
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 9, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Honeypot for wireless IoT networks

 Student: Bc. Simon Štefunko

 Supervisor: Ing. Tomáš Čejka, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Systems and Networks

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

Study the state-of-the-art of hardware and software tools for receiving, processing, and transmitting signals
of wireless protocols for Internet of Things (IoT).
Focus on possibilities how to use commonly available hardware devices and Software Defined Radio (SDR)
technology.
Based on discussion with the supervisor, choose a wireless protocol that will be analyzed in details in this
thesis.
Design a prototype of an "IoT honeypot" using the SDR; this honeypot will allow to monitor, store, and
answer to the wireless communication like any other legitimate device.
Implement the IoT honeypot and test it with the available set of IoT devices/sensors (supplied by the
supervisor).
Create data sets of legitimate communication of IoT devices using the developed device.

References

Will be provided by the supervisor.





Master’s thesis

Honeypot for wireless IoT networks

Bc. Simon Štefunko

Department of Digital Design
Supervisor: Ing. Tomáš Čejka, Ph.D.

May 7, 2019





Acknowledgements

At first I would like to thank my thesis supervisor Ing. Tomáš Čejka, Ph.D.,
Faculty of Information Technology at Czech Technical University in Prague.
The door to Tomáš Čejka office was always open whenever I ran into a trouble
spot or had a question about my research or writing. He steered me in the
right the direction whenever he thought I needed it.

I would also like to thank my parents and my girlfriend for providing me
with unfailing support throughout my years of study. This accomplishment
would not have been possible without them. Thank you.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 7, 2019 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Simon Štefunko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Štefunko, Simon. Honeypot for wireless IoT networks. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.



Abstrakt

Ciele tejto práce ležia v teoretickej analýze konceptu Internet vecí (IoT) a
jeho bezpečnostných problémov, praktickom výskume a vývoji nového unikát-
neho zariadenia zvaného “IoT honeypot”. Analytická časť práce sumarizuje
existujúce hardvérové a softvérové riešenia, a sústredí sa na technológiu Soft-
vérom definovaného rádia (SDR), ktorá bola použitá na vývoj IoT honeypot-u.
Vyvíjaný prototyp v súčasnosti podporuje rozšírený Z-Wave protokol. Avšak,
dizajn je dosť univerzálny na to, aby v budúcnosti podporoval ďalšie IoT
protokoly. Motiváciou tejto práce bolo vytvoriť zariadenie, ktoré dokáže
zbierať informácie o IoT komunikácii, detegovať potenciálnych útočníkov, a
pôsobiť ako návnada, ktorá komplikuje útočníkom objaviť a prebrať kon-
trolu nad skutočnými nasadenými IoT zariadeniami, ako sú senzory, spínače,
a podobne. Výstupom tejto práce je funkčný IoT honeypot, ktorý podporuje
viacero režimov fungovania (napríklad pasívny alebo interaktívny režim), a
môže byť nasadený ako súčasť Z-Wave infraštruktúry. Predstavuje komple-
ment k ostatným bezpečnostným nástrojom a mechanizmom, ktoré zvyšujú
úroveň bezpečnosti IoT infraštruktúry.

Klíčová slova IoT, SDR, honeypot, Z-Wave
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Abstract

The goals of this thesis lay among theoretical analysis of the Internet of Things
(IoT) concept and its security issues, and practical research and development
of a new unique device called “IoT honeypot.” The analytical part of the
thesis summarizes existing hardware and software solutions and concentrates
on Software Defined Radio (SDR) technology, which was used for the de-
velopment of IoT honeypot. The developed prototype currently supports a
wide-spread Z-Wave protocol. However, the design is universal enough to sup-
port other IoT protocols in the future. The motivation of this thesis was to
create a device that can collect information about IoT traffic, detect potential
attackers, and act as a decoy that complicates attackers to discover and hack
real deployed IoT devices, such as sensors, switches, and so on. The result of
the thesis is a working IoT honeypot that supports multiple modes of opera-
tion (such as passive or interactive mode), and that can be deployed as a part
of a Z-Wave infrastructure. It is as a complement to other security tools and
mechanisms that increase the security of IoT infrastructure.

Keywords IoT, SDR, honeypot, Z-Wave
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Introduction

The Internet of Things could be described by many definitions. Most of them
describe the Internet of Things as a concept of connecting everyday objects to
a network using embedded devices. The main reason for this approach is to
build smart systems composed of information-gathering nodes, usually called
sensors, and nodes which can to interact with the environment. This could
lead to smarter adaptation based on data gained from the real world. The
phrase “Internet of Things” was likely first mentioned in 1999 by a British
technology pioneer Kevin Ashton, as he explained in [1].

The total number of connected IoT devices has been estimated at 7 billion
in 2018. The Internet of Things market has recently experienced rapid accel-
eration. We expect an increase in the number of devices to 10 billion by 2020
and 22 bilion by 2025, as IoT Analytics GmbH has predicted in [2].

There are several ways of building an IoT network. Individual IoT net-
works may vary in their architecture, topology, hardware components, way of
communication, software application and usage. However, some design fea-
tures are common to most architectures. A node usually has a micro-controller
unit, a communication unit, one or several sensors or actuators and a power
supply.

The IoT nodes need to be able to perform modulation and demodula-
tion of signals to achieve wireless communication. For research, development,
and experiments, it is useful to use some universal hardware components and
software solution to set up modulation and demodulation pipeline for signal
processing. This concept is usually called Software Defined Radio (SDR).
According to [3] the SDR is a system, which provides these functions using
a software and a few hardware components. A universal tool like this may
provide functionality usable in IoT networks, but it also brings new ways to
compromise security.

This thesis aims to create a honeypot device for IoT network. The term
honeypot means it is a system or a part of a system that looks seemingly
vulnerable to a potential attacker, but the main purpose for this decoy is to
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Introduction

capture attacks, log information about them and entice a potential hacker.
A honeypot will also make the attackers think twice about executing their
attack, as it may be confusing and scary for the hacker. One of many ways
to increase the security of IoT is to use an IoT honeypot that is attractive
enough for the attacker and representative of the IoT context, as has been
described in [4].

The main goals of this thesis are focused on analyzing and improving IoT
security. It should never be underestimated, because the successful attacks
may cause devastating consequences in every sphere of our lives nowadays
and especially in the future. Our mission is to ensure technologies to be reli-
able enough. Civilization without that is not prepared for such a great impact
as the IoT will bring. After all, building IoT networks and interconnecting
everyday objects means a partial transfer of control over our lives to technolo-
gies. Capturing the traffic of a popular smart home IoT protocol may lead to
its analyzing and anomaly detection.

One of the main results of this thesis is a prototype of an IoT honeypot,
which is able to perform such activity. Besides capturing, it should also fulfill
other functionality of a honeypot – being attractive for an attacker. Penetra-
tion tests of a selected smart home protocol should also provide information
about the availability of all components used for attack, poor security stan-
dards and the evidence of a threat. This thesis deal with IoT security mainly.
Flaws of popular IoT protocols for home automation open many ways how to
compromise its security. IoT honeypot is one of a few approaches to ensure
detection and prevention against real attacks and therefore it should be used
primarily for vulnerable technologies available in the real world and the mar-
ket. However, there is a lack of usage of this type of security element and this
thesis discusses the design of IoT honeypot for a popular home automation
protocol.

Main goals of this thesis are the analysis of existing threats that IoT
brought, vulnerabilities of the Z-Wave protocol and usage of the SDR technol-
ogy within smart devices. The output of this thesis is also the implementation
of the IoT honeypot, which can be used for luring attackers and threat de-
tection on Z-Wave networks. Chpt. 1 describes available standard software
and hardware tools that support the IoT concept. Analysis of the protocol
Z-Wave, SDR tools usable for penetration testing and existing IoT honeypots
is described in Chpt. 2. Chpt. 3 includes the design of the architecture of the
IoT honeypot, description of its main components, methods and functions.
Chpt. 4 explains implementation of the IoT honeypot according to its design.
This chapter also summarizes various tools, which were used for implementa-
tion. Tests scenarios and results are summarized in Chpt. 5. The conclusion
in Chpt. 5.5 discuss achieved results and further potential improvements.
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Chapter 1
State-of-the-art

1.1 Internet of Things

The term “Internet of Things” was first mentioned publicly by Kevin Ashton
in 1999. He explained his perception of this concept later in [1] in 2009. He
considered all data on the Internet to be information and ideas cumulated by
people. His vision was to empower computers to gather information about
the real world on their own. Sensors could help computers to understand
and observe the real world without the limitations of human-entered data.”
Kevin also believes that the Internet of Things will be able to bring changes
comparable to the scale of changes the Internet itself has brought.

1.1.1 Description

Several definitions of the term “Internet of Things” can be found. Most of
them describe the IoT as an idea of connecting everyday objects to the Inter-
net. Such activity has multiple purposes. Sensors are used for a smarter and
precise gathering of information. Simply, It is better to get as much relevant
information as possible. Conversion of information from analog to digital al-
lows applying appropriate data processing, which may lead to a reaction. The
Internet of Things does not include only sensor nodes, but also actuators.
Thus its abilities exceed the perception and allow influencing the real world.

The architecture of the IoT according to [5] consists of three main layers.
The bottom layer includes all kinds of information gathering nodes and actu-
ators. This kind of devices provides an ability to the IoT to perceive the real
world. The main purpose of the bottom layer is to simply gather as much
relevant information as possible although many end nodes are devices with
low power consumption. A lot of them use batteries as a power supply. It
is quite usual for a sensor node to wake up once three hours, perform some
measuring activities and send data through messages to upper layers. There
are several technologies that allow node collaboration in local and short-range

3



1. State-of-the-art

Figure 1.1: Three-layer architecture of the IoT [5]

networks. This layer is usually called Perception layer.
The middle layer is responsible for the bidirectional transmission of mes-

sages. According to [6], the major components of this layer are all kinds
of connections, network management systems, and the Internet. There are
typically transceivers, gateways, wired and wireless connections and common
network elements. The IoT concept brings a lot of new use cases that would
be absurd without wireless communication. For example, a simple network
of nodes that are measuring soil moisture on a field does not seem to be as a
good idea with a wire interconnecting some gateway with all the nodes. Thus
there is the possibility of usage of electromagnetic waves to transmit data.
This layer is called Network layer and provides heterogeneous systems mainly
for transmission, but also for example for data filtering and data aggregation.
Well-known technologies like Wi-Fi, LTE, 3G, Bluetooth, Zigbee [7], which
are compared in [5], cloud computing platforms with an example in [8], Lo-
RaWAN [9] and Z-Wave [10] are indispensable parts of the Network layer of
the IoT nowadays.

Data processing is mainly executed in the top layer of this simple view
of an IoT architecture. However, there are no boundaries that would require
compliance with this architecture. Devices with a built-in user interface or
systems, where some functionality of a server is decentralized between multi-
ple gateways using [11], remains. This layer, according to [6] usually called
Application layer, should guarantee data authenticity, data integrity, and data
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1.1. Internet of Things

confidentiality. Common application protocols allow interprocess communica-
tion using ports. Some popular application layer protocols are for example
MQTT, HTTP, web socket and AMQP.

