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Instructions

The work aims to use computer vision techniques to create a framework that could analyze video
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and tracking and to obtain soft biometric statistics. The deep-learning approaches might be used. The
output of the framework analysis should be data of persons’ trajectories. The data could be visualized to
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2) Propose methods and algorithms that can efficiently solve the task mentioned above.
3) Implement the proposed methods and algorithms using appropriate programming language and tools.
4) Verify implemented methods on real data, evaluate their accuracy and suggest further improvements.
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Abstrakt

Tato práce se zabývá návrhem frameworku, který slouž́ı k analýze video sek-
venćı z RGB kamery. Framework využ́ıvá technik sledováńı osob a následné
extrakce biometrických dat. Biometrická data jsou sb́ırána za účelem využit́ı v
malobochodńım prostřed́ı. Navržený framework lze rozdělit do třech menš́ıch
komponent, tj. detektor osob, sledovač osob a extraktor biometrických dat.
Navržený detektor osob využ́ıvá r̊uzné architektury śıt́ı hlubokého učeńı k
určeńı polohy osob. Řešeńı pro sledováńı osob se ř́ıd́ı známým postupem

”online tracking-by-detection“ a je navrženo tak, aby bylo robustńı v̊uči za-
lidněným scénám. Toho je dosaženo začleněńım dvou metrik týkaj́ıćı se vzhledu
a stavu objektu v asociačńı fázi. Kromě výpočtu těchto deskriptor̊u, jsme
schopni źıskat daľśı informace o jednotlivćıch jako je věk, pohlav́ı, emoce,
výška a trajektorie. Návržené řešeńı je ověřeno na datasetu, který je vytvořen
speciálně pro tuto úlohu.

Kĺıčová slova poč́ıtačové viděńı, detekce osob, sledováńı osob, extrakce bi-
ometrických údaj̊u
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Abstract

This thesis proposes a framework that analyzes video sequences from a single
RGB camera by extracting useful soft-biometric data about tracked people.
The aim is to focus on data that could be utilized in a retail environment.
The designed framework can be broken down into the smaller components,
i.e., people detector, people tracker, and soft-biometrics extractor. The people
detector employs various deep learning architectures that estimate bounding
boxes of individuals. The tracking solution follows the well-known online
tracking-by-detection approach, while the proposed solution is built to be
robust regarding the crowded scenes by incorporating appearance and state
features in the matching phase. Apart from calculating appearance descriptors
only for matching, we extract additional information of each person in the
form of age, gender, emotion, height, and trajectory when possible. The
whole framework is validated against the dataset which was created for this
propose.

Keywords computer vision, people detection, people tracking, biometrics
extraction
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Introduction

Detection of people and their subsequent identity preservation in a video se-
quence (tracking) is a part of a more broader domain task called multiple
object tracking (MOT). In the basic definition, MOT tries to estimate the
position of the objects from multiple predefined classes, and then maintain
their identity through the whole video sequence.

In most cases, position estimation is done by a component known as the
object detector, which predicts the bounding boxes with real-valued confi-
dences of each object class in each video frame. However, the conventional
object detector does not guarantee the relationship between objects in con-
secutive frames. Therefore, it is necessary to extract additional features from
each detected object to build the relationship in the sequence of frames.

The extracted features are mainly based on a visual appearance, move-
ment, and interactions of the object, but complementary information such
as camera calibration and known scene parameters can also be incorporated.
The subsequent tracking is then achieved by matching detected objects to pre-
served tracks based on various distance metrics that are calculated between
features of the detected objects in a current frame and features of traced
objects from previous frames. This approach is also known as online tracking-
by-detection which means that only current and previous frame information
is available to the tracker, in contrast with offline-based tracking where infor-
mation from the whole sequence can be used at any time.

One of the tracking benefits is that we can recover the trajectories of the
objects that appeared in the video sequence, based on which we can calculate
various spatial statistics that can help us to improve existing processes. For
example, statistics about the movement within waiting halls might be helpful
for companies to improve their indoor space and arrangement.

Even though this thesis focuses only on the task of people tracking, we
may still apply many principles from more general MOT. A follow-up step
after successfully building the people tracking framework is the extraction of
additional class-specific information about people (soft-biometrics). This esti-
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Introduction

mated data can be utilized in many applications from the retail environment;
for example, we can utilize them in a retail store where there is the high de-
mand for learning customer trends in specific days and hours, which could be
easily achieved by collecting customer information such as age, gender, mood,
etc. Other scenarios could be with a personalized advertisement targeted at
passers-by in a shopping center or real-time staff alert when senior enters a
store to offer immediate assistance. Moreover, we could use this framework to
distinguish between customers and employees so we can analyze their inter-
action or even go further and optimize the distribution of employees around
the store.

Motivation

MOT is one of the essential topics in the computer vision field. A large num-
ber of surveillance cameras in use has led to strong demand for automatic
methods of processing their outputs. For example in the field of crowd im-
age analysis, the scientific challenge is to devise and implement methods for
obtaining detailed information about the number, density, movements, and
actions involving people observed by a single camera or by a network of cam-
eras.

Historically, the progress in MOT field has been limited by the number
and size of the available datasets, and it was especially challenging to make
comparisons between algorithms if they have been tested on different datasets
under widely varying conditions. Thus, the needs of the researchers eventually
formed the very first and most known PETS2009 [20] person tracking dataset.
However, this dataset is minimalist. There are only three sequences related
to the person tracking with ground-truth information, and evaluation metrics
were often applied inconsistently, for example involving using different sub-
sets of the available data, different ways of training the models, or differing
evaluation scripts [2].

The big break came in the year 2015 when MOTChallenge [2] was released
with the goal of standardization of quantitative benchmark to address such
issues. Not only did they create unified evaluation framework with standard-
ized metrics, but they also created the large-scale dataset with a total of 22
sequences, half for training and a half for testing purpose, with a total of 11286
frames or 996 seconds of video. This benchmark has massively transformed
the MOT field which resulted in severe improvements to existing algorithms.
Its popularity can also be expressed in numbers; for example, 99 MOT track-
ing algorithms were submitted to the MOT17 challenge [21] during the year
2017 and similarly previous years.

Since the accuracy of existing algorithms is increasing and the price of
graphics processing unit (GPU) computations is decreasing, new and more
challenging datasets are being invented. VisDrone2018 [22] is a current state-
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Motivation

of-the-art MOT dataset with over 260 video clips and more than 2.5 million
bounding boxes of various class objects annotated. The frames are captured
by several drone-mounted cameras which causes an unusual perspective and
makes the dataset even more challenging.

To this date, there are more than ten large-scale MOT benchmarks pub-
licly available which demonstrates that this task, especially with objects such
as people, vehicles, and bicycles, has enormous attention in the research com-
munity and because the datasets are still updated to be more challenging,
there are still places to improve.

The logical extension beyond detection and tracking horizons is the ex-
traction of additional class-specific features. If we would track cars, we could
take advantage of estimation of car paint, brand, and type. This information
can then be used for various temporal and regional statistics; for example, for
estimating the richness of a town by counting luxury-type cars.

If we take another case, which is the extraction of class-specific features
about people, we could estimate attributes such as race, gender, height, mood,
hair color, and clothes color. These traits are called soft-biometrics, and they
are frequently used in cases where we need to complement primary biometric
identifiers, such as fingerprint, palm veins, iris pattern, to provide authenti-
cation based on the unique identification of the person. The estimation of
any class-specific feature is noisy. Therefore, it is essential to have reliable
MOT framework, so the features are not collected from a single frame, but
appropriately calculated from the whole tracking session.

Although soft-biometric characteristics lack the distinctiveness and per-
manence to recognize an individual uniquely and reliably and can be easily
faked, they provide some evidence about the people identity that could be
beneficial [23]. With the use of soft-biometrics, we can differentiate individu-
als in surveillance video where it is ubiquitous that people are often occluded.
In other words, despite the fact they are unable to individualize a subject,
they are useful in distinguishing between people, thus maintaining people’s
identity in a surveillance scene. Another useful utilization is in the retail en-
vironment where we can build aggregated statistics such as the number of
women between age 25 and 40 visited our store in the morning. If we have
such information that in the morning there is 75 % women of visitors, we could
utilize this and adapt the store to be more suitable for women, and therefore
we will have a better chance to increase profit.

Last but not least, having an accurate and flawless MOT framework is
crucial for further expansion to popular multi-target multi-camera tracking
(MTMCT) field, which is the problem of determining who is where at all
times given a set of video streams as input. The output of this task is also
a set of person trajectories but from a wider area. Person re-identification
(ReID) is a closely related problem in this field. Given a query image of a
person, the goal is to retrieve from a database of images taken by different
cameras the images where the same person appears. [24]
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Introduction

Challenges

MOT field is deeply explored – many methods have been proposed, and many
surveys have been conducted [25, 26, 27]. However, it is still considered as not
successfully solved computer vision task. In other words, a saturation point
has not yet been reached.

MOT task is an extension of object detection from single images to video
sequence. The main challenges when using an object detector for tracking
are that the resulting output is unreliable and sparse, i.e., detectors only
deliver a discrete set of responses and usually yield false positives and false
negatives (missing detections) as shown in Fig 0.1. So, in addition to such
object detection errors, identity switches are frequent in any MOT framework
(see Fig. 0.2).

Figure 0.1: Example of false positive and false negative person detection.
Source: [1].

ID switches occur when there are two object trajectories are produced for
one ground-truth object. Fragmentation occurs when there are two trajecto-
ries are produced with a time gap between them for one ground truth object,
which implies that detections are missed in several frames. In theory, the ro-
bust tracker should handle both of these flaws. It should fill gaps in detections
by propagating information from neighboring frames, and it should also filter
false positive detections based on the information from previous frames.

However, it has been found out during multiple object tracking challenges
that in practice, it is not entirely so. For example, in MOT [21] dataset from
2016, 18 % of tracks are not covered by detections at all, and 37 % percent of
tracks are covered only by low confidence of detections. When there is no high-
quality detection for particular ground-truth track, then the tracker cannot
resolve this problem at all, which implies that tracker usually reduces only
false positives and raise false negatives by removing low-confidence detections.
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Figure 0.2: Cases illustrating tracker-to-target assignments errors. (a) An
ID switch occurs when the mapping switches from the previously assigned red
track to the blue one. (b) A track fragmentation is counted in frame 3 because
the target is tracked in frames 1 and 2, then interrupts, and then reacquires
its ‘tracked’ status at a later point. A new (blue) track hypothesis also causes
an ID switch at this point. Source: [2]

Nowadays, many researchers state that a robust object detector is a key to
good tracking [21, 28, 29] and during recent work [25, 26, 30], it has been shown
that modern object detectors can locate object even in complex, crowded
scenes. However, false positives have remained frequent.

