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Abstract

In order to reduce emissions of the transport sector, fuel cell hybrid vehicles (FCHVs)
constitute a promising alternative as they have zero local emissions and overcome the
limited range of electric vehicles. The power management of the propulsion system poses
many challenges since it is a highly nonlinear, constrained, strongly coupled, multiple-input
multiple-output (MIMO) system. The control objectives aim at dynamic power delivery,
minimization of hydrogen consumption and charge sustainability of the battery. This thesis
presents a hierarchical model predictive control (MPC) with three levels approaching the
control problem on different time scales.

The high-level control (HLC) implemented as a nonlinear MPC optimizes the static power
split between battery and fuel cell system. The intermediate-level control (ILC) uses
static optimization to determine the optimal operating point of the air supply. The low-
level control (LLC) is a nonlinear MPC and tracks the reference trajectories received from
the higher levels.

The hierarchical MPC is evaluated on a detailed model of an FCHV using the worldwide
harmonized light vehicles test cycle. Utilizing predictive information about the power de-
mand, the HLC provides a power split that assures charge sustainability of the battery and
only deviates by 0.2 % from the optimal solution in terms of hydrogen consumption. Due
to the predictive behavior and inherent decoupling capability of an MPC, the LLC achieves
dynamic power delivery while explicitly considering the system constraints caused by pre-
vention of oxygen starvation and limited operating range of the compressor. Moreover, the
actual hydrogen consumption deviates only by 1 % from the hydrogen consumption that
is predicted by the HLC. Even for uncertain power demand prediction, the LLC attains
dynamic power delivery by deviating from the reference trajectories to relieve the fuel cell
system when operating under system constraints.
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Kurzfassung

Um die Emissionen des Verkehrssektors zu reduzieren, stellen Brennstoffzellen-
Hybridfahrzeuge (FCHVs) eine vielversprechende Alternative dar, da sie keine lokalen
Emissionen aufweisen und die begrenzte Reichweite von Elektrofahrzeugen überwinden.
Das Leistungsmanagement des Antriebssystems stellt viele Herausforderungen dar, da es
sich um ein hochgradig nichtlineares, beschränktes, stark gekoppeltes MIMO System han-
delt. Die Regelungsziele sind eine dynamische Leistungsbereitstellung, die Minimierung
des Wasserstoffverbrauchs und die Ladungserhaltung der Batterie. Diese Arbeit präsen-
tiert eine hierarchische MPC mit drei Ebenen, die die Regelungsziele auf verschiedenen
Zeitskalen behandelt.

Die als nichtlineare Modellprädiktive Regelung implementierte High-Level Regelung (HLC)
optimiert die statische Leistungsverteilung zwischen der Batterie und dem Brennstoffzel-
lensystem. Die Intermediate-Level Regelung (ILC) ermittelt mittels statischer Optimierung
den optimalen Betriebspunkt der Luftzufuhr. Die Low-Level Regelung (LLC) ist eine nicht-
lineare MPC und folgt den von den höheren Ebenen empfangenen Referenztrajektorien.

Die hierarchische MPC wird an einem detaillierten Modell eines FCHVs unter Verwendung
des WLTC Fahrzykluses ausgewertet. Unter Verwendung von prädiktiven Informationen
über den Leistungsbedarf erreicht die HLC eine Leistungsverteilung, die die Ladungserhal-
tung der Batterie gewährleistet und nur um 0.2 % von der optimalen Lösung in Bezug auf
den Wasserstoffverbrauch abweicht. Aufgrund des prädiktiven Verhaltens und der inhären-
ten Entkopplungsfähigkeit der MPC erreicht die LLC eine dynamische Leistungsabgabe
unter expliziter Berücksichtigung der Systembeschränkungen, die durch die Vermeidung
von Sauerstoffmangel und den begrenzten Betriebsbereich des Kompressors verursacht
werden. Darüber hinaus weicht der tatsächliche Wasserstoffverbrauch nur um 1 % vom
Wasserstoffverbrauch ab, der durch die HLC prädiziert wird. Selbst bei ungewissen Leis-
tungsbedarfsvorhersagen erreicht die LLC eine dynamische Leistungsabgabe, indem sie
von den Referenztrajektorien abweicht, um das Brennstoffzellensystem bei Betrieb unter
Systemzwängen zu entlasten.
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1 Introduction

1.1 Motivation

As a result of global warming, 196 members of the United Nations Framework Convention
on Climate Change (UNFCCC) signed the Paris Agreement in December 2015 [1]. The
central goal is to strengthen the global response to approach the causes of climate change
and keep the global temperature rise below 2 ◦C. In consequence of this agreement, the
German government set the target to reduce the greenhouse gas emissions until 2020 by
40 % compared to 1990 [2].

In 2016, passenger traffic was responsible for 15 % of the overall greenhouse gas emissions
in Germany [3]. Up to now, the automotive industry is dominated by combustion engines.
However, recent public debates on the diesel emissions scandal led to a trend towards
alternative concepts such as hybrid, electric and fuel cell hybrid vehicles. Hybrid and
electric cars are currently paving their way to the mass market. Nevertheless, also fuel
cell hybrid vehicles constitute a promising solution as they have zero local emissions and
overcome the limited range and long charging time of electric cars [3].

Fuel cell hybrid vehicles are driven by an electric motor and are powered by a fuel cell
system which generates electrical power from the electrochemical reaction of hydrogen and
oxygen. The reactants need to be supplied by peripheral components. In automotive ap-
plications, pure hydrogen is supplied from high pressure tanks while the oxygen is delivered
by ambient air utilizing a compressor. Thereby, the compressor motor can consume up to
20 % of the electrical power produced by the fuel cell stack [4]. Additionally, the air supply
limits the response time of the power delivery. Thus, the air supply should be considered
in the power management.

Besides the fuel cell system, a secondary power source is included leading to an additional
degree of freedom in the power delivery. This can be utilized to reduce the hydrogen
consumption by increasing the efficiency of both components. Knowing the whole driving
cycle in advance, this additional degree of freedom can be used in a global optimal manner
[5]. In practice, this approach is not applicable because the predictive information about
the power demand is of limited accuracy. Consequently, adequate control methods for the
power split are required.

The increase in computational power in recent years enables more sophisticated approaches
for the control of fuel cell hybrid vehicles. Model predictive control (MPC) can optimize
the manipulated variables with regard to user defined objectives based on an internal
prediction model of the propulsion system. Additionally, MPCs are capable of explicitly
considering input as well as state constraints of the system and of utilizing predictive
information which is accomplished by iteratively solving an optimal control problem [6].
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1 Introduction

1.2 Thesis Goals

Central objectives to the power management of the FCHV include dynamic power delivery,
hydrogen consumption minimization, charge sustainability of the battery and compliance
with system constraints. In order to achieve these objectives, several challenges have to
be resolved.

• The afore mentioned objectives have to be considered on different time scales. While
the dynamic power delivery should be handled within milliseconds, charge sustain-
ability and hydrogen consumption minimization take into account a few seconds or
even minutes.

• The propulsion system of the FCHV is a strongly coupled, nonlinear MIMO system.
The battery and the fuel cell system constitute two power delivery units. Moreover,
the fuel cell system comprises several peripheral components such as a compressor,
valves and pumps. Consequently, the resulting redundancy of the system should be
utilized optimally in regard to the objectives.

• Furthermore, the power management has to comply with several system constraints
in order to ensure safety and preserve the components. These include, e.g., power
limitations of the battery and the fuel cell system, operating boundaries of the com-
pressor and prevention of oxygen starvation.

• The power management must deal with uncertain power demand predictions that
can arise due to unexpected events or unpredictable intentions of the driver.

The aim of this thesis is to design a hierarchical MPC that accomplishes the central
objectives and resolves the related challenges. Therefore, the levels of the hierarchical
MPC are defined based on the dominant time constants of the system. Furthermore,
partial objectives get assigned to each control level and the nonlinear prediction model
for each level is derived. Moreover, the corresponding optimal control problems is stated
and solved with an appropriate method. Finally, the hierarchical control is validated on a
detailed model of an FCHV.

1.3 Outline

Chapter 2 presents an overview of the fundamentals relevant for this thesis. Firstly,
the chosen vehicle configuration is introduced. Subsequently, the fundamentals of MPC
and optimal control are presented. Finally, a literature review is conducted summarizing
current approaches for the power management of an FCHV.
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1.3 Outline

In Chapter 3, the component models of the FCHV which are utilized for the predic-
tion model of the MPC are presented. The model is derived with a gray box modeling
technique.

InChapter 4, the hierarchical control structure is introduced. Therefore, the control levels
are established based on the dominant time constants of the system. Apart from that, the
objectives of each level are summarized and the resulting optimal control problems are
stated. Moreover, an appropriate solution method is chosen and implementation details
are stated.

InChapter 5, the hierarchical MPC is evaluated on a detailed model of an FCHV using the
worldwide harmonized light vehicles test cycle (WLTC). Thereby, the individual control
levels are validated with regards to the partial objectives. Moreover, the cooperation
between the control levels is examined. Finally, the capabilities of handling uncertain
power demand predictions are investigated.

Chapter 6 concludes the achievements of this thesis and presents an outlook for further
investigations.
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2 Fundamentals and State of the Art

In this chapter, the fundamentals and state of the art relevant for this thesis are presented.
In Section 2.1, the components of a fuel cell hybrid vehicle are introduced. The control
methods for the high-level control (HLC) and the low-level control (LLC) are based on
nonlinear optimal control which is presented in Section 2.2 including the fundamental idea
as well as solution methods. Additionally, the linkage to model predictive control (MPC)
is explained. Finally, in Section 2.3, current energy management strategies in fuel cell
hybrid vehicles are presented.

2.1 Fuel Cell Hybrid Vehicle

This section provides basic information about the setup of a fuel cell hybrid vehicle
(FCHV). The vehicle model used in this thesis is based on the work of Dirkes [7]. In
Section 2.1.1, an overview of different possible topologies of an FCHV is provided. Ad-
ditionally, the configurations chosen for this thesis are specified. Basic explanations of
the fuel cell electrochemistry are given in Section 2.1.2. In Section 2.1.3, the peripheral
components which are required for a safe and dynamic operation are presented. Finally,
in Section 2.1.4, battery fundamentals are presented.

2.1.1 Vehicle Setup

The first FCHV was developed by General Motors in 1967 but for reasons of safety it
was never publicly available [8]. It was powered only by the fuel cell itself without any
additional power source, which has many disadvantages. Nowadays, there are around a
dozen FCHVs, either publicly available or still under development, such as Mercedes-Benz-
F-Cell (GER,2018), Toyota Mirai (JPN, 2016), Hyundai Nexo (KOR, 2018), FEV Fiat 500
Breeze (GER,2017) and others. All of these cars come with additional power sources (e.g.
battery or supercapacitor (SC)) due to the following advantages:

• Efficient operation: The fuel cell system (FCS) has its highest efficiency at part
load. The additional power source can be used to shift the operating point of the
FCS into higher efficiencies.

• Regenerative braking: The battery can be utilized to store energy from regener-
ative braking with high efficiency.

• Dynamic behavior: The dynamics of the fuel cell system are limited by the air
supply due to the inertia of the compressor [3]. The additional power source can be
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2 Fundamentals and State of the Art

utilized to increase the dynamic response to power demand changes [9].

• Start-up support: The fuel cell system cannot run at full load during start-up
phase, especially at freezing temperature. The battery can be used to supports the
fuel cell system until its warmed up [3].

• Cost scaling: The cost of an additional power source roughly scales with the capac-
ity, while the cost of the FCS scales with the peak power. Therefore, a combination
of both can optimize the overall cost by reducing the peak power of the FCS and the
capacity of the battery [10].

• Low integration complexity: Since the FCHV is powered by an electric motor,
an additional electrical power source can be coupled with the FCS electrically. This
is simpler than coupling the systems mechanically by gearing mechanisms as it is
often done for internal combustion engine (ICE) hybridization [11].

The optimal choice of the additional power sources and its sizing depend on the specifica-
tions of the vehicle and requirements for the performance. This topic is not investigated
in this thesis but investigations by Yi et al [12], Hu et al. [13] and Jain et al. [14] are
recommended for the interested reader.

There exist different classifications for FCHVs. Firstly, the FCHV can be classified into
two categories according to the sizing of the FCS compared to the additional power source
[8]:

• Full-hybrid FCHV: The FCS is the main power source and the electrical energy
storage system is mainly used for regenerative braking, shifting the FCS to more
efficient operating points and increasing the dynamic response to load changes (e.g.
Mercedes-Benz GLC F-CELL, Honda FCX Clarity, Toyota Mirai).

• Fuel cell range extender: The main power source is the electrical energy storage
system and the FCS extends the vehicle range, thereby tackling one of the major
disadvantages of fully electric vehicles (e.g. FEV Fiat 500 Breeze).

Secondly, the FCHV can be classified according to the type of refueling of the electrical
energy storage system [8]:

• Plug-in hybrid: It can be charged by the electric grid. In this case, the additional
power source is a large battery. It can be used to cover short distances without the
FCS. This type often corresponds to a fuel cell range extender (e.g. FEV Fiat 500
Breeze, Mercedes-Benz GLC F-CELL).

• Hydrogen station refueling: In this case the battery cannot be charged externally.
This means that all the electricity stored in the additional power source either comes
from regenerative braking or from the FCS (e.g. Honda FCX Clarity, Toyota Mirai).
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2.1 Fuel Cell Hybrid Vehicle

The chosen system in this thesis is a full hybrid FCHV with gas station refueling. In Fig-
ure 2.1, the component configuration is presented. The battery and the FCS are connected
in parallel through a DC bus. Two DC/DC converters are used to maintain a constant
voltage level at the bus. The electric motor (EM) is connected to the bus via a DC/AC
converter and connected to the wheels via a differential gear. Marked in red are the elec-
trical power values that are utilized throughout the thesis. Pfcs,net and Pbat,net are the fuel
cell system and battery power at the output of the components while Pfcs,bus and Pbat,bus
are the power values at the DC bus. Pdel is the delivered to the motor. Marked in green
is the point of the power split between the battery and FCS. At this point the demanded
power Pdem which is the reference value of the delivered power is calculated based on the
speed profile of the driving cycle. Three modes of operation can be distinguished [7]:

1. Parallel powering (solid arrows): The FCS and the battery are used in parallel for
powering the motor.

2. Charging (dotted arrows): The FCS powers the motor and charges the battery
simultaneously.

3. Recuperation (striped arrows): The battery is charged by regenerative braking.

FCS =
=

BAT =
=

DC
bus

=
∼

EM

Parallel powering RecuperationCharging

Pdel

Pfcs,bus

Pbat,busPbat,net

Pfcs,net

Point of power split

Fig. 2.1: Configuration of the fuel cell hybrid vehicle [7].

The battery, which is the only additional power source, has a capacity of 6.5 Ah and the
maximum power of the FCS is 50 kW. This corresponds to the specifications needed for a
medium-sized car. Other vehicle parameters required to compute the power demand Pdem
are based on the specifications of the Toyota Mirai and can be found in Table A.1. Electric
motor and differential gear are modeled by constant efficiencies ηmot and ηgear as they have
no influence on the power split between the battery and FCS at the DC bus.
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2 Fundamentals and State of the Art

2.1.2 Fuel Cell Basics

In recent years, several types of fuel cells have been developed. In general, they are
categorized by the type of electrolyte that is used for the membrane. Besides that, there
are other differences such as the operating temperature, fuel and pressure. In automotive
applications, the proton-exchange membrane fuel cell (PEMFC) has been established. It
was first developed by General Electric in the 1960s for space applications carried out by
the NASA [4]. The PEMFC has several advantages compared to other technologies [15,
p.78] [4, p.67]. The membrane is very thin and can therefore be stacked compactly. The
operating temperature is low which reduces the start-up time. Furthermore, the cell can
work in any orientation and has a good dynamic response. Disadvantages are the purity of
the hydrogen that is needed and the involved water management because the membrane
needs to be properly humidified. Apart from that, the catalyst requires a large amount of
platinum. Even though this amount was reduced by several orders in recent years, it is
still a major cost factor of the FCS [3, 4, 16].

Subsequently, the basic principle of a PEMFC is explained based on O’Hayre et al. [17,
Chapter 1-5] and Larminie et al. [4, Chapter 1-3]. The fuel cell is a galvanic cell, which
converts chemical energy to electrical energy. There are always two reactions taking place:
one at the anode and one at the cathode. A simple anode-electrolyte-cathode structure of
a fuel cell is illustrated in Figure 2.2. The anode refers to the electrode where oxidation
is taking place (electrons are liberated) and the cathode to the electrode where reduction
is taking place (electrons are consumed). The proton-exchange membrane (PEM) only
allows the charge carriers (H+-ions) to pass from the anode to the cathode.

Load

Hydrogen
inlet

Hydrogen
outlet

Air
inlet

Air and
water outlet

MembraneCathode Anode

H+

H+

H+

H2

H2

H2

O2

O2

O2

H2O

H2O

H2O

e−

ISt
UF C

e−

e−

Fig. 2.2: Schematics of an elementary fuel cell.

The process of producing electricity in a fuel cell can be divided into four steps:
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2.1 Fuel Cell Hybrid Vehicle

1. Reactant supply: Oxygen (reductant) is supplied to the cathode and hydrogen
(oxidant) to the anode. In automotive applications, pure hydrogen is supplied from
high pressure tanks while oxygen is supplied in form of ambient air to the cathode.
Besides 21 % of oxygen, ambient air also consists of 79 % nitrogen which lowers the
efficiency of the FCS and makes the system prone to oxygen starvation [4]. This
occurs when not enough reactants are supplied to the electrode, resulting in severe
damage of the membrane.

2. Electrochemical reaction: At the anode, an oxidation following Equation 2.1 is
taking place. The electrons are liberated from the H2 molecules. At the cathode a
reduction following Equation 2.2 is taking place. Here, the electrons are consumed
by the H+-ions that pass through the membrane.

2H2 → 4H+ + 4e− (Anode) (2.1)
O2 + 4H+ + 4e− → 2H2O (Cathode) (2.2)

3. Ionic and electronic conduction: Caused by the electrochemical potential of the
redox reaction, the electrons and charge carriers pass from the anode to the cathode.
H+-ions can diffuse through the membrane while electrons need to propagate through
the wire leading to an electric current ISt.

4. Product removal: At the cathode, water is produced which needs to be removed in
order to prevent the fuel cell from "flooding" which means that water is condensing
inside the fuel cell. This leads to severe damage of the membrane. The removal of
water is achieved by evaporation. Additionally, a small fraction of water and nitrogen
drifts back through the membrane to the anode. Therefore, the anode needs to be
purged in regular intervals meaning that the hydrogen outlet is opened to remove
byproducts.

2.1.3 Peripherals of a Fuel Cell System

In order to preserve the fuel cell, it must be operated under certain conditions in terms
of humidity and reactant supply. Therefore, the fuel cell needs peripheral components. In
Figure 2.3, an overview of the peripherals is given. They can be categorized into three
subsystems (heat transfer in red, air supply in blue and hydrogen supply in green), which
are explained in the following subsections. The explanations are based on Larminie et al.
[4, Chapter 4] and Pukrushpan et al. [9, Chapter 2].
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2 Fundamentals and State of the Art

Cathode

AnodeHydrogen
tank

Humidifier/
Cooler

Motor

Pressure valve Purge valve

Back pressure valveCompressor

Coolant pumpRadiator

Air supplyHydrogen supplyHeat transfer

Fig. 2.3: Overview of peripherals installed in a fuel cell system with dead-end anode [4].

Heat transfer

The PEMFC is operated at about 80 ◦C. Since the electrochemical process is not reversible
and some of the energy is lost to heat, the fuel cell stack needs to be cooled. In automotive
applications, where a high power density is demanded, water cooling is utilized. The
hot water coming from the fuel cell, gets pumped through a radiator and exchanges the
heat with the ambient air. Because the temperature difference between the FCS and the
ambient air is small, a large radiator needs to be utilized.

Hydrogen supply

The hydrogen is stored in a high pressure gas tank at 700 bars and supplied via the pressure
valve. The pressure in the anode is between 1.5 bar to 3 bar during operation. The fuel cell,
which is used in the chosen system, has a dead-end anode, which means that the pressure
is not regulated by an outlet valve or reused by a circulation pump. The main pressure
reduction is caused by the oxidation of the hydrogen at the membrane. Nevertheless, the
anode has an outlet valve for purging.
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2.1 Fuel Cell Hybrid Vehicle

Air supply

The air supply is critical for the operation of the fuel cell as it limits the dynamics of the
power delivery. From the electrochemical point of view, the power can be delivered nearly
instantaneously because the electrochemical dynamics are of order O(10−19 s). However,
the dynamics of the power delivery are coupled to the dynamics of the air supply which
are of order O(10−1 s) due to the prevention of oxygen starvation. In order to quantify the
oxygen supply, the oxygen excess ratio λO2 is introduced [9].

λO2 = ṅcat,in
ṅreact(ISt)

(2.3)

ṅin is the oxygen molar flow rate into the cathode and ṅreact is the oxygen molar flow rate
reacting at the cathode. The amount is proportional to the stack current ISt. The oxygen
excess ratio should not fall below 1.5 and therefore limits the dynamics of the stack current
ISt [18].

As presented in Figure 2.3, the components which regulate the air supply of the system
are the compressor and the back pressure valve. The operation of the compressor has a
significant influence on the overall system efficiency because the power consumption of the
compressor has to be subtracted from the power production of the FCS. The compressor
can use up to 20 % of the produced power and therefore has a direct influence on the overall
system efficiency [4]. There are four types of compressors suitable for fuel cell applications
[4, Chapter 9]:

1. Roots compressor: The roots compressor is cheap to produce and works over a
wide range of air mass flow rates. However, it only works with high efficiency at low
pressure rate.

2. Lysholm or screw compressor: The compressor has a wide range of compression
ratios and operates with good efficiencies over a wide range of flow rates. However,
they are expensive to manufacture, since they require precision work.

3. Centrifugal or radial compressor: This type is of low cost and can cover a wide
range of flow rates. The efficiency of the compressor is good but it has to be operated
within a well-defined ratio of air mass flow rate and pressure.