Trying to map IoT protocols on existing architecture models like the OSI
model would become pointless. Also, the IoT has brought many new applica-
tions and smart use cases, but with many constraints. For example, devices
using wireless communication usually supplied by batteries are expected to
use protocols that ensure low-power computational complexity. Another ex-
ample is a short range of radio waves used during wireless communication.
All these constraints require protocols that provide efficient management of
these conditions. Communication protocols in the context of the IoT may be
divided into two major groups.

LPWAN stands for low power wide area networks. Sigfox [12], LoRaWAN
[9] and Cellular [13] are main communication protocols in the context of the
IoT, which are suitable for a distance of dozens of kilometers. A comparison
can be found in [14]. Several use cases in [15] teach us, that usage of these
technologies are reasonable. One packet per day is a common message send-
ing frequency for smart metering of water, gas or electricity. However, this
information is valuable, accessible from long distances and it is not necessary
to read it from built-in meters anymore. A lot of energy would be saved using
smart street lighting and frequency would be a few packets per night. There
are many more use cases, like smart parking or vehicle fleet tracking.

Due to physical and legislative constraints, we need to use multiple ways of
communication [16]. That is the reason, why IoT networks with short-range
exist, even if we could use LPWAN. One of the most popular short-range pro-
tocols is 6loWPAN [17]. This protocol connects low power IP driven nodes to
cloud systems and works with IPv6 packets carried in small link layer frames.
Jonas Olsson has explained in [17] IP technology may be considered as its ma-
jor advantage. ZigBee is also a popular protocol in a group of short-range IoT
protocols. ZigBee is described in [18] as a protocol that may be used for low
cost personal high-level networks for a short range and for data transmission
for longer distances at the same time. It is suitable for applications, where
the long battery life and low data rate are required. Besides star topology,
ZigBee can also use a mesh and a tree topology of a network. Essential pro-
tocol for the IoT is BLE. Unlike classic Bluetooth, BLE is intended for low
power usage. A low latency ensured by this protocol may be an advantage
in many IoT applications. Kevin Ashton has explained in [1] that RFID has
also included in initial ideas of the IoT: “RFID and sensor technology enable
computers to observe, identify and understand the world - without the lim-
itations of human-entered data.” RFID [19] provide a simple tagging using
unique information programmed to tags for shopping, health care, security,
agriculture and many more.

The concept of the Internet of Things is well-known nowadays. There
are many ways of achieving benefits from this concept. Many various hard-
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ware tools, software applications, and protocols have been designed thanks
to bright predictions about the IoT. IoT networks usually consist of many
various devices. The architecture of nodes should be optimized for its pur-
pose. However, there still are some common design features preserved in all
IoT devices. A typical IoT node consists of one or several processors, sensors
or actuators, a communication module, and a power supply. Nodes typically
communicate with some more complex gateways or with each other. Selec-
tion of devices depends on the application. The market offers a wide range of
devices. Unfortunately, there are several factors that can cause design flaws,
as was explained in [15].

1.1.2 Hardware and software

The number of IoT providers is growing. Nowadays it is much easier to build
an IoT application. Everything the regular user has to do is to build or buy
an end device which can be connected to the provider’s network. The market
offers ready-made nodes for easy usage, which provides special functionality.
Using these nodes usually doesn’t require special knowledge of protocols and
programming. On the other hand, the possibility of building something from
scratch remains. Such a decision likely brings more flexibility and responsibil-
ity. Of course, it depends on the design. Buying a popular micro-controller
with a prepared communication module can be still considered easy to use.
However, implementing, for example, a custom protocol may become an un-
necessarily time-consuming activity.

It is difficult to predict the relationship between market and research, but
according to [20] standardization for IoT is expected. However, the term
“Internet of Things” is still considered equivocal. The ambiguity is caused by
differences among multiple architectures and perspectives. The variability of
IoT allowed in [21] software solutions to be assembled into multiple classes.
The classes could be sorted for example by a level of complexity of a software
solution. The lowest class represents devices at the end of the network, which
have a built-in user interface. Conversely, devices of the highest class can also
provide independent conduct without human interaction. IoT solutions can
be distinguished from the lowest software layers. Some of them consist only
of software libraries to ensure the unencrypted communication, and the other
include sophisticated repeating mechanisms and encryption. Some of them
are platform-dependent, and the others are not.

End devices most commonly use wireless communication. There are many
types of wireless communication, and all have one feature in common - trans-
mission of information through the air by using electromagnetic waves without
requiring any wires. SDR is a technology, which replaces hardware compo-
nents with software blocks, as was explained in [3]. These software blocks are
responsible for modulation and demodulation of a signal. How it processes a
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signal is a question of configuration, so SDR brings more flexibility to wireless
communication.

Network attacks are reaching a new level, and according to IoT predictions,
the impact of a successful attack on the IoT network would be devastating.
A probability of a wireless attack and its availability increases thanks to tech-
nologies such as the SDR rapidly. An example may be found in [22]. There are
multiple ways to protect our devices and detect any suspicious activity. One
of these ways is the usage of a honeypot. Generally, a honeypot is a system or
a part of a system, which is used as a decoy. A honeypot may also represent a
trap also in a context of IoT networks, and there are several solutions of IoT
honeypot [23, 24, 25].
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Chapter 2
Analysis

This chapter includes analysis of available tools for the IoT, the protocol
Z-Wave, usage of the SDR technology for penetration testing and existing
solutions of the IoT honeypot element.

2.1 Available tools for the IoT
Current technologies allow us to connect to IoT networks in several ways.
The most simple way is to buy prepared products from certain manufacturers,
do the pairing process and minimal configuration of applications. Usage of
a micro-controller may be suitable for a more advanced user. The market
offers ready-made communication modules, so call shields, which can be just
connected to an appropriate micro-controller. The complexity of this end-
device is up to the user. User can build a simple sensor reporting its values
periodically, or smart, complex actuator with multiple sensors with a custom
protocol. The other side of communication, usually gateway or controller, is
necessary of course. There are several ways how to build an application. The
standard procedure is to send all the data to the cloud because a steep increase
in devices is expected in the future. An example of the whole system may
be the usage of Arduino Uno [26] with multiple sensors and a LoRa Dragino
Shield [27] as an end-device, using a LoRa gateway [28] and a LoRa server [29]
able to handle the communication. Usage of LoRa@FIIT [11, 30] and STIOT
[31, 32] protocols may be another example with a functional decentralization
from a server to multiple gateways.

There are many IoT providers, who offer connectivity using various tech-
nologies and cloud. Paying a reasonable amount of money to a provider may
be an efficient way, how to satisfy needs for IoT network without buying
more expensive hardware for gateways. Everything, what user needs nowa-
days may be only a sensor node able to measure and transmit information to
providers gateway. Cloud and web pages prepared for efficient usage allows
simple handling with data. Bright prediction [2, 33] about the growing number
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2. Analysis

of connected IoT devices also brings many questions about the final impact
of this change to our lives. Letting smart devices and systems think for us
and control our world for us requires trust, which may be achieved by quality
security at every layer. Wireless communication allows almost everyone with
suitable hardware to try to sniff the communication. Thanks to encryption,
identification and secure key exchange are ensured the main needs of security.
However, flaws have been found on many protocols and technologies after the
mass selling of unsecured products. The attacks should be detected since the
beginning – at the lowest layer.

2.1.1 Z-Wave

The concept of a smart home is based on metering using sensors and remote
controlling of everyday objects. Besides these main activities, collecting data
for analysis and more efficient automation has great expectations. A smart
home needs protocols. Protocols usually define rules between interconnected
devices, which ensure proper communication using messages. Z-Wave, created
by the Danish startup Zensys [34], became one of the most popular protocols
used for home automation. However, they can act as repeaters during the
active state. Slaves supplied by batteries are not able to listen continually, so
controllers calculate routes without including them. There are several types
of slave nodes, but generally, the Slave node type receives frames and replies if
necessary. An example is a power outlet. Other roles of controllers and slaves
are defined as explained in [35].

Z-Wave is a protocol implemented by multiple manufacturers. The market
offers a wide range of products with Z-Wave technology. There are several
ways how to automate your household. Not only variability of end-devices is
high, but also the selection of controller or gateway is a matter of decision.
More and more homes are getting home automation nowadays. Using a Z-
Stick Gen5 [36] to control a POPP wall plug dimmer [37] is a simple example
of home automation. However, the software is also needed. OpenZWave [38] is
a free software library that interfaces with selected Z-Wave PC controllers. It
allows to create applications suitable for simple manipulation and responding
to devices on a Z-Wave network. One of these applications can be Domoticz
[39], which offers nice user interface in browser to control IoT devices at your
household.

Every Z-Wave network is separated by the Home ID [35, pg. 6], which is a
32 bits unique identifier. The manufacturing process of all controllers includes
pre-programming these identifiers. Resetting a controller causes generating a
new random Home ID. All additional nodes assign the same Home ID, during
the installation of the Z-Wave network. The initial controller remains as the
Primary Controller. Identification of nodes in a network is ensured by the
8 bit Node ID [35, pg. 6]. This value is assigned to a node by a Primary
Controller or an Inclusion Controller, and it is unique within a network.
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Z-Wave devices for home automation are usually plug-and-play. Thus its
deployment can be very easy. The main reason is to satisfy user convenience
because it is one of the major factors influencing the market of IoT devices.
However, this approach may bring security vulnerabilities. First, some devices
[36] event didn’t support basic encryption, and it makes unwanted listening
of Z-Wave frames very easy. Besides listening, taking control over devices is
possible and in many cases may cause huge damage.

The first generation security solution based on Security Command Class is
described in [40]. Security Command Class, also called S0, provides end-to-end
security on the application level. Encryption is ensured by AES [41] symmet-
ric block cipher algorithm using a 128 bit key length. Even though S0 provides
data freshness, confidentiality, and message integrity, the security layer does
not protect against denial of service attacks, hardware side-channel attacks,
traffic analysis, protocol-side channel attack or attacks against application-
layer security. More detailed information about the S0 may be found in [40].
However, the network key transmitted during the pairing process of S0 be-
tween the nodes was using a key of all zeroes. This vulnerability was published
and explained in [42]. Shortly, the network key could be sniffed by an attacker
within range.

According to [43], the S2 Security is best-in-class security while maintain-
ing the user-friendliness and power efficiency and may be considered as the
first true smart home security solution. The S0 has been superseded by S2.
There are explained ways how to protect your Z-Wave network at multiple
layers, for example, usage of the home control gateway to establish a secure
connection via its LAN interface to a trusted portal server on the Internet.
Like the S0, the S2 uses AES-128 encryption and combination with S2 au-
thentication and Nonce scrambling [43], and there is no known way to break
this protection. However, network key distribution is a classic chicken-and-
egg problem. Diffie-Hellman key-exchange [44] solves this problem and also
a problem of the weak S0 security. The key-exchange can also involve au-
thentication by the entry of a 5 digit code into the controller. Even though
the key should not be possible to intercept when is S2 used, the possibility
of a successful attack remains. Maintaining backward compatibility between
S2 and S0 devices enables downgrade attack during the pairing process. The
attack was explained in [45].

Z-Wave protocol has multiple layers. One of them is PHY layer, also
called the physical layer, which is complying with ITU-T Recommendation
G.9959 [46] and therefore Z-Wave devices can communicate on multiple sets
of communication parameters listed in Table 2.1. Z-Wave devices can also
operate on multiple frequencies. The frequencies are dependent on the region
and table of coverage can be found in [47].

