2 First derivative convolutional operators

In this section, I focus on two discrete edge detection operators, Prewitt and
Sobel, and briefly describe a Canny edge detector.

B Prewitt and Sobel operators

Prewitt and Sobel operators are one of the simplest convolutional masks h
for an approximation of the derivative of the image I(x,y). The shape of
Prewitt and Sobel operator masks is usually 3 x 3 or 5 x 5. Prewitt and Sobel
operator masks are expressed in the x and y direction separately and their
3 x 3 masks look like:

-1 0 1 —1 —¢ -1
he=|—-€ 0 €|, hy=1] 0 0 0], (3.6)
-1 0 1 1 ¢ 1

if £ =1 it is called Prewitt mask, and if £ = 2 it is Sobel mask. The only
notable difference between them is that Sobel mask is more directionally
sensitive than the Prewitt’s. The masks h; is convolved with the image I(z,y)
as:

where i € {z,y}. The conjoin magnitude of the intensity change in z and y
direction is given by:

Gilx,y) =[Gz, ) + G3(w,y), (3.8)

There are different variants of these two masks. However, they do not
provide much a difference in the edge detection compare to these two, so I
will not mansion them.

Prewitt and Sobel operators are usually used if one is interested in the
magnitude of changes in the image and do not care about the direction of
change as much.

The edges in the original image I(x,y) are estimated to be on the positions
where the magnitude of the intensity change Gj(z,y) is sufficiently higher
than the given threshold.

B Canny edge detection algorithm

The Canny edge detection algorithm is one of the most popular techniques
for edge detection due to its simplicity and reliability.

12



3.1. Edge detection techniques overview

The Canny edge detection algorithm combines the image filtration and
the gradient computation together with the edgel pooling. The pooling is
more sophisticated compared to the thresholding of the gradient magnitude.
The most commonly used implementation of the algorithm can be summarized
into 7 steps, courtesy [11]:

Filter the image with a Gaussian filter with a standard deviation o.
Estimate the local edge normals from each pixel.

Find the location of the edges via non-maximal suppression.
Compute the magnitude of the edge.

Threshold edges in the image with hysteresis to eliminate fake edges.

Repeat (1) to (5) for ascending values of o.

Bl = B B B

Collect the final information about edges at multiple scales using a
feature synthesis.

B 3.1.3 Second derivative edge detection

The second derivative of the image function f(x,y) is expressed as:

P f(zy) | f(x,y)
- 2 + 2 ’
oz oy

V2 f(z,y) (3.9)
where V? is the Laplace operator (Laplacian).

Equation (3.9)) is not a vector as in a case of the first derivative, but it is a
scalar. The Laplacian operator is rotation-invariant. This property allows the
operator to have the same response for differently oriented edges. The edges
in the image are detected at the positions where Function (3.9)) crosses the
ZEero.

The problem with the second derivative is an even higher influence of
the noise compared to the first derivative. This problem can be overcome
by filtering the image I with the Gaussian filter G before computing the
derivative. The filtering and the derivative can be joined to create a single
operator similarly as in a case of the first derivative:

VIG 1) = (V2G) I (3.10)

Finally, (V2G) is called the Laplacian of Gaussian (LoG) operator.

Usually, only the symmetrical filters are taken into account, i.e. the
standard deviation o is the same for both axis. The LoG operator is obtain
from Equation (3.9):

IE2 +y2
T Tog2 2 +y?—202
ViG(a,y) = V2e P = T TTI Gy, (3.11)
Ty

where o0,y is a standard deviation of the Gaussian filter in x and y axis.
The discrete convolutional operator is constructed from Equation (3.11)).

13



3. Theory and proposed solution

The shape of the operator is based on the blur effect of the filter. The recom-
mended size of the operator mask is > 4[og, | [11]. The operator response to
the homogeneous input must be a zero to ensure the property of the Laplacian.
The operator could look like:

00 1 00
01 2 10
ViGQ(z,y) =11 2 —16 2 1 (3.12)
0 1 10
00 1 00

An example of the one dimensional Laplacian operator response to edge

functions f(x) from Figure is displayed in Figure The used operator
looks like V f(x) ~ [1, —2, 1] * f[x], where f[z] is a discrete edge function.
The reason for using one dimension is easier visualization.

Respons of the second derivative operator

0.08 1 — without noise
= With noise
0.06 1 - with filter
0.04 A e
T
= 0.02 1
[\
Z 0 ]
v 0.00 A N
3 =
2 —0.02 1
g
£
—0.04 1 )\ $
—0.06 1
—0.08 1

0 10 20 30 40 50 60
n[-]

Figure 3.3: Example of the 1D second derivative operator response to edge
functions from Figure The green line is a response to signal without noise.
The blue line is a response to edge with noise. The red line is a response to the
noisy edge with a gaussian filtering in prior to calculating the derivative.

As shown in Figure the response to the edge with noise (the blue line)
crosses the zero multiple times with a magnitude higher than the response
to the noise-free edge (the green line). Such behavior makes usage of the
Laplacian operator without filtering the edge function impossible. The red
line shows the response with filtering in before calculating the derivative.
The response almost corresponds to the response without noise (the green
line).

14



3.1. Edge detection techniques overview

It could happen that some less significant zero crossings are present even
after the filtering of the image function. Such a less significant zero crossing
could be seen in a close proximity to n = 0 — 10. The edge is on a position
where the response crosses the zero with a high-enough significance, i.e.
n = 30.

B 3.1.4 Parametric model approximation of edge function

The camera observes a transition between the low and high intensity value
influenced by the camera chip and the optics. The influence of the camera
chip and the optics can be described as a physics-based mathematical model.
The parametric models build on the idea of such a model (dashed blue line
in Figure [3.1) underlay the noisy edge function obtain by a real camera (red
line in same Figure 3.1)).