4. Axial flow compressor: The axial flow compressor has good efficiency but is
expensive to produce and can only cover a narrow range of air mass flow rates.

The chosen system utilizes the centrifugal compressor, which is the standard for portable
fuel cells between 10 kW and 100 kW [4]. The compressor flow map is illustrated in Fig-
ure 2.4. The pressure ratio Π which is defined by (2.4) is depicted on the y-axis. pcp,in
is the pressure of the inlet air to the compressor and pcp,out is the outlet pressure of the
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Fig. 2.4: Compressor map including efficiency [9].

compressor.

Π = pcp,out
pcp,in

(2.4)

The corrected air mass flow rate ṁcr in (2.5) is depicted on the x-axis. It depends on the
temperature of the inlet air Tcp,in, the air mass flow rate out of the compressor ṁcp as well
as the ambient pressure pcp,in.

ṁcr =
ṁcp ·

√
Tcp,in

pcp,in
(2.5)

The black lines represent the equipotential lines of a constant rotational speed factor Ncr
which is defined by (2.6). It depends on the rotational shaft speed Ncp and the temperature
of the inlet air Tcp,in. The rotational speed factor varies from 20 krpm to 100 krpm.

Ncr = Ncp

√√√√288 K
Tcp,in

(2.6)

The green equipotential lines represent the points of constant compressor efficiency
ηcp(Π, ṁcr) which is the ratio between the work that would have been needed for an isen-
tropic (ideal) process and the actual work. These values are determined experimentally
and are often given by lookup tables. The red lines represent the choke and surge bound-
aries. At the choke boundary, a high air mass flow rate ṁcr is present at low pressure ratio
Π. In this case, the Mach number gets close to one and the inlet gas reaches sonic velocity.
Therefore, the air mass flow rate ṁcr cannot be further increased. At the surge boundary,
a low air mass flow rateṁcr is present at high pressure ratio Π. On the left side of the
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boundary, the compressor has no gas to ’work on’ and the upstream of the compressor
flows back and gets pumped again. This leads to an unstable behavior and should thus
be avoided. Consequently, the pressure ratio Π cannot be kept constant if a wide range of
air mass flow rates ṁcr and good efficiencies ηcp are to be achieved.

There are two other components for the air supply shown in Figure 2.3, namely the cooler
and the humidifier. Besides increasing the pressure pcp,out, the compressor also increases
the air temperature Tcp,out. In order to preserve membrane, a cooler is added. It cools
down the air of the compressor to the stack temperature TSt. The other component is the
humidifier, which has a significant influence on the lifetime of the PEMFC. The relative
humidity of the air should stay above 80 % to prevent excess drying and below 100 %
to prevent "flooding" of the membrane. For fuel cells with operating temperature above
60 ◦C, external humidification is inevitable. There are different methods to humidify air.
Yet, there is no standard that has been established. A common method that is used for
fuel cells in the power range of 10 kW to 100 kW is the water injection as a spray. A
promising approach which has recently been investigated are self-humidifying membranes.
Nevertheless, they are not yet applicable for high power fuel cells [4].

2.1.4 Battery Basics

Just like the fuel cell, the battery is a galvanic cell. It converts chemical energy to electrical
energy. However, there is a fundamental difference. While the fuel cell has to be constantly
supplied with the reactants oxygen and hydrogen, the battery is an energy storage system.
When the battery is fully charged, all charge carriers are stored at the anode and when
the battery is discharging, the charge carriers move to the cathode. Note that the names
anode and cathode refer to the discharging process. When the battery is charged, oxidation
and reduction switch sides. However, in many literature sources, the electrodes are still
called anode and cathode as for the discharging process [19]. As soon as reactants are fully
consumed at the anode or the cathode, the battery is completely discharged.

There are many types of batteries, which differ in the materials used for the electrodes
and the membrane. Common types of batteries in automotive applications are Lithium-Ion
(Li-Ion) and Nickel Metal Hydride (NiMH) batteries. Both batteries have a similar storage
capacity but Li-Ion batteries can charge and discharge more rapidly than NiMH batteries.
They also do not suffer as much from the "memory effect" which occurs when the battery
is recharged before it is fully empty leading to a lower storage capacity. NiMH batteries
are less sensible to extreme environmental influences such as hot temperature and are less
costly [20]. The Toyota Mirai utilizes a NiMH battery with a capacity of 6.5 Ah.
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2.2 Nonlinear Optimal Control

In this section, an optimal control problem is introduced and the common solution methods
are presented. In Section 2.2.1, the most general optimal control problem that is required
for the control of the FCHV is explained. In Section 2.2.2, general methods to solve
this problem are presented. The approach utilized for the low-level control (LLC) is the
augmented Lagrangian which is an indirect method. It is presented in more detail in
Section 2.2.3 including implementation specific information about the toolbox GRAMPC
[21]. Finally, in Section 2.2.4, the concept of Model Predictive Control, which solves the
optimal control problem in an iterative manner, is explained.

2.2.1 Optimal Control Problem Formulation

The continuous time optimal control problem is presented in (2.7) [22]. It is the most
general form that is required for the purpose of this thesis. The cost function in (2.7a) is
composed of the terminal cost Φ (also called Mayer term) and the integral cost l (also called
Lagrange term). The constraints are given by the ordinary differential equation (ODE) in
(2.7b), the initial state conditions in (2.7c), inequality constraints in (2.7d) and equality
constraints in (2.7e). In (2.7f), box constraints on the input vector are stated that can be
treated differently than inequality constraints. The goal is to minimize the cost function
with respect to the input trajectory u(t) meeting all constraints. In continuous time, this
is an infinite dimensional problem which is in most cases not analytically solvable.

min
u

J = Φ(x(T )) +
∫ T

t0
l(x(t),u(t))dt (2.7a)

s.t. ẋ(t) = f(x(t),u(t)) (2.7b)
x(t0) = x0 (2.7c)
h(x(t),u(t)) ≤ 0 (2.7d)
g(x(t),u(t)) = 0 (2.7e)
u ∈

[
umin umax

]
(2.7f)

The problem can be nonlinear and non-convex. Convex optimization problems consist of
a convex objective function J and a convex set of feasible solutions. In this case, every
local minimum is also the global minimum. This property is desirable because the search
for a local optimum is computationally cheaper than finding the global optimal solution
of a non-convex function [22]. However, the optimal control problems stated in this thesis
are not necessarily convex. Nevertheless, methods to find the local optimum are applied
assuming that they can find the global or at least a sufficiently good local optimum.
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2.2 Nonlinear Optimal Control

2.2.2 Solution Methods for Nonlinear Optimal Control Problems

In Figure 2.5, an overview of solution methods for optimal control problems is given. Three
different families of solution methods exist.

• Dynamic programming (DP) was originally invented for discrete time and state prob-
lems by Richard Bellmann and is extensively used in game theory. However, to some
extent, it can also be used for continuous time optimal control utilizing the par-
tial differential Hamilton-Jacobi-Bellmann (HJB) equation. Compared to the other
methods, DP has the major advantage that it is capable of finding the global opti-
mum in non-convex optimization problems. On the other hand, DP has large com-
putational costs for high dimensional problems suffering from the so called "curse of
dimensionality" [23].

• The indirect methods follow the principle of "first optimize, then discretize" which
means that the optimal control problem is firstly solved subsequently discretized.
Indirect methods utilize necessary conditions for optimality derived from the HJB
equation for the solution. These conditions are called Pontryagin’s minimum princi-
ple (PMP). One the one hand, indirect methods are only capable of finding a local
optimal solution but they do not suffer from the curse of dimensionality on the other
hand[22].

• The direct methods follow the principle of "first discretize, then optimize". In this
case, the continuous time optimal control problem is first discretized resulting in a
finite dimensional nonlinear program. It is widely used in academical and industrial
applications because advanced solvers for the nonlinear program are available. As
for the indirect methods, it is not capable of finding the global optimum but it also
does not suffer from computational costs for high dimensional problems [22].

Optimal Control

Dynamic Programming Indirect Methods Direct Methods

Fig. 2.5: Overview of solution methods for an optimal control problem [22].

In the following, an introduction to the three methods is given. For the low-level control,
the indirect method is used and is consequently the focus of this section. Nevertheless, it is
helpful to understand the concept of DP in order to derive the PMP conditions. Moreover,
the concept of direct methods is introduced because it is utilized for the high-level control.
If not other stated, the upcoming derivations are adapted from Bertsekas [23], Rawlings
et al. [6], and Diehl et al. [22]. For reasons of conciseness, the time dependency of the
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2 Fundamentals and State of the Art

states x(t) and the inputs u(t) is not explicitly stated in this section.

Dynamic Programming

A fundamental principle in optimal control is the principle of optimality. It was first stated
by Richard Bellmann in 1957.

Principle of optimality. An optimal policy has the property that whatever the initial
state and initial decisions are, the remaining decisions must constitute an optimal policy
with regards to the state resulting from the first decision. [24]

The principle is illustrated in Figure 2.6. If the input trajectory u∗ and state trajectory
x∗ from time t0 to T describe the optimal trajectory, any subarc starting at any time t̄
between t0 and T on the optimal trajectory also describe the optimal trajectory. This seems
a trivial statement but it gives the fundamental idea of DP and the indirect methods.

Optimal control
u∗

Optimal states
x∗

t0 tt̄

x0
x(t̄)

u(t̄)
u(T )

x(T )

Fig. 2.6: Illustration of the principle of optimality [22].

In discrete DP, the principle of optimality is utilized to divide the problem into subproblems
that are successively solved. The advantage that comes with the principle of optimality is
that not all possible states have to be evaluated but only the ones that can still possibly be
on the optimal trajectory. Thus, dynamic programming is an intelligent way to enumerate
all possible trajectories.

The principle of optimality is mathematically introduced in terms of the optimal cost-to-go
Jc(x, t). Referring to Figure 2.6, it represents the minimum cost from any intermediate
state x(t̄) to the final state x(T ).

In continuous dynamic programming, the optimal control problem can be solved by the
partial differential HJB equation. The evolution of the optimal cost-to-go dJc

dt
can be

calculated by backward integrating from the finale state cost Φ in (2.8a). For this purpose,
the Hamilton-Jacobi-Bellmann (HJB) equation in (2.8b) has to be solved at any point of
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time. The interested reader can find the derivation of the HJB equation in [23, Chapter
3].

Knowing the evolution of the optimal cost-to-go dJc

dt
, the optimal input trajectory u∗ can

be calculated by the forward integration of (2.8c).

Jc(x, T ) = Φ(x(T )) (2.8a)

−dJ
c

dt
(x, t) = min

u

[
l(x,u) +∇xJ

c(x, t)T f(x,u)
]

(2.8b)

u∗(x, t) = argmin
u
l(x,u) +∇xJ

c(x, t)T f(x,u) (2.8c)

The HJB equation is in general not analytically solvable and needs to be solved numerically.
The numerical solution, however, suffers from the "curse of dimensionality". It means that
the computational cost increases exponentially with the number of states. Consequently, it
is only suitable for small dimensional problems. Nevertheless, it provides the fundamentals
for the indirect methods, which utilize the HJB equation and derive necessary conditions
of optimality.

Indirect Methods

The indirect methods became popular with the studies of Lev Pontryagin leading to the
PMP in 1961 [22]. One ought to observe that the HJB equation in (2.8) does not depend
on the optimal cost-to-go J c but only on ∇xJ

c. Therefore, the costate λ is introduced.

λ = ∇xJ
c(x, t) (2.9)

This leads to the definition of the Hamiltonian equation.

H(x,λ,u) = l(x,u) + λ>f(x,u) (2.10)

The Hamiltonian can be substituted into the HJB equations in (2.8).

Jc(x, T ) = Φ(x(T )) (2.11a)

−∂J
c

∂t
(x, t) = min

u
H(x,∇xJ

c(x, t),u) = H(x∗,λ∗,u∗) (2.11b)

u∗ = arg min
u
H(x∗,λ∗,u) (2.11c)

The goal in the following is to find an explicit formulation for the derivative of the optimal
costate λ̇∗. It is assumed that the optimal trajectory (x∗,λ∗,u∗) is minimizing the HJB
equation. Subsequently, (2.11b) is totally derived with respect to x. Therefore, the chain
rule is applied while it is assumed that ∂H

∂u
is 0 on the optimal trajectory due to the
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first-order necessary condition of optimality [23].

− ∂
2Jc

∂x∂t(x
∗, t) = dH(x∗,λ∗,u∗)

dx
= ∂H(x∗,λ∗,u∗)

∂x
∂x
∂x + ∂H(x∗,λ∗,u∗)

∂λ︸ ︷︷ ︸
f(x∗,u∗)=ẋ∗

∂λ

∂x︸︷︷︸
∇2
xJ

c(x∗,t)

+ ∂H(x∗,λ∗,u∗)
∂u︸ ︷︷ ︸

0

∂u
∂x

(2.12)

Replacing the partial derivatives by gradients leads to

− ∂

∂t
∇xJ

c(x∗, t) = ∇xH(x∗,λ∗,u∗) +∇2
xJ

c(x∗, t)ẋ∗. (2.13)

Rearranging this equation results in a condition for the derivative of the optimal costate
λ̇∗.

∂

∂t
∇xJ

c(x∗, t) +∇2
xJ

c(x∗, t)ẋ∗ = d

dt
∇xJ

c(x∗, t) = λ̇∗ = −∇xH(x∗,λ∗,u∗) (2.14)

At this point, it is worth summarizing all conditions that need to be satisfied by the
optimal trajectory (x∗,λ∗,u∗).

x∗(t0) = x0, (initial value) (2.15a)
ẋ∗(t) = f(x∗(t),u∗(t)), t ∈ [0, T ], (ODE model) (2.15b)
λ̇∗(t) = −∇xH(x∗(t),λ∗(t),u∗(t)), t ∈ [0, T ], (adjoint equations) (2.15c)
u∗(t) = argmin

u
H(x∗(t),λ∗(t),u(t)), t ∈ [0, T ], (minimum principle) (2.15d)

λ∗(T ) = ∇xJ
c(x, T ) = ∇xΦ(x∗(T )) (adjoint final value) (2.15e)

The conditions in (2.15) relate to the PMP conditions and give the necessary conditions
for the optimal control problem. They can either be utilized to check if a trajectory is
optimal or more interestingly to find a local optimal solution with numerical optimization.
Because the conditions are necessary but not sufficient, the trajectory fulfilling the PMP
might not be the global optimum. When the problem formulation as given in (2.7) is
convex, the PMP conditions also provide a sufficient condition. Note that the result can
be interpreted as an ODE with the state vector x̃ = [x λ] whereby the initial state x∗0
and the finale costate λ∗(T ) are known. It is called a two point boundary value problem
(TPBVP). In Section 2.2.3, a solution approach to this conditions based on augmented
Lagrangian including inequality and equality constraints is presented.

Direct Methods

In contrast to the indirect methods, direct methods use the principle of "first discretize,
then optimize". Therefore, the continuous time optimal control problem is discretized
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resulting in a finite-dimensional nonlinear program. This can be solved online using ad-
vanced mathematical optimization toolboxes. This chapter shortly introduces possible
discretization and solution methods. For further information Diehl et al. [22] and Nocedal
[25] are recommended.

There are three main approaches to discretize the continuous time optimization problem
given in (2.7), namely single shooting, multiple shooting and the collocation methods [22].
Single shooting is a sequential approach which discretizes the whole prediction horizon
with respect to the input trajectory. This leads to an optimization problem having only
the inputs u as optimization variables. However, the optimization is very sensitive to dis-
turbances and not suited for unstable processes. Multiple shooting splits the prediction
horizon into subarcs and only discretizes over the subarcs. The continuity at the tran-
sition from one subarc to the next is ensured by additional equality constraints. When
multiple shooting is applied, all states x and inputs u are optimization variables but the
resulting optimization problem has sparse matrices which can be utilized by the underlying
optimization.

Two methods have proven to solve the resulting nonlinear optimization problem well.
Sequential Quadratic Programming (SQP) iteratively approximates a quadratic program
(QP) that can be efficiently solved by active-set or interior-point QP methods [6]. Nonlin-
ear interior-point methods approximate the inequality constraints by logarithmic penalty
terms. Since the logarithm converges against infinity at the border of the inequality con-
straint, the constraints are always met when the solution once lies inside the feasible
set [25]. A widespread software package for nonlinear interior point methods is IPOPT
(Interior Point OPTimizer)[26].

2.2.3 Gradient-Based Augmented Lagrangian

In the last section, three approaches which can solve the optimal control problem were
presented. The method chosen for the LLC is an indirect method, more specifically the
augmented Lagrangian method invented in the 1970s by Rockafellar, Bertsekas and others
[27, 28]. The core idea is to replace the constrained optimization problem by its uncon-
strained dual problem and solve the PMP as stated in (2.15).

In order to apply the augmented Lagrangian method, the toolbox GRAMPC is utilized
[21]. It can handle optimal control problems including parameter estimation, terminal
constraints, free end-time and differential-algebraic equations. For conciseness of this
chapter, only the functionalities required for the solution of the optimal control problem
as given in (2.7) are presented. The toolbox has proven to be real-time capable for many
state of the art problems and is suitable to be implemented on embedded devices [21].

In order to consider equality and inequality constraints in the optimal control problem,
the original optimization problem is replaced by its unconstrained dual problem [21, 25].

19



2 Fundamentals and State of the Art

This reformulation leads to a problem that is easier to solve [25, Chapter 12.9]. The
inequality constraints h in (2.7d) are transformed into equality constraints by means of
slack variables [27]. This inherently leads to additional optimization variables. However,
as derived by Bertsekas [27], the optimization with respect to the slack variables can be
solved analytically. Therefore, the extended equality constraints g̃ can be formulated as
given in (2.16). Ch is a diagonal matrix of the penalty parameters ch and µh is a vector
of multipliers of the Lagrangian as stated in (2.17b). The maximization function denotes
a component-wise operator.

g̃(x,u, t,µh, ch) =
[ g(x,u, t)

max
(
h(x,u, t),−C−1

h µh
) ] (2.16)

The augmented Lagrangian formulation adjoins the extended equality constraints in (2.16)
to the cost functional in (2.7a) as stated by (2.17a) by the augmented cost J̃ . The terminal
cost Φ is the same as in the original problem (2.7) because no terminal constraints are
present.

The augmented integral cost l̃ in (2.17b) comprises the Lagrangian and an "Augmentation"
term applied as a quadratic penalty function [25]. The quadratic penalty alone would need
to increase its penalty parameters c = [ch, cg] to infinity in order to converge against the
optimal trajectory (x∗,u∗) of the original problem. Consequently, the Lagrangian term
with the multipliers µ = [µh, µg] is added. It can be shown that this leads to a less
ill-conditioned problem [25].

J̃(x,u, t,µ, c) = Φ(x(T ),u(T ), T ) +
∫ T

t0
l̃(x(t),u(t), t)dt (2.17a)

l̃(x,u, t,µ, c) = l(x,u, t) + µT g̃(x,u, t,µh, ch)︸ ︷︷ ︸
Lagrangian

+ 1
2 ||g̃(x,u, t,µh, ch)||2c︸ ︷︷ ︸

”Augmentation”

(2.17b)

The augmented cost function J̃ allows to formulate the dual problem as stated in (2.18).
The dual problem is easier to solve than the original optimal control problem in (2.7). c
and µ.

max
µ̃,c̃

min
u

J̃(u, µ̄, c̄,x0) (2.18a)

s.t. ẋ(t) = f(x,u, t), (2.18b)
x(0) = x0, (2.18c)
u ∈

[
umin umax

]
(2.18d)

The problem formulation is solved by an alternating manner of inner minimization and
an outer maximization. The inner minimization is realized by a by a projected gradient
method with constant penalty parameters c̃ and multipliers µ̃. The outer maximization
is applied via a steepest descent update of the multipliers µ and a heuristic update of the
penalties c.
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Inner Minimization via Projected Gradient Method

The inner minimization solves the dual problem as stated in (2.18) with fixed penalty
parameters c and multipliers µ. Therefore, the algorithm iteratively searches for a solution
of the necessary conditions of optimality as stated by the PMP conditions in (2.15). It
is a steepest descent method that can consider the input box constraints in (2.18d) by
projecting them into the feasible region via clipping. Initialized with a first guess of the
input trajectory u0 and of the state trajectory x0, the projected gradient method iterates
to the optimal point by the following procedure whereby the current iteration is denoted
by j:

1. Backward integration of the costate λ: At first the trajectory of the costate is
backward integrated by (2.15e) and (2.15c). GRAMPC offers different integration
schemes. Euler, modified Euler and Heun are three integration schemes with fixed
step size. They are the easiest to calculate but might need a small step size for stiff
systems [29]. In addition to the fixed step size integration methods, a variable step
size 4th-Runge-Kutta integration method is offered leading to a higher robustness
but also increases the computational cost. Stiffness of a system is a guideline to
choose the adequate integration methods but it is often chosen empirically [29].

2. Calculate search direction dju: With the knowledge of an input trajectory uj, a
state trajectory xj and a costate trajectory λj, the minimization problem as given
in (2.15d) is solved. Firstly, the steepest descent search direction dju is calculated by
differentiating the Hamiltonian H with respect to u.

dju = dH(x,λ,u)
du (2.19)

3. Calculate step size α: Choosing the step size α is a relevant choice in order to
increase robustness and convergence speed of the algorithm. GRAMPC offers two
different methods to solve the line search problem in (2.20). The adaptive strategy
approximates the cost function by a polynomial of second order and finds the optimal
α of the approximated cost function. The disadvantage of this approach is that it
requires high computational cost. It can be reduced by choosing an explicit line
search strategy that gives the solution analytically [30].

min
α>0

J̃(uj − αdju; x0) (2.20)

Because the choice of the step size α is performed in all search directions simultane-
ously, the states x and inputs u should be of the same order of magnitude. Therefore,
the system needs to be scaled. GRAMPC offers an internal scaling procedure. How-
ever, it is recommended to scale the system beforehand in order to increase the
computational speed.
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4. Update input trajectory uj: Utilizing the gradient direction dju and the step size
α, the updated input trajectory uj can be calculated by (2.21). In order to consider
the box constraint on the inputs u, the inputs are clipped to their minimum and
maximum values respectively.

uj+1 =


uj − αdu, if uj+1 > umin ∧ uj+1 < umax
umax, else if uj+1 > umax
umin, else if uj+1 < umin

(2.21)

5. Update state trajectory xj: Subsequently, the state trajectory xj is forward
integrated according to (2.15a) and (2.15b). For the integration, the same approaches
as in step 1 can be utilized.