If we narrow down to the tracking people, it is even more difficult because
they are very dynamic objects. People tend to change position, direction, and
posture often, but they also have different height and body proportions. In
real-world scenes, long-term occlusions are also frequent. As a result, it is
vital for people tracking systems to be flexible so that it can handle as many
different situations as possible.

Lastly, it is a topic from computer vision field where most of the work is
done over images represented by matrices. It is well known that working with
images is computationally demanding because each change needs to be applied
for each pixel and although the image algorithms can be well parallelized, we
still need to keep in mind the computation costs.

Objectives

The goal of this thesis is to design and implement a sophisticated framework
that could utilize surveillance sequences for people online tracking followed
by the extraction of as much data as possible about the people in the scene,
which is a three-step process. First, we need effectively and precisely acquire
people detections in each frame. Then, we need to utilize a robust tracking
algorithm that will maintain people identities. Lastly, gathered data from
people tracking sessions must be appropriately processed for useful output
statistics.
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Introduction

Assumptions

The detection and tracking of people in surveillance footage is a broad topic.
For this reason, the work is limited only to the one static camera watching
a known scene. We assume that the captured scene is entirely under our
control which means we can make any measurements and calibrate the camera.
Moreover, we take into account the requirements for online processing so that
the framework can be improved for real-time inference in the future.

Thesis structure

The rest of this thesis is organized as follows. In the first chapter, we present
a theoretical background which is crucial for the understanding of solving
this task. Chapter 2 is devoted to the related work. Algorithm design and
proposals are presented in chapter 3. Implementation details are explained in
chapter 4, followed by the evaluation presented in chapter 5. The whole work
is wrapped up in the last Conclusion chapter.
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Chapter 1
Theoretical background

This chapter contains the necessary summary of theoretical knowledge to un-
derstand this work. We start with a general overview of artificial intelligence
areas, emphasizing the computer vision field and its approaches with follow-up
tasks. Lastly, we try to address the metrics needed to evaluate the algorithms
used in the thesis. A reader who is familiar with the thesis topic can continue
straight to the next chapter.

1.1 Relevant areas

In this section, we go through a brief explanation of topics such as artificial
intelligence, machine learning, deep learning, and computer vision. The reason
for this is that many people consider these terms as effectively synonymous,
but each one deals with different tasks.

1.1.1 Artificial intelligence

AI is an area of computer science that emphasizes the creation of intelligent
machines that work and react like humans and to this date, researchers cannot
agree on its precise definition [31]. The main characteristic is that, unlike
traditional algorithms, the algorithms of artificial intelligence are capable of
learning from new and past data. They can enhance themselves by learning
new strategies, or by improving existing algorithms.

Although creating a general artificial intelligence that is comparable to
human has proved to be extremely difficult, over the past fifty years researchers
have developed a set of procedures that achieve partial success in AI sub-fields
such as expert systems, genetic programming, state space search, data mining,
machine learning, deep learning, and computer vision [32].
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1. Theoretical background

Figure 1.1: Venn diagram of AI and its sub-fields. Source: [3].

1.1.2 Machine learning

While the AI is a broader concept, machine learning (ML) is the core part of it.
The popular definition from [33] states: ”Machine Learning is the science of
getting computers to learn and act like humans do, and improve their learning
over time in autonomous fashion, by feeding them data and information in
the form of observations and real-world interactions.”

ML is sometimes considered difficult to understand. However, the under-
lying intuition is not that complicated. At its core, we can imagine that the
ML algorithm is just searching a decision hyperplane of best fit in many di-
mensions. If we have up to 2-D feature space of the problem, we can even
visualize the split and the results. That is why dimensionality reduction such
as principal component analysis (PCA) [34] is often used.

The complexity in the machine learning tasks is the training and prepara-
tion of the training dataset. There is a great emphasis on the flawlessness of
the dataset because if it contains errors, the algorithm can quickly learn these
imperfections and thus decrease the generalization performance [35].

There are three [36] main ML categories that are being actively researched
– supervised learning, unsupervised learning, and reinforcement learning. They
differ from each other in the way they handle data, but also with the outputs
they provide.

8



1.1. Relevant areas

(a) (b) (c)

Figure 1.2: Categories of machine learning tasks. a) Supervised learning. b)
Unsupervised learning. c) Reinforcement learning. Source: [4, 5]

.

1.1.2.1 Supervised learning

In supervised learning [35, 36, 37], the algorithm focuses on building a math-
ematical model from a set of available data that contains both the inputs and
also the desired outputs. The most common example is to predict house prices
based on various features such as the number of rooms, square floor feet, lot
area, general condition, etc. ML model takes these features as inputs and
based on its internal parameters, it produces output price prediction. This
type of supervised learning is called regression. It is characterized by that the
output is continuous value.

Another type of supervised learning is classification which is used when the
outputs are restricted to a limited set of values. We could consider a simple
classification problem as identification of spam emails based on its content.
The output prediction for this task would be of either ”spam” or ”not spam.”
A traditional supervised classification model used for decades is a support
vector machine (SVM) [38] that divides the data into regions separated by a
linear boundary.

There is also a popular sub-category called semi-supervised learning [39]
that emphasizes on using incomplete data during training, in terms of missing
labels for some data samples.

1.1.2.2 Unsupervised learning

Unsupervised learning algorithms [4, 35, 36] try to build a mathematical model
to find patterns in data. The data given to the unsupervised model in training
phase contains only input features and no desired output labels. Algorithms
are then left to themselves to explore and discover critical structures in the
data and group the inputs into clusters (categories). In the previous exam-
ple with houses, the model would be able to find similar houses for input
parameters, but not to predict the price of a given house.
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Typical algorithm representatives in unsupervised learning are hierarchical
clustering [40], k-means [41], and DBSCAN [42].

1.1.2.3 Reinforcement learning

”Reinforcement learning is the problem faced by an agent that must learn be-
havior through trial-and-error interactions with a dynamic environment. [43]
The learning is achieved based on the positive or negative reward for agent’s
actions in the environment. Given the agent’s and environment’s states, the
agent only takes actions which will maximize his reward or will explore a new
possibility. Results of these actions are then fed back into the agent, and based
on that it will change its state. This step is repeated many times to improve
the agent’s behavior for future decisions.

Examples of rewards can be winning a game, scoring more points or earn-
ing more money. Thus it fits well dynamic tasks. Reinforcement learning,
especially with deep neural network extension [44], already performs well on a
small human-involved task such as playing Atari games and it presents current
state-of-the-art results in this field.

1.1.3 Deep learning

Deep learning (DL) [45] is a specialized form of ML, and it is currently the
cutting edge of what machines can do. Its methods have far surpassed any
previous traditional algorithms for classification of images, text, and voice and
we can find its use in all current machine learning applications.

The essential advantage is that unlike ML models, DL models are trained
by large labeled sets of data where the model architecture learns the domain
features directly without the need for manual feature extraction. This is also
known as ”end-to-end learning” where a model is given data, optimization
criteria, a task to perform and it learns how to solve this task automatically.
Another important fact is that today’s DL models often continue to improve
as the size of the data increases [46].

DL tasks can be categorized into the same categories as ML – supervised,
unsupervised, and reinforcement learning. The most common DL models are
based on an artificial neural network, which is why deep learning models are
often referred to as deep neural networks, but other architectures such as
convolutional neural networks (1.2.2), deep belief networks [47], and recurrent
neural networks [48] are also popular. Unlike traditional neural networks with
a few hidden layers, deep networks can have hundreds of layers with thousands
of neurons in each of them.

Although many DL concepts such as neural networks, backpropagation,
gradient descent had been around for decades [49, 50, 51], some researches
asses that victory of Krizhevsky in October 2012 ImageNet competition started
the ”deep learning revolution” [52]. However, it was not the only big break
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that happened, for example, Google’s Deep reinforcement learning based Al-
phaGo beating the best Go player in the world [53] also had a great impact
on the research community.

There are two main drawbacks while using DL architectures. Firstly, it
requires a large amount of labeled data, which is an even bigger problem in
critical applications. In an example such as autonomous driving, it is often re-
quired to have thousands of hours of video, which can take up a few petabytes
of storage space. Secondly, DL requires substantial computing power, which is
most often achieved by using high-performance GPUs that have parallel archi-
tecture. However, most people, especially researchers, do not have their GPU
cluster, so they use cloud computing that enables them to reduce training
time from weeks to hours.

There are also many criticism [46, 54] concerns around DL because meth-
ods are often looked at as a black box with the lack of theory, where most
confirmations are done empirically rather than theoretically.

1.1.4 Computer vision

CV is the process of using computers to process, understand and analyze
various types of image data in order to produce numerical or symbolic infor-
mation, e.g., in the forms of decisions [55]. The motivation is to automate
tasks that human visual systems can do to utilize human resources on more
critical tasks. Moreover, with a large number of surveillance cameras, it is not
possible to monitor all of them by people.

Figure 1.3: Venn diagram of related fields of CV. Source: [6]
.

The whole process from analyzing image data to subsequent decision mak-
ing is called a CV pipeline. The traditional pipeline starts with image ac-
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quisition, followed by image preprocessing and feature extraction step, ending
with a classifier. This pipeline follows well-established principles from any ML
task. Hence we do not consider it necessary to explain it in this work, but we
provide a reference to [56] which offers a detailed description of each step.

The analyzed image data can be a standard photo or video sequence from
a common red-green-blue (RGB) camera, but also to more complex data such
as multi-camera video sequence and multi-dimensional imagery from satellite
or medical equipment.

Computers interpret this visual content very straightforwardly – as a series
of pixels that forms a matrix, where each pixel has its own set of color values
(see Fig. 1.4). However, in order for the machines to make decisions, they
need to understand higher-level concepts in the data, not to use just plain
pixel values. For this reason, and also because the size of the imagery data is
large, feature extraction is a common technique to obtain high-level features,
thus helping computers to understand the visual context [7].

(a) (b) (c)

Figure 1.4: Pixel data diagram of simplified grayscale image demonstrating
the semantic gap. a) The image itself. b) The pixels labeled with values from
0 to 255, representing their brightness. c) Pixel values by themselves. Source:
[7]

.