The transmission and reception of PHY protocol data units (PPDUs)
are enabled thanks to the PHY data service. The MAC protocol data unit
(MPDU) is passed to the PHY layer as a PHY service data unit (PSDU). In
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Table 2.1: Data rate, modulation and coding [46]

Data Rate Bit Rate Modulation Coding
R1 9.6 kbit/s FSK Manchester
R2 40 kbit/s FSK NRZ
R3 100 kbit/s GFSK NRZ

Figure 2.1: General frame structure [46]

most cases, the MAC layer forward frames to the higher layers for processing.
The general frame structure is illustrated in Fig. 2.1.

Figure 2.2: General MAC frame format [46]

The MAC service data unit (MSDU) contains payload data from the net-
work layer. MAC header (MHR) contains HomeID, source node ID, MAC
frame control field, a frame length field, and destination node ID. The MFR
include a non-correcting frame check sequence (FCS). The MHR, MSDU, and
MFR together form the MAC protocol data unit (MPDU), as explained in
[46]. The example of the general MAC frame is illustrated in Fig. 2.2. Data
payload usually includes command classes, commands, and values specified in
[48].

2.2 Software Defined Radio
Software Defined Radio (SDR) is a technology that will shape the future of
wireless communication. The main purpose of the SDR is to ensure soft-
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Table 2.2: Comparison of SDR hardware [54, 52, 53, 55, 51]

Product RTL-SDR Airspy HackRF USRP B200

Radio Spectrum
25MHz -
1750MHz

24MHz -
1750MHz

30MHz -
6MHz

50MHz -
6GHz

Bandwidth 3.2MHz 10MHz 20MHz 61.44MHz
TX No No Yes Yes

Duplex - - Half Full
Dynamic Range 50 dB 80 dB 48 dB 70 dB
Sample Rate 2.56MHz 10MHz 20MHz 61.44MHz
Approx. price $25 $199/$249 $299 $745

ware computation of existing hardware components usable for digital signal
processing (DSP). The concept of SDR is not new, but fast-evolving digital
electronics allows to render more and more processes. Joseph Mitola, its cre-
ator, has described in [49] an ideal software radio transceiver as a system with
digital-to-analog converter (DAC) and analog-to-digital converter (ADC) at
the antenna and at handset allow all radio transmit, receive, signal gener-
ation, modulation and demodulation, timing, control, coding, and decoding
functions to be performed in software. However, the SDR, of course, includes
many non-DSP hardware components like anti-aliasing filters or power han-
dling. Besides the military, research and industrial usage the SDR is used by
radio amateurs nowadays.

RTL-SDR dongles [50] are very popular among radio amateurs thanks to
their low price. Users usually use these dongles for receiving radio or Digital
Video Broadcasting-Terrestrial (DVB-T) signal. Airspy [51] offers more sen-
sitive signal reception thanks to wider frequency range, and its natural high
dynamic range allows for excellent signal noise ratio (SNR) and reception of
weak signals when in the presence of nearby strong signals. However, none
of these tools is capable of transmission. HackRF One [52] is an SDR device
capable of transmission and reception of radio signals from 1MHz to 6GHz.
The USRP B200 [53] should provide more sensitive reception thanks to higher
a sample rate. A more detailed comparison of some popular SDR hardware
products is in Fig. 2.2, where parameters like frequency range of radio spec-
trum, bandwidth, the ability of transmission, duplex, dynamic range ensuring
reception of very weak or very strong signals, sample rate, and approximate
prices are compared. Most of these devices use Universal Serial Bus (USB).

The list of SDR supported software is long. All software for RTL-SDR can
be found in [56]. GQRX [57] is open-source software for an SDR receiver which
runs on Linux and Mac systems. GQRX provides a waterfall display, standard
Fast Fourier transformation (FFT) spectrum, and filter settings. GQRX offers
a graphic interface usable for searching a signal and analyzing the spectrum,
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and therefore Z-Wave frames can be displayed in Fig. 2.3. Another popular
and flexible tool is a GNU Radio [58], which is described in Sec. 2.2.2.

Figure 2.3: Z-Wave frames on a waterfall display of GQRX

2.2.1 Penetration tests

Thanks to the majority of wireless IoT protocols, the SDR became a useful
tool not only for security evaluation but also for undesirable activities. Frames
of wireless protocols are transmitted through the air and therefore not only
verified devices can receive them. Notably, in the case of unencrypted commu-
nication, the danger of adverse eavesdropping becomes much more realistic.
Penetration testing is a method of testing networks, computer systems or
applications executing harmless attacks to find its security vulnerabilities ex-
ploitable by an attacker. Several tools can be used for effective penetration
tests for Z-Wave protocol also.

The software library librtlsdr [59] offers several tools and one of them is
rtl-sdr. The program rtl-sdr tests the existence of RTL2832, a chip used in
most SDR dongles, and performs data transfer functions. Code base of rtl-sdr
includes a Frequency Modulation (FM) receiver. Its command line interface
offers options to interact with hardware, like setting a frequency, a sample rate,
a gain or just to specify where I/Q data from output will be dumped. However,
receiving signal is not enough to be able to work with ITU G.9959 frames,
which Z-Wave protocol use. A received signal needs to be demodulated and
decoded. A preamble needs to be detected, as it indicates the start of a frame.
Even though a demodulator and a decoder are main components, filters and
clock-recovery are usually used for improvement of reception. Decoded data
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can be parsed into frames. Transmitting is preceded by a reversed process,
that includes encoding, modulation and adding a preamble.

Z-Wave signal demodulation and decoding can be done by rtl-zwave [60].
A pipeline is used for transferring a received signal from rtl-sdr program to rtl-
zwave. The decoder of the rtl-zwave supports FSK and GFSK demodulation.
The demodulator supports Manchester decoding and NRZ decoding. All data
rates of Z-Wave are implemented too, so all sets of Z-Wave PHY parameters in
Tab. 2.1 are supported. An example of reception is Fig. 2.4. A reversed process
ensuring modulation, coding, and transmitting of frames is not supported in
rtl-zwave.

Figure 2.4: Reception of Z-Wave frames using rtl-zwave

The program waving-z [61] can be used not only for the reception but
also for transmitting. Usage of reception is very much like rtl-zwave, but the
analysis proved that waving-z can demodulate and decode only frames using
FSK demodulation and NRZ decoding on 40Kbps data rate. Transmitting
must be preceded by modulation and encoding hexadecimal frames into files.
Its content can be later transmitted, using the HackRF One, as shown in
Fig. 2.5.

2.2.2 GNU Radio

GNU Radio is an open-source development kit that provides signal processing
blocks to implement a software radio. It is widely used in academia, research,
industry, government and among radio amateurs. A major advantage of GNU
Radio is reusable easy-to-use blocks for DSP. These blocks usually implement
standard algorithms, but scalability remains. Creating flow graphs consisting
of blocks for DSP is done in GNU Radio Companion (GRC). It is a graphical
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Figure 2.5: Preparing and transmission of Z-Wave frames using waving-z

tool that simplifies the process of implementing software radio interconnecting
blocks to flow graphs to achieve required signal processing. Otherwise, users
would have to implement a code of blocks using Python and to change param-
eters of blocks like the frequency or the sample rate in the GRC influence the
generated Python code. However, there is still a possibility to modify the code.
Sometimes, a user needs blocks, which are not in the original version of the
GRC. For example, user needs to process signal with Frequency-Shift Keying
(FSK) demodulation [62] and Manchester decoding [63]. The block ensuring
Manchester encoding is not implemented in the original set of blocks. This
block can be implemented using Python or C++ and used in the graphical
interface of GRC. Besides the official documentation of GRC blocks includ-
ing examples and tutorials, the communities interested in GNU Radio can be
found on several web pages and social networks. GRC blocks can be used to
receive and transmit Z-Wave frames.

Scapy-radio [64] has been described in [22]. It consists of GNU Radio
Blocks and Scapy [65]. Communication between them is ensured by a UDP
socket. Scapy-radio includes GNU Radio Blocks specialized for reception and
transmitting of frames of several IoT protocols. Z-Wave frames are demodu-
lated and decoded by blocks for the reception and sent as a UDP packet to
a socket. Scapy-radio can parse these frames into standardized network data
structures used by Scapy. Beside demodulation and decoding, other blocks
like filters and clock-recovery sustain better signal reception. First block en-
suring receiving signal from SDR hardware can be replaced by a block for
another compatible SDR hardware. Authors of Scapy-radio implemented sev-
eral blocks and Zwave PacketSink is one of them. It decodes a demodulated
signal using NRZ encoding. A signal can be displayed by several sink blocks,
which are included in GRC. Scapy-radio GRC blocks for the reception of Z-
Wave frames are shown in Fig. 2.6. Scapy-radio offers reception blocks only for
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the data rate 40Kbps, FSK modulation and NRZ encoding. EZ-Wave [66] is a
project, which offers few tools for evaluating and exploiting Z-Wave networks
using SDR. This tool uses Scapy-radio for reception and transmission.

The blocks of Scapy-radio for transmitting Z-Wave frames are described
in [67]. Modified received frames or new forged frames to be transmitted are
sent to a socket, which represents UDP server. The Preamble block adds a
preamble to frames. Length of PHY frames is calculated by the block PDU to
Tagged Stream, which ensures conversion to a bitstream too. The block Not
is needed because the block Gaussian Frequency Shift Keying (GFSK) Mod
uses opposite symbol mapping as ITU-T Recommendation G.9959 frames.
GFSK modulation with a parameter BT=1 effectively minimizes a response
of Gaussian filter leaving a standard FSK rectangular pulse shape. GRC does
not include an FSK modulation block. The desired sample rate 20MHz, which
is the maximum sample rate for HackRF One and osmocon Sink, is achieved
thanks to re-sampling a signal at a rate of 250:1. This rate is calculated using:

40Ksymbols/sec × 2samples/symbol

20Msamples/sec
= 1

250
Osmocon Sink is the last block, which ensures transmitting through HackRF

One. The sink and SDR hardware can be replaced. Blocks are sequentially
linked as show in Fig. 2.7.

2.2.3 Exploiting Z-Wave device

SDR allows to receive and transmit Z-Wave frames. The modular architecture
of the Scapy-radio framework allows to use rtl-zwave for reception of Z-Wave
frames. Received frames are sent packed in UPD packet to a socket used by
Scapy-radio and parsed. Scapy-radio blocks for transmitting remains and can
be used for transmission of sniffed, modified or forged frames.

Once an unencrypted frame is sniffed, Home ID, Source ID, Destination
ID and more information can be extracted. Especially, the Home ID and
Source ID are important for executing simple exploitation of a Z-Wave device
and taking control over it. Sniffed frames can be displayed thanks to Scapy-
radio in the terminal, as shown in Fig. 2.8. A device, which includes command
class SWITCH_BINARY [48] reports in these frames the change of a state -
turning ON (0xff) and OFF (0x00).