6. Convergence check: The inner minimization can stop due to two criterion. In
order to find the optimal point, a convergence check can be utilized by calculating
the relative gradients of the input trajectory uj. Alternatively, the loop is terminated
after a fixed number of iterations jmax.

Outer Maximization via Steepest Descent

When the inner minimization of the problem formulation as stated by (2.18) with fixed
penalties c and multipliers µ returns a solution, the outer maximization is applied. In
this step, the multipliers µ are updated by means of a steepest descent and the penalty
parameters c by a heuristic approach [25]. In (2.22), the multipliers µig and µih are updated
for a single equality constraint gi or inequality constraint hi at the current iteration step i.
The direction is the residual of the constraint gi or hi while the penalty parameter ci serves
as a step size parameter. The factor ρ is introduced in order to increase the robustness.
The update is skipped if the constraints gi or hi are satisfied within some limit εg or εh or
if the inner minimization did not converge. The convergence is checked by the maximum
relative gradient ηi which has to be lower than a threshold εrel,u. The multipliers µi of the
inactive inequality constraints hi are always updated.

µi+1
g =

{
µig + (1− ρ)ciggi(xi,ui), if |gi| > εg ∧ ηi ≤ εrel,u
µig, else (2.22a)

µi+1
h =

{
µih + (1− ρ)cihhi(xi,ui), if (|hi| > εh ∧ ηi ≤ εrel,u) ∨ hi < 0
µih, else (2.22b)

The penalty update is given by a heuristic approach as stated in (2.23). The penalties
cg and ch are increased by the factor βin if the inner minimization is converged and the
last iteration showed insufficient improvement which is quantified by the parameter γin.
The penalties are decreased by the factor βde if the inner minimization converged and
the last iteration had sufficient improvement which is quantified by the parameter γde. In
addition, the penalty parameters cig and cih are bounded by minimum cmin and maximum
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cmax values. Note that especially the cmin has a great influence on constraints violation
and convergence speed when only a few iterations are executed [21]. Therefore, cmin needs
to be tuned carefully for the LLC.

ci+1
g =


βinc

i
g, if (|gi| ≥ max{γin|gi−1|, εg}) ∧ ηi ≤ εrel,u

βdec
i
g, else if |gi| ≤ γdeεg

cig, else
(2.23a)

ci+1
h =


βinc

i
h, if |hi| ≥ max{γin|hi−1|, εh} ∧ ηi ≤ εrel,u

βdec
i
h, else if |hi| ≤ γdeεh

cih, else
(2.23b)

2.2.4 Model Predictive Control

Model predictive control (MPC) is a high control approach that has been used extensively
in the process engineering since the 1980s [6]. In recent years, increasing computational
capabilities led to the possibility of applying MPC also to processes with a short sampling
time. The basic idea is to iteratively solve the optimal control problem in every time step
and applying the first input to the system. This principle is called "receding horizon".
Consequently, the controller can react to disturbances and modeling errors. Due to the
following reasons, MPC became the most popular high control approach [31].

• Explicit compliance with constraints: In nearly all processes some limitations
which can either be on inputs, states or outputs of the system are present. In conven-
tional control approaches, those limitations are considered by either a conservative
tuning of control parameters or by anti-windup techniques. Note that those strate-
gies can lead to instabilities. Therefore, the explicit consideration of constraints by
the MPC is favorable.

• Inherent decoupling: If the process model is a multiple-input multiple-output
(MIMO) system, the MPC leads to an inherent decoupling of the inputs and outputs.
In classical control approaches, so called decoupling controllers need to be designed in
order to transform the MIMO system into single-input single-output (SISO) systems.

• Reference and disturbance prediction: MPCs can consider predictions of ref-
erence and disturbance trajectories. Therefore, the controller can act upon changes
rather then reacting on the control error.

• Optimal behavior: In comparison to classical control approaches where the control
parameters are tuned until a desired behavior is achieved, the MPC behaves optimal
with respect to a user chosen objective function which is more intuitive for a non-
technical person. The objective function does not necessarily describe a reference
tracking but it can also describe a cost minimization in terms of hydrogen consump-
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tion, profit maximization or others. This kind of MPCs are also called economic
MPC [32].

In Figure 2.7, the moving horizon principle of an MPC is presented. In the illustration, the
control objective is that the system output yk(·) follows the reference rk(·) by manipulating
the input uk(·) minimizing the quadratic error. The more general problem formulation in
(2.7) with an arbitrary cost function works the same way but it is less intuitive to illustrate.
Compared to the last section, the nomenclature changed to discrete time. The index k
refers to the current time step at which the MPC is executed. The prediction horizon
NP describes the length for which the cost function is optimized. The control horizon NC
gives the number of time steps until the MPC can influence the input. This gives the
degree of freedom of the controller. In many applications, the control horizon NC equals
the prediction horizon NP leading to the maximal degree of freedom for the controller.

FuturePast

Control horizon

Prediction horizon
k k + 1 k + NC k + NP

umax

uk(·)

yk(·)
rk(·)

Fig. 2.7: Principle of model predictive control [31].

Because the sample time ∆t might be short, it can be difficult to solve the optimization
problem within the sampling time especially for nonlinear problems. However, one advan-
tage of choosing a short sample time is that the solution of the optimization problems often
do not differ much from one time step to the next. Therefore, the solution of the last time
step is shifted by one time step in the next iteration and utilized as the initial guess for
the next optimization. This is called a warm-start strategy and is commonly applied [22].
Additionally, the optimization problem is often not solved until full convergence but only
for a fixed number of iterations. It is assumed that the optimization problem converges
over time. This is called a real-time iteration scheme. A disadvantage is the difficult proof
of stability [22].

The MPC needs full knowledge of all states x at time k. In practice however, not all states
are measurable or it is economically not reasonable to do so. Therefore, state estimators
need to be applied. For nonlinear systems, the extended Kalman filter and the unscented
Kalman filter are popular approaches [6].

An internal controller model is used to predict the future behavior of the process. In
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practice this cannot be done arbitrarily accurate and modeling errors are always present.
It can be shown that this inherently leads to offset errors in the reference tracking for an
MPC [31]. In classical control approaches, integral behavior is utilized to prevent offset
errors. In the MPC, so called disturbance observers are applied. A simple approach is the
dynamic matrix control (DMC) where the disturbance is estimated by the offset of the
measured and the estimated output.

d(k) = ym(k)− ŷ(k) (2.24)

ym(k) described the measurement of the outputs and ŷ(k) is the estimate of the prediction
model calculated at time k − 1. The offset is assumed to be constant for the prediction
horizon and added to the reference trajectory rk(·). It can be shown that in many cases
this leads to an offset-free tracking [6].

2.3 Literature Review on Methods for the Power
Management

A hierarchical control structure for a fuel cell hybrid vehicle is presented in Figure 2.8.
The driver requests a certain power demand Pdem at the DC bus. The high-level control
(HLC) optimizes the power split between the battery and the fuel cell system and passes
the corresponding reference values Pbat,bus,ref and Pfcs,bus,ref to the LLC. The LLC regulates
the fuel cell system and the battery by the input variables u. Based on the outputs y from
the vehicle, the state estimator predicts the states x̂h for the HLC and the states x̂l for
LLC . As the state estimator is not part of this thesis, perfect state knowledge is assumed.
Instead, the focus lies on the control design of the LLC as well as of the HLC. Current
approaches to design those controllers are introduced in this section. In Section 2.3.1,
current approaches for the LLC control are presented, followed by Section 2.3.2, where
HLC methods to find the optimal power split between the fuel cell system and the battery
are shown.

Driver HLC LLC FCHV

State Estimator

Pdem Pfcs,bus,ref

Pbat,bus,ref

u y

x̂lx̂h

Focus of this thesis

Fig. 2.8: Overview of the hierarchical control structure [33].
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2.3.1 Review on Low-Level Control

The LLC is responsible for the control of the fuel cell system and the battery. Controlling
the fuel cell system includes the peripheral components in Figure 2.3. While the heat man-
agement and hydrogen supply can be considered separately from the power management,
the air supply has to be taken into account cohesively [34–36].

The compressor and back pressure valve are the actuators of the air supply system leading
to two additional degrees of freedom that can be exploited to find an optimal operating
point of the air supply. In [9, 37–39], the oxygen excess ratio λO2 is considered as a
performance indicator for energy efficiency. However, this only exploits one degree of
freedom. When compressor and back pressure valve are both considered, the air mass flow
rate ṁcr and the pressure ratio Π can be regulated independently. In [40, 41], the optimal
operating point of the air supply is chosen not only regarding energy efficiency but also
regarding air humidification, transient operation and other performance indicators.

The air supply of the fuel cell system is a coupled MIMO system by itself when the ṁcr
and Π are regulated. In order to quantify the coupling of the air supply, Zhao et al. [35]
apply the relative gain array (RGA) as a coupling indicator for different operating points
in the compressor map. The chosen system in this thesis is also analyzed with the RGA
in Appendix A.3 indicating a strong coupling.

Subsequently, different control schemes that control the battery and fuel cell system power
as well as the air supply are introduced. They are distinguished by their control objec-
tives.

• Air mass flow rate tracking: When the air mass flow rate is tracked in terms of the
oxygen excess ratio λO2 , the compressor is the only actuator of the air supply and the
stack current is handled as a system disturbance [9, 38, 39, 42–44]. Approaching the
strong nonlinearity of the compressor, a dynamic feedforward controller consisting
of a feedforward map to handle the nonlinearity and of a dynamic feedback control
to handle the model mismatches is proposed [9]. Apart from that, a sliding mode
controller is used in [42]. Furthermore, nonlinear and explicit MPC methods are
employed in order to take predictive information and explicit constraints compliance
into account [38, 39, 43, 44].

• Pressure and air mass flow rate tracking: Control strategies to decouple air
mass flow rate and pressure are employed in [35, 45]. Meshed PI-Controller have
been used with an additional reference limiter for surge prevention[35]. In [45], an
linear quadratic regulator (LQR) method is used to control air mass flow rate and
pressure independently. The stack current is handled as a disturbance for both cases.

• Fuel cell system power and air mass flow rate tracking: In [9], an LQR
control is proposed to handle the coupling of the power control and the air supply.
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The performance indicator of the controller is again the oxygen excess ratio and no
pressure regulation is applied.

• Fuel cell system power, pressure and air mass flow tracking: A hierarchical
nonlinear MPC control is proposed for the fuel cell system power and air supply
control [46]. While the high-level takes over the power control and determines the
optimal operating point of the air supply, the low-level regulates the optimal oper-
ating point. The high-level must explicitly constrain the fuel cell dynamics because
it cannot inherently comply with the air supply constraints due to the controller
distribution.

• Dynamic power split control: In [47], an MPC is employed in order to dynam-
ically relieve the load on the fuel cell system by utilizing the battery for transient
operation. This way the dynamic power delivery can be increased. In [48], an LQR is
proposed to optimally distributing the power demand at transient operation avoiding
fuel cell starvation.

To the authors best knowledge, there is not yet a centralized control method that combines
all of the above mentioned control objectives.

2.3.2 Review on High-Level Control

The static power split between the fuel cell system and the battery is a well studied problem
in literature [36]. Most approaches rely on the assumption that the whole driving cycle is
perfectly known a-priori. This is not valid for real-world applications. Nevertheless, these
theoretical approaches give a lot of insights into the problem. In (2.25), the optimization
problem for a driving cycle from t0 until T is given. The goal is to minimize the hydrogen
consumption of the fuel cell system ṁH2 in (2.25a) and to achieve a final SOC of the
battery that equals the initial SOC by (2.25c). For the whole driving cycle, the demanded
power at the DC bus has to be delivered by the summation of the fuel cell system and
the battery power by (2.25d). Additionally, the minimum and maximum power for Pbat,bus
and Pfcs,bus have to be considered by (2.25f) and (2.25g).

min
u

J =
∫ T

t0
ṁH2dt (2.25a)

s.t. ˙SOC = f(SOC, Pbat,bus) (2.25b)
SOC(t0) = SOC(T ) (2.25c)
Pdem = Pfcs,bus + Pbat,bus (2.25d)
SOCmin < SOC < SOCmax (2.25e)
Pfcs,bus,min < Pfcs,bus < Pfcs,bus,max (2.25f)
Pbat,bus,min < Pbat,bus < Pbat,bus,max (2.25g)
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With a-priori knowledge of the driving cycle, the power split can be calculated globally
optimally using DP under the assumption that the grid discretization is chosen dense
enough. This has been studied by Odeim [49], Bertsekas [23] and Kim et al. [5]. The
solution of the dynamic programming can be used as a reference in order to validate
real-world applicable methods.

Likewise, the optimization problem can also be solved by deriving the PMP for the given
problem. The costate λ serves as a time dependent weighting factor between the battery
power Pbat,bus and Pfcs,bus. Even though the PMP only provides necessary conditions for
optimality, it is shown by Kim et al. [5] that solving the PMP leads to similar results as
the DP approach and that it can be calculated faster. It has also been shown that the
costate λ does not vary a lot over a driving cycle and that a constant λ can also reach
nearly optimal results. One disadvantage is that λ strongly depends on the driving cycle
and that it is not continuous when the battery SOC threshold is reached [49].

Real-world applicable methods are found on rule-based approaches, equivalent consump-
tion minimization strategy (ECMS) or model predictive control (MPC). Those approaches
can only achieve almost optimal solutions but they do not need to know the whole driving
cycle a-priori.

Rule-based approaches such as fuzzy logic control utilize "if-then rules" [50, 51]. The power
split decision is based on the current battery SOC and on the demanded power Pdem. Rule-
based approaches can reach nearly optimal results on trained driving cycles but they might
perform worse on arbitrary driving cycles.

The equivalent consumption minimization strategy (ECMS) is an optimal control approach
that weights the battery power Pbat,bus and the hydrogen consumption ṁH2 in the cost
function given by (2.26) where s is the weighting factor [50–53]. The objective function
can be interpreted similarly to the PMP approach whereby the weighting factor s mimics
the costate λ. A robust adaption of the optimal costate λ by the weighting factor s is
extensively studied in literature.

min ṁH2 + s · Pbat (2.26)

Apart from that, the optimal power split can be calculated by MPC [11, 54, 55]. In this
case, the goal is to solve the optimization problem in (2.25) over a finite prediction horizon
TP instead of the whole driving cycle. The final state constraint (2.25c) is reformulated as a
final cost function. Otherwise, the solution might become infeasible for a short prediction
horizon TP. The constraint (2.25d) can also be handled as a quadratic reference cost
function instead of an equality constraint.
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In this chapter, the controller model is presented. There are many ways to derive the
controller model. Black box modeling techniques such as Volterra Series Models or Neural
Networks are predominantly used [35, 38, 56]. The controller model used in this thesis
is based on a gray model that captures the main physical relationships but also utilizes
parameter estimation (e.g. compressor map). In Section 3.1, the electrochemistry of the
fuel cell is presented as a static model. In Section 3.2, the air supply of the fuel cell system
is derived. Subsequently, the battery model is explained in Section 3.3 followed by the
introduction of the DC/DC converter models in Section 3.4.

3.1 Fuel Cell Electrochemistry Model

The performance of an elementary fuel cell is described by the polarization curve in Fig-
ure 3.1. It is presented by the cell voltage Ufc (in blue) for a given current density ifc which
corresponds to the stack current Ist normalized by the electrolyte area Acell as given in
(3.1). This makes the performance of a fuel cell comparable with different fuel cell sizes.

ifc = Ist
Acell

(3.1)

The produced fuel cell stack power Pst (in red) as given in (3.2) depends on the current
density iFC . The maximum power is reached for current densities ifc between 1400 mA

cm2 and
1600 mA

cm2 . The cell voltage Ufc and the stack power Pst depend on the cathode pressure
which is displayed by the dotted lines. An increase in pressure leads to a higher stack
power Pst for the same ifc. Taking into account that the hydrogen consumption ṁH2 is
proportional to the current density ifc, it may lead to the assumption that increasing the
pressure leads to higher efficiency of the fuel cell system. This is correct for the stack
power Pst but not for the overall fuel cell system power Pfcs,net which takes into account
the power consumption of the peripheral components. The fuel cell system power Pfcs,net
is defined by (3.3). It consists of the produced stack power Pst minus the electrical power
consumption of the compressor motor Pcm minus a constant auxiliary power Paux that
summarizes the consumption of all other peripherals [9].

Pst = nfc,cellUfcidenAcell (3.2)
Pfcs,net = Pst − Pcm − Paux (3.3)

The cell voltage Ufc can be described as follows [4]:

Ufc = Erev −∆Uact −∆Uohm −∆Uconc (3.4)
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Fig. 3.1: Polarization curve of an elementary fuel cell and resulting stack power.

The reversible voltage Erev stands for the voltage at which the process would be idea. In
this case, the fuel cell would deliver a constant voltage, regardless of how much current
Ist is drawn. However, there is a voltage drop caused by different phenomena. These
losses are presented by the overvoltages ∆Uact, ∆Uohm and ∆Uconc and correspond to the
activation, ohmic as well as concentration losses in Figure 3.1. Subsequently, these losses
will be presented in-depth.

The model of the elementary fuel cell is adopted from previous work and is fitted to the
Heliocentris Hybrid Energy Lab-System located at the Institute of Automatic Control,
RWTH Aachen University [7, 57]. The parameters for the electrochemical model and the
fuel cell stack are given in Appendix A.1.

Reversible Voltage

The reversible voltage Erev in (3.5) is a theoretical value that describes the voltage at
which the process would be reversible.

Erev = E0
rev − kt

(
Tst − T 0

)
+ RuTst

2F · ln
(
pH2 ·

√
pO2

)
(3.5)

E0
rev describes the reversible voltage at nominal conditions (T 0, p0), F depicts the Faraday

constant, kt expresses the temperature coefficient and Tst is the stack temperature. Ru
describes the universal gas constant, pH2 is the partial pressure of hydrogen at the anode
and pO2 is the partial pressure of oxygen at the cathode. The first term of (3.5) describes
the reversible voltage under nominal conditions, the second term depicts the influence of
deviation in the stack temperature Tst from the nominal conditions and the third term
expresses the influence of deviation in partial oxygen pO2 and hydrogen pH2 pressure by
the Nernst equation [4].
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3.1 Fuel Cell Electrochemistry Model

The control of the fuel cell system is designed in such a way that the partial pressure of
hydrogen pH2 at the anode is following the cathode pressure pcat in order to minimize the
pressure drop across the membrane. The partial pressure of oxygen pO2 depends on the
cathode pressure pcat and on the oxygen excess ratio λO2 . Consequently, the reversible
voltage Erev and the stack power Pst can be influenced by regulating the cathode pressure
pcat and oxygen excess ratio λO2 .

Erev = E0
rev − kt

(
Tst − T 0

)
+ RuTst

2F · ln
(
pcat ·

√
f(pcat, λO2)

)
(3.6)

Activation Loss due to Electrochemical Reaction

The activation loss ∆Uact is caused by the inertia of the reactions taking place on the
surface of the electrodes. A part of the voltage is lost by the chemical reaction that
transfers the electrons to or from the electrodes. The activation loss leads to a rapid
decrease in the cell voltage Ufc for low current densities ifc (compare Figure 3.1) [4].

Amphlett et al. [58] describe a function for the activation loss that depends on partial pres-
sures of oxygen pO2 and hydrogen pH2 as well as the stack current Ist and stack temperature
Tst in (3.7). The parameters ξi are based on physical characteristics.

∆Uact = − [ξ1 + ξ2,varTst + ξ3Tst [ln (cO2)] + ξ4Tst ln(Ist)] (3.7)

The concentration of oxygen cO2 and hydrogen cH2 at the membrane can be found in (3.8)
and (3.9) and the parameter ξ2,var in (3.10).

cO2 = pO2 · 1.97 · 10−7 · exp
(498
Tst

)
(3.8)

cH2 = pH2 · 9.174 · 10−7 · exp
(−77
Tst

)
(3.9)

ξ2,var = ξ2a + ξ2b ln (Acell) + ξ2c ln (cH2) (3.10)

As for the reversible voltage Erev, the partial pressures of oxygen pO2 and hydrogen pH2

also have an influence on the activation loss ∆Uact. Therefore, increasing cathode pressure
pcat and oxygen excess ratio λO2 lead to a reduced activation loss ∆Uact.

Ohmic Loss due to Ionic and Electronic Conduction

The ohmic loss ∆Uohm is nearly proportional to the stack current Ist and describes the
resistance of the flow of electrons through the material of the electrodes, the electrolyte
and various interconnections [4].

Dirkes describes the ohmic losses based on the empirical formula in (3.11) which is de-
pendent on the stack temperature Tst and the stack current Ist. Additionally, the formula
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is determined by the water content in the membrane λM , the thickness of the membrane
δM and the surface area of the electrolyte Acell. The ohmic losses dominate the influence
on the cell voltage Ufc for medial stack current Ist (compare Figure 3.1). λM is constant
because an ideal humidification is assumed. [7]

∆Uohm =
181.6

[
1 + 0.03

(
Ist
Acell

)
+ 0.062

(
Tst
303

)2 ·
(
Ist
Acell

)2.5
]
· δM(

λM − 0.634− 3
(
Ist
Acell

))
· exp

(
4.18

(
Tst−303
Tst

))
· Acell

· Ist (3.11)

Concentration Loss due to Mass Transport

The concentration loss results from the changes in concentration of the reactants at the
surface of the electrodes as the fuel is used. The loss is caused by a failure to transport
sufficient reactant to the electrode surface and is therefore also called mass transport loss
[4].