To this date, we can observe two main approaches in CV pipelines – hand-
crafted ML methods and DL methods [45]. The main difference is how features
are obtained before they are fed into a classifier. We can think of mean, vari-
ance, median, min, and max of our data as useful measures for discrimination
of samples, but since these features are specified explicitly, they are called
hand-crafted. In practice, we have more complicated tasks that require more
sophisticated statistical functions and feature extractors such as Haar [57],
local binary pattern (LBP) [58], histogram of oriented gradients (HOG) [59],
Scale-invariant feature transform (SIFT) [60], Speeded-Up Robust Features
(SURF) [61], but the idea is the same – we know how the features will look
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like in advance. In DL, we know nothing about the features until we learn
them from data itself. We still need to specify model and its parameters, but
the real feature learning is achieved by an iterative optimization process.

CV is nowadays ubiquitous in our society. It is used in applications such
as image understanding, medicine, self-driving cars, augmented reality, and
drones and there are many sub-domains of CV that are actively researched
[55]. The most significant interest is currently on scene reconstruction, object
detection and tracking, human pose estimation, and style transfer. It may be a
surprise, but the core of many applications often builds upon something simple
as image classification, and while many types of CV algorithms have been
around since the 1960s, recent developments in computing capabilities have
driven significant improvements in how well machines understand the image
content. Furthermore, with the advent of DL approaches, CV is becoming
increasingly popular, and at the same time, there is a noticeable increase in
the accuracy of many existing CV applications [45].

1.2 Computer vision approaches

Because the CV field has massively transformed into DL algorithms, we present
a brief overview of some conventional approaches that are used for solving to-
day’s CV tasks.

1.2.1 Artificial neural network

Artificial neural network (ANN) [45, 62], or simply neural network (NN) in this
context, is an interconnected graph of artificial neurons that uses a computa-
tional model for solving ML tasks . In more practical terms, NN is non-linear
statistical data modeling or decision-making tool that can be used to model
complex relationships between inputs and outputs or to find patterns in data.
In most cases, a NN adapts its internal parameters based on information that
flows through the network. Thanks to many breakthrough results in recent
years, it generated much excitement in the research community [52].

1.2.1.1 Artificial neuron

There are many types of NNs [45]. However, the most researched and utilized
is a particular type known as the multi layer perceptron (MLP) [63]. Its basic
unit of computation is called neuron (or node). It receives inputs from other
neurons and computes an output value. Each input xi of a neuron has its
a particular weight wi value associated. The weight can be understood as
relative importance to other neuron inputs. Weights and inputs are added
together in weighted sum, and additional bias parameter b is used as a cor-
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rection. In the end, activation function ϕ is used to generate an output of the
neuron yk. In mathematical notation, the output of a neuron is given by:

yk = ϕ

 n∑
j=1

wjxj + b

 (1.1)

1.2.1.2 Activation function

It is very common that applications from the real world are non-linear, and
in order to find an approximate solution to them, it is necessary to include
non-linearity into the prediction model [45]. According to the Universal ap-
proximation theorem [64], by incorporating non-linear activation function into
an MLP architecture with single hidden layer and a finite number of neurons,
it is possible for the model to approximate any continuous function, i.e., can
in principle learn anything.

To this date, many activation functions were proposed, but the most com-
monly known [10] are:

• Sigmoid – The sigmoid non-linearity squashes real numbers to range
between [0, 1].

σ(x) = 1
1 + e−x

(1.2)

• tanh – The tanh non-linearity squashes real numbers to range between
[−1, 1].

tanh(x) = 2σ(2x)− 1 (1.3)

• ReLU – The activation value of ReLU is simply thresholded at zero.
As the ReLU has proved to work very well, several other variants such
as Leaky ReLU, ELU, and SELU have emerged.

f(x) = max(0, x) (1.4)

The activation function selection is crucial for task accuracy and perfor-
mance. However, their thorough description is very comprehensive. Thus we
recommend [10] for their detailed overview.

1.2.1.3 Feed-forward neural network

Feed-forward NN [36, 45] contains multiple neurons arranged in layers. Nodes
from adjacent layers have connections between them, and all these connections
have associated weights. In this type of network, the information during
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prediction moves only in the forward direction, hence the name. No cycles are
allowed in this architecture.

A feed-forward NN can consist of three types of layers:

• Input layer – The input layer is always at the beginning of the network.
It provides information from outside of the model to the network. No
computation is performed at this stage, and values are just distributed
to further neurons.

• Hidden layer – Neurons in this layer perform computations to output
nodes based on input nodes and internal parameters. A feed-forward
network can have zero or multiple hidden layers.

• Output layer – This layer is responsible for transferring the computed
information from the network to the outside world. The transferred
information usually represents a class probability score or some real-
valued prediction.

The weights in neurons are iteratively improved in the training phase,
where data is forwarded through the network, then the difference between
ground-truth and the predicted value is calculated. The procedure to improve
the weights is known as backpropagation [65]. An example of a feed-forward
neural network is shown in Fig. 1.5. Feed-forward NN with many hidden
layers is called deep NN.

(a) (b)

Figure 1.5: Pixel data diagram of a simplified grayscale image. a) Schematic
of a single neuron. b) Schematic of a feed-forward neural network. Source: [8]

.

1.2.2 Convolutional neural network

One of the most common methods for solving computer vision task is convolu-
tional neural network (CNN) [66, 50, 45]. It uses convolutional layers to learn
features from input data without minimal preprocessing. Therefore, it can
eliminate the need for manual feature extraction as in traditional methods.
The features are learned while the CNN trains on large labeled image dataset.
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This approach has shown to be highly accurate since it outperforms humans
in image recognition task [52] and it is one of the most popular techniques
for deep learning. Current applications such as object self-driving cars, object
detection, medical image classification, combined with advances in GPUs and
parallel computing, heavily relies on CNN architectures.

A CNN can have tens to hundreds of layers that each learn to detect
different patterns or features of an image. Depth of the CNN is a critical
component for good performance [52]. Since there is the explicit assumption
that the inputs are grid-like topology, such as an image, certain properties are
encoded into layer architecture that makes the forward function more efficient
by reducing the number of parameters in the network. Network layers perform
operations that alter the data with the intent of learning features specific to
the data.

Three of the most critical layers are convolution (1.2.2.1), activation (1.2.2.2),
and pooling (1.2.2.3), which are often applied multiple times in a row before
concluding the process of feature extraction. The goal of repetition is to iden-
tify different features, and the argument for this is the observation that images
contain hierarchical structure (e.g., faces are made up of eyes, which are made
up of edges, etc.), so several layers of processing will increase in extracted
features complexity to features that uniquely define particular object. The
outputs of this whole process are then passed into a fully connected layer for
final output, i.e., class score probabilities.

Layout, number, and type of layers form the architecture of the CNN. To
this date, dozens of architectures were proposed, and the most famous are
LeNet [51], AlexNet [66], VGGNet [67], Inception [68], ResNet [69], ResNeXt
[70], and DenseNet [71]. Since each of these architectures would require ex-
tensive description, we consider it as out of the scope of this thesis, and we
suggest [10, 72, 73] for further reading.

Figure 1.6: Example of a network with many convolutional layers. Filters are
applied to each training image at different resolutions, and the output of each
convolved image is used as the input to the next layer. Source: [9]

.
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1.2.2.1 Convolution layer

The convolution layer is the core building block of any CNN, where the input
image pixels are modified by a convolutional filter, which is a matrix that
is multiplied with different parts of the input image. The filter is spatially
smaller than an image (e.g., 3x3, 5x5, 8x8), but is more in-depth. Each filter
aims to activate certain features from the images. The output of this layer
is known as a feature map (alternatively activation map), and it is usually
smaller in size but has more dimensions. Theoretically, a feature map will be
less redundant and more informative than the original input.

1.2.2.2 Activation layer

The purpose of this layer is the same as in the ANN, to introduce non-linearity
in the feature maps. Favorite choice in the CNN case is ReLU due to its
simplicity which implies an effective training process.

1.2.2.3 Pooling layer

Since the convolutional layer expands dimensionality, pooling is a process that
reduces the size of the feature map by a factor of whatever size is pooled. The
consequence is the reduction of the number of parameters that the network
needs to learn. The input image is scanned over each dimension by a slid-
ing window and either the max, sum or average the window is taken as a
representation of that portion of the image.

1.2.2.4 Fully-connected layer

A fully-connected layer is most often the last layer of the CNN architecture.
It is implemented as a common feed-forward NN with fixed input size. Adding
this type of layer usually helps with combining the high-level features from
convolutional layers into a non-linear function. A frequent choice of fully-
connected layer output type is a vector that contains the probabilities of each
object class of an image being classified.

1.2.3 Transfer Learning

It is sporadic for people to train an entire CNN from scratch. There are three
main reasons for this [10]. Firstly, it has been proved that CNN and NN are
very sensitive to proper weights initialization. Many work [74, 75] have been
done on this topic, and it is generally not recommended to use random or
zero initialization since it can lead to vanishing or exploding gradients during
training. Secondly, there are very few datasets with sufficient size. Using
only a tiny dataset will lead to insufficient accuracy or overfitting. Lastly, the
training phase is computationally intensive. Modern CNN architecture can
take a few weeks of training on multiple GPUs to converge.
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In practice, it is common to take pre-trained parameters from existing
CNN used for a similar task (e.g., ImageNet classification [52], which contains
1.2 million images with 1000 categories) and use them as initialization or a
fixed feature extractor for the task of interest. This use of existing CNN as
a feature extractor is straight-forward because only the last fully-connected
layer needs to be removed or replaced [10].

1.3 Computer vision tasks

In this section, we provide a quick overview of tasks relevant to the thesis topic
and their specific challenges. Since the first early steps of computer vision
field in the 1960s, the scientists tried to build camera robots with intelligent
behavior [32, 36, 55]. However, it turned out to be a much more complex
problem than they initially thought and as a first step, they desired to extract
3-D structure from 2-D images to achieve full scene understanding. Therefore,
forming the very first computer vision task – scene reconstruction (1.3.2).
Moreover, it was this time, that many feature extraction algorithms that are
popular today were founded, including edge detector and lines extractors [55].

Later, the robots, which partially understood the scene, needed to move
around while avoiding obstacles, which could be accomplished through motion
analysis (1.3.3). Some existing algorithms such as Kalman filter [76] already
existed. Hence they were adapted to CV field. However, motion detection
algorithms such as optical flow [77] and background subtraction methods [78]
have also been developed.