In addition to displaying sniffed frames, Scapy-radio supports effective
manipulation with them. Creating an attack frame starts with duplication
one of sniffed frames. The Source ID needs to be set to the controller’s ID (1),
and Destination ID is set to the ID of a target device. A sequence number
should be updated. A command class must be set to the SET class. A
payload includes a command for the target device turning ON (0xff) or OFF
(0x00). Recalculation of the CRC should be a final step before transmission.
Transmission of the frame can be affected by variable TX gain, which is one
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Figure 2.6: GRC blocks of Scapy-radio for reception of Z-Wave frames
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Figure 2.7: GRC blocks of Scapy-radio for transmission of Z-Wave frames

of the significant factors influencing a range of a signal. In case of a frame
sniffed directly from a controller, only sequence number, command and CRC
needs to be changed, as shown in Fig. 2.9.

Another attack can be executed by active scanning. Z-Wave includes
frames, which demand a device’s state. Transmitting a large number of these
frames and incrementing their Home ID can lead to exposure of unencrypted
Z-Wave network. The Home ID is 32 bits long, so there are more than 4 bil-
lions of combinations. This active scanning was tested on a range of 1000
values of Home ID, where the Home ID of target network was the last one.
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Figure 2.8: Sniffed frames transmitted by POPP dimmer [37]

Figure 2.9: Exploitation of POPP Dimmer

Transmission of 1000 frames and successful answer reception approximately
lasted 1.96 seconds using HackRF One. The speed of transmission can be
changed, however too high speed causes a frame is not detected by the de-
vice. The device used for this attack was POPP Dimmer. A time needed for
scanning the whole range of possible values for Home ID is calculated here:
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232

1000 × 1.96 seconds ≈ 2338.37 hours

Passive scanning brings more reliable results. Sniffing information about
devices and using them to build frames for controlling them represents a real
threat to IoT users.

2.3 (IP) Honeypots

Honeypots are rarely used security elements. The main idea of a honeypot is
to seem vulnerable to lure attackers during malicious activities. It does not
have any production value, so false positives, which can be found on intru-
sion detection systems do not exist on honeypots. Any network traffic coming
from honeypot can be considered successful compromising. Honeypots can
be classified into multiple classes according to several factors. Major factors
like interaction level, data capture, containment or communication interface
are described in [68]. Another classification is by the implementation because
honeypots can be virtual or physical. There is also usually a difference be-
tween production honeypots and research honeypots. Generally, a honeypot
should look as real as possible and should be attractive to a hacker. It is es-
sential to mention, a honeypot security is not comprehensive. Mechanisms of
a honeypot will never replace usually used security elements like network in-
trusion detection system or prevention systems, but it can extend the amount
of gathered information about attacks, draw hackers away from important
resources and detect attack attempts. Traditional usage with other network
elements is illustrated in Fig. 2.10.

Figure 2.10: Standard usage of a honeypot
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Several solutions of honeypots were developed in the past. Google Hack
Honeypot [69] provided records information about time, the source IP address
and the file that has been accessed on the web server by a malicious Google
search. Another example is Honeyd [70], which represents the more traditional
implementation of a production honeypot. It is a program, that is able to
create multiple virtual honeypots on a network. Telnet, FTP, SMTP or HTTP
can be simulated using the Honeyd. It monitors millions of IP addresses at the
same time, and when it sees a connection attempt, it interacts with attacks.
Project Honey Pot [71] is a distributed system for identifying spammers and
spambots. Honeypot farms provide functionalities of a honeypot as a service.
Ideas of a honeypot can be implemented in multiple ways. For example,
honeynets are considered a high interaction technology in a group of honeypot
projects.

Honeypots have also found their place in the IoT. The IoT communication
lays in specific physical layers. Therefore a variety of IoT honeypot archi-
tectures is high. The main purpose of Telnet IoT honeypot [25] is to catch
botnet binaries. This project includes a Python Telnet server, which acts
as a honeypot for an IoT malware and it can automatically analyze botnet
connections and map botnets and its networks. The Mirai DDoS exploited
security vulnerabilities of IoT devices. ThingPot, which is described in [72],
is implemented to mimic the Philips Hue smart lighting system [73] and five
types of attacks against smart devices have been captured during 1.5 months
thanks to this honeypot. Several solutions of IoT honeypots are described in
[24, 74, 75, 76, 77], which vary in an architecture and purposes.

Captain Caleb E. Mays describes the design and construction of a hon-
eypot to defend a building automation system in [23]. This work deals with
security vulnerabilities of protocol INSTEON [78], that is used for building au-
tomation. His research also improves on his previous research using the SDR
to receive and transmit INSTEON commands. Primary goals of his research
are to develop methods for sending and receiving INSTEON network commu-
nication using the SDR and develop a virtual honeypot to emulate INSTEON
devices. According to his work, a honeypot should be a set of targetable au-
thentic decoys. A lone IoT light bulb is of little significance to an attacker
when it is not connected to a network, so a honeypot should implement sev-
eral virtual decoys. Simulated network traffic from multiple virtual devices
should convince a potential attacker that every decoy is a part of a legitimate
automation network. Since an attacker can interact, it is necessary to sustain
more or less authenticity of decoys. Even a low interaction honeypot like this
can answer to an attacker and emulate the limited functionality of devices.
For example, a light bulb can either be ON or OFF. A decoy should respond
by a message of the state of the light bulb to an attacker.

A most related project to this thesis is described by Captain Caleb. The
output of his work is a prototype of the IoT honeypot that lures attackers
using decoys, which can respond. The main difference between our proposed
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IoT honeypot is a process of creating decoys. The IoT honeypot that was im-
plemented by Captain Caleb E. Mays uses configuration files for creating vir-
tual decoys. Communication between these decoys is also specified in another
configuration file. Process of creating decoys for our proposed IoT honeypot
is described in Sec.3.3. Our process, which uses the recording of legitimate
communication, allows transmitting more sophisticated communication with
a minimum effort.

2.4 Requirements Analysis
Several requirements of the Z-Wave IoT honeypot prototype using the SDR
needs to be defined. Functional requirements represent major functionalities of
the designed IoT honeypot. Non-functional requirements describe attributes
of the IoT honeypot.

2.4.1 Functional Requirements

• Monitoring
One of the major goals of the IoT honeypot is receiving of Z-Wave frames
from real devices Z-Wave devices. The IoT honeypot should also receive
frames transmitted by the SDR, like HackRF One, to ensure detection
of attempts to exploit virtual decoys. Receiving unexpected frames from
real Z-Wave devices can bring results in anomaly detection in case of an
inability of receiving frames from the attacker.

• Storing
The IoT honeypot should allow storing of gained information and log
some of them. Acquired information should include information about
attempts to exploit decoys and information about real Z-Wave devices
to be able to monitor their activity. Attackers usually do not deal with
answering acknowledgments frames to devices after an exploit. For ex-
ample, the attacker may change the state of a dimmer, and a dimmer
reports its status several times if it does not receive an answer. That
may be an indicator of taking control over the dimmer. All gathered
information should be reasonably aggregated and represented.

• Generation of simulated traffic
As well as common IP honeypots, this should lure attackers to uncover
their presence and plans. Since this honeypot will work on a physical
layer of the IoT, the only way of building virtual decoys is to gener-
ate simulated traffic. These decoys will simulate limited functionalities
of real Z-Wave devices. There is no production value of these decoys.
Therefore any traffic directed to them is considered an attack attempt.
Configurable sets of virtual decoys should be a part of the IoT honeypot.
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• Interaction
Besides creating an illusion by generated traffic of virtual decoys, a cer-
tain level of interaction should be achieved. The IoT honeypot should
be able to answer to attackers at least with basic frames. The IoT hon-
eypot should also keep information about states of decoys to answer the
most legitimately.

2.4.2 Non-functional Requirements

• Scalability
The IoT honeypot should allow scalability at several layers. First, usage
of these multiple IoT honeypot systems should lead to cooperation, not
a conflict. This can be achieved using decoys of a single network at a one
honeypot system. The count of configurable decoys should be another
scalable attribute of this honeypot.

• Modular architecture
Modular architecture allows replacement of specific modules of a system
for example in the case of incompatibility with different hardware or
effective integration with other systems.

• Configurability
Configurability of the IoT honeypot should be ensured by parameters
and configuration files. An option of changing communication param-
eters should remain. Configuration files should allow to save and load
saved configuration.

• Targetability
Targetability is an attribute of a designed honeypot, which describes
it as something attractive for attackers. Decoys of the IoT honeypot
should seem to be potential targets of attacks. Virtual decoys, which
could not be targeted, would make the idea of luring impossible.

• Authenticity
Ensuring authenticity means allowing interaction with the virtual de-
coys. Targetable decoys could be quickly revealed without proving some
level of interactivity. It is evident that fully implemented functionalities
of virtual decoys could be time-consuming and performance-consuming
and therefore limited functionality can be sufficient enough to fool the
attacker for a time that is needed for detection and logging.

• Prevention
Virtual decoys of the IoT honeypot extend a Z-Wave network from an
attacker’s point of view after sniffing communication. Virtual decoys
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bring a chance, that attacker will select a virtual decoy as the target.
Probability of selecting real Z-Wave devices depends on a count of virtual
decoys.

• Compatibility
The goal of this thesis is to implement a prototype of the IoT honey-
pot. It will be implemented on operating system Linux Ubuntu 16.04, to
achieve compatibility with standard GNU/Linux systems and therefore
ensure a possible future integration with one of the popular microcon-
trollers.

2.5 Selected Components
Final implementation of the IoT honeypot will use popular SDR platforms.
RTL-SDR dongle will be used for a receiving of Z-Wave frames. HackRF
One will allow to transmit Z-Wave frames. These components are chosen
because of a price and compatibility with popular SDR software tools. Trans-
mitting by HackRF One cause a frequency offset of frames, however regular
Z-Wave devices are still able to receive these frames. Using rtl-sdr program
to receive signal and rtl-zwave to demodulate and decode it allows receiving
frames using all sets of communication parameters, but the frequency offset
cause inability to receive frames with a frequency offset. Scapy-radio uses
GRC blocks, which allows a higher level of flexibility. GRC blocks provides
an option of receiving frames with the frequency offset. Even if GRC blocks
misses implementation of receiving and transmitting blocks for two of three
sets of communication parameters, the honeypot will be able to monitor and
interact with the vast majority of Z-Wave devices. Using Scapy-radio GRC
blocks is more suitable for functionalities of the IoT honeypot, because it will
focused on standard communication, furthermore, the modular architecture of
Scapy-radio ensure easy adding other components for DSP. Since EZ-Wave of-
fers examples of tools, which can be implemented using Scapy-radio, EZ-Wave
is the best choice, as it includes Scapy-radio too.
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Chapter 3
Design of Proposed Work

This chapter deals mainly with the design of an IoT honeypot. Its design
includes the description of its architecture mainly composed of a controller, a
monitor, a receiver, a responder, a traffic generator, a transmitter, a way of
configuration and modes of the IoT honeypot.

3.1 System architecture

The architecture of the IoT honeypot should be modular and simple. Separa-
tion of a receiver and a transmitter allows for replacement of components like
hardware, modulators, demodulators, encoders, decoders, and frame parsers.

• Controller

The controller processes parameters, arguments and coordinate main
functionalities and modes of the IoT honeypot. The controller starts
monitoring activities and generation of simulated traffic according to
user’s input. This component initializes most of the other parts and
process configuration input from a terminal or a configuration file. Be-
side initializing main functionalities and processing of user’s commands,
the controller offers functions like displaying the status of the honeypot
and resetting it to default state, which means clearing all saved records
and network information.