The concentration loss is given in (3.12) as an empirical description parameterized by the
m and n. Despite the fact that the formula has no physical meaning, it gives a good fit to
the results [4]. The concentration loss dominates the behavior of high current densities ifc
and it exponentially depends on the stack current Ist.

∆Uconc = mcon · exp (nconc · Ist) (3.12)

3.2 Air Supply Model

In this section, the prediction model of the air supply is presented. Compared to the plant
which is based on Pukrushpan et al. [9] several simplification are introduced. The following
general assumptions are made for the prediction model:

• The cooler and humidifier are neglected (compare Figure 2.3).

• The inlet air of the compressor is at nominal conditions (Tcp,in = T 0 and pcp,in = p0).

• The relative air humidity is neglected.

An overview of the air supply model is shown in Figure 3.2. The blue arrows represent the
air mass flow rates ṁ, the red labels define the states of the fuel cell system xfcs and the
green labels are input variables u. The model comprises two actuators (compressor and
back pressure valve). Additionally, three manifolds, which lump together volumes, pipes
and other components, represent the fluid mechanics of the system. The parameters of
the air supply model are listed in Table A.3. If not other stated, the derivation depends
on Larminie et al. [4] and Pukrushpan et al. [9].
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ṁcp ṁcat,in

ṁcat,outṁom
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Fig. 3.2: Air supply model including manifolds, compressor and back pressure valve [59].

Compressor Model

In Figure 3.3, a dynamic model of the compressor is given. Inputs to the system are the
motor voltage of the compressor Ucm and the pressure ratio across the compressor Π. Since
the inlet pressure pcp,in and temperature Tcp,in are at nominal conditions, the pressure ratio
Π is proportional to the pressure of the inlet manifold pim.

Π = pim
p0 (3.13)

The motor Ucm is the input variable of the compressor motor and manipulates the ro-
tational speed ωcp. The equation for the change in rotational speed as given in (3.14)
depends on the inertia of the motor Jcm and the difference between the produced motor
torque τcp and the required mechanical torque τcm.

dωcp

dt
= 1
Jcm

(τcm − τcp) (3.14)

The generated motor torque τcm is derived by a simplified model of an electrical motor
[60]. It is proportional to the motor current Icm. Dynamics of the electrical subsystem as
well as brush losses and mechanical friction are neglected. Instead, the generated motor
torque is multiplied by an overall motor efficiency ηcm. Rcm denotes the motor resistance
and kT the motor torque constant.

τcm = kTηcmIcm = kTηcm
Ucm − kTωcp

Rcm
(3.15)
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The compressor torque τcp and output temperature Tcp,out in Figure 3.3 are calculated
from the compressor air mass flow rate ṁcp and the pressure ratio Π as given in (3.16) and
(3.17). Derivations of the thermodynamic equations can be found in [4] whereat γ is the
ratio of specific heats of air and cp is the specific heat capacity of air.

Tcp,out = T 0

1 + Π
γ−1
γ − 1

ηcp (Π, ṁcp)

 (3.16)

τcp =
cp

(
Π

γ−1
γ − 1

)
ωcpηcp (Π, ṁcp) (3.17)
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Fig. 3.3: Block diagram of compressor model.

The compressor map (introduced in Figure 2.4) is used to find the corrected air mass
flow rate ṁcr based on the pressure ratio Π and the rotational speed ωcp. Under nominal
conditions, the corrected air mass flow rate ṁcr is proportional to the compressor air mass
flow rate ṁcp as given in (2.5). In Pukrushpan et al. [9], the map is estimated on the basis
of experimental data with the Jensen & Kristensen method [61]. Because the equations
resulting from this method are complex, it increases the computational cost of the MPC.
Thus, a polynomial approximation of second order in the pressure ratio Π and of third
order in the rotational speed ωcp is taken:

ṁcr = f(ωcp,Π) ≈
3∑
i=1

2∑
j=1

aij · ωicp · Πj (3.18)
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3.2 Air Supply Model

The parameters aij are fitted by least square with the Curve Fitting Toolbox in
MATLAB R©. The estimation error of the corrected air mass flow rate ṁcp is presented
in Figure 3.4a. In most cases, the estimation error lies below 0.5 %. Only at the choke
boundary for high air mass flow rates ṁcr and at the surge boundary for medium high air
mass flow rates ṁcr, the estimation error is up to 1.5 %.
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(a) Estimation error of the corrected air mass flow
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(b) Estimation error of the compressor efficiency.

Fig. 3.4

The compressor efficiency ηcp (Π, ṁcp) is described by a lookup table, which is determined
experimentally. For the controller design, the lookup table is approximated by a polynomial
of order 2 in the pressure ratio Π and corrected air mass flow rate ṁcr. Because the
equations (3.16) and (3.17) have the compressor efficiency ηcp in the denominator, the
inverse of ηcp is approximated:

1
ηcp

= f(ṁcr,Π) ≈
2∑
i=1

2∑
j=1

bij · ṁi
cr · Πj (3.19)

The parameters bij are also fitted by least squares with the Curve Fitting Toolbox in
MATLAB R©. In Figure 3.4b, the estimation error between the lookup table containing 212
data points with linear interpolation and the polynomial approximation is given. In most
cases, the error lies below 2 %. However, at the choke boundary for medium mass flow
rates, the error has its peak above 3 %. It should be considered that the given look-up
table is not dense and is based on experimental data. Therefore, the approximation gives
reasonable results.

The surge and choke boundaries are approximated according to the estimated compressor
map by Pukrushpan [9]. While the choke boundary can be approximated by a line equation
as given in (3.20), the surge boundary gives a better fit if it is approximated by a quadratic
polynomial as given in (3.21).

Π = 13.125ṁcr + 0.82 (choke boundary) (3.20)
Π = 278.69ṁ2

cr + 17.88ṁcp + 0.79 (surge boundary) (3.21)
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The electrical compressor power consumption Pcm is defined by (3.22) and depends on the
motor voltage Ucm and the rotational speed ωcp.

Pcm = Ucm · Icm = Ucm

Rcm
(Ucm − kTωcp) (3.22)

Manifold Models

The air supply path can be divided into the inlet manifold, the cathode manifold and the
outlet manifold (compare Figure 3.2). All the manifolds follow the same principles given
by (3.23),(3.24) and (3.25). They are explained first using generalized variables and are
subsequently applied to the three manifolds introducing different simplifications.

The mass conservation principle is given in (3.23). dm
dt

is the change of mass in the consid-
ered volume, while ṁin is the air mass flow rate into and ṁout the air mass flow rate out
of the considered volume.

dm

dt
= ṁin − ṁout (3.23)

The pressure change dp
dt

can be derived from the ideal gas law, energy conservation and
thermodynamic air properties (3.24). Ma is the molar mass of air, V is the manifold
volume, Tin is the inlet air temperature and T is the temperature inside the manifold.

dp

dt
= γRu

MaV
(ṁinTin − ṁoutT ) (3.24)

The air mass flow rate ṁ between two manifolds and at the outlet of the fuel cell is
determined by the nonlinear nozzle equation (3.25) whereby (3.25a) gives the air mass
flow rate ṁ below and (3.25b) the choked air mass flow rate ṁchoked above the critical
pressure ratio [9]. A sketch of a nozzle with the corresponding parameters can be found
in Figure 3.5a. CD is the discharge coefficient, At,eff is the effective opening area, p1 and
T1 are the upstream pressure and temperature whereas p2 is the downstream pressure.
The critical pressure ratio p2

p1
for air is at 0.528 and describes the point at which the air

mass flow rate ṁ reaches sonic speed. In Figure 3.5b, the resulting air mass flow rate ṁ
normalized by the choked flow rate ṁchoked is presented. As the pressure ratio p2

p1
increases,

the air mass flow rate ṁ increases until the choked air mass flow rate ṁchoked is reached.

ṁ = CdAt,effp1√
RuT1

(
p2

p1

) 1
γ

√√√√√ 2γ
γ − 1

1−
(
p2

p1

) γ−1
γ

 for p2

p1
≥
(

2
γ + 1

) γ
γ−1

(3.25a)

ṁchoked = CDAt,effp1√
RuT1

√
γ

(
2

γ + 1

) γ+1
2(γ−1)

for p2

p1
≤
(

2
γ + 1

) γ
γ−1

(3.25b)

36



3.2 Air Supply Model

p2

p1

T1

At,eff
ṁ
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Fig. 3.5: Illustration of the nonlinear nozzle equation.

The Inlet Manifold (IM) represents the lumped volume of the pipes and components
between the compressor and the fuel cell stack. The inlet air is coming from the compressor.
Hence, the temperature Tcp,out differs considerably from the air temperature inside the
manifold Tim which is given by (3.26).

Tim = MapimVim
mimRu

(3.26)

The differential equations of the two states mim and pim (compare Figure 3.2) can be
described based on (3.23) and (3.24) by (3.27) and (3.28).

dmim

dt
= ṁcp − ṁcat,in (3.27)

dpim
dt

= Ruγ

VimMa
(ṁcpTcp − ṁinTim) (3.28)

The flow into the cathode ṁin is derived from the nozzle equation (3.25). Because the
pressure drop from the inlet manifold to the cathode manifold is small, the nonlinear
equation can be linearized by (3.29). kcat,in is the linearized flow constant.

ṁin = kcat,in (pim − pcat) (3.29)

The Cathode Manifold (Cat) represents the lumped volume of the air path through
the fuel cell stack. Before the air mass flow rate ṁcat,in enters the cathode manifold, it is
cooled down to the stack temperature Tst by an isobaric air cooler (compare Figure 2.3)
leading to an isothermic relation. Consequently, the differential equation of the cathode
pressure pcat is described by (3.30).

dpcat
dt

= RuTst
MaVcat

(ṁcat,in − ṁreact − ṁcat,out) (3.30)

According to the electrochemical equations (3.5) and (3.7), the partial pressure of oxygen
pO2 needs to be known for the prediction model of the controller. Thus, pO2 is introduced
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as an additional state. The differential equation as given in (3.31) can be derived from
(3.24) whereby ṅ describes the oxygen molar flow rate.

dpO2

dt
= RuTst

Vcat
(ṅcat,in − ṅreact − ṅcat,out) (3.31)

ṅcat,in is the oxygen molar flow rate into the cathode manifold and is described by (3.32).
It is assumed that the mole fraction of oxygen in the inlet air XO2,in is 21 %.

ṅcat,in = XO2,inṁcat,in

Ma
(3.32)

The oxygen molar flow rate ṅreact reacts at the electrode in the reduction process to water
and is described by (3.33). The amount is proportional to the stack current Ist by the
motor torque constant kT. MO is the molar mass of oxygen. nfc,cell is the number of cells
of the fuel cell stack and F is the Faraday constant.

ṁreact = 2MOṅreact = 2MOnfc,cellIst
4F (3.33)

ṅcat,out is the oxygen molar flow rate out of the cathode. Since part of the oxygen reacted,
the partial fraction of oxygen at the outlet XO2,out is lower as given in (3.34). ṅcat,out is
determined analog to the inlet oxygen molar flow rate ṅcat,in by (3.35).

XO2,out = pO2

pcat
(3.34)

ṅcat,out = XO2,outṁcat,out

Ma
(3.35)

(3.36)

The outlet air mass flow rate of the cathode ṁout as given in (3.37) is derived from the
linearized nozzle equation in (3.29). kcat,out is the linearized flow constant at the cathode
output.

ṁcat,out = kcat,out (pcat − pom) (3.37)

The Outlet Manifold (OM) lumps together all volumes between the fuel cell stack and
the back pressure valve. The temperature in the outlet manifold is similar to the stack
temperature Tst. Therefore, the differential equation of the pressure in the outlet manifold
pom can be described as follows.

dpom
dt

= RaTst
Vom

(ṁout − ṁom) (3.38)

The outlet manifold pressure pom can be much higher than the nominal pressure p0 behind
the outlet of the manifold. Thus, a linearization of the nozzle equation (3.25) is not
sufficiently accurate. A back pressure valve is installed at the outlet. The valve can adjust
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the effective opening area At,eff of the outlet nozzle by (3.39) whereby At is the maximum
opening area and hom is the valve opening position.

At,eff = Athom (3.39)

According to the nozzle equation in (3.25), the critical pressure in the outlet manifold pom
is at 1.92 bar. It is assumed that the pressure in the outlet manifold stays below or close to
that pressure during operation. Thus, the air mass flow rate ṁom is described by (3.25a)
and (3.39).

3.3 Battery Model

A battery can be modeled at different levels of complexity. J. Badeda et al. [62] gives an
overview of possible modeling techniques. Within the scope of this thesis, it is adequate to
describe the battery on the macro level which presents the voltage-current behavior and
the change of the SOC. The model of choice for this thesis is the Shepherd model [62, 63].
The following assumptions are made:

• The battery model does not depend on the temperature.

• The battery has no memory effect or self-discharge.

• The only considered dynamic of the battery is the SOC.

• The discharge behavior equals the charge behavior.

The equivalent circuit diagram of an elementary cell is presented in Figure 3.6. It consists
of an internal resistance Ri with the voltage drop UR and a voltage source describing the
open circuit voltage (OCV) Uocv. The battery current IBat is the actuating variable of the
battery ubat and SOC is the battery state xbat.

Ri

UR

Uocv(SOC)

Ibat

Ubat

System state xbat Input variable ubat

Fig. 3.6: Equivalent circuit diagram of the battery model [33].
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The battery voltage Ubat is described by (3.40). The OCV Uocv is separated into three
parts by (3.41). E0 is the constant potential, Upol is the polarization voltage and Uexp is
the exponential voltage. K is the polarization voltage constant, Q is the battery capacity,
A is the exponential zone amplitude and B is the inverse of the exponential zone time
constant.

Ubat = Uocv −RiIBat︸ ︷︷ ︸
UR

(3.40)

Uocv = E0 −
K

SOC︸ ︷︷ ︸
Upol

+A · exp (−Q · SOC ·B)︸ ︷︷ ︸
Uexp

(3.41)

The dependency of the OCV on the SOC is presented in Figure 3.7. For reasons of battery
lifetime, the SOC range of a battery is usually limited to SOCmin and SOCmax. In this
thesis, the valid battery SOC ranges between 40 % and 80 %.
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Fig. 3.7: Open circuit voltage of the battery in dependence of the battery SOC.

The chosen vehicle configuration utilizes a nickel metal hydride battery (NiMH) with a
storage capacity of 6.5 A h. The parameters, which are determined experimentally, are
taken from O. Tremblay et al. [62] and can be found in Table A.1.

The current IBat and battery power Pbat are defined as positive for discharging and negative
for charging corresponding to Figure 3.6. The net power of the battery at the output
terminal of the battery Pbat,net is defined by (3.42). The elementary cells are connected in
series of npacks packs each consisting of nbat,cell cells.

Pbat,net = npacksnbat,cellUBatIbat = npacksnbat,cell (Uocv − UR) Ibat (3.42)

The battery power Pbat that is stored or drawn from the battery as given in (3.43) depends
on the net power of the battery Pbat,net and the internal power loss Pbat,loss across the
internal resistance Ri.

Pbat = npacksnbat,cellUocvIbat = Pbat,net + URIbat︸ ︷︷ ︸
Pbat,loss

(3.43)
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3.4 DC/DC Converter Model

The differential equation of the SOC can either be described dependently on the battery
current Ibat or on the net power Pbat,net [55].

dSOC
dt

= −IBat
Q

= − 1
2RiQ

√
U2
ocv −

4RiPbat,net

npacksnbat,cell
(3.44)

3.4 DC/DC Converter Model

The DC/DC converters are described by lookup tables on the power level in the plant
model. The data is based on measurements from Füting [64]. The curve is approximated
with a polynomial of second order as given in (3.45). The curve is described by relative
power values which is the actual power divided by its expected maximum value. Prel,bus is
the relative power at the output of the DC-DC converters. Prel,net is related to the battery
output power Pbat,net or fuel cell system output power Pfcs respectively. The resulting
converter efficiency ηDC defined by (3.46) is presented in Figure 3.8. For lower power
values, the approximation is not accurate. The reason is that the origin is included as an
additional measured data point to decrease the offset for zero power. Since the power values
are low for the inaccurate estimation part, the absolute estimation error is sufficiently
low.

Prel,bus =
2∑
i=1

aiP
i
rel,net (3.45)

ηDC = Prel,bus

Prel,net
(3.46)
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Fig. 3.8: Estimated efficiency curve of the DC/DC converter.

Since the battery has a bidirectional power flow, the DC-DC converter needs to be bidi-
rectional as well. Therefore, the polynomial in (3.45) is utilized for both directions leading
to a non-smooth transition in zero. The two polynomials are faded over by a sigmoid
function in (3.47). The steepness factor s determines the duration of the fade-over. With
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increasing steepness, the approximation error Prel,err decreases as illustrated by Figure 3.9.
If the steepness factor s is too high, the optimization problem has large gradients around
zero. Thus, a trade-off has to be made. Good results can be achieved for s = 100 which
leads to a maximum error below 0.05 % compared to the polynomial approximation.

Prel,bus =
P+
rel,bus

1 + exp (−sPrel,net)
− P−rel,bus

1 + exp (sPrel,net)
(3.47)
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Fig. 3.9: Estimation error dependent on the steepness s of the battery DC/DC converter.
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4 Hierarchical Control Design

In this chapter, the hierarchical control design for the power management of the FCHV is
presented. In Section 4.1, an overview of the control structure is given summarizing the
goals of each control level. In Section 4.2, the control design of the low-level control (LLC)
is explained. In order to ensure an efficient operation of the fuel cell system, the optimal
operating point is determined by an intermediate-level control (ILC) which is described
in Section 4.3. Subsequently, the high-level control (HLC) determining the optimal power
split between the fuel cell system and the battery is presented in Section 4.4.

4.1 Overview of Hierarchical Control Structure

The power management of the FCHV has to meet the following central objectives:

1. Dynamic power delivery: The delivered power Pdel should follow the demanded
power Pdem with minimal lag and delay.

2. Hydrogen consumption minimization: In automotive applications, hydrogen
consumption minimization is equivalent to overall efficiency maximization. There-
fore, the components should work in efficient operating ranges.

3. Charge sustainability: The battery SOC at the end of a driving cycle should be
close to the middle of the valid SOC range.

4. Compliance with system constraints: All components of the system have to
work within their operating ranges.

The central objectives of the hierarchical control will be referred to when the corresponding
controllers are introduced.

The resulting control problem for the power management of the FCHV is predestinated for
the use of an MPC. First of all, the dynamic model of the propulsion system is inherently
nonlinear. Secondly, the problem is restricted by several constraints of the compressor and
the battery SOC. Moreover, the FCHV is a coupled MIMO system which is illustrated
by the RGA in Appendix A.3. All the properties can be handled by the MPC approach.
The nonlinearity can be taken into account by choosing a nonlinear prediction model, con-
straints can explicitly be considered in the optimization problem and MIMO systems are
inherently decoupled by the MPC. Furthermore, the control approach can utilize predictive
information in order to act on upcoming events rather than reacting on control errors.

In Figure 4.1, the dominant time constants of the FCHV are presented [9]. They vary
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between O(102 s) and O(10−19 s). The slowest time constant is caused by the stack tem-
perature Tst which influences the efficiency of the fuel cell system. The time constant for
the power demand prediction is of order O(101 s) because it has been shown that a predic-
tion of at least 10 s is recommended to achieve almost optimal control [65]. Additionally,
the time constant of the battery SOC varies between O(1 s) and O(101 s) which means
that the SOC can be changed considerably within that time. The time constant of the air
supply which is dominated by the motor inertia Jcm is of order O(10−1 s). The hydrogen is
supplied from a high pressure tank. Therefore, it has a time constant of order O(10−2 s).
The fastest time constant of O(10−19 s) is caused by the electrochemistry of the battery
and the fuel cell.

10210110010−110−210−19 Time[s]

Electro-
chemistry

Stack
temperature

Hydrogen
supply

Air
supply

Battery
SOC

Power demand
prediction

High-level
control
(HLC)

Low-level
control
(LLC)

Fig. 4.1: Dominant time constants of the fuel cell hybrid vehicle [9].

In order to handle the varying time constants of an FCHV, hierarchical control approaches
have been proposed by Shiqi et al. [39]. In this thesis, a hierarchical control structure
is used and justified by the dominant time constants in Figure 4.1. The HLC (in blue)
captures the time constants from O(1 s) until O(101 s). It considers the time constants of
the battery SOC and the power demand prediction. The LLC (in green) captures the time
constants around O(10−1 s). In order to prevent fuel cell starvation, the power delivery of
the fuel cell system is dynamically limited by the air supply. Thus, power and air supply
control are handled by the LLC.

The time constants of the hydrogen supply and the stack temperature Tst are not considered
by the power management. The time constant of the stack temperature Tst is large.
Furthermore, Tst is nearly constant at 80 ◦C after a start-up phase [9]. Therefore, a PI-
controller is utilized for the temperature control. The dominant time constant of the
hydrogen supply is smaller. Thus, the anode pressure pan is regulated by a PI-controller.
Thereby, pan follows the cathode pressure pcat.

Figure 4.2 presents an overview of the hierarchical control structure from the implementa-
tion point of view. It illustrates the different levels and the interconnections between them.
The states of the fuel cell system xfcs and the battery xbat were presented in Chapter 3.
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4.1 Overview of Hierarchical Control Structure

The parameter vector pfcs consists of the stack temperature Tst.

The Component Level consists of the battery and the fuel cell system as well as the
DC/DC converters. Actuating variables of the fuel cell system are the stack current Ist,
the compressor motor voltage Ucm and the back pressure valve opening position hom.
Actuating variables of the battery is the current Ibat. The components are connected by
DC/DC converters which include conversion losses. The output powers Pfcs,bus and Pbat,bus
sum up to the delivered power Pdel.

Fuel cell
systemBattery

Tracking NMPC

Power split NMPC

Ist Ucm homIbat

Pfcs,bus,refPbat,bus,ref

Pdem

xfcs

xbat

Pdel

Component
level

Low-level
control
(LLC)

Intermediate-
level control
(ILC)

High-level
control
(HLC)

DC
DC

DC
DC

Pfcs,netPbat,net

Pbat,bus Pfcs,bus
++

Static optimization
ṁcr,ref Πref

pfcs

pfcs

pfcs

Fig. 4.2: Overview of the hierarchical control structure.