In recent years, there is a significant advance in this field, and we can finally
see the real applications of these robots which are, for example, self-driving
cars [79]. As a result, today’s most considerable emphasis is on feature-based
methods used together with machine learning algorithms to produce numerical
or symbolic information for decision making [45]. It should be noted that many
algorithms still come from the research done in early beginnings.

Figure 1.7: CV tasks that are the most popular nowadays. Source: [10].
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1.3.1 Camera calibration

Cameras and other sensors with optics have been on the market for decades.
Recently they became the part of our everyday life which can be demonstrated,
for example, by finding it on every phone or laptop. However, these cameras
have one big drawback caused by their easy availability and cheap purchase
price. Their image is distorted considerably. Fortunately, the distortion can
be described by mathematical equations. Therefore, it can be partially or
entirely removed.

Since distortion degrades the image quality, it is recommended to remove
it before applying any algorithms [55]. The most popular technique to remove
distortion is camera calibration [80], which is the process of finding the intrinsic
and extrinsic parameters of arbitrary camera setup. The intrinsic parameters
deal with the internal characteristics of the camera and lens combination. The
extrinsic parameters refer to the 3D orientation and position of the camera
in the space. Example of intrinsic parameters is the focal length, principal
point, sensor skew. With knowledge of intrinsic parameters, it is possible to
establish a relation between image pixels and real-world units to do real-world
measurements and also remove lens distortion, which degrades image quality.

Two essential types of distortion exist. First is radial distortion that causes
straight lines to appear curved. It becomes larger the farther points are from
the center of the frame. The other one is tangential distortion caused by
the lens not parallel to the image plane. Before running any critical CV
application, both distortions need to be corrected first.

The radial distortion can be represented as follows:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (1.5)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6), (1.6)

and tangential as follows:

xdistorted = x+ [2p1xy + p2(r2 + 2x2)] (1.7)
ydistorted = y + [p1(r2 + 2y2) + 2p2xy], (1.8)

where x, y are coordinates of the original point, xdistorted, ydistorted are their
distorted projections, k1, k2, k3, p1, p2 are unknown distortion coefficients, and
r is a radial distance of point x, y from the center of the image. The distortion
coefficients do not depend on the scene viewed, and they remain the same
regardless of the captured image resolution.

To find the distortion coefficients, we must provide several images of pre-
defined and well-known pattern to camera calibration framework. Generally,
it is recommended to use at least ten images of the pattern from different
angles. The framework then detects specific points in the image of which rela-
tive positions are known. Based on these image coordinates and their relative
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correspondence in the real world, it is possible to solve equations mentioned
above and get distortion coefficients. A standard pattern used in camera cal-
ibration is a chess board with square corners as target points. For a more
detailed description of this technique, we recommend [80].

1.3.2 3-D scene reconstruction

3-D reconstruction is the process of obtaining 3-D information from the cap-
tured 2-D scene [18]. It is a complicated process by the fact that in the
imaging process the depth of the space is lost. To solve this task, stereo vision
or methods based on triangulation with multiple captured images from dif-
ferent angles are often employed. However, some single-view approaches are
sufficient to obtain a partial or complete reconstruction, and for the scope of
this thesis, they are the most relevant.

Single-view approaches might be further categorized into calibrated and
uncalibrated methods [81]. Calibrated ones use parameters obtained by cam-
era calibration presented in 1.3.1, and their main disadvantage is that internal
camera parameters may not always be constant. The intrinsic parameters may
be affected by environment effects or only by changing a focal length. Pro-
posals for the calibrated methods can be found in [82, 83, 84].

On the other hand, algorithms developed for uncalibrated scenarios require
no knowledge of the camera’s intrinsic and extrinsic parameters. The use
of known scene constraints replaces camera calibration. These constraints
include planarity of points, the parallelism of lines, and parallelism of points.
Therefore, no scene markers or specialized sensors are required; these cues
are inferred directly from the captured 2-D image, which leads to flexible
algorithms that can be applied to a wide range of scenarios. One of the most
famous works in this field is [85].

Further, the discipline that deals with estimating real-world measurements
in 2-D image scenes is known as single-view metrology. The groundbreaking
work in this field is [19].

1.3.3 Motion analysis

As a result of access to a massive amount of video data, motion analysis [55]
has drawn considerable interest in recent times. Its main goal is to output
information based on the apparent motion in the sequential images. The
information produced often depends on neighboring images and is related to
specific time-point.

Motion analysis [55] is a field that has been researched since the 1970s, but
since then, the algorithms, approaches, and also disciplines has changed. Most
proposed methods are based on pixel displacements of underlying physical
points. The simplest representative in this field is an optical flow algorithm
[77] that detects motion. Nowadays we are more likely to encounter more
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complex frameworks used in the task such as human motion analysis, scene
behavioral analysis, and surveillance tracking.

In the context of tracking, motion information is mostly employed as one
of the features that are used during the matching step between new and pre-
viously tracked objects. Modern motion filters also allow us to predict the
movement information of objects even if no motion information is available in
multiple frames [86]. Examples of well-used motion filters are particle filter,
and Kalman Filter and its non-linear variants. Their thorough comparison
can be found in [86].

1.3.4 Image classification

The typical problem in computer vision field is determining if image data
contain a specific object. Image classification [52, 66, 45], with its main com-
ponent known as classifier, is a particular application of computer vision which
assigns an input image one label from a fixed set of categories. The general
approach is to assign probabilities for each class and then choose the most
likely one. Despite its simplicity, it is one of the core problems in computer
vision with a large variety of applications. Moreover, many other distinct
computer vision tasks (localization, object detection, segmentation, etc.) can
be reduced to image classification.

In Fig. 1.8, we can see the image of a cat with associated probabilities of
belonging into four categories. We need to keep in mind that in this figure,
the image is represented as a large 3-dimensional matrix of numbers in a
computer’s memory. In this case, the image is 248 pixels wide, 400 pixels tall,
and has three color channels. Therefore, the image consists of 248 × 400 × 3
numbers or a total of 297600 numbers. Each number is an integer that ranges
from 0 (black) to 255 (white). To conclude, Therefore, the task is to turn a
quarter of a million numbers into a single label, such as cat. [10]

Since this task of recognizing objects is relatively trivial for humans, it only
makes sense to consider challenges for CV algorithms. The main challenges
are visualized in Fig. 1.9 and according to [10] they are especially:

• Viewpoint variation – A single instance of an object can be oriented
in many ways concerning the camera.

• Scale variation – Visual classes often exhibit variation in their size
(size in the real world, not only in terms of their extent in the image).

• Deformation – Many objects of interest are not rigid bodies and can
be deformed in extreme ways.

• Occlusion – The objects of interest can be occluded. Sometimes only
a small portion of an object could be visible.
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Figure 1.8: Image classification example. Source: [10].

• Illumination conditions – The effects of illumination are drastic on
the pixel level.

• Background clutter – The objects of interest may blend into their
environment, making them hard to identify.

• Intra-class variation – The classes of interest can often be relatively
broad, such as a chair. There are many different types of these objects,
each with their appearance.

Figure 1.9: Image classification challenges. Source: [10].

A good image classification model must be invariant to the cross product
of all these variations, while simultaneously retaining sensitivity to the inter-
class variations [10].
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1.3.5 Object detection

Image classification models can classify input images into the most likely cat-
egory. However, typical images including photos are usually more complex
and contain multiple objects. Hence, assigning single object category does
not make much sense.

Object detection [11, 87] is a well-researched and more appropriate method
that helps to identify multiple objects from predefined categories from a single
image. The output of the typical object detector is an object’s bounding box,
category, and confidence of the detection. The bounding box patches can be
then used for further visual tasks.

The big break in object detectors came in 2001 with the introduction of
Haar cascades by Paul Viola and Michael Jones [57]. Their detector was
able to operate in real-time and was subsequently implemented in all digital
cameras. Although it could be trained to detect a variety of object classes, it
was used mainly for the face detection task.

After a long time, another promising detector known as HOG [59] was
introduced in 2005. HOG was focused on pedestrian detection in static images
and was further improved for video sequences, as well as to a variety of object
classes including animals and vehicles. It has been used for a long time in
conjunction with other feature extractors for various detection tasks until the
success of DL architecture in 2012 ImageNet competition [52]. Since then, the
use of conventional detectors is mostly replaced with deep neural networks.

In object detection based on CNNs, there are two main core design choices
[45]. First is, hypothesize object regions and then classify them. Second,
divide the image into a grid and directly predict bounding boxes with class
probabilities in a single evaluation, thus only one feed-forward pass. Although
a few state-of-the-art representatives for each category are briefly reviewed
below, we suggest [11, 88, 87] for their detailed overview.

1.3.5.1 Region-based convolutional network (R-CNN)

R-CNN [89] is very first and intuitive architecture that started the era of object
detection with CNNs. The pipeline of the model begins with scanning the
input image for possible objects using Selective Search algorithm [90], which
generates a large number of proposals that are reduced to some reasonable
amount (typically to order of thousands). Moreover, each proposal is also
resized to match the input of a CNN. Further, CNN is used to extract image
features, and the output vector is then fed into an SVM [38] classifier to verify
if an object exists within the region. If yes, a linear regressor is used to refine
the position of the bounding box.

To sum it up, this approach turns object detection into an image classi-
fication discussed before. The drawback of this method is that the training
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Figure 1.10: R-CNN architecture. Source: [11].

and inference performance is very slow. For example, the inference time for a
single image varies from tens of seconds to minutes.

1.3.5.2 Fast region-based convolutional network (Fast R-CNN)

Just a year after the publication of R-CNN, the same authors improved the
approach with new Fast R-CNN [91] architecture. It resembled the original
in many ways. However, they drastically improved the training and testing
speed performance.

The improvement consisted of two main aspects. The feature extraction
run by CNN is no longer run thousands of time over each of the proposed
regions, but only once over the entire image. The regions are still obtained by
Selective search algorithm [90]. However, its input is the feature map output of
the CNN. The proposed regions are then reshaped using an region of interest
(RoI) pooling layer and instead of training many different SVM [38] classifiers
for each object class, there is a single fully connected NN with softmax layer
that outputs the class probabilities directly.

1.3.5.3 Faster region-based convolutional network (Faster
R-CNN)

Both of the architectures mentioned above use a Selective Search algorithm
[90] to find out the region proposals. However, it turned out that Selective
Search is the computational bottleneck. Besides that, it has another big disad-
vantage – it is a fixed algorithm; no parameter learning is happening during the
training phase which may lead to bad region proposal candidates. Therefore,
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Figure 1.11: Fast R-CNN architecture. Source: [11].

a new architecture known as Faster R-CNN [92] was introduced to improve
these shortcomings.