The edge functions are modeled as S curve, Polynomial or other similar
curves [I7]. The parametrization allows the subpixel precision of the edge
detection (i.e., one can find the function extrema). The edge function can be
described as a S curve, for example:

L

= T (3.13)

f(z)
where L stretches the function in y axis, k stretches the function in z axis,
and xg is a position of the inflection point. The inflection point is at a position
where the S curve changes a sign of the first derivative or where the second
derivative is a zero. The edge position is assumed in a place of the inflection
point if the optical system is considered to have a symmetrical response to the
image blur, similarly to the algorithm described in Sections [3.1.2/ and [3.1.3|

B 3.1.5 Parametric modeling of the edge shape

The edglels are detected in the image. Prior knowledge about the edge shape
in the image is used to refine the edge position based on the detected edgels.
The edge could resemble a line, y = kx+c, or a circle, (y—yo)?+(z—x0)? = 12,
for example. The shape detection algorithm can be summarized into two
steps.

1. Find the edge element candidates using one of previously mentioned edge
detection methods.

2. Find the optimal model parameters of the edge shape based on the
candidates.

There are also more complex models such a facets [I8]. They build on
the idea that the pixel’s neighborhood can be represented as a piecewise
continuous function. However, I will not describe them any further because
they are not used in my work in any way.
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3. Theory and proposed solution

B 3.2 cCamera descriptions

B 3.2.1 Telecentric lens

The camera used in my experiments is equipped with a telecentric lens. Tele-
centric lens behaves differently comapred to the conventional lens. Figure |3.4
shows the difference between the conventional lens and the telecentric one.

‘ [ =f‘—"'5,;-_=<?—%|

Figure 3.4: Comparison of the Field-of-View between a conventional lens and a
telecentric one. Courtesy of [IJ.

The conventional lens replicates a lens in an animal eye. The eye lens has
an angular Field-of-View (FoV), which means the magnification decreases
with the distance. This property allows animals to perceive depth. However,
if the object is observed from two different distances, its size in the image
changes. The conventional lens could be modeled by a central projection [11]:

ofl = KX, (3.14)

where @ = (u,v, 1)T is a point in the image in homogeneous coordinates, K
is a 3x 3 camera matrix, X = (z,vy, z)T is point in a scene, and « is a scalar.

The telecentric lens, on the other hand, has a non-angular FoV, which means
that the magnification remains the same for all distances. The telecentric
lens model could be described by a homography H:

. . hi hia hiz|
sX = HX/ = h21 th h23 X/, (315)
h31 hzz hs33

where X = (z;, y;, 1) are the coordinates in the image, X' = (zf, yh, )T
are the coordinates of corresponding points in the object space, s is a scalar.

The H parameters are obtained by calibration. The calibration pattern
with known dimensions could be used to do such a thing. Equation (3.15))
can be rewritten for a known position of the calibration pattern:

0 Z y 1 0 0 0 2z ¢z 1| -
l}zl ’ / / / H, (3-16)

where X = (x4, i, 1) T are coordinates of ith calibration points in the image,
X" = (!, 9}, 1)T are the coordinates of corresponding points on the calibra-
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3.3. My Shape-from-Focus algorithm

tion pattern, and f{ = (hn, hlg, h13, h21, h22, h23, h31, h32, h33)T. The hO—
mography is found from at least 4 calibration points by solving Equation |3.16.

B 3.2.2 Lens distortion

The camera lens can cause a non-linear distortion in the image. The distortion
will convert lines on the viewed object to curves in the image. The distortion
must be evaluated and corrected to provide an accurate measurement.

The simplest way how to evaluate the distortion is to find a linear map-
ping, described in Section 3.2.1] between a flat calibration pattern and the
corresponding image points. The distances between the calibration points in
the image and the points projected by the linear mapping will identify if any
lens distortion is present or not.

The used lens has almost no non-linear distortion as it turns out in the
experiment in Sec. [5.1.3. I decided to not use the non-linear distortion
model. So, I will not describe the non-linear model for distortion correction.
The radial and the tangential distortion models can be found in [I1].

B 33 My Shape-from-Focus algorithm

First, I will describe my algorithm flow and later on, I will focus on each of
the individual points of the algorithm. The algorithm can be summarized
into 6 steps:

1. Create the image stack |3.3.1| from the image sequence.

2. Convolve the image stack with my 3D convolution mask and extract the
edge depth map.

3. Smooth the edge depth map with the median and mean filter over
connected edge elements in the local neighborhood.

4. Compute full triangulation over the edge depth map.
5. Remove implausible triangles.

6. Assign the depth and the original texture to all elements of the edge
depth map covered by leftover triangles for the visualization.

B 3.3.1 Image stack

The images are taken as a sequence in which the Depth-of-Field flows from
the closest to the furthest point in the scene. Each image in the sequence
corresponds to a different position of the camera. The image stack is created
from the image sequence. The images are stacked at the top of each other in
such way that their orientation is the same and their order is given by their
position in the sequence. The image stack will be called to as I(x,y, z) in the
following text. The x and v axis of the image has the origin in the top left
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3. Theory and proposed solution

Im,,
Im1
Imo

z
T

Figure 3.5: Sketch of the image stack I(x,y, 2).

corner. The = and 1 axis represent the rows and the columns of the image
respectively. The z coordinate of the image stack represents the ascending
depth at which the image was captured. The image stack sketch is displayed
in Figure |3.5l

B 3.3.2 My convolutional mask

My convolutional mask seeks for the zero crossings in the second derivative of
the image stack I(z,y,z). The convolutional mask is spanning over all three
dimensions of I(x,y, z) and its kernel is three dimensional (3D). I will focus
on how to build such a convolutional mask.