The low-level control (LLC) consists of an nonlinear model predictive control (NMPC)
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(in green). It is responsible for the dynamic power delivery (Objective 1) and compliance
with system constraints (Objective 4). The NMPC tracks the references received from
the higher levels. A major challenge for the power management of the FCHV is the
dynamic power delivery of the fuel cell system. In literature, the limited dynamics are
often considered by introducing explicit limitations on the fuel cell system dynamics in the
HLC [66, 67]. However, with the use of predictive information in the LLC, the operating
point of the compressor can be adjusted before the power step occurs and thus increasing
the performance. Moreover, the controller can utilize the battery for a dynamic power
split that deviates from the received references in case the power reference of the fuel cell
system cannot be followed instantaneously. In Section 4.2 an in-depth view of the LLC
design is presented. Parameters considering the LLC are labeled with the superscript l.

For the intermediate-level control (ILC), a static optimization (in orange) is utilized
which determines the optimal operating point of the air supply. Thereby, a trade-off
between dynamic power delivery (Objective 1) and hydrogen consumption minimization
(Objective 2) has to be made. Moreover, operating constraints of the compressor have
to be considered (Objective 4). Further investigation on the ILC design is presented in
Section 4.3. All parameters related to the ILC are labeled with the superscript i.

The objectives of the high-level control (HLC) is the hydrogen consumption mini-
mization (Objective 1) and the charge sustainability of the battery SOC (Objective 3)
considering constraints of the components (Objective 4). Since the time constants han-
dled by the controller are large, a static model of the fuel cell system is derived. The only
dynamic state considered is the battery SOC. The controller determines the optimal static
power split between the battery power Pbat,bus,ref and the fuel cell system power Pfcs,bus,ref.
Further details are presented in Section 4.4. Parameters considering the HLC are labeled
with the superscript h.

4.2 Low-Level Control Design

In this section, the control design of the LLC is presented. The controller specific objectives
of the LLC are:

1. Dynamic power split: The demanded power Pdem should be tracked by the de-
livered power Pdel with minimal lag and delay. If constraints of the fuel cell system
limit the response time of the fuel cell system power Pfcs,bus, the controller should
utilize a dynamic power split that deviates from the static power split by the HLC.

2. Track hydrogen optimized reference points: In order to have a similar hydrogen
consumption than estimated by the HLC, the reference points for the power split
(Pfcs,bus,ref and Pbat,bus,ref) and the air supply (ṁcr,ref and Πref) should be tracked.
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4.2 Low-Level Control Design

3. Compliance with constraints on a short time scale: The short time scale
constraints comprise the oxygen excess ratio λO2 and the compressor surge and choke
boundaries.

4. Avoid excessive actuator changes: In order to achieve a smooth operation, ex-
cessive actuator changes need to be avoided.

This section is organized as follows. Section 4.2.1 explains the interaction of the LLC
with the HLC. In Section 4.2.2, the prediction model is summarized based on the physical
relations from Chapter 3. The cost function and its corresponding objectives are presented
in Section 4.2.3. Subsequently, the system constraints are given in Section 4.2.4. Finally,
the resulting optimal control problem and implementation details of the utilized toolbox
GRAMPC are presented in Section 4.2.5.

4.2.1 Interaction with Intermediate- and High-Levels

The LLC receives the reference trajectories yhref from the higher control levels consisting of
the demanded power Pdem, the fuel cell bus power Pfcs,bus,ref, the battery power Pbat,bus,ref,
the compressor flow ṁcr,ref and the pressure ratio across the compressor Πref.

yhref =
[
Pdem Pfcs,bus,ref Pbat,bus,ref ṁcr,ref Πref

]
(4.1)

In this thesis, a reference interpolation based on sigmoid functions is proposed. The higher
control levels have a sampling time T hS . The LLC executes with a shorter sampling time T lS.
Therefore, the trajectories need to be interpolated. Two possibilities proposed by Josevski
[55] are zero-order hold and linear interpolation. Sigmoid interpolation is similar to the
zero-order hold approach but it increases the mathematical conditioning of the optimal
control problem during a operating point change.

In Figure 4.3, a graphical representation of the sigmoid interpolation is presented for a
single reference trajectory ylref,j(·) denoted by j. The black dashed line is the zero-order
hold reference yhref,j(·) with a sampling time T hS while the blue solid line is the sigmoid
interpolated reference ylref,j(·) with a sampling time T lS. ∆t represents the steepness of
the sigmoid interpolation and is set to 50 ms which means that the step is completed by
66.7 % at that time. For ∆t → 0, the sigmoid interpolation converges to the zero-order
hold interpolation.

The interpolation can be formulated as a multiplication with an offline calculated constant
matrix M as given in (4.2). The complete derivation can be found in Appendix A.4.

ylref,j(·) = Myhref,j(·) (4.2)
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Fig. 4.3: Reference trajectory interpolation from the HLC to the LLC.

4.2.2 Low-Level Prediction Model

The prediction model is derived from the control-oriented modeling in Chapter 3. The
nonlinear state-space model is presented in (4.3).

ẋl(t) = f(xl(t),ul(t),pl(t)) (4.3a)
yl(t) = g(xl(t),ul(t),pl(t)) (4.3b)

Whereby, ul, xl, pl and yl denote the input, state, parameter and output vector respec-
tively. ul consists of the stack current Ist, the motor voltage Ucm, the back pressure valve
position hom and the battery current Ibat.

ul =
[
Ist Ucm hom Ibat

]T
(4.4)

yl comprises the delivered power Pdel, the fuel cell power Pfcs,bus, the battery power Pbat,bus,
the corrected air mass flow rate ṁcr and the pressure ratio Π.

yl =
[
Pdel Pfcs,bus Pbat,bus ṁcr Π

]T
(4.5)

xl consists of the cathode pressure pcat, the pressure of the inlet manifold pim, the pressure
in the outlet manifold pom, the partial oxygen pressure in the cathode pO2 , the air mass in
the inlet manifold mim and the rotational speed of the compressor ωcp.

xl = xfcs =
[
pcat pim pom pO2 mim ωcp

]T
(4.6)

pl comprises the stack temperature Tst and the battery SOC. These correspond to the
states that have a large time constant (compare Figure 4.1) and can therefore be set
constant for the prediction horizon N l

P.

pl =
[

pTfcs xTbat
]T

=
[
Tst SOC

]T
(4.7)
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Note that full state knowledge is assumed within this thesis. Some of the above mentioned
states are difficult to measure, particularly the battery SOC, the partial oxygen pressure in
the cathode pO2 and the air mass in the inlet manifold mim. Possible technique to estimate
those states are an extended Kalman filter, an unscented Kalman filter or a sequential
Monte Carlo filter [68–70].

4.2.3 Low-Level Cost Function

The LLC tracks the reference points from the higher levels ylref. Moreover excessive actu-
ator changes are avoided. The corresponding cost function is quadratic.

J =
∫ T lP

0
‖
(
yl − ylref

)
‖2

Ql + ‖u̇l‖2
Rldt (4.8)

The weighting matrices Ql and Rl in (4.9) are diagonal matrices and are selected con-
stantly.

Ql =


qPdel 0 0 0 0

0 qPfcs,bus 0 0 0
0 0 qPbat,bus 0 0
0 0 0 qṁcr 0
0 0 0 0 qΠ

 , Rl =


rIst 0 0 0
0 rUcm 0 0
0 0 rhom 0
0 0 0 rIbat

 (4.9)

In order to penalize the derivatives u̇l, the prediction model has to be extended with
augmented states x̃l as given in (4.10) [6]. Therefore, the vector ul is adjoined to the state
vector xl and the augmented vector ũl is the derivate vector of the input vector u̇l.

x̃l =
[

xl
ul
]
, ũl = u̇l, ul =

∫
u̇ldt (4.10)

The prediction model of an MPC is affected by modeling errors. In order to achieve an
offset-free control, a disturbance observer is applied (compare Section 2.2.4) which can
diminish the influence of model errors caused by simplifications presented in Chapter 3.
The disturbance state d is estimated for each output of the system yl as stated by (2.24).
Because it is constant over the prediction horizon, the disturbance vector is augmented to
the parameter vector pl.

p̃l =
[

pTfcs xTbat dT
]T

(4.11)

The above mentioned modifications change the nonlinear state-space model of (4.3) to
(4.12). Note that in this formulation, the output yl is not depended on the input ũl
anymore. Thus, the direct feed through of the system is eliminated.

˙̃xl(t) = f(x̃l(t), ũl(t), p̃l(t)) (4.12a)
yl(t) = g(x̃l(t), p̃l(t)) (4.12b)
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4.2.4 Low-Level System Constraints

Another objective of the LLC is to meet the system constraints. The input constraints are
summarized in (4.13). They limit the derivatives of the system inputs. Within this thesis
the input constraints are large such that they always stay within their boundaries. For
further investigation, especially the maximum rate of change of the valve opening position
∆hom can be taken into account [46].

ũl ∈ U=̂




∆Ist
∆Ucm
∆hom
∆Ibat

 ∈ R4

∣∣∣∣∣∣∣∣∣
∆Ist,min ≤ ∆Ist ≤ ∆Ist,max

∆Ucp,min ≤ ∆Ucm ≤ ∆Ucp,max
∆hom,min ≤ ∆hom ≤ ∆hOM,max
∆Ibat,min ≤ ∆Ibat ≤ ∆Ibat,max

 (4.13)

The state constraints hl of the MPC are presented in (4.14). A minimum oxygen excess
ratio λlO2,min has to be satisfied in order to prevent the fuel cell from starvation. Moreover,
the LLC has to comply with the choke and surge boundaries of the compressor.

It is also recommended to constrain the absolute inputs ul of the prediction model. How-
ever, compared to the input constraints in (4.13), state constraints hl are computationally
expensive to evaluate and should only include necessary constraints. Most input con-
straints are already met by the higher levels. Nonetheless, a minimal stack current Ist,min
has to be assured and is included in the state constraints.

0 ≥ hl(x̃(t)) =


λlO2,min − λO2

13.13ṁcr + 0.82− Π
Π− 278.69ṁ2

cr + 17.88ṁcr + 0.79
Ist,min − Ist


(Oxygen excess ratio (2.3))
(Choke boundary (3.20))
(Surge boundary(3.21))
(Minimal stack current)

(4.14)

4.2.5 Low-Level Optimal Control Problem

In (4.15), the resulting nonlinear optimal control problem for the LLC is given. It corre-
sponds to the optimal control problem formulation as stated in (2.7).

min
ũl

Cost function (4.8) (4.15a)

s.t. System dynamics (4.3) (4.15b)
Input constraints (4.13) (4.15c)
state constraints (4.14) (4.15d)

The optimal control problem is solved with the toolbox GRAMPC [21]. It indicates a
time and memory efficient implementation on embedded hardware and achieves compa-
rable results to other nonlinear MPC toolkits such as ACADO [21]. Subsequently, a few
implementation specifics are presented.
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4.2 Low-Level Control Design

Integration scheme: A careful choice for the solution of the optimal control problem is
the integration scheme. As indicated in Appendix A.3, the system has eigenvalues over a
wide range indicating a stiff system. In general, integration schemes with a large stability
region perform better on those kind of problems [29]. Therefore, the integration schemes
Rodas and Ruku45 seem suitable choices within the toolbox GRAMPC. They have higher
computational costs but they can handle a larger step size for the given problem. Despite
the intuitive choice, simulation results showed best performance for the Heun’s integration
method [29]. It can handle the best combination of step size and computational cost.
Therefore, Heun’s integration method is chosen for the LLC.

Computation of derivatives: In order to solve the optimization problem, GRAMPC
solves the PMP conditions as given in (2.15). Therefore, the derivatives of the state-space
model f , the state constraints hl and the cost function J with regards to the states x̃l and
inputs ũl need to be provided. This can either be done symbolically or by algorithmic
differentiation [71]. Symbolic differentiation is more intuitive but it scales badly for large
systems. Consequently, algorithmic differentiation is applied utilizing the toolbox CasADI
to deliver the corresponding functions [72]. The output function of CasADI is compiled as
C-Code and integrated into GRAMPC.

Scaling: The states of the system have different orders of magnitude. The pressure values
are of order O(105), while the magnitude of the inlet manifold mass is of order O(10−1).
Because the augmented Lagrangian method is scale variant, the system needs to be scaled.
The states and inputs to the system are rated by their maximum expectable values such
that all variables vary between −1 and 1. The scaling is done offline and not by the
built-in functionality of GRAMPC in order to decrease the computational cost [21, p.43].
The scaling variables of the controller states x̃l can be found in Table 4.1. Furthermore,
the controller inputs ũl need to be scaled. The corresponding scaling values are given in
Table 4.2.

Tab. 4.1: Scaling parameters of the states.

pcat pim pom pO2 mim ωcp Ist Ucm hom Ibat

fsca,i 3 · 105 3 · 105 3 · 105 1 · 105 0.05 1 · 103 450 230 1 400

Tab. 4.2: Scaling parameters of the inputs.

∆Ist ∆Ucm ∆hom ∆Ibat
fsca,i 450 230 5 400

State clipping: Augmented Lagrangian is a penalty method which may violate the in-
equality constraints hl and may not always search for solutions in the feasible regions.
This has the advantage that the problem is not as sensitive to infeasible initial solutions
as other approaches are (e.g. barrier methods). A disadvantage occurs when the problem
formulation is not mathematically well-defined outside the feasible region. This is the case
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for the activation loss of the fuel cell (3.7). In this case the logarithm of the stack current
Ist is calculated and leads to a discontinuous solution at zero. Because GRAMPC has no
functionality to catch these cases, a workaround is implemented. The stack current Ist
is clipped to a small threshold by (4.16) in the optimal control problem formulation in
GRAMPC.

Ist =
{
Ist, if Ist > εIst

εIst , else (4.16)

Penalty parameter choice: The penalty method also leads to the necessity of carefully
tuning the penalty parameters. For MPC applications where only a few iterations are
utilized, the minimum penalty cmin needs to be carefully tuned in order to find a good
trade-off between compliance with constraints and convergence speed.

The parameters for the LLC including weights, constraints and MPC settings are given
in Table A.7. The control horizon N l

C of 80 steps and 4 control inputs ũl lead to an
optimization problem with 320 optimization variables. The weights are chosen such that
the delivered power Pdel gets the highest priority in order to ensure a dynamic power
delivery.

4.3 Intermediate-Level Control Design

In this section, the control design of the ILC is explained which optimizes the operating
point of air supply. Other than the HLC and LLC, the ILC is a static optimization. The
control specific objectives can be summarized as follows:

1. Hydrogen consumption minimization: The operating point of the air supply
should be determined such that the fuel cell system efficiency is maximized and the
hydrogen consumption minimized.

2. Robustness towards uncertain power demand: The operating point of the air
supply influences the robustness towards uncertain power demands. This is essential
to ensure a dynamic power delivery. It will be shown that there is a trade-off between
robustness and hydrogen consumption minimization.

3. Compliance with steady-state constraints: The optimization should comply
with constraints of the air supply in terms of the surge and choke boundaries of the
compressor. Moreover, fuel cell starvation must be avoided in terms of a minimum
oxygen excess ratio λO2 .
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4.3.1 Steady-State Fuel Cell System

The steady-state model of the fuel cell system can be described by setting the state-space
model to zero as stated by (4.17). The model is parameterized by the states xi, by the
actuating variables ui and by the parameters pi.

ẋi = f(xi,ui,pi) = 0 (4.17)

xi = xfcs =
[
pcat pim pom pO2 mim ωcp

]T
(4.18)

ui =
[
Ist Ucm hom

]T
(4.19)

pi = pfcs =
[
Tst

]T
(4.20)

The resulting set of equations has 9 free variables (6 states xi and 3 actuating variables
ui) but only 6 equality constraints stated by the steady-state assumption in (4.17). An
additional equality constraint is enforced by the reference power Pfcs,bus,ref which should be
met perfectly for steady-state.

Pfcs,bus = Pfcs,bus,ref (4.21)

The resulting two additional degrees of freedom can be exploited by the ILC to optimize
the operating point of the air supply. When the operating point consisting of the corrected
air mass flow rate ṁcr in (4.22) and the pressure ratio across the compressor Π in (4.23) is
fixed, the resulting set of equations has a unique solution. The goal of the ILC is to find
the optimal combination of ṁcr and Π in terms of the above mentioned objectives.

ṁcr,ref = ṁcr (4.22)
Πref = Π (4.23)

In order to validate the influence of the operating point, the fuel cell system efficiency at
the DC bus ηfcs,bus is defined by (4.24). Plhv is the lower heating power of the fuel cell
stack and commonly used to calculate the efficiency of fuel cell systems [4]. It is defined
by (4.25) whereby HH2 defines the lower heating value of hydrogen. Plhv is proportional
to the stack current Ist and is thus also proportional to the hydrogen consumption ṁH2 .

ηfcs,bus = Pfcs,bus

Plhv
(4.24)

Plhv = ncellHH2

2F Ist = HH2

2MH

IstṁH2 (4.25)

In Appendix A.5, a qualitative analysis of the influences of the operating point on the
efficiency ηfcs,bus is conducted. The analysis reveals that an increase in the pressure ratio
Π increases the stack power Pst but it also increases the electrical power consumption of
the compressor motor Pcm. A numerical solution is required to get the dominant influence
of these two and is conducted in the following.
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In order to quantify the influence of the fuel cell system operating point on the efficiency
ηfcs,bus, the set of equations in (4.17, 4.21, 4.22 and 4.23) is solved numerically using the
function fsolve in MATLAB R©. Figure 4.4 presents the results of 4 examples of Pfcs,bus
(2 kW, 10 kW, 20 kW, 40 kW). The gray area illustrates operating points where the oxygen
excess ratio λO2 is below λO2,min corresponding to the minimum oxygen excess ratio of the
ILC. The colored surface represents the overall fuel cell system efficiency ηfcs,bus. For all
power ranges the efficiency ηfcs,bus is the highest for low pressure ratio Π and low corrected
air mass flow rate ṁcr. This supports the analysis done by Larminies et al. [4, Chapter 4].
Their conclusion was that from the pure efficiency point of view, it is often not beneficial
to operate the system at higher pressure ratio Π. In the next section, it will be argued why
it is still advantageous to operate at different operating points of the compressor map.
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Fig. 4.4: Energy efficiency of different compressor operating points for a stack temperature of
80 ◦C and fixed fuel cell system power.
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4.3.2 Operating Point Robustification towards Uncertain Power
Demands

From the pure efficiency point of view, the optimal operating point is on the choke bound-
ary at the lowest possible corrected air mass flow rate ṁcr as elaborated in the last section.
However, another goal of the ILC is to assure a certain robustness to uncertain power
demands on the fuel cell system power Pfcs,bus,ref.

When an unpredicted increase in the power demand for the fuel cell system power Pfcs,bus,ref
is applied, the constraint of the minimum oxygen excess ratio of the LLC λlO2,min has to
be met. The stack current Ist and the oxygen mole flow rate into the cathode ṅcat,in are
coupled by λO2 as stated in (2.3). Because ṅcat,in depends on ṁcr, the control has to
increase ṁcr. This is only possible rapidly if the compressor does not operate at the choke
boundary. The reason is that increasing the pressure ratio Π in this case is slow.

Two ways to increase the robustness to unpredicted increases in Pfcs,bus,ref exist. Firstly,
the oxygen excess ratio λO2 can be set to values above the minimum λlO2,min. In this case,
the LLC can decrease the oxygen excess ratio λO2 instead of increasing ṁcr. Secondly, a
horizontal distance to the choke boundary can be kept in order to be able to increase ṁcr
rapidly. Both ways can be expressed as a single additional constraint.

In Figure 4.5, an illustration of the additional constraint is presented. The mathematical
description of the constraint is given in (4.26). ṁcr,min (in blue) corresponds to the mini-
mum air mass flow rate that has to be provided in order to comply with λiO2,min. ṁcr,min
plus a robustness term ṁrob has to be above the choke boundary of the compressor. This
way, the actual operating point ṁop can either move along the orange line by increasing
the oxygen excess ratio λO2 or by increasing the pressure ratio Πop leading to a larger
distance to the choke boundary. The robustifying parameter ṁrob is a design parameter
of the ILC.

Πop > 0.82 + 13.13

ṁrob + λO2,min

λO2

ṁcr,op︸ ︷︷ ︸
ṁcr,min

 (4.26)

The distance to the surge boundary is less critical because the oxygen excess ratio λO2 is
not limited to a maximum value. The distance becomes relevant, when the power demand
of the fuel cell system Pfcs,bus is decreasing and thus a lower ṁcr is demanded. In this case,
however, the LLC can always react by temporarily increasing the oxygen excess ratio λO2

while slowly decreasing the pressure ratio Π.

Since it is not advised to operate at system constraints in steady-state, a small distance to
the surge boundary is enforced by an additional constraint as given in (4.27). Similarly,
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Fig. 4.5: Illustration of the robustification factor of the ILC.

a constraint for the minimum oxygen excess ratio λiO2,min is introduced in (4.28) that is
larger than λlO2,min.

Π < −278.69ṁ2
cr + 17.88ṁcr + 0.79− Πi

rob (4.27)
λO2 > λiO2,min > λlO2,min (4.28)

4.3.3 Intermediate-Level Optimization Problem

The resulting optimization problem is presented in (4.29). It is a nonlinear static opti-
mization with equality and inequality constraints. The problem is solved by using the
nonlinear interior-point solver IPOPT [26].

min
ui,xi

J = ṁH2 (4.29a)

s.t. Steady-state system (4.17) (4.29b)
Power demand (4.21) (4.29c)
Robustification(4.26, 4.27, 4.28) (4.29d)

In Figure 4.6, the results for two different factors ṁrob are presented. The stack tempera-
ture of Tst is set to 80 ◦C. The dotted lines correspond to ṁrob = 4 g/s and the solid line
to ṁrob = 32 g/s. In Figure 4.6a, the resulting operating line in the compressor map for
Pfcs,bus ranging from 2 kW to 46 kW is presented. In Figure 4.6b, the fuel cell system power
Pfcs,bus (in green) and the oxygen excess ratio λO2 (in red) are given. It can be seen that
the results are mainly dominated by the constraint as given in (4.26) and additionally by
the constraint stated by (4.27) as soon as λO2 reaches λiO2,min. This result is expected due
to the efficiency map introduced in Figure 4.4.
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For ṁrob = 4 g/s at low ṁcr, the operating point behaves unexpectedly. It can be explained
by the fact that the back pressure valve is fully open. When the fuel cell system power
Pfcs,bus increases, the reacted air mass flow rate ṁreact also increases. This leads to a lower
pressure ratio Π such that the operating point can shift along the constraint (4.27) to a
lower ṁcr.
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ṁrob = 4 g/s ṁrob = 32 g/s
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Fig. 4.6: Optimal operating points of the air supply for a stack temperature of 80 ◦C.