Faster R-CNN completely replaced the use of the Selective Search algo-
rithm with a separate NN (known as the region proposal network (RPN) [92])
to identify region proposals. The RPN is run right after the feature extraction,
and once we obtain the region proposals, they are feed into what is essentially
Fast R-CNN.

To conclude, Faster R-CNN is a combination of the RPN with Fast R-
CNN. It is much faster than its predecessors, and it can even be used for
real-time object detection in a video sequence. It is still widely deployed in
today’s frameworks thanks to its speed and accuracy performance.

1.3.5.4 You only look once (YOLO)

All of the previous object detection algorithms use proposed regions to localize
the object within the image. It means that the detector does not look at the
whole image. Instead, it evaluates regions which have high probabilities of
containing the object. In YOLO [12], a single CNN directly predicts bounding
boxes and class probabilities with a single forward pass.

Initially, the model takes the input image and divides it into a S×S grid.
Within each cell of the grid, m bounding boxes are taken. For each of selected
bounding box, the network outputs a class probability and refinement for the
bounding box. If the bounding box has the class probability above a threshold
value, it is then used to locate the object within the image.

Since the model predicts a high number of bounding boxes, the non-
maximum suppression (NMS) [17] procedure is applied at the end of the net-
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Figure 1.12: Faster R-CNN architecture. Source: [11].

work to merge highly-overlapping bounding boxes of the same object into a
single one.

Due to its simplicity, it is much faster than other detection algorithms
mentioned. Depending on the backbone architecture, it can run approximately
15 to 150 frames per second (FPS). The limitations of YOLO are that it
struggles with small objects and unusual aspect ratios, which is due to the
spatial constraints of the algorithm. However, the authors tried to improve
this shortcoming in the newly released YOLOv3 with their modified spatial
pyramid pooling (SPP) architecture.

1.3.6 Face recognition

Face recognition [13] is a prominent biometric technique that is used for ev-
erything from automatically tagging pictures on social networks to unlocking
cell phones. Its main components are an object detector trained to detect face
regions and classifier that embeds faces into vectors.

It has been a long-standing research topic in the CV community because
it uses CV algorithms to extract specific and distinctive information about
a person’s face, such as distance between the eyes, shape of the chin. This
information is then converted to a compact feature vector and stored into a
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Figure 1.13: Example of YOLO approach. Source: [12].

face database. It is desired only to include specific details that can distinguish
one face from another to maintain a reasonable size of the feature vector.

Each facial feature vector can be compared to others to find the most likely
match which helps to verify personal identity. However, some face recognition
systems are designed to calculate a probability match score to provide several
potential matches, instead of just returning a single result. The results of
face recognition systems can vary under challenging conditions such as poor
lighting, low resolution, improper angle of view.

For decades, only traditional methods such as filtering responses, a his-
togram of the feature codes, or distribution of the dictionary atoms were used
to recognize faces. However, these approaches were improving the accuracy
very slowly and were suffering from a lack of distinctiveness and compact-
ness. Effects of lighting, pose and expression drastically worsened the results.
Fortunately, this has all changed with the advent of DL [45].

In 2014, DeepFace [93] approach achieved the state-of-the-art accuracy on
the famous face recognition benchmark, approaching human performance on
the unconstrained condition for the first time. This has caused this field to
move in the direction of DL, and it completely reshaped all aspects of face
recognition. On Fig. 1.14 the typical pipeline of face recognition is visualized.

1.4 Software frameworks

Research in the fields of AI requires the use of analytical tools, technologies,
and languages to help extract insights and value from data, and after that
build sustainable prediction model. The key advantages of using frameworks
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Figure 1.14: Common pipeline for state-of-the-art face recognition systems.
Source: [13].

and libraries are the ability to quickly develop and test new ideas and run
efficiently on GPUs.

According to a 2017 survey of 16,000 data scientists by Kaggle revealed
that researches in AI most rely on Python language [94]. So there is no surprise
that most of these packages are developed for that language. For this reason,
we provide a quick overview of significant and widespread Python ML and
CV frameworks.

1.4.1 OpenCV

OpenCV [95] is a popular, cross-platform, and open-source CV and ML li-
brary written in C/C++ language. It was originally sponsored by Intel but
now driven mostly by the open-source community with more than 47 thousand
people. It has more than 2500 optimized algorithms, which includes a compre-
hensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize
faces, identify objects, classify human actions in videos, track camera move-
ments, extract 3D models of objects, stitch images together, etc. OpenCV is
used extensively in companies, research groups, and governmental bodies.

1.4.2 Darknet

Darknet [96] is an open source neural network framework written in C and
CUDA. It is fast, easy to install, and supports CPU and GPU computation. It
is the basis for YOLO-based architectures which are one of the fastest object
detection CNNs ever proposed.

1.4.3 TensorFlow

TensorFlow [97] is an open source software library for numerical computation
using data flow graphs. The graph nodes represent mathematical operations,
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while the graph edges represent the multidimensional data arrays (tensors)
that flow between them. This flexible architecture enables users to deploy
computation to one or more CPUs or GPUs in a desktop, server, or mobile
device without rewriting code. TensorFlow also includes TensorBoard, a data
visualization toolkit.

TensorFlow was originally developed by researchers and engineers working
on the Google Brain team within Google’s Machine Intelligence Research orga-
nization to conduct machine learning and deep neural networks research. The
system is general enough to be applicable in a wide variety of other domains,
as well.

TensorFlow provides stable Python and C APIs as well as non-guaranteed
backward compatible API’s for C++, Go, Java, JavaScript, and Swift.

1.4.4 PyTorch

PyTorch [98] is an open source library designed to enable rapid research on
machine learning models. It builds upon a few projects, most notably Lua
Torch, Chainer, and HIPS Autograd, and provides a high-performance envi-
ronment with easy access to automatic differentiation of models executed on
different devices (CPU and GPU). To make prototyping easier, PyTorch does
not follow the symbolic approach used in many other deep learning frame-
works, but focuses on differentiation of purely imperative programs, with a
focus on extensibility and low overhead.

1.4.5 Caffe2

Caffe2 [99] aims to provide a smooth and straightforward way for users to
experiment with deep learning and leverage community contributions of new
models and algorithms. Users can bring their creations to scale using the
power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-
platform libraries. In May 2018, the development team decided to merge
Caffe2 into PyTorch and make them a single package to enable a smooth
transition from fast prototyping to fast execution.

1.4.6 Theano

Theano [100] is a Python library that allows defining, optimizing, and evalu-
ating mathematical expressions involving multi-dimensional arrays efficiently.
Since its introduction in 2008, it has been one of the most used CPU and
GPU mathematical compilers – especially in the machine learning community
– and has shown steady performance improvements. However, the develop-
ment team decided to stop further releases in 2017.
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1.5 Evaluation metrics

In this section, we provide a brief overview of standard evaluation metrics
relevant to the thesis tasks.

1.5.1 Intersection over union (IoU)

Intersection over union (IoU) [101], also known as the Jaccard index, is an
evaluation metric used as a similarity measure in any object detection task. It
measures the ratio between predicted and ground-truth bounding box given
by:

IoU = Area of overlap
Area of union (1.9)

The possible values for IoU are from [0, 1] and their significance can be
found in Fig 1.15.

Figure 1.15: An example of computing Intersection over Unions for various
bounding boxes. The predicted bounding boxes are drawn in red color, while
the ground-truth ones are drawn in green color. Source: [14].

1.5.2 Multiple object tracking accuracy (MOTA)

The multiple object tracking accuracy (MOTA) [2] is the most widely used
metric for evaluating a tracker’s performance. Its main advantage is expres-
siveness as it combines three different sources of errors:

• False positives (FP) – The number of incorrect detections.

• False negatives (FN) – The number of missed detections.

• Identity switches (IDSW) – The number of identity switches.
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The MOTA equation is then given by:

MOTA = 1−
∑
t (FNt + FPt + IDSWt)∑

t GTt
, (1.10)

where t is the frame index, and GT is the number of ground-truth objects.
The possible values are reported in the percentage from (−∞, 100]. Negative
values are possible when the number of errors made exceeds the number of all
objects in sequence.

1.5.3 Multiple object tracking precision (MOTP)

The multiple object tracking precision (MOTP) [2] represents the average
dissimilarity between the ground-truth and the predicted bounding boxes. It
is calculated as

MOTP =
∑
t,i dt,i∑
t ct

, (1.11)

where ct denotes the number of matches in frame t and dt,i denotes the IoU
value of ground-truth and the predicted target. It thereby gives the average
overlap between all correctly matched hypotheses and their respective objects.
[2]

1.5.4 Mean absolute error (MAE)

The mean absolute error (MAE) [102] is a metric used to measure accuracy
for continuous variables. It is the average error over all test samples where all
individual samples have equal weight. It is given by

MAE =
∑n
i=1 |yi − xi|

n
, (1.12)

where n is the number of samples, yi is the ground-truth value of the i-th
sample, and xi is predicted the value of the i-th sample.

1.5.5 Frames per second (FPS)

The FPS is a common metric used in many fields to measure the run-time
performance of camera equipment, algorithms, animations, rendering, etc. In
this context, it expresses the ability of an algorithm to process and analyze a
certain number of images per second. With increasing algorithm complexity,
the frame rate decreases. Real-time ability in video sequence processing is
assumed at 25 FPS [2].
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Chapter 2
Related work

In this chapter, we briefly present relevant work addressing similar problems
in MOT and soft-biometrics field. Given the vastness of the topic, we only
limit the review to significant work.

2.1 Multiple object tracking

Most state-of-the-art algorithms addressing MOT follow the tracking-by-detection
approach, which heavily relies on the performance of the underlying object de-
tector. However, the trend is now shifting to the end-to-end learning solutions
and constructing stronger similarity scores based on appearance, motion, and
interaction cues. Although recent NN based detectors have outperformed all
other methods for object detection [52, 92, 12], MOT remains a challenging
and popular topic.

Simple online and real-time tracking (SORT) [29] is the first pragmatic ap-
proach where the main focus is to associate objects efficiently for online and
real-time applications. They showed that the quality of detections plays a cru-
cial role in tracking performance and according to their experiments, they can
improve tracking by almost 20 %, depending on the detector. Despite using
an only simple combination of standard techniques as the Kalman Filter for
motion prediction and Hungarian algorithm for the association of the tracks,
they were able to achieve comparable performance to other state-of-the-art
online trackers.