My Shape-from-Focus algorithm is inspired by a theoretical shape of the
Point Spread Function (PSF) [19] [20] [21] and Laplacian of Gaussian (LoG)
operator, see Section 3.1.3l The PSF is a physics-based mathematical model
describing how the point-like source or object response looks in the imagining
system. The PSF is a complex function in its nature. However, the PSF can
be approximated by a simpler function.

The PSF approximation used in the book ‘Principles of Optics: Electro-
magnetic Theory of Propagation, Interference and Diffraction of Light’ [19] is
parametrized by three parameters. The parameters are the emission wave-
length, the numerical aperture, and the refractive index of the immersion
medium. These imaging system parameters are hard to obtain and the
parametrization is also too complex for my purposes. Articles [20] [2I] model
the PSF as a Gaussian mixture. Article [20] also suggest that the PSF can
be approximated by a single Gaussian.

I decided to use the single Gaussian approximation:

2 4,2 2
- r° + z
PSFupp(X) = Copp exp | — 5 2y — 55
Ty 20 (3.17)
= (87300 )_0'5 ex _x2 +y — 272 |

where Cgpp is a normalization constant, o is a standard deviation of the
Gaussian. The ¢ is assumed to be the same for x and y axis and different for
the depth axis z.
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3.3. My Shape-from-Focus algorithm

The second derivative of the image I(z,y) is given by Equation (3.9).
The derivative is extended into 3rd dimension z, and its equation is:

PI(z,y,2) O0*I(x,y,z) O0*I(x,y,2)
VI(z,y,2) = o — 3.18
(z,y,2) 7 R v R i (3.18)
where I(x,y, z) is the image stack.
With the PSF approximation, I can now move on to creating the convolu-
tional mask combining Equations (3.17) and (3.18)). The convolution mask
ELOG is given by:

VA(PSFupp * I(2,y,2)) = (V2PSE,,) * I(x,y,2) = ELOG * I(x,y, 2),

(3.19)
where ELOG is derived using the associative property of the convolution and
the derivative. The normalization constant Cyp, in PSFy,, is independent of
the position in the mask X and it does not add any useful information for
creating the convolutional mask so it can be omitted. The reason for omitting
Capp is that I am looking for a magnitude of the change and multiplying the
response of ELOG mask by constant changes the threshold for which the
edgels are considered significant enough by the same amount. The ELOG
convolutional operator equation writes as:

ELOG =

(a;1 (22 +y?) — 20?092@ + Ufgy (22 — Ug)) o _:c2 + 2 B LQ
olod, P 202 202 |

(3.20)

The discrete convolutional mask is found based on the Equation (3.20))
The resulting mask must preserve the properties of the second derivative.
The important property of the mask ELOG is the zero response to the
homogeneous input Ij. This can be achieved by calculating the response R of
the mask to I, and by subtracting R/n from each element in ELOG, where
n is the number of the elements in FLOG. This approximation is sufficient
for my purposes.

B 3.3.3 Extracting the edge depth map

The edge depth map d(x,y) is a sparse matrix which represents the depth z of
the detected edges in each element. The depth element is marked as edgeless
if the element does not contain any detected edge. The depth map d(z,y)
reduces the z axis of the image stack I(x,y, z) into a single value representing
the depth of the edgels. Each element of d(z,y) contains at most one depth.
The d(z,y) does not allow to represent multiple edges in a single element.
The edge depth map d(z,y) is extracted after the image stack is convolved
with ELOG mask using the Equation (3.19)). The stack convolved with ELOG
is called as L(z,y,z). The FLOG mask represents the second derivative.
The edges in the stack are the positions where the response to the mask
crosses the zero between the neighboring pixels with enough steepness.
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3. Theory and proposed solution

The zero crossings are found by shifting all pixels of L(z,y, z) in zy plane
by one in all plausible positive direction. All neighboring points to the
point (z,y) are at positions (z + 1,y), (z,y + 1), and (x + 1,y + 1). The rest
of neighboring pixels are overlapping with the previous ones'. The shifted
stack is refered to as L~;(z,y, z), where i € {z,y, vy} specifies the direction
of the shift. The edges in the stack are on positions where two conditions are
satisfied:

1. The sign of L(z,y, z) differs from the sign of L-~;(z,y,2). The imple-
mentation should also take in account L(z,y, z) = 0.

2. The significance value ||L(z,y, 2) — L>~;(x, y, z)|| is higher than the given
threshold. The threshold value is set according to the noise and signal
ratio.

The elements which do not satisfy those two conditions are marked as edgeless.

B 3.3.4 Median and mean smoothing of the depth map

I suppose that the ideal edge and its edge elements (edgels) are smooth
and continuous in all directions. The elements of the edge depth map
d(z,y) estimated in previous Section 3.3.3| are adjusted according to those
assumptions.

The elements in d(z,y) have some deviation in depth caused by the convo-
lutional mask response to the noise in the image. The deviation of a single
edgel can be mitigated based on the locally connected edgels. The depth
smoothing algorithm is suggested. The algorithm also removes too small
edges during its process. The algorithm is described as:

For all edgels p; in d(z,y) do:

1. Find all edgels connected to p, in the given mask. The 8 neighborhood
connection is considered and the size of the mask is given by the user.

2. If the number of connected edgels is smaller then minimal length of the
edge than remove all of those edgels and continue with the next edgel.