• Configuration

Configuration of the IoT honeypot includes setting communication pa-
rameters like a frequency, a sample rate of transmission gain and param-
eters like paths to network information and records of decoys. Individual
parameters can be set using optional arguments of commands of the IoT
honeypot or providing a configuration file. The configuration is provided
to other components as a shared data structure.
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Figure 3.1: The IoT honeypot architecture [22]

• Monitor
The monitor’s main task is to decide what to do with malicious frames.
The monitor detects and logs malicious activities. Its main task is to
start, control and pass arguments for the receiver and process informa-
tion, which the receiver passes to the monitor.

• Receiver
Reception of Z-Wave frames is an essential activity that leads to moni-
toring and authentic interaction. The receiver processes frames passed
by the Scapy-radio and distributes frames to the monitor in case of
malicious activities and the responder according to their content. The
receiver filters frames sent by the transmitter thanks to information
passed from the transmitter. The receiver pass frames from attackers
to the monitor, which logs attack attempts. The receiver takes com-
mands from the monitor and sets proper receiving mode. Computing
CRC of frames and mapping of real Z-Wave network is also included
in the receiving process. The receiver also does recording of legitimate
communication and saves it for future usage.

• Responder
The receiver forwards commands and frames to the responder. Its main
task is to prepare legitimate frames to emulate responses of virtual de-
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coys and handle states of decoys to persuade attackers about the legit-
imacy of devices and to gain more time to detect and react to attack
attempts. Acknowledgment frames and report frames, which are the
vast majority of responds are then transmitted using the transmitter.

• Traffic Generator The traffic generator simulates traffic of virtual de-
coys. Its main task is to load recorded frames prepared for a currently
configured network. In case of missing records of frames, replication of
records of another network or recording of communication is needed.

• Transmitter
The transmitter processes frames and prepares them to be sent. The
transmitter ensures setting a sequence number and calculated CRC. A
very important task of this component is to pass information about sent
frames to the receiver. The receiver will be able to filter frames sent by
the transmitter and recognize frames sent by attackers.

The analytic part Sec. 2.2.2 of this thesis explains and proves that RTL-
SDR dongles are applicable as receivers of Z-Wave frames. The receiving
components consist of a RTL-SDR dongle and software, that is compatible
with the dongle. The Scapy-radio offers flexibility because GRC blocks can
be changed or extended. The architecture of the Scapy-radio, which includes
communication trough a socket, provides an option of replacing components
for DSP. The analytic part Sec. 2.2.2 also describes the usage of the HackRF
One device with the Scapy-radio.

3.2 Modes
This section describes various modes of the IoT honeypot. The IoT honeypot
offers several various commands that provide main functionalities. Modes are
compositions of settings or configurations that affect the functionality and can
bring different results.

• Record mode
Received frames can be saved into files with an extension .pcap, which
are usually used for network analysis. Scapy-radio offers an option of
installing Wireshark [79] with dissectors to recognize Z-Wave frames.
Recording provided by Scapy-radio can be helpful not only for later
traffic analysis but also for recording frames, which can be modified and
used as traffic of virtual decoys. Transmitting is not allowed during the
record mode of the IoT honeypot. The IoT honeypot records traffic,
randomizes identification numbers Node ID in frames and saves frames
for future usage. It is recommended to check if all displayed and received
frames during record mode are authentic.
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Figure 3.2: A conflict of node identifiers

Process of setting values of Node ID complies with rules of Z-Wave.
Mapping of the real network during several modes avoid conflict between
real nodes and decoys. This way of recording and modifying frames is
a simple way, how authentic and targetable decoys can be created. It is
recommended to record a Z-Wave network that the IoT honeypot should
protect. Replication of existing records is described in Sec. 3.4 which
leads to expanding a network of existing decoys or creating a brand new
network of decoys.

• Default mode

The default mode of the IoT honeypot includes functionalities that sup-
port essential ideas of the IoT honeypot. The IoT honeypot monitors the
spectrum using GRC blocks. The receiver processes all received Z-Wave
frames. Frames sent by real devices are used for mapping of real Z-Wave
network. This mapping is used for setting values of Node ID of virtual
decoys. It is recommended to map the whole Z-Wave network to avoid
conflict between real nodes and decoys. Simulated traffic is generated
thanks to loaded records of legitimate communication and is cyclically
transmitted. Attackers can see multiple devices after sniffing commu-
nication, and they cannot determine with certainty which are real and
which are virtual. Attempts to communicate with virtual decoys are
logged and are the method of anomaly detection, which has a low rate
of false positive alarms. Communication with virtual decoys seems to be
legit because of responses generated by the IoT honeypot. Responding
using basic frames like acknowledgments or reports convinces attackers
about a successful attack. However, their presence is revealed. Interac-
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tive communication with virtual decoys can satisfy an attack and keep
him out of real devices. Network information about real devices and
decoys are saved.

• Non-interactive mode

The non-interactive mode is very similar to the default mode, but with-
out interaction with attackers. The simulated traffic is still generated,
but virtual decoys do not answer to commands sent by attackers. The
main reason for usage of this mode can be the performance.

• Passive mode

The passive mode does not allow for transmission. This mode provides
a detailed view of Z-Wave traffic. The main reason for the usage of this
mode can be a performance, a lack of transmitting hardware or a need
for manual information gathering. Records and network information can
be replicable, and it is necessary to know identifiers of Z-Wave networks.
This mode displays all attributes of received frames.

3.3 Virtual Decoys

The best way to create an illusion of legitimate Z-Wave network using vir-
tual decoys is to prepare frames, which represent simulated traffic of decoys.
Frames can be saved and loaded as needed into pcap files. The IoT honeypot
provides a set of virtual decoys, but extending this set will be simple thanks to
the record mode. Figure 3.3 illustrates real usage of virtual decoys. However,
this will be a single huge Z-Wave network from an attacker’s point of view.

Figure 3.3: Real and Virtual Z-Wave networks
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Network information about real devices and virtual decoys are saved to
ensure persistent information, which can be used several times. The IoT hon-
eypot offers to display this information. The IoT honeypot allows replication
of virtual decoys using the special function. Existing networks can be ex-
tended and replicated which leads to creating a new network of decoys. It is
recommended to map real nodes of a network, to which the user wants to add
decoys to avoid a conflict.

3.4 Commands

This section discusses the main functions of the IoT honeypot that are avail-
able for a user as subcommands. All subcommands are accessible using one
central command of the IoT honeypot. This command structure also repre-
sents a hierarchy of commands and their options:

command [ opt ions ] subcommand [ opt ions ] arguments

where every subcommand represents and implements different functional-
ity of the IoT honeypot. Subcommands are listed here:

• record
This subcommand starts recording mode of the IoT honeypot. It receives
and stores Z-Wave frames in internal data structures until the user exit.
All nodes are virtualized in recorded frames and frames are saved into
a pcap file before termination of the program. Network information and
frames are collected into files, which path is set in the configuration of
currently running instance of the IoT honeypot.

• run [passive-mode] [non-interaction mode] [home-id]
This subcommand starts the main functionality of the IoT honeypot. It
offers several options that can be used to specify a mode. Beside modes,
this subcommand allows specifying a network identifier Home ID. The
IoT honeypot tries to load recorded frames for this network. The IoT
honeypot starts working with the network of first received frame, in case
of leaving optional argument home-id blank.

• status
A subcommand status display saved information about networks that
the IoT honeypot currently have. It shows network identifiers, identifiers
of real nodes, virtual decoys and names of their records.

• read file
This subcommand can be used for displaying recorded frames. Frames
are recorded and saved into pcap files and their location is specified in

32



3.5. Data structures

the configuration. An argument file is a target pcap file, which a user
wants to display.

• replicate home-id-A [home-id-B]
A subcommand replicate can be used for extending a network of decoys
within the network home-id-A. Replication process consists of copying
existing decoys and setting them new free node identifiers and double
the network size. A network of decoys from home-id-A is copied to
network home-id-B in case of setting the optional argument home-id-B.
It is recommended to map real devices of network home-id-B before a
process of replication begins. Two phases of the replication process are
shown in Fig. 3.4

Figure 3.4: Two phases of an internal replication process of virtual decoys

• reset
This subcommand deletes all saved information about networks and all
records. It is recommended to use it only in special cases. The IoT
honeypot can handle the situation when a new real device is added to a
network, and its node identifier is taken by a decoy. It erases the decoy
and its records.

3.5 Data structures
This section describes the design of main data structures which are used in
the IoT honeypot.

• Configuration
The way of setting configuration is described in Sec. 3.1. A data struc-
ture of configuration includes information for multiple components. For
example, the path where are records saved must be the same as the
path, which is used for loading records. All main components of the IoT
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honeypot need to be configured before the IoT honeypot starts work-
ing. Configuration class is illustrated in 3.5. The configuration object is
initialized as passed to the monitor, the receiver, the traffic generator,
the transmitter, and the controller sets its communication parameters –
a frequency, a sample rate, and a TX gain.

Figure 3.5: Configuration class

• Networks

The IoT honeypot is divided into two processes - receiving and trans-
mitting processes. It is necessary to share some information between
these processes. The configuration is initialized before the start of the
receiving and transmitting and shared to these processes without further
changes during runtime. However, information about networks needs to
be changed in some cases. One of these cases is adding a new real device
to a network, which identifier overlaps with an identifier of an existing
decoy. The existing decoy needs to be removed from the network data
structure in both processes, and therefore it is necessary to apply this
change in a network data structure of real devices and virtual decoys
too.

Not only network information needs to be shared between processes.
Receiving Home-ID and passing it to the traffic generator in case of
unspecified network identifier for running a standard functionality of
the IoT honeypot described in Sec. 3.4. The receiver needs to be also
informed, which frames were sent by the transmitter and which were
not. Attackers can sniff and transmit the same frames as the honeypot
generates and therefore the transmitter computes values of frames using
a hash function. The transmitter passes all hash values of sent frames to
the receiver. The same function computes hash values of received frames
and recognizes self-sent frames. Sharing information between two main
processes is illustrated in Fig. 3.6.
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Figure 3.6: Processes and shared information

3.6 Detection method
A detection mechanism of malicious activities of the IoT honeypot is very
simple and extends currently existing detection methods for unencrypted
Z-Wave networks. Virtual decoys never belong to the production area.
Thus any external manipulation with them can be considered as an
attack attempt. The receiver is designed to recognize three main types
of Z-Wave frames:

1. IoT honeypot frames,
2. frames from Z-Wave devices,
3. malicious frames.

The receiving process includes several decision points, which are shown
in Fig. 3.7. First, Home ID is compared to Home ID of current con-
figuration. The IoT honeypot works with frames of a single network.
Next step leads to computing CRC. The frame is logged as invalid and
is a subject to further analysis. The invalid frame is counted to special
statistical counters if its destination is one of decoys and information like
Home ID, node identifiers and command seems valid. Several devices
don’t drop invalid frames, so even the invalid frame can be potentially
dangerous. Destination node identifier of the frame is compared with
identifiers in a list of virtual decoys if the frame is valid. The real source
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of the frame is either the IoT honeypot or an attacker in case of find-
ing node identifier in the list of decoys. Finding duplicate of a received
frame which has also been sent by the IoT honeypot leads to a detection
of an attack, logging it and responding to the attacker. The IoT honey-
pot stores last ten sent frames in a queue. The frame is not considered
malicious if it was received once and its source is the IoT honeypot. An
attack is detected and logged if the frame destination is one of the decoys
and has not been sent by the honeypot. Malicious frames are analyzed
by Monitor, according to their intentions. Basic malicious frames can be
divided into three main groups - frames that change a state of a device,
frames that scan the state of the device and frames that fake the state
of a device. Monitor recognizes the intentions of malicious frames and
increments its counters. Receiving process can be stopped by a user.
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Figure 3.7: Attack detection of the IoT honeypot
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Chapter 4
Realization

This chapter describes the realization of several main components and mecha-
nisms. Python was used for the implementation of the IoT honeypot because
it offers frameworks that are essential for this work. The IoT honeypot is a
Python package that consists of code which uses several other packages and
frameworks. The architecture of the system is described in Sec. 3.1. The
final implementation uses RTL-SDR dongle for receiving and HackRF one for
transmitting. Scapy-radio allows effective manipulation with the hardware
components and frames.