By adding a deep association metric to SORT [103], it was successfully
integrated with the appearance model that improves the tracking performance.
The appearance model is based on CNN trained on large scale person ReID
dataset. Due to this extension, the algorithm can track objects through longer
periods of occlusion, effectively reducing the number of identity switches. The
framework of this paper is used for our tracking task. Thus it is more explained
in the next chapter.
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In 2016, revolutionary end-to-end learning approach based on recurrent
neural network (RNN) [48] has been introduced in a novel [104]. Their pro-
posed long short-term memory (LSTM) [105] architecture is capable of per-
forming all multi-target tracking tasks including prediction, data association,
state update as well as initiation and termination of targets within a unified
network structure. One of the main advantages of this approach is that it
is completely model-free, i.e., it does not require any prior knowledge about
target dynamics, clutter distributions, etc. However, the object detections
should be given as input.

It was not the only case of successful use of RNN. In the paper [106] pub-
lished year later, a new approach combining multiple cues such as appearance,
movement, and interaction is proposed. These cues are fed into LSTM [105]
architecture, which learns and remembers the dependencies in a sequence of
observation, in contrast to pairwise similarity where only the observations from
the current and previous frames are used. Their proposed framework follows
end-to-end fashion, and their architecture does not require object detections
as input.

Competitive tracking results can be achieved even without sophisticated
tracking methods. Tractor [30] accomplishes tracking without following the
common tracking-by-detection approach and authors performed no training or
optimization on tracking data. Instead, they exploited the bounding box re-
gression of an object detector to perform temporal realignment and to predict
the position of an object in the next frame. They also provide a simple exten-
sion to this approach, in the form of Siamese NN for ReID and motion analysis
model, which achieve state-of-the-art performance on tracking benchmarks.

Results of recent tracking evaluations show that bounding box tracking
performance is saturating [21]. Further improvements will only be possible
when moving to the pixel level., which is a reason why the authors of recent
2019 work [107] are expanding from MOT to multiple object tracking and seg-
mentation (MOTS). They propose new TrackR-CNN baseline method which
jointly addresses detection, tracking, and segmentation with a single convolu-
tional network that extends Mask R-CNN architecture with 3D convolutions
to incorporate temporal information, and by an association head which is used
to link object identities over time. They also provide evaluation metrics and
new dataset with masks for over one thousand distinct objects in ten thousand
frames. The main advantage of MOTS is that segmentation based tracking
results, are by definition non-overlapping and can thus be compared to ground
truth straightforwardly.

2.2 Soft-biometrics

There has not been much written about the general use of biometrics in re-
tail yet. However, some exceptions exist. For example, in [108] authors pro-
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pose semi-supervised intelligent multi-camera surveillance framework that can
perform multiple tasks, including camera management, camera calibration,
and multi-view object tracking with ReID based on appearance soft-biometric
traits. The survey [109] from 2016 provides a complete overview of innovative
camera approaches that can be applied in the retail environment. The study
[110] aims at recognizing the age, gender, presence of eyeglasses and beard of
passers-by in a retail store. Their solution lies in custom CNN architecture
that extracts these traits.

Although end-to-end solution targeting solely retail environment have not
been proposed yet, there are plenty of works that deal only with certain soft-
biometric features.

2.2.1 Body traits

Frequent body traits [110] extracted from an RGB camera are height, gait,
and color of clothes. The best feature for distinctiveness between individuals
proved to be gait, which is the reason why it is often used in forensic analysis.
However, there are not many uses for gait in the retail environment. Thus we
only focus on others.

2.2.1.1 Height estimation

There has been a long history in determining an individual’s height. One of the
essential works in this field is [19], where authors proved that height estimation
is possible without any information about camera parameters, only several
scene correspondences with known real-world measurements are sufficient. In
their work, they also describe how the affine 3D geometry of a scene can be
reconstructed from a single image.

In [111] authors describe a simple uncalibrated model of error distribution
in height as a function of the location of the object in the image and the
estimated camera height. Their approach builds on previous work [19] and
improves the accuracy in estimating the height while reducing the burden of
reliably computing the ground plane.

More recent work [112] uses a single calibrated camera, more explicitly
assuming the knowledge about its pose concerning the world and vanishing
point in the reference direction. According to their proposed theorem, by
knowing the proportion of camera height concerning the object height, at the
object’s position in the image plane, it is possible to estimate the height of
the object in the real world. Their presented method gives accurate results
in unstructured environments, regardless of the relative distance from the
camera.

Authors of [113] proposed a framework utilizing the calibrated camera for
estimating height in video surveillance. Their primary assumption is that it is
possible to obtain a camera’s focal length, tilting angle, and height by using
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non-linear regression model from the observer’s head and foot points of people
in the scene, instead of estimating the vanishing point and vanishing line. Once
these calibration parameters of a camera are obtained, the physical height of
a person can be estimated from a pair of head and foot points observed from
the image and their proposed formula.

2.2.1.2 Color clothes estimation

One of the essential works [114] in this field comes from 2012, where authors
focus on fashion photographs and propose an effective method to produce in-
tricate and accurate parse of a person’s outfit. They also introduced large
labeled dataset with available labeling tools. Finally, they designed a proto-
type application for visual garment search.

DeepFashion [115] is another large-scale clothes dataset with extensive an-
notations introduced in 2016. Authors also introduced a new baseline method,
namely FashionNet, which learns clothing features by jointly predicting cloth-
ing attributes and landmarks. The estimated landmarks are then employed
to pool or gate the learned features.

The current state-of-the-art is the baseline model built upon Mask R-CNN
[116], termed Match R-CNN [117]. The authors of this work also proposed new
challenging large-scale dataset DeepFashion2. Their presented model offers
end-to-end training framework that jointly learns clothes detection, landmark
estimation, instance segmentation, and consumer-to-shop retrieval.

2.2.2 Facial traits

If we focus only on the head of individuals, then many algorithms targeting
facial biometric [13] are regularly introduced. Most of the work from this field
comes inevitably from face recognition task, which is natural since this field
has a history almost as long as fingerprint recognition. Commonly extracted
facial soft-biometrics are gender, ethnicity, age, emotion, pose, glasses, beard,
and mustache with a frequent goal to explore their discrimination capabilities
among other individuals during in-the-wild scenarios. We will limit this review
to only the most important ones that can be used for retail use, namely age,
gender, emotion, and pose [118]. Some of these traits are commonly estimated
together by using one model.

2.2.2.1 Multi-task approaches

In paper [119], authors propose multi-task CNN for face recognition where
identity classification is the main task and pose, illumination, and expres-
sion estimations are the side tasks. They also provide analysis of multi-task
learning with extensive experiments that demonstrate the effectiveness of the
proposed approach.
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HyperFace [120] is an algorithm that can simultaneously do face detec-
tion, landmarks localization, pose estimation and gender recognition. It uses
CNN model architecture that fuses intermediate layers of a CNN using a
separate CNN followed by a multi-task learning algorithm that operates on
the fused features. It exploits the synergy among the tasks which boosts up
their performances. They also proposed two variants with a different focus –
HyperFace-ResNet that achieves high accuracy and Fast-HyperFace that sig-
nificantly improves the speed of the algorithm. Their experiments show that
the proposed models can capture both global and local information in faces
and perform significantly better than many competitive algorithms for each
of these four tasks.

The authors of the same composition later released improved version [121]
that can additionally solve for tasks of smile detection, age estimation, and
face recognition. They also extended their approach by training the model on
multiple datasets whereas HyperFace was trained only on one.

2.2.2.2 Age and gender estimation

In most retail cases, we are interested in estimating age at the same time as
gender [121, 122], since these traits play a crucial role in targeted advertising.
In the case of age, it is very challenging to obtain it by the camera because
the apparent age sometimes significantly differ from the real one. Fortunately,
particular numbers are not that important, but instead categories such as
child, youth, adult, middle-age and elderly. On the other hand with gender,
the situation is slightly simpler because there are several other attributes that
algorithms can use. We further present only recent proposals from this field
that mostly relies on DL models.

The first ever work applying DL methods was presented by the authors in
[122]. They propose a CNN-based framework for age estimation, and instead
of using only the feature map obtained at the top layer, they utilize feature
maps obtained in different layers for the final estimation. Additionally, they
incorporate a manifold learning algorithm in the proposed scheme, and that
significantly improves the performance.

In the same year, work [123] introduced Deep EXpectation (DEX) method
that tackles the estimation of apparent age in face images. They proposed
CNN with VGG-16 architecture pre-trained on ImageNet. They also intro-
duced large-scale face images dataset with available age to pre-train their
CNN.

Recently in 2019, authors of [124] proposed Soft Stagewise Regression Net-
work (SSR-Net), a light-weight CNN model with real-time performance that
is targeting age and gender estimation. Their work is inspired by DEX, and
they address age estimation by performing multi-class classification and then
turning classification results into regression by calculating the expected values.
Their greatest benefit is the compactness of the model presented. SSR-Net
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takes only 0.32 MB of memory, and despite its size, it is approaching the
performance of more than 1500× larger state-of-the-art methods.

2.2.2.3 Facial expression recognition

Facial expression [125] is one of the main clues that can be utilized in retail
stores to measure the satisfaction of the consumers. [126] is a very popular
paper that proposes a general CNN framework with real-time performance.
Their model is capable of accomplishing the tasks of face detection, gender
classification, and emotion classification simultaneously in one blended step
using the proposed architecture. They validate their results on recent datasets,
but also by building their robot which succeeded in the competition. Their
architecture and pre-trained models are released under an open-source license.

The framework known as EmoPy [127] is a toolkit with multiple imple-
mented CNN architectures for emotion recognition. For example, they use
time-delayed 3-D CNN that utilizes temporal information as part of its train-
ing samples. In other words, instead of using an only single image for predic-
tion, it uses past images from a series for additional context. The idea is to
capture the progression of a facial expression leading up to a peak emotion.
They also propose hybrid LSTM [105] architecture that combines approaches
from CNN and RNN to include temporal context from whole still images, not
only from face patches as the former presented. They also introduce a simpler
model trained on FER2013 dataset [125] which can make predictions based
on a single image. Moreover, in their framework, it is possible to specify only
a smaller subset of all seven emotions available, which is undoubtedly more
practical in real-world scenarios.