3. Update the depth of p; using the median or mean depth of the connected
edgels.

The algorithm runs twice over the depth map d(z,y). In the first run, the
algorithm removes points which are far away from the neighboring ones in
depth using the median. In the second run, the algorithm smooths the depth
using the mean. The result is a new filtered depth map of edges ds(x,y).

'If the point (z — 1,y — 1) is considered as a starting point, the point (z,%) is present in
its neighborhood so the negative shifting can be omitted.
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B 3.3.5 Surface approximation

My images contains a lot of edges and flat textureless surfaces in-between
them as it was discussed in Section [1.1. I make use of this assumption about
the surface flatness and connect all the occupied elements of the filtered depth
map ds(z,y) from Section 3.3.4|to get a surface approximation in textureless
areas.

As I mentioned before, a single element of d¢(x,y) either contains a depth
of the edgel or it is marked as edgeless. The x and y positions of occupied
elements in d¢(z,y) create a set of 2D points Z. The indexes from = to
df(x,y) are kept in a set x.

I use the Delaunay algorithm [22] to create triangulation of the surface.
Delaunay triangulation connects all points in a given point set = by non-
occluding triangles. The triangulation creates a convex surface. Delaunay
triangulation maximizes the minimal angle of all the possible triangles. Each
triangle created by the triangulation is described by three indexes to the =.
The depth of the triangles verities is given by ds(x,y) using x.

B 3.3.6 Removing of implausible triangles

My images are taken from the top view over the scene and the telecentric
optics are employed. Due to these reasons, some triangles obtained by
Delaunay triangulation introduced in Section |3.3.5| are not observable in the
real conditions and they will be removed. The non-observable triangles are
the ones which are almost perpendicular to the wafer foundation and their
sides are almost as long as the height of the observed components.

The triangles are described by three points A, B, and C'. The normal
vector of the triangle 7; is:

ity = (Mg, Ny, nez) | = (C — A) x (B — A). (3.21)

I suppose that the wafer foundation lies in a plane that is parallel with the
zy plane of the image stack I(x,y,2) and its normal vector is 7i; = (0,0,1)".
The angle ¢ between the 7i; and 71y is given by equation:

ﬁtXﬁf TNtz
cos(@) = — —— = . 3.22
@) = Gl = @ = A) < (B=A)] (3.22)

The condition for removing the almost perpendicular triangles is |cos(¢)| < ¢,
where ¢ is chosen based on the maximal acceptable triangle angle, for example
t=0.1.

The orientation of triangle vertices is not specified nor is their normal
vector. The triangles have two normal vectors 77y which are collinear and
they are facing the opposite direction (i.e. their angle differs by 180°), so the
triangles with ¢ close to —90° must also be removed. The condition is given
by a cosine of the angle, so it works for both normals the same.
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B 3.3.7 Reassign the texture to triangulated surface

The final step of the algorithm is to assign the depth and the original texture
to missing elements of the filtered depth map ds(x,y) from Section m
using the filtered triangles from Section The result of this algorithm is
a new depth map d.(x,y) and a texture map c(z,y). The position z and y in
¢(x,y) corresponds to the same positions in d.(z,y). The shape of d.(z,y)
and ¢(z,y) is the same as the shape of a single image I(x,y).

Each element of d.(x,y) is checked if it lies inside any triangle. If d.(z,y) is
inside of the triangle, it is assigned with the depth. The triangle is imagined
as a plane in 3D:

(a,b,¢)" S +d =0, (3.23)
where 7, = (a,b,c)T = (C — A) x (B - A), S = (z,y,dc(x,y))", and
d = —ii) A. The depth dy(z,y) is given by Equation (3.23):

_d—l—ax—l—by

; (3.24)

dC(IE, y) -

The elements of ¢(x,y) = L(x,y, |d(x,y)]), where |+] is rounding to the
integer value.
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Chapter 4

Implementation and Hardware description

B a1 Assembly machine description

Figure 4.1: Assembly machine. The target camera (1) is in the green ellipse, the
target wafer bench (2) is in the orange ellipse, the dual cameras for finding the
components (3) are in the magenta ellipse, the bench with component wafer (4)
is in the red ellipse, and the component picker (5) is in the circle.
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The micro-module assembly machine was provided by an industrial part-
ner via a project called Control Platform for High-Accuracy Microelectron-
ics (CoPA). My thesis uses the machine’s optical system.

You can see a picture of the assembly machine in Figure |4.1. The machine
is laying on a big marble block. The marble block mass makes the machine
resistible to small vibrations caused by the movement of the axis and it allows
the sub-micron precision placement of the components.

The machine has two working benches with three linear axes, and a rotary
axis with a wafer holder at the end. The bench in the red ellipse carries a
wafer with components (source wafer). The bench in the ellipse holds
a target wafer. The benches are designed in such a way that the image plane
is always parallel with the wafer plane.

The component and the target wafer are observed by cameras. Two
cameras in the magenta ellipse are looking at the component source. Each of
these two cameras has a different magnification. One on the right has 0.5x
magnification. It scans a larger area, finds and provides a map with missing
components. The other one has 3.5x magnification. It provides an exact
position of the component for the picker. The camera in the ellipse
is observing the target wafer. The target camera has a 10x magnification.
The target camera has a shallow Depth-of-Field compared to the height of
the components, which is well-suited for the Shape-from-Focus algorithm. All
cameras are equipped with a telecentric lens.

The picker, the circle in the picture, picks the component, rotates
them into the correct position, places them and holds them at the assembly
position until the component is welded by a laser.

Dramatical changes to the provided machine configuration were not possible.
On the other hand, it was possible to connect a notebook to the machine
network, control the movement of the axes, and capture images from the
installed cameras.