Mainly used functions of Scapy-radio are the function for receiving and
function for transmitting frames. Function for receiving supports multiple
arguments like timeout and store, but for receiving Z-Wave frames need to be
just specified protocol and handler function:

s n i f f r a d i o ( rad io=’Zwave ’ , prn=lambda p : handle (p ) )

This function calling is an example, how receiving can start. Function
handle takes as an argument p, which is received frame.

4.1 Control

This section explains the IoT honeypot control system, its implementation,
fundamentals, and used packages. The file Contoller.py unites all commands
that are implemented for manipulation and usage of functions. The IoT hon-
eypot uses command line interface (CLI) which was easily implemented thanks
to a Python package Click [80]. Click is highly configurable but comes with
sensible default out of the box. It offers parsing options and arguments, ar-
bitrary nesting of commands and automatic help generation. The main com-
mand and subcommands are implemented according to Sec. 3.4. Thus there
is one main command iotpot with options and a set of subcommands:

i o tpo t [ opt ions ] subcommand [ opt ions ] arguments
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Options of iotpot are essential and inherited for all subcommands:

• –config/-c - a path to a configuration file

• –freq/-f - a frequency of a receiver and a transmitter

• –samp/-s - a sample rate of the receiver

• –tx/-t - a transmission gain (TX) of the transmitter

• –record/-r - a path to records

• –networks/-n - a path to persistent network information

• –log/-l - a path to a logging file

• –alerts/-a - a path to a alerts file

Some options have its default values and more detailed information can
be found in the file CONSTANTS.py. Values are loaded from a configuration
file if options are left blank. Main command iotpot initialize a logger and con-
figuration. Click allows passing context to subcommands using the standard
Python dict structure. The object of Configuration and logger are passed to
context of subcommands:

ctx . obj [LOGGER] = iotpot_logge r
ctx . obj [CONFIGURATION] = con f i gu r a t i on
. . .
l o gg e r = ctx . obj [LOGGER]
c on f i gu r a t i on = ctx . obj [CONFIGURATION]

where ctx is the context consisting of dict data type shared between the
main command and all subcommands.

4.1.1 Configuration

Configuration of the IoT honeypot can be executed by options of iotpot com-
mand as described in Sec. 4.1. However, a more suitable way of configuration
is using a configuration file, in which a user can save settings of the IoT hon-
eypot. The Python module Configparser [81] allows parsing of configuration
files that use a human-readable structure for data representation. The IoT
honeypot defines a few sections and keys that can be used in a configuration
file. The example of a configuration:
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[ communication ]
f requency = 868420000
sample_rate = 2000000
tx_gain = 25

[ r e co rd ing ]
records_path = /path/ to / r e co rd s

[ networks ]
network_path = /path/ to /networks

[ l ogg ing ]
logging_path = /path/ to
a le r t s_path = /path/ to

Configuration of Scapy-radio, so the receiver RTL-SDR dongle and the
transmitter HackRF One is a separate process. First, Scapy-radio must load
GNU Radio using command load_module(’gnuradio’). Applying settings is
possible when a module is loaded, and loading takes a few seconds. The
configuration process is trying to set the configuration until it is not successful.

Setting communication parameters of Scapy-radio and hardware is avail-
able thanks to commands of Scapy-radio. These commands can be executed
during runtime. GNU Radio Companion allows the definition of custom vari-
ables that are accessible using their names. GNURadio Companion blocks of
the IoT honeypot has multiple variables defined – central frequency, sample
rate, and TX gain. Variables can be defined by blocks, as shown in Fig. 4.1.

Figure 4.1: Blocks of variables

These variables are set from a Python code using commands:

gnuradio_set_vars ( cente r_f req = con f i gu r a t i on . f r e q )
gnuradio_set_vars ( samp_rate = con f i gu r a t i on . samp_rate )
gnuradio_set_vars ( tx_gain = con f i gu r a t i on . tx )

All communication parameters are displayed immediately after a successful
configuration. The success of configuration is checked thanks to commands
that read variables from GRC blocks after setting them. One of this command
is for example:

gnuradio_get_vars ( ’ center_freq ’ )
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The option of changing the receiving frequency offset and transmitting
frequency offset remains, as GRC allows usage of sliders. Sliders are elements
of a graphical user interface, that is automatically generated. Sliders offer
effective control over variables. Addition of sliders is also modification of
original EZ-Wave GRC blocks for Z-Wave.

4.1.2 Subcommands

Subcommands represents the interface for functionalities of the IoT honeypot.
A hierarchy of the main command, options, subcommands, and arguments are
described in Sec. 3.4.

4.1.2.1 record

This subcommand loads network information and virtual decoys from json
data-structures into standard Python dict data types. Configuration and a
logger are loaded from a shared context ctx. Objects of Receiver and Mon-
itor are initialized with network, decoys, logger and configuration. Record-
ing starts function self.receiver.start(recording=True) called by Monitor. The
Scapy-radio function sniffradio use as an argument a frame handler function of
theReceiver object that is specialized for recording of frames. Every received
frame is validated using CRC. Since legitimate communication of real Z-Wave
devices is recorded, existing decoys with possible duplicates of node identi-
fiers are removed within their records to avoid an identifier conflict among
nodes. Unique identifiers of Z-Wave devices are saved into networks, where
are divided into groups according to Home ID.

All recorded frames are displayed and saved into a temporary data struc-
ture. All recorded frames are modified when receiving stops. The IoT hon-
eypot computes set of unused node identifiers from existing Z-Wave devices
and decoys in a current network. Every unique Node ID in frames is tem-
porary mapped and swapped for a different free node identifier to create
virtual decoys. Modified frames are saved using command wrpcap to a di-
rectory specified in Configuration. Information about virtual decoys is saved
into persistent data structure decoys, where decoys are divided into groups
according to Home ID. Every virtual decoy is represented by a state, a list
of occurrences in records and its Node ID. It is recommended to check which
Z-Wave devices were recorded to avoid malicious activities. Unlike design, the
implementation allows only two cases of network discovering and building a
network-information data structure. The recording is one of them. Steps of
the recording process of legitimate communication that leads to the creation
of decoys are illustrated in Fig. 4.2.

Every new recording on the same network creates new decoys because
decoys are not firmly mapped to real devices. The main reason is to achieve
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Figure 4.2: Recording communication and creating decoys

more variability, complexity, and scalability of generated traffic and to allow
the creation of different use cases between seemingly different nodes.

4.1.2.2 run [passive mode] [non-interative mode] home-id

This subcommand being with loading the configuration and the logger from
the shared context. Passive mode offers to receive and displaying Z-Wave
frames into a terminal.

Default mode uses Manager from the package multiprocessing [82]. Man-
ager handles sharing standard Python dict structures containing network and
decoys information between two main processes - receiving and transmitting.
Receiver, Monitor, Transmitter, TrafficGenerator and Responder - one ob-
ject of each is created and initialized. Two instances, which are illustrated in
Fig. 4.3 of Pipe from multiprocessing are created and passed to other compo-
nents. One pipe is for sharing Home ID from Monitor to TrafficGenerator.
Monitor reads this Home ID from first received frame in case of empty argu-
ment and send it to TrafficGenerator. TrafficGenerator use this information
to load corresponding records. Another pipe is used for sharing hash values
of sent frames from Transmitter to Receiver, as illustrated in Fig. 4.3. Pipes
are suitable for this usage, as they offer more faster processing than Manager.

Figure 4.3: Two Pipes used for communication

There start two new processes during running in a default mode. One
separated process is for receiving, and another one is for setting configuration.
The main process ensures transmitting. Monitor starts receiving function of
Receiver. Receiver check CRC and Home ID. Home ID is sent to TrafficGen-
erator by Monitor in case of non-specified network identifier as an argument.
A hash value of a received frame is calculated if its destination is one of the
virtual decoys. Receiver keeps hash values of last ten sent frames in the queue
decoy_frames_out and all hash values of received frames in decoy_frames_in.
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Monitor detects and log attack, as illustrated in Fig. 4.4, because the received
frame is sent to a decoy and was not sent by Transmitter. Monitor logs all
received frames.

Figure 4.4: Malicious modified frame detected

A replay attack is detected and logged if a duplicate of a hash value of the
received frame was already found in decoy_frames_in. This queue remembers
the last ten frames sent by the IoT honeypot, which means two same frames
for a decoy was received, as illustrated in Fig. 4.5. It is certain that one
of them was sent by the attacker because the IoT honeypot never sends the
same frames in such a short time interval. The frame is appended to the queue
decoy_frames_in if it was received for the first time.

Figure 4.5: Malicious duplicate of one of last ten frames sent by the honeypot

Responder prepares answers for attackers if an attack attempt is detected.
Responds consist of acknowledgments frames and reporting frames that are
usually used in legitimate communication. These frames are sent by Trans-
mitter. Non-interactive mode of the IoT honeypot disable functionalities of
Responder.

4.1.2.3 replicate home-id-A [home-id-B]

The replicate subcommand provides replication of records and decoys, as de-
signed in Sec. 3.4. The first argument refers to a source network identifier
– its corresponding decoys and records that will be replicated. Another ar-
gument is optional and refers to a destination network identifier - to which
network data will be replicated. Leaving the second argument blank leads
to replication of network home-id-A internally. First, configuration, network,
and decoys are loaded. A set of free nodes of a target network is computed
as a complementary set of a unified set of all existing decoys and devices in
the target network. All decoy identifiers from the source network are mapped
to new numbers. Records are modified, and all information is saved after the
replication process. It is recommended to do replication only when real devices
are already recognized by the IoT honeypot. For example, Network B lacks
variability and count of devices. Decoys from more complex Network A can be
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replicated to Network B, as illustrated in Fig. 4.6. Replication can be inter-
nal or external. Controllers are replicated to, to make generated traffic more
complex and variable, as Z-Wave networks can include several controllers.

Figure 4.6: External replication of decoys from Network A to Network B

4.1.2.4 Other subcommands

The implementation of the IoT honeypot offers more subcommands, and some
of them differ from a design.