The solution of the optimization problem only depends on a limited number of possible
variables Tst, ṁrob and Pfcs,bus. Therefore, the solutions are calculated offline and stored in
lookup tables with linear interpolation. These are used online to find the optimal operating
point of the air supply.

Summing up, the ILC finds the optimal operating point of the air supply in terms maximum
efficiency and complies with the given constraints. The resulting parameters of the ILC
are presented in Table A.6 including the lookup table parameter ranges.

4.4 High-Level Control Design

In this section, the design of the HLC is presented. As for the LLC, the problem is solved
with an NMPC. In Section 4.4.1 It receives the predicted power demand Pdem and returns
the optimal split between the fuel cell system power Pfcs,bus,ref and the battery power
Pbat,bus,ref. The controller specific objectives can be summarized as follows:
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1. Hydrogen consumption minimization: The hydrogen consumption ṁH2 should
be minimized over the prediction horizon of the MPC.

2. Charge sustainability: The battery SOC should be close to a given SOC reference
at the end of the prediction horizon SOC(Nh

P).

3. Compliance with constraints on a long time scale: System constraints com-
prising the power limitations of the components and battery SOC range must be
considered.

The prediction model of the NMPC is presented. The cost function is introduced in
Section 4.4.2. Subsequently, the system constraints are given in Section 4.4.3. Finally, the
resulting optimal control problem is presented in Section 4.4.4.

4.4.1 High-Level Prediction Model

The prediction model is based on the nonlinear state-space system in (4.30). The models
of the battery and the DC/DC converters are taken from Chapter 3. The dynamics of the
fuel cell system are neglected according to Figure 4.2. Therefore, a steady-state model of
the fuel cell system is derived.

ẋh(t) = f(xh(t),uh(t), zh(t)) (4.30a)
yh(t) = g(xh(t),uh(t), zh(t),ph(t)) (4.30b)

Whereby, xh, uh, zh, ph and yh denote the state, input, disturbance, parameter and output
vector respectively. The only considered state is the battery SOC. All the other states from
the LLC are assumed to be at steady-state.

xh = xbat =
[
SOC

]T
(4.31)

uh consists of the power reference values Pfcs,bus,ref and Pbat,bus,ref.

uh =
[
Pfcs,bus,ref Pbat,bus,ref

]T
(4.32)

The disturbance vector zh to the system consists of the demanded power Pdem. It is
expressed as a disturbance because it has to be fulfilled perfectly at every time step.

zh =
[
Pdem

]T
(4.33)

The outputs of the system yh are the lower heating power of the fuel cell system Plhv
and the battery SOC. Note that Plhv is proportional to the hydrogen consumption ṁH2 as
stated in (4.25). Thus, minimizing Plhv corresponds to minimizing ṁH2 .

yh =
[
Plhv SOC

]T
(4.34)
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The parameter vector consist of the stack temperature Tst. As demonstrated in Figure 4.1,
the time constants of the stack temperature are larger than the prediction horizon of the
MPC.

ph = pfcs =
[
Tst

]T
(4.35)

The lower heating power of the fuel cell system Plhv is expressed as a function of the
fuel cell system power Pfcs,bus,ref, the stack temperature Tst and the robustification factor
ṁrob as given in (4.36). The function is given as a 3-dimensional look up table that is
deduced from the steady-state model of the fuel cell system. Therefore, the nonlinear set
of equations is solved by the function fsolve in MATLAB R©.

Plhv = f(Pfcs,bus,ref, Tst, ṁrob) (4.36)

In Figure 4.7, the resulting efficiency ηfcs,bus is presented instead of Plhv for a better il-
lustration. ηfcs,bus can be calculated from Plhv by (4.24). In Figure 4.7a the dependency
on the stack temperature Tst is shown. With increasing Tst, the efficiency of the fuel cell
system also increases. In Figure 4.7b the dependency on the robustification factor ṁrob is
illustrated. With increasing ṁrob, the efficiency ηfcs,bus decreases.
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Fig. 4.7: Efficiency curves of the fuel cell system including the DC/DC converter.

In order to penalize the derivatives of the input vector uh, the augmented states x̃h are
introduced in (4.37). The derivatives u̇h need to be penalized in order to prevent the
controller from putting high gradients on the power values Pfcs,bus,ref and Pbat,bus,ref even if
it is not required by the demanded power Pdem.

x̃h =
[

xh
uh

]
, ũh = u̇h, uh =

∫
u̇hdt (4.37)
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4.4.2 High-Level Cost Function

The cost function in (4.38) corresponds to the objectives listed at the beginning of this
Section. The hydrogen consumption over the prediction horizon Nh

P is penalized in (4.38a).
The input derivatives u̇h are penalized in (4.38b). In (4.38c), the deviation of SOC(Nh

P)
to the reference SOCref(Nh

P) at the end of the prediction horizon is penalized. The slack
variables of the soft constraints in (4.40) are penalized in (4.38d).

In (4.38e), a decision inertia on the first solution of the HLC is introduced in order to
corporately work with the LLC. Therefore, the deviation of the first value of the current
optimization Pfcs,bus,ref,0 to the second value of the prior optimization Pfcs,bus,ref,1,last is pe-
nalized. The effect is that the HLC does not change the predicted values which have
already been appeared in the prediction horizon of the LLC. The consequences when the
decision inertia is not applied are demonstrated in Section 5.3.3

J =
∫ ThP

0
qPlhvPlhv (Hydrogen consumption) (4.38a)

+ ‖u̇h‖2
Rhdt (Control input derivatives) (4.38b)

+ ‖(SOC(Nh
P)− SOCref(Nh

P))‖2
qSOC

(Final SOC) (4.38c)
+ ‖εi‖2

Qh
S

(Slack variables SOC) (4.38d)
+ ‖Pfcs,bus,ref,0 − Pfcs,bus,ref,1,last‖2

qPfcs,0
(Inertia on first Pfcs,bus,ref) (4.38e)

The weighting matrices of the slack variables Qh
S and the control inputs Rh are given

in (4.39). The weights on Qh
S are large in order to prevent the controller from violating

the constraints extensively. The weights on Rh are small because they only prevent the
controller from changing the control inputs uh extensively.

Qh
S =

[
qS,Pfcs 0

0 qS,SOC

]
, Rh =

[
rPfcs 0

0 rPbat

]
(4.39)

The weights qPlhv and qS,SOC assess the cost terms (4.38a) and (4.38c). Increasing qPlhv

leads to a stronger deviation of the battery SOC while increasing qS,SOC leads to a weaker
deviation of the battery SOC. A careful tuning of these weights is necessary to achieve
good results.

The reference SOC at the end of the prediction horizon SOCref(Nh
P) is often set to a con-

stant value [11, 55]. The HLC with constant SOCref(Nh
P) is further denoted by HLCconst

and is further investigated with regards to the optimal choice of Nh
P and qS,SOC in Sec-

tion 5.2.2.

When information about the power demand is available beyond the prediction horizon Nh
P,

it might be beneficial to incorporate this information in the SOC reference. Since trips are
usually assisted by navigation systems nowadays, it can be assumed that an approximate
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power demand prediction for the whole driving cycle is available [73]. Therefore, an offline
optimization can be conducted leading to an approximate optimal SOCref(Nh

P) trajectory.
The HLC with variable SOCref(Nh

P) is further denoted by HLCvar. The modification is
evaluated in Section 5.2.3.

4.4.3 High-Level System Constraints

The HLC is not subject to any input constraints because the input derivatives u̇h are not
limited. Consequently power reference values Pbat,bus,ref and Pfcs,bus,ref can possibly vary
from the minimum to the maximum value within one time step.

The optimal control problem has constraints on the fuel cell system power Pfcs,bus,ref, the
battery power Pbat,bus,ref, the battery SOC and the slack variables as stated in (4.40).
The maximum power Pfcs,bus,ref,max depends on the stack temperature Tst as illustrated
in Figure 4.7a. The fuel cell system power Pfcs,bus,ref and the battery SOC limitations
are implemented as soft constraints. The soft constraint on the fuel cell system power is
required because, otherwise, the optimal control problem can become infeasible if Pdem is
too large. The SOC soft constraint is necessary because the underlying control does not
consider those constraints and might drift the SOC outside the feasible region. The soft
constraints are applied by employing the slack variables εS and εPbat . In order to reduce
the dimensionality of the optimization problem, the slack variables are implemented in the
∞-norm leading to only one additional optimization variable per soft constraint [6].

0 ≥ hh(xh(t)) =



Pbat,bus,ref,min − Pbat,bus,ref
Pbat,bus,ref − Pbat,bus,ref,max
Pfcs,bus,ref,min − Pfcs,bus,ref − εPfcs

Pfcs,bus,ref − Pfcs,bus,ref,max(Tst)− εPfcs

SOCmin − εS − SOC
SOC− SOCmax − εS
−εS,SOC
−εPfcs



(min battery power)
(max battery power)
(min FCS power)
(max FCS power)
(min SOC)
(max SOC
(slack on SOC)
(slack on FCS power)

(4.40)

4.4.4 High-Level Optimal Control Problem

The resulting optimal control problem (OCP) can be found in (4.41) and corresponds to
the optimal control problem formulation as stated by (2.7).

min
uh

Cost function (4.38) (4.41a)

s.t. System dynamics (4.30) (4.41b)
State constraints (4.40) (4.41c)

61



4 Hierarchical Control Design

The parameters of the HLC are given in Table A.5. The parameter qS, SOCref and Nh
P

are left open for further studies in Chapter 5. The sampling time T hS is 1 s. It is solved
with a direct method utilizing multiple shooting (compare Section 2.2.2). The prediction
model as given in (4.30) is discretized with a Runge-Kutta 4th-order method [29]. The
toolbox CasADI is used to formulate the discretized nonlinear optimization problem [72].
The resulting nonlinear optimization problem is solved using the toolbox IPOPT [26].
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In this chapter, the hierarchical control is evaluated based on a predefined driving cycle.
For this purpose, the WLTC is chosen and introduced in Section 5.1. The evaluation
criterion are the objectives listed in Section 4.1 which comprise dynamic power delivery,
hydrogen consumption minimization, charge sustainability of the battery and compliance
with operating constraints. Consequently, the evaluation is divided into three steps. At
first, only the HLC is compared to the global optimal solution that is achieved by a DP
method in Section 5.2. Additionally, the modification of the HLC which utilizes infor-
mation beyond the prediction horizon is proposed. In Section 5.3, the entire hierarchical
control is validated in terms of deviation from the HLC predicted solution. In Section 5.3,
the results of the LLC are presented.

5.1 Driving Cycle for the Validation

In autumn 2007 the United Nations Organization (UNO) started developing a roadmap
for the worldwide harmonized light vehicle test procedure (WLTP). The goal was to stan-
dardize the measurements of exhaust emissions worldwide. In the EU, WLTP became
obligatory in September 2018 and replaced the controversial NEDC. WLTP is not only
the driving cycle itself but specifies the testing procedure and conditions for measuring
the exhaust emissions [74].

The driving cycle corresponding to the WLTP is the worldwide harmonized light vehicles
test cycle (WLTC). It is grouped into subclasses depending on the power to mass ratio. The
driving cycle for the medium sized car chosen in this thesis is the WLTC3. In Figure 5.1a,
the velocity profile of the driving cycle is presented. It consists of four phases: the low-,
middle-, high-, and extra-high-speed phase. Overall, a distance of 23.62 km is covered in
1800 s. The driving cycle achieves a peak speed of up to 131 km/h and an average speed
of 46.6 km/h.

Figure 5.1b shows the demanded power at the DC bus Pdem. It is calculated from the
vehicle model as described by Dirkes [7]. The propulsive power P+

dem illustrated in blue
has its peak power at 67.3 kW and an average power of 10.46 kW. The regenerative power
P−dem illustrated in green has its maximum power at 39.8 kW whereby only 33 kW can be
regenerated by the battery due to the minimum power Pbat,bus,min. The remaining energy
has to be absorbed by the breaks.
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Fig. 5.1: Speed profile and power demand of the WLTC3 driving cycle.

5.2 High-Level Control Evaluation

In this section, the HLC is evaluated separately from the LLC. Thus, the controller is ex-
amined on the static model of the fuel cell system (compare Figure 4.7). For the evaluation,
the stack temperature Tst is set to 80 ◦C and the robustification factor ṁrob is set to 20 g/s.
The HLC is compared to the DP method introduced in Section 5.2.1. Subsequently, the
influences of the final battery SOC weight qSOC and the prediction horizon Nh

P on the HLC
with constant SOCref(Nh

P) denoted by HLCconst is validated. In Section 5.2.3, the HLC
with variable SOCref(Nh

P) denoted by HLCvar is evaluated. Finally, in Section 5.2.4, DP,
HLCconst and HLCvar are compared with each other in terms of hydrogen consumption,
charge sustainability and compliance with operating constrains.

5.2.1 Global Optimal Solution of the High-Level Control

The global optimal solution is determined using dynamic programming (DP). An introduc-
tion to the general idea of DP is given in Section 2.2.2. The generic dynamic programming
MATLAB R© function developed by Sundstrom et al. [75] is used to solve the optimal control
problem given in (2.25). The dynamic programming optimization minimizes the hydrogen
consumption ṁH2 for a given driving cycle and ensures a certain final battery SOC at the
end of the driving cycle SOC(T ). The state discretization of the DP method is chosen so
dense (300 steps for each input and state) that it is assumed to be the optimal solution.

In Figure 5.2a, the optimal power split between the battery and the fuel cell system is
presented. The propulsive power P+

del (blue) consists of the fuel cell system power Pfcs,bus,ref
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(dark blue) and the battery discharge power Pbat,D,bus,ref (light blue). The regenerative
power P−del (green) consists of the regenerative battery power Pbat,R,bus,ref (light green)
and the battery charging power Pbat,C,bus,ref (dark green) provided by the fuel cell system.
In Figure 5.2b, the SOC trajectory is presented including the minimum and maximum
limitations SOCmin,max. The initial SOC(t0) and final SOC(T ) of the driving cycle are set
to 0.6.
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Fig. 5.2: Power split and SOC trajectory of the DP method.

The DP method utilizes global predictive information and thus exploits the full SOC range
from 0.4 to 0.8. For the sake of illustration, the optimal solution is analyzed phase-wise.
In the low-speed phase from 0 s to 500 s, the battery is mostly used for propulsion. The
average demanded power P̄dem in this phase is only 1.45 kW while the minimum fuel cell
system bus power Pfcs,bus,ref,min is 2 kW.

In the middle-speed phase, the fuel cell system primarily operates within its high efficiency
region from 5 kW to 20 kW when propulsion power P+

dem is required, and at minimum power
Pfcs,bus,ref,min when less power is required. The average power demand P̄dem in this phase
is 3.65 kW.

In the high-speed phase, the fuel cell system still mostly operates within its high efficiency
region. The battery SOC nearly reaches its maximum of 0.8 at 1200 s before it strongly
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supports the fuel cell system for acceleration. From 1400 s to 1500 s, the fuel cell system
actively charges the battery with around 10 kW in order to increase the SOC close to its
maximum value before the upcoming extra-high-speed phase. The average power demand
P̄dem in this phase is 8.5 kW. Consequently, the optimization is less dominated by the
minimum power of the fuel cell system Pfcs,bus,ref,min.

In the extra-high-speed phase, the average power demand P̄dem is 15.87 kW with its peak
value of 67.31 kW at 1550 s. This is above the maximum power of the fuel cell system
power Pfcs,bus,ref,max of 46 kW. Therefore, the fuel cell system requires strong support from
the battery which is only possible because the DP method has global knowledge of the
power demand Pdem and has increased the battery SOC at the end of the high-speed phase.
The last few seconds of this phase are utilized to recharge the battery to its final SOC of
0.6.

5.2.2 Influence of Weights and Prediction Horizon

In this section, the weight qSOC and the prediction horizon Nh
P of the HLCconst as described

in (4.38) are examined. SOCref(Nh
P) is set to 0.6 plus an offset ∆SOC of 0.1 as given by

(5.1) because the HLC tends to reach a lower SOC than specified. This behavior can be
explained by the economical cost of the lower heating power Plhv given in (4.38a) which
pushes SOC(Nh

P) down.

SOCref(Nh
P) = 0.6 + ∆SOC (5.1)

For different parameter settings of the HLC, the driving cycle finishes with different
SOC(T ). In order to make the hydrogen consumption comparable between the methods,
an equivalent hydrogen consumption mH2,eq is introduced that accounts for the deviation
of SOC(T ) [76].

The deviation of energy stored in the battery ∆Ebat is given in (5.2) whereat Q is the
storage capacity of the battery. The open circuit voltage UOCV,const is assumed to be
constant at 1.27 V(compare Figure 3.8).

∆Ebat = (SOC(T )− SOCref(T )) ·Q · UOCV,const (5.2)

Depending on ∆Ebat, the equivalent fuel cell system energy ∆Efcs,eq can be calculated
by a case-distinction as given in (5.3). If the remaining energy in the battery ∆Ebat is
greater than zero, ∆Efcs,eq describes the surplus energy in the battery in terms of the lower
heating energy of hydrogen in the fuel cell system. If ∆Ebat is smaller than zero, ∆Efcs,eq
describes the lower heating energy of hydrogen that is required to recharge the battery to
SOC(T ) = 0.6. The corresponding efficiencies η̄fcs,bus, η̄bat,D,bus and η̄bat,C,bus are averaged
efficiencies of the components over the whole driving cycle. Despite the fact that averaged
efficiencies are a valid assumption, they can greatly influence the result especially in the
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case of short driving cycles.

∆Efcs,eq = ∆Ebat ·


η̄bat,D,bus
η̄fcs,bus

, if ∆Ebat > 0
1

η̄bat,C,busη̄fcs,bus
, else

(5.3)

The equivalent hydrogen consumption can be obtained by (5.4), whereby mfcs,eq is pro-
portional to the equivalent fuel cell energy ∆Efcs,eq and MH denotes the molar mass of
hydrogen. mfcs,eq is subtracted from the total hydrogen consumption mH2,tot in order to
obtain mH2,eq. Even though the duration of the WLTC3 driving cycle is long with 1800 s,
it should be noticed that mH2,eq is just an estimate that includes assumptions about the
upcoming driving behavior to make the results comparable.

mH2,eq = mH2,tot −mfcs,eq = mH2,tot −∆EFC,eq
2MH

HH2

(5.4)

In Figure 5.3, the equivalent hydrogen consumption mH2,eq is illustrated for different com-
binations of the prediction horizon Nh

P and the final SOC weight qSOC. Nh
P varies between

5 and 35 while the qSOC varies between 5 and 105.
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Fig. 5.3: Influence of the HLC parameters on the equivalent hydrogen consumption.

If the final SOC weight qSOC is chosen too low, the equivalent hydrogen consumption
mH2,eq is large because the battery reaches the lower SOC limit of 0.4 in the extra-high
speed phase. Consequently, the fuel cell system has to operate at its maximum power
Pfcs,bus,ref,max which leads to a poor efficiency ηfcs,bus. With increasing qSOC, the hydrogen
consumption decreases until it reaches a minimum at 35. From this weight onwards, the
battery operates within its operating limits even for the extra-high-speed phase. Further
increasing the weight leads to the disadvantage that the SOC range of the battery is not
fully exploited. However, the increase in equivalent hydrogen consumption mH2,eq is low.
For further investigations, qSOC is chosen to be 35.

With increasing prediction horizon Nh
P, the equivalent hydrogen consumption mH2,eq de-

creases. However, the computational cost of the optimization increases. Table 5.1 lists

67



5 Results

the average and maximum computation time of the HLC. Important to note are not the
absolute values of the computation time but the trend which is approximately linearly
increasing with Nh

P. For further investigation, a prediction horizon Nh
P of 15 (equals 15 s

for T hS = 1 s) is chosen as it gives a good trade-off between hydrogen consumption and
computation time.

Tab. 5.1: Computation time of the HLC depending on the prediction horizon.

Nh
P 5 15 25 35

Average computation time [s] 0.08 0.22 0.37 0.54
Maximum computation time [s] 0.14 0.36 0.56 0.78

Summing up, it is possible to find an optimized combination of parameters for the given
WLTC3 driving cycle. It should be mentioned that the optimal weight on the final SOC
qSOC is expected to vary depending on the driving cycle (compare Appendix A.8). In order
to achieve a low hydrogen consumption, it is important that the battery does not reach the
SOC limitations because this forces the controller to use the fuel cell system individually.
The HLCconst can only handled the SOC variation by adjusting qSOC to a value that is large
enough. However, if qSOC is chosen too large, the controller does not utilize the battery for
shifting the operating point of the fuel cell system into high efficiency ranges but is only
concerned about reaching the final SOC reference SOCref(Nh

P).

5.2.3 High-Level Control with Variable SOC Reference

The HLCconst suffers from the fact that only information during the prediction horizon
Nh

P is utilized. In this section, the HLCvar is proposed that can take global information
via SOCref(Nh

P) into account. It is expected that this method leads to a lower equivalent
hydrogen consumption mH2,eq.

In order to take global information into account, the offline solution from the DP method
is utilized. The SOC reference trajectory SOCDP calculated by the DP method is used to
determine SOCref(Nh

P) as given in (5.5). At time step k, SOCk,ref(Nh
P) is determined by

the SOC of the DP method SOCDP(k +Nh
P) plus an offset ∆SOC of 0.1.