(a) : Camera. Courtesy (b) : Telecentric lens.
of [23]

Figure 4.2: Camera and lens used on the target side.
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B Target camera and lens description

The camera is shown in Figure [4.2al. The machine uses JAI GO-5000M-PGE
camera [23] equipped with the telecentric lens on the target side. The camera
have a 1inch sensor with 25602048 pixels.

Figure [4.2b| shows the lens. The lens magnification is 10x. The Field-of-
View for the 1inch camera sensor is 1.2x 1.0 mm. The lens was used on the
precedent machine and no technical description of it is known.

The lens consists of three elements. The elements are the tubus with a C
mount at the top, the central part with the light source and the beamsplitter,
and the tubus with lenses at the bottom. The light source is telecentric (i.e.
its light rays are parallel). The beamsplitter serves as a reflective mirror for
the light source. The beamsplitter aims the light rays coming from the side
to the direction of the optical axis of the lens.

. 4.2 Software

The algorithms proposed in Section |3| were implemented in Python 3.5.
C++ is used for communication with the assembly machine and for capturing
the images. The 3D models are exported to Polygon File Format (PLY).
The software will be described here only briefly because it not the primary
subject of my thesis.

Python language is chosen because of its wide availability, its large number
of libraries, and its open-source nature. The used libraries are SciPy with
NumPy [24], SkImage [25], OpenCV [26], and MatPlotLib [27]. The libraries
provide most of the needed mathematical operations and they also take care
of the visualization of results.

The cameras used on the machine are based GigE vision protocol imple-
mented by Pleora [28] called eBUS. eBUS is C++ SDK which provides full
control over the camera. The communication with the machine axes is possible
via ZeroMQ library [29]. The communication messages are requests describing
where to move the specific axis, and replies describing if the movement was
successful or not.

In its simplest form, the PLY format describes the point cloud with colors
and the connection between those points using triangles. PLY description
allowed me to export my depth and texture map with little to no adjustment.
Python PLY library is available as open source under GNU General Public
License, version 3. The open-source mesh processing tool MeshLab [30] could
be used to open the PLY files.
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Chapter 5

Experiments

I prepared experiments regarding the topic of the edge detection, and the
results of the surface reconstruction obtained by my Shape-from-Focus al-
gorithm. Edge detection experiments provide a simplified background to
the Shape-from-Focus algorithm. The experiments are performed using the
camera on the target side of the assembly machine.

Two edge detection experiments are related to the lens distortion evaluation
and the relative distance between the camera and the observed edge by the
sharpness of a given region.

The first experiment described in Section |5.1.2| shows how moving the
Depth-of-Field affects the value of sharpness of the edge. The first experiment
finds the sharpest image with a calibration pattern for evaluating the amount
of distortion in the optical system. The first experiment is also interesting
for the CoPA project. It shows the capability of the machine to refocus the
image during the operation without the intervention of an operator.

The second experiment described in Section [5.1.3| evaluates the optical
system distortion. The evaluation of the optical distortion is important to
preserve straight lines in the scene. The evaluation of the optical distortion
also plays an important role in the high accuracy measuring and it is needed
in the CoPA project.

The last set of experiments (Section 5.2)) covers the Shape-from-Focus
algorithm. Here, I include the images used for creating reconstructed surfaces.
Subsequently, I present the response of the ELOG mask to the image stack.
Finally, I discuss the reconstruction results.

B sa1 Edge detection

The dot calibration pattern is used for testing the edge detection techniques
and for the camera calibration. The pattern is described later in Section |5.1.1l
The calibration pattern is assumed to be almost parallel with the image plane.

The images were taken by the camera at different distances from the
calibration pattern. The images create the same image stack I(x,y, z) as
the one described in Section [3.3.1 The number of images taken was 50.
The spacing between each image (z direction) in I(x,y,z) was 0.320 ym.
Figure [5.1] shows an example of these images.
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Figure 5.1: Picture of the calibration pattern. The pattern is an array of dots
with the diameter 62.5 um and the spacing 125 um. The cyan square shows the
region where experiment from Section was performed. The z and v axes
shows the chosen calibration pattern coordinate system. The magenta numbers
denotes the ordering of calibration dots used in Section

(a): n=0 (b) : n=24 (c) : n=50

Figure 5.2: Cyan region from Figure zoom in. The cuts are taken from the
different positions n of the camera. This Figure illustrates the difference between
the focused and almost focused images.

Bl 5.1.1 Calibration target

The used calibration pattern is a multi-frequency grid distortion target made
by Edmund Optics [31]. The pattern has multiple sizes of dots and multiple
spacings between them. The central part of the pattern with the smallest
dots is used for the experiments due to the limited Field-of-View.
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5.1. Edge detection

The dots used for the experiments have a diameter of 62.5 um and their
spacing between centers is 125.0 um. The camera Field-of-View is 1.2x1.0 mm
and it fits in 12x9 dots. The manufacturing tolerance of the dot diameter
is £2.5 um. The tolerance of the spacing between centers is also £2.5 pm.
The tolerances are given with regards to the manufacturing process. The man-
ufacturing process errors are not random and they fluctuate during the pro-
duction. The true geometrical errors are smaller and they are bellow the
manufacturing ones.

B 5.1.2 Depth from the sharpness of the region

This experiment shows how the image blur is used to find the sharpest image
in the sequence or to estimate the depth. The sharpest image is used for the
distortion evaluation and it is used to prove the concept of the Shape-from-
Focus algorithm. As I mentioned before, some methods could be employed
for focusing the image during the machine operation.