• status

This subcommand display status of the persistent data of the IoT honey-
pot. It divides identifiers of devices and decoys into groups by networks.

• reset

This subcommand removes all persistent information and records of the
IoT honeypot. It is recommended to use it only in special cases.

• add home-id

This subcommand is an addition to a design. This subcommand allows
adding a single new real device to a network. Adding a single device
and recording are the only two situations when network devices can be
discovered and added to the IoT honeypot. Allowing discovering new
devices during a default mode could bring vulnerabilities. For example,
all unused node identifiers for decoys could be used for fake devices, if
an attacker transmits frames with various Node ID values. Adding a
single device starts with receiving. The new device is added if a frame
from unknown device is received. The argument home-id is required.
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• delete home-id node-id This subcommand deletes virtual decoy that
has identifier node-id in network home-id. All corresponding records are
deleted too.

• read record This subcommand load and display recorded frames in
pcap file selected as an argument record.

4.2 Logging

Logging is an essential activity of the IoT honeypot. Logging provides a
representation of results in the terminal and special files. The Python module
logging [83] defines functions and classes which implement a flexible event
logging system for applications and libraries, as it is described in the official
documentation.

The IoT honeypot uses a single logger, but several handlers. The first
handler ensures logging to a terminal. Major output in the terminal is printed
by the logger. The second handler saves all logging messages to a file iot-
pot.log. Third handler prints all alerts to a special file alerts.iot. Locations of
these files can be specified using options of the main command iotpot. Basic
statistics informing about several types of received frames are printed after
user interrupt.

The logger allows dividing logging messages by levels. Standard levels
are DEBUG, INFO, WARNING, ERROR and CRITICAL. Even there is a
possibility of making custom level, the IoT honeypot uses the DEBUG level
for logging mainly results of CRC computations and received frames repre-
sentations. The level INFO has higher priority than DEBUG, and its task
is to inform about more rare events like setting communication parameters.
The level WARNING is used for logging alerts that warn about attack at-
tempts. Time and date are added to all logged messages. First handler uses
ColoredFormatter to highlight level names.

4.3 Persistence of data structures

The IoT honeypot needs to store some of the gathered information to ac-
complish reusability of data. Information that needs to be stored are records
of legitimate communication, information about real Z-Wave networks and
information about sets of decoys corresponding to individual networks.

Records of frames are saved into pcap files. Scapy-radio offers function
wrpcap to save frames to files and rdpcap to read records from files to variables.
Since records are saved into pcap files, installing special dissectors that are
described in [64] can these frames be recognized by Wireshark.

Network information and information about decoys are saved into json
files. Structure of network information is simple and consists of networks
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with their node identifiers. The example of network information saved in
real_networks.json file:

{
"0 xdf11 f630 " :

[ 1 , 8 , 9 , 1 0 ] ,

"0 xaa08f623 " :
[ 1 , 25 , 38 , 42 ] ,

"0 xcd07a510 " :
[ 1 , 38 , 39 ]

}

Information about virtual decoys is more complex. The example of infor-
mation about decoys saved in virtual_networks.json :

{
"0 xdf11 f630 " :

{ " 2 " :
{" r e co rd s " :

[ "20190427 −161336. pcap " ] ,
" s t a t e " : " c o n t r o l l e r "} ,

" 1 7 4 " :
{" r e co rd s " :

[ "20190427 −161336. pcap " ] ,
" s t a t e " : "\ u0000 "}

}
}

4.4 Interaction

The IoT honeypot provides interaction to attackers. The main reason for this
interaction is to pretend that virtual decoys are legitimate Z-Wave devices
and get more time to detect and react. The IoT honeypot can detect several
types of malicious frames destined for its decoys. Detection leads to simple
responding, which was implemented according to the analysis of legitimate
communication between Z-Wave device and controller. The vast majority of
ordinary communication consists of frames with commands GET, SET, frames
including REPORT of device’s state and ACK frames. Malicious activities
like taking control over a device or scanning its state are done by frames that
include SET or GET commands. Responder is able to respond to attackers
using ACK and REPORT frames, as shown in Fig. 4.7. Beside responding,
state of decoys changes if attackers try to manipulate it.
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Figure 4.7: Interaction between an attacker and a Z-Wave outlet

4.5 Validation
There are several situations when the IoT honeypot needs to validate a frame.
Z-Wave uses CRC-16 for validation of frames, and therefore CRC is computed
from all received frames. Value of CRC is included in every frame, and the
IoT honeypot calculates its value of CRC and compares them. Same values
of CRC means the received frame is valid. Preparing a frame to be sent is
another situation when computing CRC is necessary. All transmitted frames
need to have correct CRC to seem legitimate enough. Operation XOR is used
in a function that ensures the calculation of CRC.

Another kind of validation that is used is a hash function. Hash values of
frames are passed from transmitter to receiver to filter frames sent by the IoT
honeypot. The package xxhash and its function xxh32 are used for computing
hash values of frames.

4.6 Data Set of Communication
This thesis provides network information, several records, and virtual decoys.
This data set should serve if a user doesn’t have Z-Wave devices and thus
it is unable to record communication. This data set makes the IoT honey-
pot usable even without a real Z-Wave network. This data set consists of
legitimate communication between three Z-Wave nodes, as shown in Fig. 4.8.
However, implementation of recording mode and replication process allows
creating complex legitimate generated traffic, as every successful recording
creates a new set of decoys and use-case.

Figure 4.8: Real network consisting of a door sensor, a controller and a dimmer

Data set includes network information, several records in pcap files and

48



4.6. Data Set of Communication

virtual decoys. Records represent multiple use-cases in real Z-Wave network.
The identifier Home ID of this network is 0xdf11f630.
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Chapter 5
Testing

This chapter summarizes the testing of a prototype of the IoT honeypot.
First, a test environment is described. Testing is focused on demonstrating
the functionality of the IoT honeypot, its qualities and reveal its defects.

5.1 Test Environment

The IoT honeypot uses RTL-SDR dongle for receiving and HackRF One for
transmitting. Both devices use an antenna. All testing is done using a sin-
gle transmitter. The prototype of the IoT honeypot is the Python package
that is installed on a notebook. The notebook has four CPU cores, 6GB of
RAM memory and the 64-bit operating system Ubuntu 16.04 LTS. The IoT
honeypot has records of decoys that are prepared to operate in a real Z-Wave
network. Testing a Z-Wave network consists of a controller, a dimmer and a
door sensor. Records of decoys have been recorded using a recording mode of
the IoT honeypot. Two types of deployment are possible. The IoT honeypot
can be deployed within an existing Z-Wave network or without the Z-Wave
network. The analysis presents and describes two tools that can be used for
penetration testing - Scapy-radio and waving-z in Sec. 2.2.1. We have only
one transmitter available. A special option was added to the IoT honeypot
to allow using Scapy-radio for the functionality of the IoT honeypot and test-
ing at the same time. Beside penetration tests, several functional tests are
executed too.

5.2 Testing Scenarios

This section proposes several testing scenarios of the IoT honeypot.
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5.2.1 Detection Method Testing

Tools discussed in analytic part of this work in Sec. 2.2.1 are sufficient for
testing of the detection method. The IoT honeypot is a security element, and
it should be able to detect malicious frames. Testing of the detection method
should include real transmission of malicious frames. Scapy-radio, waving-z,
and hackrf_transfer will be used for transmission, modulation, and encoding
of malicious frames. A homogeneous set of malicious frames will be used as
the first type of tests. Another set should contain common frames and a
certain percentage of malicious frames, to prove detection during the normal
mode of the IoT honeypot. The detection method will be tested during the
non-interactive mode of the IoT honeypot and during the interactive mode
too. Since there are two types of deployment, tests should provide results
using the honeypot within the Z-Wave network and without that. Testing of
the detection method will be sophisticated. It will provide information about
the quality of reception, transmission, the detection method, logging, statistic
counters and ability of coexistence with the network.

5.2.2 Passive Mode Testing

The passive mode of the IoT honeypot is a simple receiving of frames and
displaying them in human-readable form. This mode provides informative
functionality for a user. Transmitting several sets of frames should lead to
displaying received frames, dividing them into groups according to type and
increasing corresponding statistical counters. Beside receiving of frames from
real Z-Wave devices, reception of frames sent by SDR will be tested too.

5.2.3 Responding Mode Testing

Since the IoT honeypot can interact with attackers to some extent. Basic
frames are sent as responds to create a simple illusion of legitimate devices.
Testing of responding will be done by transmitting malicious frames and count-
ing resnponses.

5.2.4 Replication Testing

The IoT honeypot offers the function of replication, that can effectively repli-
cate existing records and information originated in one network to another.
Replication can be used in case of missing variability and complexity of the
Z-Wave network, thus the inability of the recording of high-quality records
and information. Replication can also be used for usage of the IoT honeypot
without the Z-Wave network. Replication will be tested using its functionality
and checking new replicated data.
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5.3. Test results

Table 5.1: Detection of 100 malicious frames prepared by waving-z

Number of Frames SET GET REPORT
all sent frames 100 100 100

received valid malicious 90 86 76
recognized valid frames 90 86 76

invalid 0 0 0

5.2.5 Other Functionalities

Since the honeypot provides informative functions like read or status and
record-management functions like add or delete, these functionalities will be
tested too. Simple usage of these functions ale checking an output should
provide enough information to measure their quality, because implementation
of these function is elementary.

5.3 Test results

Several tests were performed according to the proposed testing scenarios in
Sec. 5.2.

5.3.1 Detection Method testing

There are two sets of tools that can be used for transmitting. Encoding and
modulating frames using waving-z and transferring them using the program
hackrf_transfer ensures results of the first test. There were created three sets
of malicious frames with different commands. The first set represents frames,
that can manipulate a state of devices - frames with the SET command.
Frames with the GET command can be used for device’s state scanning.
Frames with the REPORT command can be used for faking device’s state.
Every set consists of one hundred malicious frames. The IoT honeypot receives
these frames during non-interaction mode without traffic-generation. These
special conditions were ensured because of the lack of a second transmitter.
Table 5.1 shows the results of detection of transmitted 100 malicious frames
with each command. The table informs about several successfully received
frames and the number of frames whose commands have been recognized.

The second test works with the same data sets and honeypot settings which
were used in the first test. However, instead of waving-z and hackrf_transfer,
these frames are sent by scapy-radio. Since the IoT honeypot recognizes po-
tentially malicious invalid frames, the Tab. 5.2 includes them too. This table
provides apparent differences in the reliability of transmission between hack_rf
and scapy-radio. Recognition of frames is successful.
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5. Testing

Table 5.2: Detection of 100 malicious frames transmitted by scapy-radio

Number of Frames SET GET REPORT
all sent frames 100 100 100

received valid malicious 49 55 48
recognized valid frames 49 55 48

invalid and potentially malicious 4 4 1
all invalid frames 12 13 15

Table 5.3: Detection of 100 malicious frames transmitted by scapy-radio

Number of Frames SET GET REPORT
all sent frames 100 100 100

received valid malicious 58 61 67
recognized valid frames 57 61 67
all valid decoy frames 114 121 83

invalid and potentially malicious 3 4 2
all invalid frames 25 22 13

unrecognized 1 0 0

The third test works with the same data sets as the second test. The only
difference is the interaction of the IoT honeypot. Since the IoT honeypot did
not interact in the second test, it responds to malicious frames in the third
test. Tab. 5.3 presents information about received and recognized frames
during this test. Beside categories from the second test, the third test shows
a summary of all recorded decoy frames in which are responds counted. One
unrecognized frame appears during this test too.