Paper [128] from 2018 has presented a novel approach for facial expression
recognition using deep sparse autoencoders (DSAE) [129], which can automat-
ically distinguish the expressions with high accuracy. Both the facial geometric
and appearance features have been introduced to compose a high-dimensional
feature with accurate and comprehensive information of emotions. In the
end, the experiment results have demonstrated that the proposed approach
outperforms the other three state-of-the-art methods by a large margin.

2.2.2.4 Head pose estimation

Head pose estimation [13] is closely related to other facial analysis problems,
and it might be useful in a retail store when there is a requirement for modeling
customer attention on specific products or areas. Traditional algorithms work
by estimating facial landmarks (key points) from the target face and then
solving the 2D to 3D correspondence problem with a mean human head model
as a reference. Since it is a very fragile method that relies on landmark
detection performance, current state-of-the-art methods focus on detecting
the pose without detecting the key points.
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In 2018, an accurate and easy to use head pose estimation CNN known as
Hopenet [130] was introduced. In their work, authors can detect intrinsic Eu-
ler angles (yaw, pitch, and roll) directly from image intensities through joint
binned pose classification and regression. They showed their network gen-
eralization capacity by testing the performance on various external datasets
without fine-tuning.

A novel method is known as FSA-Net [131] also targets head pose esti-
mation. Authors of this work proposed a light-weight non-landmark CNN
model that even outperforms methods utilizing multi-modality information
from depth and RGB cameras.
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Chapter 3
Methodology

This chapter provides an overview of our designed procedures and algorithms.
As mentioned in the earlier in the thesis objectives, the goal is to design and
implement a framework that tracks people in the video sequence followed by
additional information extraction on person-specific features. Before getting
into our the tracker design, we present our data acquisition and data pre-
processing process. Later then, we propose a people detector and tracker
which follows the well-known tracking-by-detection approach and in the end,
we present strategies for additional information extraction.

3.1 Image acquisition

Image acquisition is the first stage in any vision processing system. The goal
of image acquisition is to transform real-world optical data into an array of
numbers that can be processed by a computer. The process heavily depends
on the camera and lens hardware.

The main component of the camera is its sensor that converts light into
electrical charges, while the lens focuses the light on particular spots of the sen-
sor. Nowadays, the most used technology for the camera sensor is complemen-
tary metal oxide semiconductor (CMOS) due to its low noise and processing
speed capabilities. Since the work is done in cooperation with well-equipped
Image Processing Laboratory (ImproLab) at Faculty of Information Technol-
ogy (FIT) Czech Technical University (CTU), we have a choice of several
camera and lens variants available.

Based on assumptions and thesis instructions, we know the scene, and
its parameters in advance. To test the designed algorithms of this work,
we chose the scene to be the 14th floor of the Faculty of Civil Engineering
(FCE) CTU building near elevators. Based on the scene, we selected the
appropriate combination of lens and camera sensitive to the visible spectrum.
The ImproLab has most of its cameras from Basler manufacturer. Thus we
decided to utilize Basler ace acA1920-50gc [15], the Gigabit Ethernet (GigE)
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camera with the Sony IMX174 CMOS sensor that delivers 50 FPS at 2.3
megapixel (MP) resolution. Due to the spatial properties of the scene, we
chose Basler 8mm lens C125-0818-5M F1.8 [16] that proved to be the best
option in this case.

(a) (b)

Figure 3.1: Selected camera equipment for our task. a) Camera Basler ace
acA1920-50gc. b) Lens Basler 8mm C125-0818-5M F1.8. Source: [15, 16]

.

The image stream from Basler’s camera equipment can be obtained in
several ways. The most convenient but limiting approach is to use Basler pylon
Camera Software Suite, which is a software package comprised of an easy-to-
use software development kit (SDK), drivers and tools that can be used to
operate any Basler camera using the user interface on multiple platforms such
as Windows, Linux, and Mac. However, this option does not allow integration
with custom software. Another option is to use Basler’s pypylon [132] which is
the new open source wrapper interface for the Basler pylon Camera Software
Suite that allows direct camera access through Python code.

Due to the nature of the work, the data can be in an offline form. Thus
we decided to use the first method with the Basler pylon framework because
it is more convenient than the pypylon wrapper.

We record the video sequence at the highest possible resolution, i.e., 1920x1080
and at 25 FPS. Each frame is saved in a jpg format to avoid an overhead that
would be caused by decoding the video formats. The camera shutter speed is
set manually so that people in the scene are not motion blurred and the aper-
ture is set to the sweet-spot of the lens, which in our case is f/4.0, to achieve
maximum image quality. Since these parameters would make the image too
dark, it is necessary to increase the sensor gain value. In this case, we decided
to set sensitivity value to automatic, which means that it is always calculated
so that the scene is exposed correctly. We set the white balance to a fixed
value determined by automatic detection to avoid drastic color changes during
shooting. We provide an example of the scene in Fig. 3.2.
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Figure 3.2: Example of the acquired image and the scene layout. We can see
that despite being a quality lens, it contains distortion and vignetting.

3.2 Image pre-processing

After the images are obtained, various pre-processing methods can be applied
to improve the accuracy of feature extraction and classification methods. How-
ever, in our case, we assume that all images are acquired in satisfactory quality
and with proper exposure, shutter speed, and white balance settings. The only
pre-processing we do is removing lens distortion by using a camera calibration
method as described in 1.3.1.

3.3 Detection and tracking components

In this section, we present our design decisions for two core components of
our framework – the detector and the tracker. In contrast to batch based
approaches, we primarily target online tracking where only information from
the previous and current frame is available. We also try to maintain both
components as much as efficient as possible for further extension to real-time
applications.

The MOT can be viewed as a data association problem, where the goal
is to associate hypotheses obtained from the object detector across frames in
a video sequence. One way to solve this problem is to compare and match
specific features such as the appearance and motion of objects in the scene.

The methods employed in the tracker are inspired by work [100], that
performs Kalman filtering [76] in image space and frame-by-frame data as-
sociation using the Hungarian method [133] with an association metric that
measures bounding box overlap, and by [103] that improves the previous ap-
proach by adding deep association metric.
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3.3.1 People detection

The beginning of the tracking process is an object detection step. In this
work, we use various detector models based on YOLO and Faster R-CNN
with ResNet50 backbone. The result of forwarding the frame through CNN
architecture is in the form of hypotheses that contains bounding box coordi-
nates, object class, and detection confidence. Except for input image resizing
to be compatible with the CNN, we do not perform any other pre-processing
in this phase.

Object detectors are usually trained on multiple object classes, but as we
are only interested in people, we filter out all other classes from the output
hypotheses. We also filter out low-confidence ones. The confidence threshold
is variably configured according to the object detector used. Faster R-CNN
produces a lot of false positives. Thus we take into account only hypotheses
with confidence greater than 90 %. In YOLO, the threshold value of 70 %
has been experimentally verified to work well. We employ both network ar-
chitectures with their default parameters trained on the COCO dataset [134].
A common problem of object detectors is that they often generate more over-
lapping hypotheses than the ground-truth objects (false positives). To handle
the removal of overlapping bounding boxes we use additional NMS step [17]
for bounding box post-processing.

Figure 3.3: Six bounding boxes are detected around the face, but by apply-
ing non-maximum suppression, it is possible to remove the redundant ones.
Source: [17].

3.3.2 Track handling

To maintain object identities and propagate object states into the future, we
need to maintain historical information in the memory about previous detec-
tions. To achieve this goal, we define track object class, and in each frame,
we associate current detections with existing track objects (tracks). While
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the detected hypothesis is only represented by an object class, bounding box
and confidence, a track contains multiple attributes such as identity, status,
time since the last update, age in frame units, bounding box, state, and class-
specific information.

When a person enters or leaves the scene, unique identity needs to be cre-
ated or removed accordingly. For initiating a new track, we take detections
that were not successfully associated in the matching phase of the current
frame (unmatched detections). These fresh tracks are then set to tentative
during their first tc frames. Tracks that are not successfully associated during
the tc frames are removed from the scene, which helps to accumulate enough
evidence to prevent tracking of false targets. Each track also has a variable
that determines the number of frames of the last successful association. Tracks
are terminated if they are not associated within tm frames or their state pre-
dictions are outside of the frame. Based on our experiments we have selected
a value tc = 7 for track confirmation and tm = 50 for track termination. Due
to camera settings, the termination based on our value of tm means that the
appropriate detection was not found for two seconds.

3.3.3 State estimation

The state representation helps to propagate a track’s identity into the next
frames. The inter-frame displacements of each track are approximated with
a linear constant velocity model which is independent of other objects. Our
design of the track’s state is represented as a 10-dimensional vector:

x =
(
cx, cy, ty, h, r, ċx, ċy, ṫy, ḣ, ṙ

)
, (3.1)

where cx, cy represent center pixel location of the bounding box, ty repre-
sent the top center location of the bounding box, h is pixel height, and r is the
aspect ratio of the bounding box. Each of these parameters has its respective
velocities in image coordinates.

To predict and estimate the accurate value of track states, we use standard
Kalman filter [76]. It is a recursive algorithm with a real-time performance
that is commonly used to extract the useful signal from noisy measurements.
In this case, it can be used to refine the bounding box position.

The whole filtering process consists of two main steps – prediction and
correction. In the prediction phase, the filter produces predictions of the
current state variables, along with their uncertainties. Furthermore, once the
output of the next measurement is known, it is used in a correction step to
update state variables with a weighted average. The weights are greater for
values with higher certainty.

The Kalman filter assumes that the real state at time k can be obtained
from state k − 1 by the following prediction equation:

xk = Fkxk−1 +Bkuk + wk, (3.2)
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where Fk is the state-transition model, Bk is the control-input model ap-
plied to the control vector uk, wk is the process noise, assumed to be drawn
from wk ∼ N (0, Qk), and Qk is covariance matrix with appropriate dimen-
sions.

Measurements zk at time k then can be obtained as follows:

zk = Hkxk + vk, (3.3)

where Hk is the observation model which maps the true state space into
the observed space, vk is the observation noise, assumed to be drawn from
vk ∼ N (0, Rk), and Rk is covariance matrix with appropriate dimensions. All
filter parameters are supposed to be correctly user-defined. Otherwise, the
filter will not have the required properties.