Sharpness of the region
16.40 -

: =>= Sharpeness value
16.35 4 t —— Fitted polynomial
' I X ® Maxima at 24.7

16.30 A

16.25 4

16.20 A

16.15 A

Sharpness value [-]

16.10 A

16.05 A

16.00 T T T - T
0 10 20 30 40 50

Depth idx [-]

Figure 5.3: Sharpness of the region. The dashed magenta line shows the
sharpness value Y. The green line is a fitted parabola. The dotted blue line is a
position of the parabola maxima.

Figure 5.2 shows the zoom-in of the green region from Figure This
region of the image was used to evaluate the sharpness in this experiment.
The sharpness of the region was given by a sum of the magnitude of gradients
G1(z,y) obtained by Sobel filter described in Section
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The sharpness of the region T was given as:
1
T= Y Gy, (51)
z?y

where }, , denotes the sum over all elements in the region, and s is a number
of elements in the region.

The T for the given region in the stack is show in the Figure[5.3|as a dashed
magenta line. The T is influenced by the noise in the image. The noise can
be mitigated by fitting an appropriate function over the data. The graph of T
resembles a parabolic function in its local maxima. I decide to fit the parabola
to the data (the green line) and find its local maxima. The parabola equation
is y = ax® + bx + ¢, and its local maxima is at T, = —b/(2a) = 24.7.

The maximum is used to identify the sharpest image in the stack. The ex-
periment identified the best focused image as the image at the position n = 24,
or n = 25.

B 5.1.3 Lens distortion

Dot pattern tracking and homography

9000 0000

L J

2000

Figure 5.4: Tracked dot calibration pattern. The green dots are the candidate
edgels. The yellow line shows the circles fitted to candidate edgels. The magenta
cross shows the centers of fitted yellow circles

In this experiment, I seek for the camera calibration and the evaluation
of the optical distortion. I used the dot calibration pattern described in
Section [5.1.1] to do job. I placed the calibration pattern perpendicularly to
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the optical axis. The precision of the placement is given by the machine
tolerances. For calibrations, I used the sharpest image found in previous
Section [5.1.2. The image is shown in Figure |5.1) together with the dots
coordinate system and the ordering of the dots pattern.

In order to calibrate the camera, the dots must be localized in the image
first. The simplified dot pattern localization algorithm goes as follows:

1. Find the edges in the image using the Canny edge detector, see Sec-
tion [3.1.2L

2. Find the approximate circle center positions using extended Hough
transformation [32].

3. Find the edgels of the circle by extracting the edge function among
multiple lines. The line is spanning from the center estimated by Hough
transformation in equidistant angle around the circles and the edgels are
detected via the maximal magnitude of the first derivative.

4. Fit a circle in the edgels found in the previous point (3).
5. Return the radius and the center of all fitted circles.

The center and diameter of the circles found by the algorithm are used in the
evaluation of the distortion. The localized circles and their estimated centers
are shown in Figure |5.4. The circle centers are arranged to the coordinate
system shown in the Figure |5.1. The circles radius mean is 56.16 pixel, its
standard deviation is 0.063 pixel, its maxima is 56.30 pixel, and its minima is
55.88 pixel. Such a low deviation of the radius indicates a correct detection
and localization of the dots.

The homography between the calibration pattern and the image is estimated
using Equation (3.15) and (3.16)). The resulting homography is:

—1775.21 29.33 2494.78
H= 28.90 1775.52  106.92 | . (5.2)
—2.29.-10"% 2.01-107* 1.00

The hs; and hgy are close to the zero, which means that the homography
represents an almost pure rotation and translation. The hi; and hoy are
similar up to the decimal place and the sign, so the scaling in both axis is
considered the same. Those properties of H indicate that the pattern was
placed almost perpendicularly to the optical axis.
The hi1 or hoy is used to convert the dot diameter from pixels r,, to
millimeters 7p,m,: .
px
T oy (5.3)
Using only the hy; or hgo is sufficient because the value of his and hop is
low compare to hi1 or ho. Equation (5.3) is used to evaluate the dimension
of the calibration pattern given by manufacturer in Section [5.1.1. The dot
diameter is 62.5+2.5 um. The obtained radius mean is 63.24 um, its standard
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deviation is 0.03 um, and the difference between the smallest and the largest
radius is 0.2 um. These dimensions are below the manufacturing tolerances
of the calibration pattern.

The dot grid given by the manufacturer is reprojected to the image using
the homography in Equation (/5.2)). The mean distance between the localized
dots centers and the centers projected by homography is 0.137 pixel, its
standard deviation is 0.081 pixel, and its maxima is 0.418 pixel. All distance
magnitudes are well under 0.5 pixel and it indicates that there is almost no
distortion present in the image. The errors emphasized 500 times are shown in
Figure [5.5 as arrows spanning from the localized centers to the projected ones.
The arrows do not have any preferred direction. Probably, the most of the
observed displacements are caused by the noise in the image. So, even if there
is any distortion, it is almost impossible to correct without improvements to
the optical system.
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Figure 5.5: Arrows show the error direction between the centers of dots found by
pattern tracking and the centers of dots projected to image by the homography.
Their size is emphasized 500 times. The magenta box shows the original image
shape.
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B 52 Shape-from-Focus

I prepared the set of experiments regarding my Shape-from-Focus algorithm.
I used two scenes to demonstrate the capabilities of the algorithm. First,
I describe the layout of both scenes. Afterwards, I show and discuss the
shallow Depth-of-Field of the optical system in the images of the second scene.
I demonstrate the response of my 3D convolution mask (ELOG). Finally,
I discuss the results of the Shape-from-Focus reconstruction are shown.