SOCk,ref(Nh
P) = SOCDP(k +Nh

P) + ∆SOC (5.5)

In Figure 5.4, the resulting power split is presented. The result is similar to the one
obtained by the DP method in Figure 5.2. In the low-speed phase, Pfcs,ref,bus is utilized
more because SOCref(Nh

P) is ∆SOC larger than for the DP method. In return, the HLC
uses the fuel cell system less in the high-speed phase because the economical cost of the
lower heating power Plhv raises when the power demand Pdem increases. Consequently,
SOC(Nh

P) is pushed below SOCref(Nh
P) more strongly. As for the DP method, HLCvar does
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not operate the fuel cell system at its maximum power Pfcs,bus,ref,max in the extra-high speed
phase.
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Fig. 5.4: Power split of HLCvar.

5.2.4 Methods Comparison

In Figure 5.5, the SOC trajectories of the three introduced methods are compared. The
SOC trajectory resulting from DP was already introduced in Figure 5.2. The SOC tra-
jectory of HLCConst is always varying between 0.45 and 0.7. Especially the low battery
use in the extra-high speed phase leads to a poor efficiency of the fuel cell system ηfcs,bus
because it has to operate at its maximum power Pfcs,bus,ref,max. The SOC trajectory of
HLCvar follows approximately the trajectory of the DP method. Only in the low-speed
phase the MPC utilizes the battery less and in return more in the high-speed phase.
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Fig. 5.5: Comparison of SOC trajectories for DP, HLCvar and HLCconst.

In Figure 5.6, a power histogram of the fuel cell system is illustrated in order to compare
the approaches in terms of fuel cell system efficiency ηfcs,bus. The left y-axis depicts the fuel
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cell system efficiency ηfcs,bus corresponding to the black line. The right y-axis presents the
relative frequency of fuel cell system power use hn referring to the colored lines. Note that
the right y-axis has an interruption because of the large relative frequency for low Pfcs,bus,ref.
All approaches mostly utilize the fuel cell system at minimum power Pfcs,bus,min because
the average power demand P̄dem of 6.42 kW is low compared to Pfcs,bus,ref,min. Nevertheless,
the DP and HLCvar methods utilize the fuel cell system less frequent at Pfcs,bus,ref,min.
In return, they have a larger relative frequency hn between 4 kW and 16 kW where the
efficiency ηfcs,bus is higher. Additionally, only the HLCconst method utilizes the fuel cell
system extensively at high power between 42 kW and 46 kW.
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Fig. 5.6: Relative frequency of fuel cell system power compared with related fuel cell system
efficiency.

In Table 5.2, the three methods are compared with each other in terms of total hydrogen
consumption mH2,tot, equivalent hydrogen consumption mH2,eq and final SOC reference
SOC(T ). The DP method achieves the best results in terms of mH2,eq with 319.71 g.
HLCconst consumes 335.63 g which is nearly 5 % more than the DP method. HLCvar con-
sumes 320.33 g which is only 0.2 % worse than the global optimal solution. The calculation
of mH2,eq depends on the averaged component efficiencies as given in (5.3).

Tab. 5.2: Hydrogen consumption and final SOC of the three introduced methods.

mH2,tot[g] mH2,tot[ kg
100km ] mH2,eq[g] mH2,eq[ kg

100km ] SOC(T )[−]
DP 319.71 1.35 319.71 1.35 0.6

HLCconst 338.71 1.43 335.63 1.43 0.63
HLCvar 316.84 1.34 320.33 1.36 0.57

Summing up, the objectives of the HLC mentioned in Section 4.4 are met by the HLC
methods. While both HLC methods achieve good results regarding charge sustainability
for the evaluated WLTC3 driving cycle, the HLCvar method shows almost optimal results
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regarding the hydrogen consumption. Thus, HLCvar is a promising approach if information
about the demanded power Pdem is available beyond the prediction horizon Nh

P. Since per-
fect prediction is assumed in this thesis, the method should be validated with uncertainty
on the power demand prediction. It is expected that the benefit of the HLCvar compared
to the HLCconst decreases but is still significant. Further investigation should be conducted
on how well the method generalizes to other driving cycles.

5.3 Performance of Hierarchical Control

In this section, the hierarchical control including all levels is validated with the plant model
of the FCHV on the WLTC3 scenario. In Section 5.3.1, the deviation of the hydrogen
consumption mH2 is compared to the results of Section 5.2. In Section 5.3.2, the tracking
error of the power references are evaluated. When the HLC and the LLC work corporately,
a decision inertia on the first solution as described in Section 4.4.2 is required. The necessity
is demonstrated in Section 5.3.3 by presenting the results when it is not utilized.

5.3.1 Deviation of Predicted Trajectory

In this section, the deviation of the hierarchical control from the trajectory that is pre-
dicted, when only HLCvar is utilized, is validated. The deviation is caused by modeling
mismatches between the prediction model of the control and the plant model. As intro-
duced in Chapter 3, model mismatches are caused, e.g., by negligence of the air humidity
and estimation of the compressor map.

Table 5.3 presents the deviation between the hydrogen consumption of the complete hier-
archical control compared and the results of the HLCvar. The total hydrogen consumption
mH2,tot and the equivalent hydrogen consumption mH2,eq raise by about 1 % caused by the
modeling errors. Furthermore, the HLCvar only considers a static model of the fuel cell
system even though the power consumption of the compressor deviates during transient
operation. Consequently, the SOC also deviates from the results of the HLCvar. While
HLCvar ends with a final SOC(T ) of 0.57, the hierarchical control ends with a final SOC(T )
of 0.56.

In Figure 5.7a, the SOC trajectories of the HLC and the hierarchical control are compared.
Both controllers follow a similar trajectory for the whole driving cycle. In order to illustrate
it, the error SOCerr is presented in Figure 5.7b. The absolute error always stays below
0.01.

The operating points of the compressor in the plant model are illustrated in Figure 5.8.
Since the controllers are tested with a constant stack temperature Tst and robustification
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Tab. 5.3: Hydrogen consumption and final SOC reference for HLCvar and entire hierarchical
control.

mH2,tot[g] mH2,eq[g] SOC(T )[−]
HLCvar only 318.04 321.40 0.57

HLCvar+ILC+LLC 320.73 324.72 0.56
Deviation +0.84 % +1.03 % −0.73 %
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Fig. 5.7: SOC trajectory of HLCvar compared with entire hierarchical control.

factor ṁrob, the optimal operating line calculated by the ILC is illustrated by the blue line.
The operating points of the compressor are marked with a sampling time of 100 ms by the
green crosses. The deviation from the optimal line is small especially for high corrected air
mass flow rate ṁcr because the WLTC3 driving cycle does not require strong acceleration
or deceleration. Therefore, the compressor has no large operating point changes. The
operating points of the compressor stay within the given surge and choke boundary.

5.3.2 Tracking Error

Another objective of the hierarchical control is to ensure a dynamic power delivery. When
model mismatches are included, the MPC inherently leads to an undesired offset. There-
fore, the LLC includes a disturbance observer that is supposed to compensate for those
model mismatches.

Figure 5.9 illustrates the tracking errors over the whole driving cycle. In Figure 5.9a, the
power demand Pdem is given to illustrate the speed phases of the WLTC3. Subsequently,
the tracking error of the delivered power Pdel,err, the fuel cell system power Pfcs,bus,err and
the battery power Pbat,bus,err are given in Figures 5.9(b-d) respectively. The LLC including
the disturbance observer is given in blue and the LLC without disturbance observer is
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Fig. 5.8: ILC operating line and measured operating points in compressor map.

presented in red.

The disturbance observer improves the tracking error for all power trajectories. The peaks
are due to steps of Pdem and always stay below 1 kW. The root mean square error (RMSE)
of the delivered power Pdel is reduced from 0.26 kW to 0.24 kW by the disturbance observer.
There are two reasons for the low improvement of the RMSE. Firstly, the disturbance
observer can only diminish the offset but not the transient error. Thus, the peaks are still
present and might even increase due to the deadbeat behavior of the chosen disturbance
observer.

Moreover, an undesirable offset error of Pfcs,bus,err can be observed in Figure 5.9c. While
the LLC without disturbance observer has an expected offset error, even the LLC with
disturbance observer shows an offset error. A possible explanation for this behavior is
a wrong prediction of the HLC caused by modeling errors. This is further examined in
Section 5.4.3. Nonetheless, the RMSE of the fuel cell system is decreased from 0.22 kW
without disturbance observer to 0.20 kW.

The RMSE of Pbat,bus,err is decreased from 0.11 kW to 0.07 kW by the disturbance observer.
The reason that the RMSE is not even lower is that the battery compensates for the offset
error of Pfcs,bus,err based on the weightings of qPdel and qPbat,bus in the LLC. This can be
validated by setting qPdel to zero such that PFC,bus and Pbat,bus are not coupled. In this
case, the offset error of Pbat,bus diminishes.

Overall, the tracking error of the hierarchical control is below 1 kW at any time and it has
no large influence on the overall system behavior.
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Fig. 5.9: Tracking error of power values with and without disturbance observer.

5.3.3 Decision Inertia on First Solution of High-Level Control

The NMPC of the HLC penalizes the inertia of the first solution of Pfcs,bus,ref,0 at time
step k to the second solution of Pfcs,bus,ref,1,last at time step k − 1. This is necessary in
corporation with the LLC because the LLC might otherwise prepare for a power step
that finally does not occur. In this section, the implementation of the decision inertia is
motivated by illustrating the impacts of not using it.

In Figure 5.10, the reason for the decision inertia is illustrated at the WLTC3 driving cycle
from 18 s to 22 s. For demonstration purposes, the penalization weight qPfC,0 of the HLC as
described in (4.38) is set to 0. In Figure 5.10a, the delivered power Pdel is illustrated and
follows the reference power Pdem with minimal lag and delay. In Figures 5.10b and 5.10c,
the power split between Pfcs,bus,ref and Pbat,bus,ref is presented. The red, green and orange
dotted lines illustrate the reference values from the HLC for the subsequent 2 s starting at
18 s, 19 s and 20 s respectively. The black dashed lines depict the resulting reference values
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for the LLC that are interpolated by a sigmoid function (compare Section 4.2.1).
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Fig. 5.10: Illustration of impact when HLC runs without decision inertia.

The HLC without decision inertia leads to an unwanted behavior of the power steps. The
problems appear most strongly at 19 s. The prediction of the HLC executed at 18 s Pi,pred,1
predicts a power step from 23 kW to 17 kW at 19 s. As soon as the power step occurs in the
prediction horizon of the LLC, the controller starts preparing for the power step. However,
the new prediction of the HLC Pi,pred,2 is passed to the LLC at 19 s and puts out a reference
power of 23 kW. This leads to the unwanted behavior in the power split. The delivered
power Pdel is not affected because only the power split between the fuel cell system and the
battery changes. This problem is approached by the decision inertia on the first solution
of Pfcs,bus,ref,0. Thus, the problem does not occur in the remaining of this thesis.

Summing up the performance evaluation of the hierarchical control, it can be stated that
the hierarchical control levels can work corporately. The predicted equivalent hydrogen
consumption of the HLC is followed with only 1.03 % deviation. Furthermore, the final
SOC(T ) only deviates by 0.73 %. Those results can be achieved because the LLC is
capable of following the references of the higher level with high accuracy. Finally, it has
been shown that in order to work corporately, a decision inertia in the HLC is required to
prevent undesired power switching between the battery and the fuel cell system.
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5.4 Low-Level Control Evaluation

As mentioned in Section 4.2, the objectives of the LLC include the dynamic power split,
tracking the hydrogen optimized reference points, complying with system constraints and
avoiding excessive actuator changes. In this section, the LLC and the ILC are evaluated
without considering the HLC. Since the dynamics of the WLTC3 driving cycle are too
slow to illustrate the capabilities of the LLC, the short time scale scenario illustrated in
Figure 5.11 is chosen. At 2 s, the driver demands a power step from 2 kW to 50 kW before
doing the reverse power step at 5 s. In Section 5.4.1, the control is validated with and
without predictive information of the power demand Pdem. In Section 5.4.2, the influence
of the robustification factor ṁrob is investigated. The evaluation indicates open points of
the LLC under the influence of modeling errors. In Section 5.4.3 these open points are
illustrated utilizing the LLC predictions. Furthermore, possible solutions are proposed.

5.4.1 Performance under Uncertain Power Demands

In order to illustrate the performance of the LLC, several figures are presented including
the resulting power trajectories of each component, the oxygen excess ratio, the control
inputs and the trajectories in the compressor map. In all cases, the LLC is evaluated with
prediction (in blue) and without prediction (in red).

In Figure 5.11, the power split of the components is illustrated. The delivered power Pdel is
presented in Figure 5.11a, the fuel cell system power Pfcs,bus in Figure 5.11b and the battery
power Pbat,bus in Figure 5.11c. When the prediction is known, Pdel as well as Pfcs,bus and
Pbat,bus follow the reference values precisely. Without prediction, the controller only knows
about the power steps as soon as they occur (marked by the black dotted lines). This
leads to an expected delay of the delivered power Pdel. Furthermore, it can be observed
that Pfcs,bus cannot follow as fast as desired. The reason is that the compressor operates at
the choke and surge boundaries in those cases. Therefore, Pbat,bus has an overshoot during
transient operation in order to compensate for the delay of Pfcs,bus.

In Figure 5.12a, the oxygen excess ratio λO2 is illustrated. The dashed black lines represent
the minimum oxygen excess ratio of the ILC λiO2,min and the minimum oxygen excess ratio
of the LLC λlO2,min. For low Pfcs,bus, λO2 is above 10. The reason is that the corrected
air mass flow rate ṁcr cannot be further decreased due to the surge boundary. The high
values for λO2 are not a problem in this thesis but should be further examined when it
comes to controlling the relative air humidity [40].

Between 2 s and 5 s, the oxygen excess ratio λO2 is close to its minimum value λlO2,min. Thus,
a zoom-in graph is illustrated in Figure 5.12b. When the first power step at 2 s occurs, the
controller operates at the minimal oxygen excess ratio λlO2,min with and without prediction.
Nonetheless, the controller with predictive information only operates for a few milliseconds
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Fig. 5.11: Power split between battery and fuel cell system with and without LLC prediction.

at the boundary, while the controller without predictive information operates half a second
at the boundary. In steady-state both controllers converge to an oxygen excess ratio above
λiO2,min. When the second power step at 5 s occurs, λO2 shows an overshoot in both cases
because the compressor operates at the surge boundary and cannot decrease ṁcr rapidly.
The overshoot is expected because λO2 is not restricted to a maximum value.
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Fig. 5.12: Oxygen excess ratio including zoom-in graph with and without LLC prediction.

In Figure 5.13, the control inputs ul of the LLC are presented. The stack current Ist,
the compressor motor voltage Ucm, the back pressure valve opening position hom and the
battery current Ibat in Figures 5.13(a-d) respectively. The controller including predictive
information prepares for the power steps. For the first power step at 2 s, Ucm is predictively
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increased to its final set point in order to overcome the motor inertia Jcm. hom is lowered
in order to raise the pressure ratio Π without violating the choke boundary. Since Ucm is
increased predictively, Ist has to be increased as well in order compensate for the raising
electrical power consumption of the motor Pcm.

The controller including prediction also prepares for the second power step at 5 s. In order
to release pressure from the system, hom is increased to its maximum and Ucm is decreased.
Thus, Ist is decreased as well. One ought to observe that hom is oscillating when it is
operated at the maximum opening position. In this case, the compressor additionally
operates at the choke boundary. Due to the large penalization term cmin of the LLC, the
mathematical conditioning of the augmented Lagrangian method is low which causes the
oscillating behavior.
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Fig. 5.13: Control inputs of battery and fuel cell system with and without LLC prediction.

The controller without predictive information reacts differently to the power steps. Firstly,
it cannot prepare for the steps and thus starts manipulating the control inputs ul after the
power steps occur. As soon as the controller senses the first power step, it decreases hom
and increases Ucm. However, the compressor is restricted to the choke boundary and thus
cannot increase pressure ratio Π and air mass flow rate mcr rapidly. Due to the limitation
of the oxygen excess ratio λO2 , Ist cannot increase rapidly as well. Caused by the dynamic
power split objective of the LLC, Ibat shows a strong overshoot at 2.5 s which improves the
dynamic power delivery of Pdel.
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When the second power step is sensed, hom is increased to its maximum value rapidly and
Ucm is decreased. Nonetheless, the dynamic is constrained by the surge boundary in this
case. Therefore, Ibat shows an undershoot.

In Figure 5.14, the trajectory in the compressor map is illustrated with and without predic-
tive information. Both trajectories cover a wide range of the compressor map because the
power steps of the chosen scenario are large. Therefore, the compressor needs to operate at
the surge and choke boundary during both power steps. Indicated by the time stamps, it
is illustrated that the trajectory with prediction is always ahead of the trajectory without
prediction. Both trajectories violate the surge boundary for the second power step. This
is caused by modeling errors and is further investigated in Section 5.4.3.
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Fig. 5.14: Trajectory in compressor map during power steps with and without LLC prediction.

5.4.2 Influence of Robustification Factor

In this section, the influence of the robustification factor ṁrob on the dynamic power
delivery and the hydrogen consumption minimization is examined. The LLC scenario is
simulated without predictive information for robustification factors of 20 g/s (in blue) and
40 g/s (in red). The delivered power Pdel is presented in Figure 5.15a, the fuel cell system
power Pfcs,bus in Figure 5.15b and the battery power Pbat,bus in Figure 5.15c.

For both robustification factors ṁrob, the delivered power Pdel is almost identical. However,
the power split between the fuel cell system and the battery differs. If the robustification
factor ṁrob is larger, the unpredicted first power step can be followed with less delay.
Due to the constraint of the minimum oxygen excess ratio λlO2,min, the corrected air mass
flow rate ṁcr has to increase rapidly but it cannot be achieved if the compressor operates
at the choke boundary. With increasing robustification factor ṁrob, the compressor does
not operate at the choke boundary as fast because the steady-state distance to the choke
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boundary is larger. Consequently, the controller with the smaller robustification factor
ṁcr has to utilize the battery more during transient operation. The second power step is
almost identical for both cases. The reason is that the controller is not restricted by a
maximum oxygen excess ratio and thus shows an overshoot (compare Figure 5.12).
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Fig. 5.15: Influence of robustification factor on power split.

In Figure 5.16, the resulting trajectories in the compressor map are illustrated. When the
robustification factor ṁrob is increased, the controller operates at higher pressure ratio Π
and corrected air mass flow rate ṁcr. This leads to the advantage that the distance to the
choke boundary is larger. The controller with smaller robustification factor ṁrob reaches
the choke boundary faster while the controller with larger ṁrob prolongs the curve. For
the second power step, both controllers behave similarly. However, in both cases the surge
boundary is violated. An explanation for this behavior is given in Section 5.4.3.

Overall, the impression arises that an increased robustification factor ṁrob comes with
a low benefit. The only advantage is that the battery is utilized less during transient
operation of a large increasing power step and the compressor operates shorter at the
choke boundary. However, also the hydrogen consumption raises only by 5 % from 3.86 g
to 4.03 g for the LLC scenario due to the increased electrical power consumption of the
compressor. Therefore, it might be beneficial to increase ṁrob, when the power demand
prediction is uncertain (e.g. urban environment) and to decrease it when the prediction is
certain.
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Fig. 5.16: Influence of robustification factor on compressor trajectory.

5.4.3 Influence of Modeling Errors

Analyzing the control performance of the LLC, two open points were pointed out. Firstly,
despite the use of a disturbance observer, an offset in the fuel cell system power Pfcs,bus
can be observed and secondly the surge boundary is violated for large increasing power
steps. When the controller is tested on the prediction model of the LLC, both problems
do not occur meaning that they are caused by the influence of modeling errors. In this
section, possible explanations for both open points are illustrated based on the controller
prediction and possible solutions are discussed.

For the prediction model of LLC, relative air humidity is neglected in Chapter 3. This re-
sults in an underestimate of the pressure values. In Figure 5.17, the compressor trajectories
(in blue) with (a) and without (b) relative air humidity in the plant model are demon-
strated. When the relative air humidity is set to 0 % in the plant model, the compressor
does not violate the choke boundary. Furthermore, the controller prediction (in green) is
accurate. When the air humidity is set to a desired value of 80 % in the plant model, the
prediction quality decreases noticeably. During the violation of the choke boundary, the
controller gives a high penalization and the prediction illustrates that the controller tries
to stay within the feasible region. Nonetheless, due to the imprecise prediction model, the
controller does not achieve it.

In order to approach this problem, two concepts are recommended. Firstly, relative air
humidity can be considered in the prediction model [70]. Secondly, the boundary can be
robustified by reducing the feasible region of the compressor map. This will lead to a loss
of performance but ensures compliance with the constraints.

The second open point occurs for the offset-free tracking of the fuel cell system power
Pfcs,bus. Despite the use of a disturbance observer, an offset in the power tracking remains.
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ṁcr[kg/s]

Π
[-]

Trajectory Prediction

(a) Humidified air

0.02 0.04 0.06

1.5

2
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Fig. 5.17: Trajectory and LLC prediction in the compressor map with and without humidified
air.

Figure 5.18 illustrates the problem for the LLC scenario between 3 s and 4 s where the
system is supposed to be at steady-state. Pfcs,bus stays below the reference power Pfcs,bus,ref
with an offset of 0.022 kW. The controller prediction, however, is similar for each time step
and the controller assumes that it will reach the reference. The same behavior occurs for
the other tracking values of the fuel cell system Π and ṁcr. However, it gives the wrong
inputs to the model due to modeling errors.
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Fig. 5.18: Zoom-in graph of trajectory and LLC prediction for tracked references of the fuel cell
system.
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5.4 Low-Level Control Evaluation

In Figure 5.19, the scaled control inputs ∆u are presented for the prediction at 3.2 s
(indicated by the dotted black line in Figure 5.18). ∆u is nearly zero for the first control
input ∆u0 so that it has reached steady-state. However, it does not stay at zero during
the control horizon because it has not yet reached the reference values. This phenomena
only occurs under the influence of modeling errors.
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Fig. 5.19: Prediction of input derivatives at 3.2 s.