The fourth test uses sets of 100 frames. However, only every fifth is ma-
licious. Thus every set includes 20 malicious frames. Results of this test
are summarized in Tab. 5.4. The IoT honeypot was responding to malicious
frames.

The fifth test uses sets of 100 frames, and every fifth frame is malicious.
This test was executed in the presence of real Z-Wave network to test coex-
istence of the IoT honeypot within the real network. Tab. 5.5 summarizes
results. Usage of the real Z-Wave network was random. The IoT honeypot
counted frames from real devices too.

5.3.2 Passive Mode

Data sets of malicious frames are used for passive mode too. Passive mode
ensures a more detailed representation of received frames to satisfy require-
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5.3. Test results

Table 5.4: Detection of 20 malicious frames transmitted by scapy-radio with
interaction

Number of Frames SET GET REPORT
all sent frames 100 100 100

sent malicious frames 20 20 20
received valid malicious 7 13 8
recognized valid frames 7 13 8
all valid decoy frames 65 71 61

invalid and potentially malicious 5 4 4
all invalid frames 21 14 8

Table 5.5: Detection of 20 malicious frames transmitted by scapy-radio with
interaction and real Z-Wave network

Number of Frames SET GET REPORT
all sent decoy frames 100 100 100

frames from real devices 42 63 14
sent malicious frames 20 20 20
received valid malicious 8 16 8
recognized valid frames 8 16 8

all valid received decoy frames 64 71 57
invalid and potentially malicious 3 1 6

all invalid frames 19 16 12

ments of a potential deeper analysis of frames. All received decoy frames were
sent by program hackrf_transfer. Test results of passive mode are shown in
Tab. 5.6.

5.3.3 Responding

This test use data sets of 100 malicious frames. The main goal of the test is
to count responding frames. The IoT honeypot responds ACK and REPORT
frames. Tab. 5.7 summarizes results. This table includes numbers of responses.
Zero REPORT responds to REPORT frames are logical.

55



5. Testing

Table 5.6: Detection of 20 malicious frames transmitted by scapy-radio with
interaction and real Z-Wave network

Number of Frames SET GET REPORT
all sent decoy frames 100 100 100

frames from real devices 48 26 51
sent malicious frames 100 100 100
received valid malicious 55 81 85
recognized valid frames 55 81 885

all invalid frames 4 0 0

Table 5.7: Responding to 100 malicious frames transmitted by scapy-radio
with interaction and real Z-Wave network

Number of Frames SET GET REPORT
frames from real devices 5 13 21
sent malicious frames 20 20 20
received valid malicious 9 8 9
recognized valid frames 9 8 9

all invalid frames 18 21 8
invalid and potentially malicious 7 3 7

ACK responded 25 24 17
REPORT responded 15 11 0

5.4 Replication

The main goal of this test was to check if replication ensures the creation of
a new set of decoys and records for a network specified as an argument. The
source network is 0xdf11f630 and target network 0xdf11f640. Even when the
IoT honeypot misses information of real devices network of the 0xdf11f640
network, the replication process should create a usable set for the main func-
tionality of the IoT honeypot.

Subcommand status provided information about a single network before
the replication process: The replication process created sets for the new net-
work and the status subcommand shows information about the new network
and its decoys.
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5.5. Summary

5.5 Summary
Functionality and subcommands like status, add, delete and read were tested
during complex testing of other functionalities. The subcommand status is
able to provide information about persistent information gathered or created
by the honeypot. Subcommands and and delete are usable for node manage-
ment. Subcommand read was tested and is able to display recorded frames in
human readable form.

Testing of detection method, passive mode and responding provided use-
ful information that can be used for future work. Tests showed the program
hackrf_transfer has higher reliability of transmitting than Scapy-radio. How-
ever, the IoT honeypot uses Scapy-radio because of its number of functions like
frame representation, frame recognition, recording into pcap files, the ability of
transmission and reception at once, the flexibility of its GRC blocks, configura-
bility during run time and many more. Lower reliability of the transmission of
Scapy-radio needs further analysis of its lower layers. On the other hand, even
when hackrf_transfer offers more reliable transmitting, frames need to be first
modulated and encoded to individual files before transmission. The lack of
flexibility, configurability during run time, the inability of frame recognition
makes Scapy-radio more realistic choice for the IoT honeypot.
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Conclusion

One of the goals of this thesis was to analyze the state-of-the-art of hardware
and software tools for receiving, processing and transmitting signals of wireless
protocols for the Internet of Things. This thesis introduced and summarized
general information about the current state of the Internet of Things and
currently available hardware and software.

The analytic part of this thesis is focused on the analysis of the proto-
col Z-Wave that is used for home automation and its security vulnerabilities.
Beside generation information about Software Defined Radio, a flexible solu-
tion for digital signal processing, this part explains its usage in the context
of penetration testing of wireless protocol Z-Wave, basic principles of its op-
erating and several hardware and software solutions are introduced. Several
ways of basic attack that is based on analyzed vulnerabilities of Z-Wave are
summarized too. The last part of the analysis provides general information
about honeypots and existing solutions of IoT honeypots, as potential security
elements of IoT networks.

The design of the IoT honeypot discusses a system’s architecture and its
components. The design of a prototype is based on information gathered from
analysis and considers Software Defined Radio hardware as essential compo-
nents. The IoT honeypot is a device that can receive and transmit Z-Wave
frames. A role of a receiver takes up the RTL-SDR dongle. HackRF One is
designed to be used as a transmitter. Other components of the IoT honeypot
are designed to monitor malicious activities, store reusable and valuable in-
formation and interact with attackers to some extent. The main idea of the
principles of the IoT honeypot is to create a set of targetable and authentic
decoys that will lure potential attackers. Last part of this chapter includes
test scenarios.

Since the design of the IoT honeypot was done properly, there were only
a few problems during implementation. Realization explains the usage and
integration of several hardware and specific software components and pack-
ages. Implementation of main functionality like detection method, interaction,
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Conclusion

logging and recording are summarized too. Creation of communication data
sets is one of the essential goals of this thesis. The IoT honeypot receives
legitimate communication of real Z-Wave devices and produces records and
network information about virtual decoys, which are reusable and replicable.

Tests have provided information about the quality of certain functions, sys-
tem shortcomings and deployability within the real Z-Wave network. Complex
tests prove that main functions of the IoT honeypot work satisfactorily, but
are hampered by low reliability of the used tools. The lack of hardware compo-
nents and the complexity of used tools disallow us to detect reason unreliable
transmission. The extremely low false-positive rate of detection method is
achieved thanks to the main idea of the IoT honeypot. However, the IoT
honeypot is not intended as a single security element of Z-Wave networks.
Its main contribution is to increase changes of attack detection, prevention
against malicious activities and helps to patch vulnerabilities of existing Z-
Wave networks with unencrypted communication.

The output of this thesis is a working prototype of the proposed IoT hon-
eypot that is deployable on real Z-Wave networks. The prototype was tested
on a set of real Z-Wave devices. Hardware tools for this thesis were available
thanks to cooperation with the organization CESNET.

Future Work
This thesis provides analysis of an available set of tools for digital signal
processing, Software Defined Radio, which is very flexible and therefore can
be used in a wide range of applications. However, its flexibility reduces the
ease of use, because deeper knowledge is needed to create a custom solution.
Implementing GRC blocks for all sets of communication parameters of Z-Wave
could increase the quality of reception and transmission. Further optimization
and more reliable hardware components could bring better results and more
reliable transmission. Another improvement could include the implementation
of more advanced detection methods supporting a more extensive range of
command classes of frames. Statistical methods and machine-learning could
allow more advanced methods of traffic generation, detection and responding.
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Appendix A
Acronyms

6loWPAN IPv6 over Low-Power Wireless Personal Area Networks

AMQP Advanced Message Queuing Protocol

BLE Bluetooth Low Energy

CRC Cyclic Redundancy Check

DAC Digital-to-analog

DSP Digital Signal Processing

GRC GNU Radio Companion

HTTP Hypertext Transfer Protocol

IoT Internet of Things

LAN Local Area Network

LPWAN Low-Power Wide-Area Network

MAC Medium Access Control

MQTT Message Queuing Telemetry Transport

PHY Physical

PPDU Physical protocol data units

PSDU Physical service data unit

RFID Radio Frequency Identification

SDR Software Defined Radio
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Appendix B
User Manual

There are several tools, which needs to be prepared and installed before in-
stallation of the IoT honeypot.

B.1 Installation

1. RTL-SDR dongle

RTL-SDR dongle is used for reception of Z-Wave frames. It is necessary
to install drivers for this device. The installation guide which can be
found in https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/.

2. HackRF One

HackRF One is used for transmission of Z-Wave frames. Installation
guide for this device can be found in https://github.com/mossmann/
hackrf/wiki/Operating-System-Tips

3. EZ-Wave

Scapy-radio ensures digital signal processing and frame parsing. EZ-
Wave offers examples of usage of Scapy-radio functions. Since EZ-Wave
includes Scapy-radio too, Scapy-radio can be installed according to man-
ual in https://github.com/cureHsu/EZ-Wave.

4. GNU Radio Companion

GNU Radio Companion can be used for GRC block modification. In-
stallation guide for GNU Radio Companion can be found in https:
//wiki.gnuradio.org/index.php/InstallingGR.

5. Block replacement

It is highly recommended to replace files in
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B. User Manual

$HOME/ . scapy/ rad io /Zwave/Zwave . grc
$HOME/ . scapy/ rad io /Zwave/ top_block . py

with files Zwave.grc and top_block.py that can be found on CD or Github
repository of this thesis. These files are GRC blocks modified for usage
with RTL-SDR dongle.

6. IoTpot
This Python package is the final implementation and output of this
thesis. Its implementation can be found on CD or Github repository of
this thesis in https://github.com/HalfDeadPie/IoTpot. This Python
package can be installed using the command:

python setup . py i n s t a l l

B.2 Usage
This section describes the usage of several subcommands of the IoT honeypot.

The option –help displays descriptions to all possible subcommands, op-
tions, and arguments that the package of the IoT honeypot offers:

i o tpo t −−help

It is highly recommended to use a configuration file that can be accessed
using option –config/-c. The example is:

i o tpo t −−c on f i g c on f i g . c f g

All subcommands can be used within the main command. The example
is:

i o tpo t −−c on f i g c on f i g . c f g record
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

grc-blocks .....................Blocks for GNU Radio Companion
Zwave.grc ..Modified GNU Radio Companion blocks for Z-Wave
top_block.py ..........Generated block source code for Z-Wave

IoT-Honeypot......................................Python package
iotpot ................................. implementation sources
iotpot_data .........................example of persistent data
tests .................................... records used for tests
LICENSE .....................................license of the work
README.rst ..................information about Python package
setup.py .............. the installation script of Python package

thesis ................................... source code of the thesis
text..........................................the thesis text directory

DP_Stefunko_Simon.pdf..............the thesis text in PDF format
ZadanieDP_Stefunko_Simon.pdf.the assignment text in PDF format
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