B 5.2.1 Scenes description and used images

B First scene

The first scene is a flat circuit board with the dust and scratches. The images
of the scene are captured as the images stack described in Section [3.3.1]
The camera captured 70 images in equidistant distances. The distance
between two images in the stack is 8 pm.

Figures show one focused image in depth 20 and one blurred image in
depth 40. This scene shows how the Shape-from-Focus algorithm preserves
the flatness of the surface and how the algorithm can capture the height of
imperfections (i.e. dust and scratches).

B Second scene

The second scene is an integrated circuit board with micro-components.
The scene is more complex and I will describe it in more details.

The sketch of the scene side view is in Figure The scene has four
components in it. The components are a laser (the blue box) and a monitoring
diode (the green box), a reflective mirror (the magenta shape), and a lens (the
black shape). The components are placed on the wafer foundation (the red
line). The foundation is the integrated circuit board. The components and
their wiring are welded or glued to the circuit board.

Figure 5.6: Sketch of the scene side view. The green box represents monitoring
diode. The blue box represents laser diode. The magenta shape represents
reflective mirror. The black shape represents lens. The orange arrows represents
the light emission of the laster diode. The red line is a foundations.
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The 150 images are captured in equidistant heights spanning 480.0 um.
The captured images create the image stack I(x,y,z) described in Sec-
tion The height difference (z direction) between two images is 3.2 ym.
The tallest component, the mirror, has 220.0 um. The lowest point of the
image stack is set 180.0 um below the foundation. The highest point of the
image stack is set 180.0 um over the top surface of the mirror.

Four examples of images from the stack are shown in Figures and
The monitoring diode is on the left side of the image. The laser diode is in
the middle of the image. The laser diode has a wire and a number 137 on the
top. The reflective mirror is on the right side of the image. The integrated
circuit was not completed. The lens on the top of the mirror and some wiring
are missing.

The light source rays are emitted directly from the lens and are perpendic-
ular to the foundation. The reflective mirror is placed in such a way that it
reflects the light from the side of the laser diode. Only the reflexion of the
laser diode side is visible on the mirror surface. The mirror surface it self is
invisible.

The images in Figures and show that there are many high
contrast edges and a lot of textureless area in between. It is assumed that
the area between the edges is flat. The images also show that the Depth-of-
Field (DoF) of the telecentric lens is tiny compare to the components height.
These properties of the scene and images are important when it comes to my
Shape-from-Focus algorithm.

B 5.2.2 Response of convolutional mask

100
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(a) : Monitoring diode (b) : Response

Figure 5.7: Response of my convolutional mask in the region of monitoring diode.

The experiment demonstrates the response of the convolutinal mask ELOG
from Section to the monitoring diode region in the image stack I(x,y, z)
of the second scene.

The mask shape and its parameters must be found in first. Multiple
parameters and shapes of the mask were tested. The best fitting shape z xy x z
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of the convolutional mask was 7x7x11. The variance parameters were
Ogy =0, = 1.0.

The convolutional mask behaves similarly to the second derivative. The sec-
ond derivative of the edge function crosses the zero at the position of the
edge. So the mask response around the edge should also cross the zero.

Figure |5.7a shows the region of the monitoring diode on the 68th image
of the I(x,y,z). The edges of the monitoring diode are clearly visible in the
image. Figure[5.7b|shows the response of the ELOG mask to the diode region.
The color transition between yellow and red is a positive value response of
the mask. The shades of blue are the negative value responses of the mask.
The shades of green are the responses around the zero.

Comparing the image in Figure [5.7a] with the mask response in Figure [5.7b),
it is visible that, the zero crossings are at same positions as the edges (transi-
tion between blue and red color), and the zero responses are in the textureless
areas ( color). As I said before, this behavior of the ELOG mask is
expected and the mask acts similarly to the second derivative.

B 5.2.3 Surface reconstruction

I will present the results of the surface reconstruction. The surface is obtained
from the Shape-from-Focus algorithm suggested in Section [3.3l The shape
and parameters of the used convolutional mask are the same for both scenes.
The shape = X y x z of the mask is 7x7x11. The mask variance parameters
are ozy = o, = 1.0.

Both reconstructed surface models are included on the attached CD, see
Appendix [Al

B First scene

Figures [5.9 show the results of the surface reconstruction. The reconstructed
surface looks flat from a distance. No large triangles in the middle of the
scene are missing. Some triangles on the fringe are missing. The missing
triangles are caused by the undefined response of the convolutional mask
around the fringe regions. The mask estimates the edge in wrong heights and
the triangles are removed in the filtration process.

Figures |5.10| show the details of the surface with and without the texture.
The estimated surface is flat with some peaks and wallies. The peaks and
wallies are caused by dust and scratches on the surface. Some missing triangles
are also visible. The removed triangles are almost perpendicular to the scene.
These triangles were removed in a triangle filtration process. When the
surface with and without texture are compared, it is visible that the texture
hides some imperfections of the surface.

B Second scene

The reconstructed surface is in Figures [5.13 The components are described
in Section [5.2.1, the depth of metal plating, and the laser diode top metallic
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contact are clearly visible. The monitoring diode is on the left side, the laser
diode with wiring is in the middle and the top of the mirror is on the right
side in Figure [5.13a. The the triangles corresponding to sides of components
are removed in a triangle filtration. The removed triangles are almost parallel
to the optical axis and their side are too large.

Figure [5.14al shows the detail of the circuit board in the region of the metal
plating. The black region is a wafer foundation surface. The metal plating
surface is white. The metal plating is above the foundation surface. This
behavior is expected due to the manufacturing process of the circuit board.
Figure [5.14b| shows the detail of the laser diode top metallic contact. The top
contact is directly above the laser emission place of the diode. It is visible
that the top contact is above the top surface of the laser diode.