Even though, the offset is small for all tracked variables, it should be further investigated
why this offset may occur. Eventually, the optimization is stuck in a local optimum of the
optimization. This can be approached by varying weighting matrix Rl over the prediction
horizon.

Summing up the results of the LLC, the objectives related to the LLC are fulfilled. The
reference points which are received from the higher levels are tracked precisely. Even
though the offset is not reduced to zero, the remaining steady-state error is negligible for
automotive applications. It has been shown that the LLC can deal with uncertain power
demands utilizing a dynamic power split. In this case, the battery is used to compensate
for the limited dynamics of the fuel cell system. In case that the power demand prediction
is available to the LLC, it can predictively prepare the fuel cell system for the upcoming
power step and follows the reference trajectories with minimal lag and delay. Despite
large decreasing power steps, the controller complies with almost all constraints. In order
to prevent violating the surge boundary, two solution have been proposed. Either the
constraints can be robustified or the accuracy the prediction model can be enhanced.
Finally, the controller avoids excessive actuator changes due to the penalization of the
control input derivatives. The LLC and the ILC have also successfully been tested on the
dSPACE MicroAutoBox II.
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Conclusion

The work presented in this thesis is motivated by the attempt to develop a power man-
agement for an FCHV. This involves the objectives of dynamic power delivery, charge
sustainability of the battery, hydrogen consumption minimization as well as compliance
with system constraints. For these purposes, a hierarchical MPC was proposed which
comprises three levels in order to deal with the objectives on different time scales. The
entire hierarchical control was validated on a detailed model of the FCHV using the WLTC
driving cycle.

The high-level control (HLC) was designed to find the optimal power split between the
battery and the fuel cell system. In doing so, it handles the large time constants of the
propulsion system. Therefore, an NMPC based on a direct method was implemented within
this thesis. The prediction model comprises a steady-state model of the fuel cell system
and only considers for the dynamics of the battery SOC. The evaluation pointed out that
the NMPC with constant final SOC reference suffers from the lack of information about the
power demand beyond the prediction horizon. Consequently, a modification was proposed
that adapts the final SOC reference according to an offline optimization of the driving cycle.
Assuming perfect power demand prediction, the hydrogen consumption is decreased by 5 %
compared to the NMPC with constant final SOC reference. Moreover, it only deviates by
0.2 % from the optimal solution which is attained by dynamic programming.

The intermediate-level control (ILC) was designed to find the optimal operating point
of the air supply utilizing a static optimization. It was demonstrated that the optimal
operating point should not only be chosen in regard to hydrogen consumption but also in
regard to robustness towards uncertain power demands. For that reason, a robustification
factor was introduced which improves the dynamic power delivery of the fuel cell system
but at the same time leads to an increased hydrogen consumption.

The low-level control (LLC) was designed to track reference trajectories received from the
HLC and the ILC. Hence, it needs to deal with the small time constants of the propulsion
system. The control was implemented using an NMPC with the toolbox GRAMPC. The
prediction model includes an accurate model of the fuel cell system including dynamics of
the air supply. In order to speed up the computation time, the required derivatives were
calculated by algorithmic differentiation. Despite the short sampling time of 10 ms, the
NMPC was successfully tested on a dSpace MicroAutoBox II. The LLC implemented in
this thesis manages to track the reference trajectories with minimal lag and delay due to the
predictive behavior and inherent decoupling capability of an MPC. Moreover, it complies
with the system constraints caused by the limited operating range of the compressor and
the prevention of oxygen starvation. The control is even capable to fulfill the objectives
under uncertain power demand predictions by deviating from the reference trajectories to
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relieve the fuel cell system when operating under system constraints.

It was demonstrated within this thesis that the control levels can operate corporately. In
doing so, a decision inertia on the HLC is required such the LLC can handle the received
reference trajectories. The deviation between the entire hierarchical control and the HLC
prediction is only 1.03 % in terms of equivalent hydrogen consumption and below 1 % in
terms of the predicted SOC trajectory.

In summary, the proposed hierarchical MPC is capable of dealing with the challenges
that come with the power management of an FCHV. It manages to provide a dynamic
power delivery and to comply with the system constraints. Furthermore, the control takes
advantage of the redundancy of the propulsion system by choosing the operating point
such that minimum hydrogen consumption and charge sustainability of the battery is
achieved.

Outlook

The evaluation of the HLC identified that the fuel cell system often operates at its minimum
power. This indicates a potential for further improvement by applying start-stop strategies.
Considering these strategies leads to binary variables in the optimal control problem that
cannot be treated by the presented NMPC. The optimization problem can be solved by e.g.
stochastic dynamic programming or mixed-integer programming [55, 77, 78]. Alternatively,
heuristic approaches can handle start-stop decisions [79]. In general, the control should
avoid frequent start-stop switching in order to prevent fuel cell degradation.

The HLC is evaluated based on perfect predictive information. The behavior and opti-
mality of the hierarchical control with uncertain power demand prediction can be further
investigated. Several approaches for power demand prediction based on measurement data
and navigation systems exist [55, 73, 80].

In this thesis, perfect state measurements are assumed which is not applicable to real-
world scenarios. A nonlinear state estimator such as an extended Kalman filter, unscented
Kalman filter or sequential Monte Carlo filter is required [68, 69]. Measurement values
that are available for the state estimation consist of pressure, air mass flow rates and
temperature in the inlet and outlet manifold [68].

Another essential objective that should be taken into account by the hierarchical control
scheme is air humidification. The relative air humidity in the cathode must be carefully
regulated in order to prevent the fuel cell from flooding or dehydration. The compressor has
a large influence on the control, since the dew point of air depends on the system pressure
and temperature [3, 35, 41]. Therefore, it is suggested to consider air humidification in the
operating point optimization of the ILC. Moreover, the extent to which air humidification
restricts the dynamic power delivery of the fuel cell system should be investigated.
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A.1 Fuel Cell Hybrid Vehicle Parameter

Tab. A.1: Vehicle parameter

Parameter Symbol Value

Vehicle mass mvec 1925 kg
Drag coefficient cw 0.29
Reference area Avec 2.26 m2

Rolling resistance coefficient fR 0.007
Moment of inertia Θvec 3.6 kg m2

Electric motor efficiency ηmot 0.95
Gear efficiency ηgear 0.97

Tab. A.2: Parameters of fuel cell electrochemistry

Parameter Description Value

Activation loss parameters ξ1 −0.93 V
ξ2a 2.86× 10−3 V/K
ξ2b 2× 10−4 V/K
ξ2c 4.3× 10−5 V/K
ξ3 1.0× 10−6 V/K
ξ4 −1.9× 10−4 1/K

Active cell area Acell 280 cm2

Concentration loss parameters mconc −0.0103 1/A
nconc 0.0059 V

Membrane water content λM 12.5
Membrane thickness δM 2 mm
Number of elementary cells nfc,cell 381
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Tab. A.3: Parameters of air supply

Parameter Description Value

Manifold volumes Vim 0.02 m3

Vcat 0.0053 m3

Vom 0.005 m3

Linearized flow constants kcat,in 0.0036 g/(Pas)
kcat,out 0.0021 g/(Pas)

Nozzle parameters Cd 0.0124
At 1 cm2

Compressor parameters Jcm 0.05 g/m2

ηcm 0.98
kT 0.0153 Nm/A
Rcm 0.816 Ω

Tab. A.4: Parameters of battery

Parameter Description Value

Battery storage capacity Q 6.5 A h
Number of packs in battery npacks 34
Number of cells per pack nbat,cell 6
Exponential zone amplitude A 111 mV
Exponential zone time constant inverse B 2.3 1/Ah
Internal resistance Ri 2 mΩ
Polarization constant K 9.1 mV
Constant voltage E0 1.28 V
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A.2 Control Parameter

Tab. A.5: Parameters of the high-level control.

Parameter Symbol Value
Sampling Time T h

S 1 s
Control horizon Nh

C Same as Nh
P

Prediction horizon Nh
P Investigated in Chapter 5

SOC reference SOCref(Nh
P) Investigated in Chapter 5

Cost weights qSOC Investigated in Chapter 5
qPlhv 0.001
qS,Pfcs 10000
qS,SOC 10000
qPfcs,0 1
rPfcs 0.0001
rPbat 0.0001

System constraints Pfcs,bus,ref,min 2 kW
Pfcs,bus,ref,max 42 kW to 46 kW (depends on Tst)
Pbat,bus,ref,min −35 kW
Pbat,bus,ref,max 35 kW
SOCmin 0.4
SOCmax 0.8

Tab. A.6: Parameter of the intermediate-level control.

Parameter Symbol Value
Constraints λiO2,min 1.7

Πrob 0.15
ṁrob Investigated in Chapter 5

Offline lookup table ranges Tst 20 ◦C to 90 ◦C
ṁrob 0 g/s to 40 g/s
Pfcs,bus 2 kW to 50 kW (dependent on Tst)
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Tab. A.7: Parameters of the low-level control.

Parameter Symbol Value
Sampling Time T lS 10 ms
Control horizon N l

C 80
Prediction horizon N l

P 80
Weights on reference tracking qPdel 0.1

qPfcs,bus 0.03
qPbat,bus 0.01
qṁcr 200
qΠ 100

Weights on actuator changes rIst 0.01
rUcp 0.01
rhom 0.01
rIbat 0.01

Choice of constraints λlO2,min 1.5
ISt,min 5 A

Minimum penalty cmin 1000
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A.3 Air Supply Coupling Analysis

For the air supply coupling analysis, the fuel cell system model is linearized in several
operating points of the compressor map by Taylor expansion. The resulting linear state-
space system has the following form:

ẋ(t) = Ax(t) + Bu(t) (A.1)
y(t) = Cx(t) + Du(t) (A.2)

The matrix A,B,C and D can be found by utilizing Taylor expansion as given in (A.3).
The operating point (uop,xop) is found by solving the nonlinear steady-state model of the
fuel cell system with a fixed operating point in the compressor map (ṁcr,Π) and an oxygen
excess ratio λO2 of 2.

A = df(x(t),u(t))
dx |uop,xop B = df(x(t),u(t))

du |uop,xop

C = dg(x(t),u(t))
dx |uop,xop D = dg(x(t),u(t))

du |uop,xop

(A.3)

In Table A.8, three representative operating points are chosen in order to analyze the
system. They are located in different areas of the compressor map. The eigenvalues λmin
and λmax are far apart from each other indicating a stiff system.

Tab. A.8: Representative operating points for analysis of linearized system.

OP Pfc,net[kW] Π[−] ṁcr[kg
s ] λO2 [−] λmin λmax

1 4.12 11 1.2 0.018 8 −0.67 −147.59
2 30.86 1.7 0.04 2 −1.20 −145.83
3 49.17 2 0.055 1.6 −1.45 −146.40

The transfer function of the MIMO system of the air supply in the frequency domain is
given in (A.4). Inputs to the system are the compressor voltage Ucp and the back pressure
valve opening hom and the outputs are the air mass flow rate ṁcr and the pressure ratio
Π.  ṁcr

Π

 =
G11(s) G12(s)
G21(s) G22(s)


︸ ︷︷ ︸

G(s)

 Ucp

hom

 (A.4)

The relative gain array can be used to quantify the air supply coupling [81]. The steady-
state RGA is calculated by (A.5). The columns of the RGA matrix relate to the inputs
and the rows relate to the outputs. The results for a few operating points are presented
in Table A.9. All entries of the RGA are positive for the air supply. Thus, if the values
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are distributed evenly (close to 0.5), it indicates strong coupling. If one value is close to 1
and the others are close to 0, it indicates weak coupling.

The compressor flow ṁcr and pressure ratio Π controlled by the compressor voltage UCp
and hOM are strongly coupled. From the table, it can be seen that the influence of the
compressor voltage Ucp on ṁcr rises with increasing ṁcr and decreasing Π (indicated by a
rising value of the upper left entry). In contrast, the influence of the back pressure valve
opening hOM on the pressure ratio Π rises with increasing ṁcr and decreasing Π (indicated
by a rising value of the lower right entry).

RGA = G(0) ·
(
G−1(0)

)T
(A.5)

Tab. A.9: Relative gain array for different operating points in the compressor map.

ṁcr Π = 1.7 ṁcr Π = 2

40 g/s
0.32 0.68

50 g/s
0.33 0.67

0.68 0.32 0.67 0.33

50 g/s
0.43 0.57

60 g/s
0.44 0.56

0.57 0.43 0.56 0.44

60 g/s
0.56 0.44

70 g/s
0.57 0.43

0.44 0.56 0.43 0.57

Figure A.1 illustrates how the coupling varies for different operating points in the com-
pressor map. The color illustrates the distance of the diagonal elements to 0.5. Therefore
a low value indicates a high coupling and a large value indicates low coupling.
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Fig. A.1: Coupling analysis of reduced air mass flow rate and pressure ratio based on relative
gain array.
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A.4 Sigmoid Reference Interpolation

The largest coupling is in the middle of the compressor map. The results differs from the
analysis by Zhao et al. [35]. However, their fuel cell system is analyzed for low pressure
ratio Π and air mass flow rate ṁcr. Moreover, the conclusion is the same in the sense that
a decoupling control is necessary.

A.4 Sigmoid Reference Interpolation

In this thesis, a interpolation based on sigmoid functions is proposed. It is similar to the
zero-order hold approach, but increases the mathematical conditioning for the optimal
control problem at the time of a operating point change.

The value for a single reference trajectory denoted by the subscript j at time step kl is
given by (A.6). The formula is illustrated in Figure A.2 for a single reference trajectory.
The black dashed line represents the reference trajectory passed from a higher level yhref(·).
The red dotted line illustrates the influence of a single reference value yhref,j(kh) on the
trajectory of the LLC ylref,j(·) which is described by (A.6b). The blue solid line presents
the resulting trajectory from the LLC and is described by (A.6a). The summation runs
from kh = −1 until kh =

⌈
N l
p
T lS
ThS

⌉
which is the upper bound of the prediction horizon of

the LLC. It is worth noticing that the summation starts at kh = −1 which means that the
last value of the HLC output has to be stored.

∆t determines the steepness of the sigmoid function and is the only design parameter of the
interpolation method. It is set to 20 ms which means that the step is completed by 66.7 %
at that time. For ∆t→ 0, the sigmoid interpolation converges against the zero-order hold
interpolation.

ylref,j(kl) =

⌈
TlS
ThS
·N l

P

⌉
∑

kh=−1
ylref,j(kl|kh) (A.6a)

ylref,j(kl|kh) =
yhref,j(kh)

1 + exp

kl−kh
ThS
TlS

∆t


− yhref,j(kh)

1 + exp

kl−(kh+1)
ThS
TlS

∆t


(A.6b)

In order to reduce the computational cost, (A.6) can be rewritten in matrix from. In (A.7)
the reference trajectory yhref,j(kh) from (A.6b) is factored out such that f(kl|kh) is only
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Fig. A.2: Detailed reference trajectory interpolation from the HLC to the LLC.

dependent on kl and kh.

ylref,j(kl|kh) = yhref,j(kh)


1

1 + exp

kl−kh
ThS
TlS

∆t


− 1

1 + exp

kl−(kh+1)
ThS
TlS

∆t




︸ ︷︷ ︸

f(kl|kh)

(A.7)

(A.7) can be inserted into (A.6a).

ylref,j(kl) =

⌈
TlS
ThS
·N l

P

⌉
∑

kh=−1
yhref,j(kh)f l(kl|kh) (A.8)

Equation (A.8) gives the reference of the LLC ylref,j(kl) for one point in time kl. Applying
this formula to the whole trajectory ylref,j(.), it can be written in matrix form by (A.9). The
resulting matrix M can be precalculated offline because it is independent of the trajectory
yhref,j(·).

ylref,j(·) = Myhref,j(·)

M =


f l(0| − 1) f l(0|0) . . . f l(0|

⌈
T lS
ThS
·N l

P

⌉
)

... ... . . . ...
f l(N l

P| − 1) f l(N l
P|0) . . . f l(N l

P|
⌈
T lS
ThS
·N l

P

⌉
)


yhref,j(·) =

[
yhref,j(−1) yhref,j(0) . . . yhref,j(

⌈
T lS
ThS
·N l

P

⌉
)
]T

(A.9)
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A.5 Influences of the Fuel Cell System Operating Point
on the Efficiency

According to Larminies et al. [4, Chapter 4], the benefit of a pressure rise is conducted
in this section for the given fuel cell system. Therefore, the impact of rising the pressure
from nominal conditions p0 to a pressure p1 is conducted. Furthermore, it is assumed the
the inlet pressure pIM equals the cathode pressure pcat and the air mass flow rate mcr as
well as the stack current Ist stay constant.

1. Electrical power consumption of the compressor: The electrical power con-
sumption of the compressor depends on the pressure ratio Π = p1

p0 as given in (A.10).
Pcm equals ∆Pcm because the pressure is raised from nominal conditions. The deriva-
tion can be found in Appendix A.6. The compressor efficiency ηcp is higher in the
middle of the operating range and decreases towards the choke and surge boundaries
of the compressor map (compare Figure 2.4).

Pcm = ∆Pcm ≈ cp
Tcp,in

ηcmηcp(Π, ṁcr)
(Π

γ−1
γ − 1)ṁcr (A.10)

2. Fuel cell efficiency: The stack power raises with increasing pressure p1 as given
in (A.11) due to the rising reversible voltage Erev and the reduced activation loss
∆Uact. The formula is derived in Appendix A.7.

∆Pst ≈ ISt

(3RuniTst
4F + ξ2cTst + ξ3Tst

)
· ln(p1

p0 ) (A.11)

The power gain ∆Pgain of increasing the pressure can be stated as given in (A.12) whereat
a pressure gain greater than zero indicates a benefit. According to Larminies et al. [4],
the gain of increasing the pressure strongly depends on the depicted fuel cell system.

∆Pgain = ∆Pst −∆Pcm (A.12)

The derived formulas give a valuable insight to the impact of the fuel cell system operating
point on the fuel cell efficiency ηfcs,bus. E.g., it can be seen that the power gain ∆Pgain
increases for raising stack temperature TSt and electrochemical coefficients ξi. In order to
get the quantitative evaluation of the efficiency ηfcs,bus depending on the operating point
of the fuel cell system, a numerical analysis is conducted in Section 4.3.1.
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A.6 Electrical Power Consumption for Pressure
Increase

Increasing the pressure ratio across the compressor leads to an increasing electrical power
consumption. In this section, the derivation for the results shown in (A.10) is presented.
According to the model of the electric motor in Figure 3.2, the compressor voltage Ucp can
be described as follow:

Ucp = IcmRcm + kTωcp (A.13)

The electrical power consumption as given in (3.22) can be reformulated by (A.14). The
motor resistance Rcm is small such that the second term is dominant. Thus, the first term
of the electrical power consumption Pcm is neglected.

Pcm = UcpIcm = I2
cmRcm + IcmkTωcp ≈ IcmkTωcp (A.14)

According to (3.14), the generated motor torque τcm equals the required compressor torque
τcp for steady-state.

τcm = ηcmkTIcm = τcp = cp
Tcp,in
ωcpηcp

(Π
γ−1
γ − 1)ṁcr (A.15)

The equation can be solved for Icm as given in (A.16) and substituted in (A.14) as stated
by (A.17).

Icm = cp
Tcp,in

ηcmkTωcpηcp
(Π

γ−1
γ − 1)ṁcr (A.16)

Pcm ≈ cp
Tcp,in
ηcmηcp

(Π
γ−1
γ − 1)ṁcr (A.17)
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A.7 Stack Power for Pressure Increase

When the cathode pressure pcat is increased, the efficiency of the fuel cell stack increases.
In this section, the derivation of A.11 is given.

The voltage Ufc increases when the cathode pressure pcat increases caused by two influences.
Firstly, the reversible voltage Erev in (3.5) raises and secondly the activation loss in (3.7)
reduces. According to (3.6), the reversible voltage can be described by (A.18) with pH2 =
pcat. Thus, we reformulate Erev such that the cathode pressure pcat is extracted.

Erev = E0
rev − kt

(
Tst − T 0

)
+ RuTst

2F · ln
(
pcat ·

√
pO2

)
= E0

rev − kt
(
Tst − T 0

)
+ RuTst

2F · ln
(
pcat ·

√
XO2,outpcat

)
= E0

rev − kt
(
Tst − T 0

)
+ 3RuTst

4F · ln (pcat) + RuTst
4F · ln (XO2,out)

(A.18)

The same reformulation can be done for the activation loss which is stated in (3.7) and
(3.8). Thereby, only terms that relate to the cathode pressure pcat are considered denoted
by ∆Uact,pcat .

∆Uact,pcat = − ξ2cTst ln
(
pcat9.174 · 10−7 exp

(−77
Tst

))
− ξ3Tst ln

(
XO2,outpcat1.97 · 10−7 · exp

(498
Tst

))
= − ξ2cTst ln (pcat) + ξ2cTst ln

(
9.174 · 10−7 exp

(−77
Tst

))
− ξ3Tst ln (pcat) + ξ3Tst ln

(
XO2,out1.97 · 10−7 · exp

(498
Tst

))
(A.19)

The value of interest is the change in fuel cell voltage ∆Ufc when pcat is increased from
p0 to p1. Therefore, all constant term can be neglected and ∆Ufc is as given in (A.20)
according to (3.4). Thereby, it is assumed that the output mole fraction of oxygen XO2,out
is independent of the cathode pressure pcat.

∆Ufc ≈
(3RuniTst

4F + ξ2cTst + ξ3Tst

)
· ln

(
p1

p0

)
(A.20)

The change in stack power it is proportional to Ufc by the stack current Ist as given in
(3.2).

∆Pst ≈ Ist

(3RuniTst
4F + ξ2cTst + ξ3Tst

)
· ln

(
p1

p0

)
(A.21)
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A.8 Further Results of High-Level Control Parameter
Evaluation
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Fig. A.3: MPC parameter evaluation on NEDC driving cycle.
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Fig. A.4: MPC parameter evaluation on Japanese 10-15 driving cycle.
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