There is a wire at the top of the laser diode. The wire connects the diode
and the foundation. The wire is made out of gold, it has a circular section
and it is glossy. The glossy cylindrical surface of the wire makes it hard to
detect. The wire is approximated only by its sides. The depth map provides
only a single depth for each element. The wire occludes the foundation and
it makes foundation invisible in that part. The triangles connected to the
side of the wire were removed in the triangle filtration.
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(a) : Focused surface.

N

Figure 5.8: Examples of images used as and input to my Shape-from-Focus
algorithm. Flat surface with dust and scratches.

(b) : Defocused surface.
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(b) : Surface with texture

Figure 5.9: Surface of the testing circuit board with dust and sketches.
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(a) : Surface without texture.

(b) : Surface with texture

Figure 5.10: Detail of the surface of the flat circuit board with dust and sketches.
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(a) : The wafer foundation is in focus.

(b) : The laser diode is in focus.

Figure 5.11: Examples of images used as and input to my Shape-from-Focus
algorithm. Circuit board with components. Part 1.
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(a) : The monitoring diode is in focus.

(b) : The top of a mirror is in focus.

Figure 5.12: Examples of images used as and input to my Shape-from-Focus
algorithm. Circuit board with components. Part 2.
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(a) : Top view.

(b) : Bottom left corner view (according to (a)).

Figure 5.13: Surface of the circuit board with micro-components in a different
views.
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(a) : Metal plating.

(b) : Laser diode top metallic contact

Figure 5.14: Detail of the surface of the circuit board with components.
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Chapter 6

Conclusions and future work

I had two main tasks in my thesis. The first task was to study different edge
detection techniques. The second task was to develop the Shape-from-Focus
algorithm for the images with high contrast edges and large textureless areas.

The thesis summarizes the commonly used edge detection techniques and
the design of the Shape-from-Focus algorithm. The described edge detection
techniques serve as an introduction to the Shape-from-Focus algorithm.

The edge detection experiments show how the edge detection can be used
to focus the camera and they also show how the edge detection is used in the
calibration of the optical system.

The main contribution of my thesis is the design of the Shape-from-Focus
algorithm, which uses the second derivative 3D convolutional mask, and which
provides the depth estimation in the textureless areas. Another contribution
of my thesis is the calibration of the optical system on the provided machine.

B Edge detection

The described edge detection techniques were the first and second derivative
(Section |3.1.2| and |3.1.3)) of the image function, and parametric models for
the edge approximation (Section |3.1.4/and 3.1.5)). Edge detection techniques
were demonstrated in two experiments.

The first experiment (Section [5.1.2)) showed that it is possible to extract
the depth of the image region using the sum of the gradients. The experiment
also showed that the sharpness value was affected by the noise and some final
approximation was needed.

The second experiment (Section |5.1.3)) showed how the edge detection is
used in the optical system calibration. The experiment used a dot calibration
pattern. The dots were tracked by Hough transformation. The center position
was refined using the parametric model of the edge (Section|3.1.5). The optical
system distortion was evaluated using homography between the dot pattern
in a scene and the dot pattern projected into the image. The mean distance
between the center of the dot projected from the scene using the homography
and localized centers in the image was 0.137 pixel. The experiment showed
that there is almost no non-linear distortion in the optical system.
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B Shape-from-Focus algorithm

The design of the 3D convolutional mask was discussed in Section [3.3.2.
The mask approximated the second derivative and it was inspired by the
theoretical shape of the Point Spread Function. The mask was used to
estimate the position of the edges in depth in the image stack (Section 3.3.1)).
The estimated edge positions created the edge depth map (Section 3.3.3)).
The edge depth map had a single entry for each pixel and it was treated as
an image (Section 3.3.3)). The edges in the depth map were smoothed using
median and mean filtering (Section 3.3.4). The surface approximation was
obtained by Delaunay triangulation (Section |3.3.5). The final surface was
filtered and reassigned with the texture (Section 3.3.6 and 3.3.7).

Models of two different surfaces obtained by the Shape-from-Focus algo-
rithm were presented in Section [5.2.3 The first surface was a flat circuit
board with dust particles and scratches. The second surface was a partially
assembled circuit board. The first surface demonstrated the ability of the
Shape-from-Focus algorithm to preserve the flat surface and the height of
imperfections at the same time. The second surface showed that the Shape-
from-Focus algorithm could find a surface in different heights and it can also
preserve the roughness of their surface. Both surface models are included on
the attached CD, see Appendix [Al

B Future work

One idea for achieving a better surface reconstruction is to replace the
developed 3D convolutional mask with a convolutional neural network (CNN).
I expect that the CNN will better describe the influence of the neighboring
edges and it will improve the edge detection. The influence of the neighboring
edges is omitted in the 3D convolutional mask. I already experimented with
the CNN with some positive results. However, it did not provide better
results in comparison to my convolutional mask.

Another idea for achieving more precise surface reconstruction is to em-
ploy the global optimization inspired by articles [4] or [7] to smoothen the
reconstructed surface.
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Appendix A
Structure of CD

The CD contains the thesis and 3D models of both scenes from Section 5.2l
The thesis in PDF is in a root directory of the CD. The models are saved
as Polygon File Format (PLY). The open-source mesh processing tool Mesh-
Lab [30] could be used to open the PLY files. The 3D models are located in di-
rectory 3D_models. The first scene model is called scene_1_flat_surface.ply.
The second scene model is called scene_2_components_surface.ply.

3D _models
t scene_1_flat_surface.ply

scene_2_components_surface.ply

thesis.pdf

o1
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