In our design, we do not assume the variability of matrices Fk, Qk, Hk, Rk
in time and we can drop Bk since we do not have any control input. F is
then designed according to state vector (defined in 3.1) and constant velocity
model as follows:

F =



1 0 0 0 0 dt 0 0 0 0
0 1 0 0 0 0 dt 0 0 0
0 0 1 0 0 0 0 dt 0 0
0 0 0 1 0 0 0 0 dt 0
0 0 0 0 1 0 0 0 0 dt
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


, (3.4)

where dt is chosen to be 1. Matrix H for obtaining measurements is given by:

H =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

 . (3.5)

The noise matrices are heavily dependant on the captured scene, but generally
speaking, we set significantly higher variance values in for measurement noise
matrix R then process noise matrix Q. This is because an object detector
produces sparse detections with noisy bounding box predictions.

To sum it up, each track has its state as defined in 3.1. When detection
is associated with a track, the bounding box coordinates are used as a mea-
surement to update the internal state of the filter. Velocity components are
then solved optimally via the filter’s transition matrix. If detection is not
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associated with a track, its state is predicted using a linear model (skipping
the correction step).

More details on the filter assumptions, properties and calculations can be
found in its original proposal [76].

3.3.4 Appearance features

Using only state estimation in the matching phase would result in a high
number of identity switches due to occlusion effects and non-linearity in peo-
ple’s behavior. Therefore, appearance descriptors are often extracted to make
hypothesis-to-track matching more robust. At the beginning of this work,
we tried to use color histograms of bounding box patches as appearance de-
scriptor. Patches were then converted to hue-saturation-value (HSV) color
space to make them comparable by Bhattacharyya distance [135] with hue
and value channel as input. However, object histograms are greatly affected
by their background. Thus this solution was not robust, and we decided not
to continue this path.

Instead, we utilized a CNN model from [103] that has been trained to
discriminate pedestrians on a large-scale dataset. The input of the model is a
bounding box patch of a person and based on that it outputs 128-dimensional
vector comparable with cosine distance metric. Through the integration of this
feature descriptor, it is possible to recover track’s identities even in long-term
occlusions.

3.3.5 Data association

To create associations between existing tracks and newly arrived detections it
is convenient to solve the assignment problem using the Hungarian algorithm
[133]. The values of cost matrix are calculated through a combination of two
appropriate metrics – state and appearance.

3.3.5.1 State metric

The cost of the state between track and detection is designed in two vari-
ants. The first approach is following the design of [103] that uses squared
Mahalanobis distance between track states and detections. Since it includes a
covariance matrix, it takes into account estimation uncertainty and is defined
as follows:

dm(i, j) = (dj − yi)T S−1
i (dj − yi) , (3.6)

where yi is i-th track state without velocities, Si is according to state covari-
ance matrix, and ij is the j-th bounding box in an appropriate format. The
Mahalanobis distance measures how many standard deviations is the detec-
tion away from the mean track location. Its value can then be compared and
gated against the proper threshold from a cumulative χ2 distribution.
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However, it has proven to be inappropriate for our use based on several ex-
periments. The results often diverged, mostly because we try to approximate
non-linear person behavior with a linear filter. Therefore, we decided to use a
simpler metric with fewer input parameters. More specifically, the Euclidean
distance:

de(i, j) =
√

(cxi − cxj)2 + (tyi − tyj)2, (3.7)
where cxk is the x value of center point and tyk is the y value of top center
point of the k-th bounding box. Furthermore, we enhance 3.7 formula so that
the output values are in the same order as the outputs of the appearance
distance metric:

del(i, j) = logα

(√
(cxi − cxj)2 + (tyi − tyj)2

)
− 1. (3.8)

To suppress possible negative values that would not make sense for distance
metrics, we take max (del(i, j), 0). Our idea behind this formula is that we
want to tolerate small spatial displacements caused by the detector in consec-
utive frames.

The tolerance amount depends on the base of the logarithm α ∈ N, which
is a hyperparameter that needs to be manually determined based on the task
being solved. The influence of α can be best explained by an example. If
de(i, j) ≤ α then del(i, j) = 0, which briefly means that this metric does not
penalize bounding boxes that are maximally α pixels distant. The logarithm
function then helps to squash the values to lower order. For our type of
captured scene, α = 80 pixels proved to be working well.

For the sake of clarity, we provide plot in Fig. 3.4 of this distance function
with α = 80.

Figure 3.4: Example plot of the distance metric values used for track-to-
detection spatial displacement cost.

3.3.5.2 Appearance metric

The appearance metric is used to describe how much are the individuals vi-
sually similar, thus helps in distinguishing them. For each detected bounding
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box patch we calculate its appearance feature vector ri with ||ri|| = 1 by a
forward pass of the CNN referred in 3.3.4. Moreover, for each registered track
j, we keep a gallery Rj =

{
r

(t)
j

}Lj

t=1
of the last Lj = 100 associated appearance

features. Then, the appearance distance between the i-th detection and the
j-th track is defined as:

dc(i, j) = min
{

1− rTi r
(t)
j | r

(t)
j ∈ Rj

}
. (3.9)

The outcome of dc(i, j) is neatly bounded in [0, 1], where 0 means most
similar objects. This time, we introduce a threshold tc to control if an asso-
ciation is possible. Thus any track and detection pair with dc(i, j) > tc is so
different that it cannot be associated. For our particular scene, tc = 0.15 has
proved to be working well.

3.3.5.3 Matching

Building the associations happens in cascade fashion which is taken over from
the [103]. The cost value is based on actual state and appearance and is calcu-
lated for each possible track and detection pair. We find the best associations
by running the Hungarian algorithm [133] that solves the min cost assignment
problem. Then, we verify if the association is possible based on the appearance
threshold tc. If yes, we update registered tracks with associated detections.
For the rest of unmatched detections, we create new tentative tracks. In Fig.
3.5 we also provide a simplified diagram of one pass through of the algorithm
cycle.

Figure 3.5: Simplified diagram of single framework pass through. Yellow-
marked boxes are optional components used for evaluation.

3.4 Soft-biometrics extraction

Besides the goal of building the people detector and tracker, we also address
additional information extraction related to people class – soft-biometrics.
The aim is to focus on information that can be utilized in the retail envi-
ronment. Therefore we have focused on methods for estimating age, gender,
emotion, height, and ground plane trajectory. Because extraction all of these
features in each frame would be computationally intensive, we design our
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framework to be fully modular in the sense that any of the feature extractors
can be turned on or off at any time.

3.5 Facial features

Before extracting any facial features, robust face detector needs to be utilized
to locate faces in the image. Due to the fact the era of traditional methods
such as Haar cascades [57] is over, we decided to choose suitable face detector
only from CNN-based architectures. In particular, we designed an interface for
three different CNN-based face detectors that offer different trade-offs between
speed and accuracy performance.

• faced [136] is first of them achieving near real-time performance on
CPU. It uses an ensemble of two CNNs where first is based on YOLO
architecture. It takes the input image and outputs a grid where each
cell contains a prediction of bounding boxes and the probability of one
face. Furthermore, these outputs are fine-tuned by another custom CNN
architecture that is trained to refine bounding box coordinates. Our
utilized model is pre-trained on WIDER FACE [137] dataset.

• Tensorflow Mobilenet SSD [138] is a popular open-source face detec-
tor framework. It is based on a more robust single-shot detector (SSD)
[139] architecture than the faced framework, thus it provides better ac-
curacy. We utilize a pre-trained model on WIDER FACE [137] dataset
that can have a real-time performance on GPU and takes only about
400 MB of GPU memory.

• MTCNN architecture [140] and its implementation [141] is the last
utilized face detector that achieves superior accuracy over the state-
of-the-art techniques on the public datasets. It leverages a cascaded
architecture with three stages of designed CNNs to predict face and
landmark location in a coarse-to-fine manner. In addition to face de-
tection, it also performs a face alignment. The proposed architecture is
a heavy, but it achieves near real-time performance on modern GPUs.
We use this architecture to compare accuracy performance with weaker
face detectors.

Gathered face regions from the face detector need to be paired with people
detections. This problem is solved based on the assumption that the face is
in the upper middle part of the person bounding box. Face regions with
confidence less than 90 % or without associated person detection are not
preserved. No additional post-processing of face regions is done in this step.
With the face regions paired to people, we can finally estimate a few types of
soft-biometrics.
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3.5.1 Age and gender estimation

As already mentioned in 2.2.2.2, age is most commonly estimated at the same
time with gender. In this work, we built an interface for two existing CNN
models – Keras Age and Gender [142] based on DEX architecture and SSR-Net
[124]. However, in our specific task, the SSR-Net architecture with the pre-
trained model provided not only more accurate predictions but better speed
performance. Thus we consider only the SSR-Net in the final design.

Before feeding the face image patch into CNN, we first extend the detected
face region by margin m as follows:

xtl new = max(xtl old −m · faw, 0) (3.10)
ytl new = max(ytl old −m · fah, 0) (3.11)

xbr new = max(xbr old +m · faw, frw) (3.12)
ybr new = max(ybr old +m · fah, frh), (3.13)

where xtl new, ytl new and xbr new, ybr new are new top left and bottom right
coordinates of bounding box, respectively, xtl old, ytl old, xbr old, ybr old are their
corresponding original coordinates, faw and fah is according width and height
of face region, frw and frh is according width and height of frame.

If the margin m is too small, then the face is not cropped entirely, and if
the offsets are too big, then too much space around the face is included. Both
cases affect the prediction accuracy, thus it is necessary to choose a suitable
margin for a particular scene. In our case, the value margin value of m = 0.5
worked well.

Furthermore, face patches are also normalized by min-max normalization
from 0 to 255 to eliminate the illumination variance:

xnorm = (x−min(region)) · (newmax− newmin)
max(region)−min(region) + newmin, (3.14)

where x is the input pixel value, newmin = 0, newmax = 255, and min(region)
and max(region) takes accordingly minimum or maximum value of the face
region.

The output of the age classifier is a continuous value which is not further
post-processed. Output values from the gender model are x ∈ [0, 1] where
x > 0.5 means female and otherwise male. The more the value of x is at
the edge of the interval, the more certain the prediction is. Also, no further
post-processing is needed for gender values.

3.5.2 Facial expression recognition

In the same spirit as the previous models, we tried to utilize at least two
different architectures to estimate emotions which can be further compared.
First of them is [126] inspired by [123] CNN architecture, which introduces
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the open-source framework that can recognize seven types of face emotions –
angry, disgust, fear, happy, sad, surprise, neutral. Their model can operate in
real-time, and they provide pre-trained weights on FER2013 dataset [125].

Other architecture employed, known as EmoPy [127], is a toolkit with
various CNN architectures implemented. However, the most popular model is
Fermodel which is trained to predict the same facial categories as the previ-
ously mentioned model. We decided to utilize EmoPy for the task of estimat-
ing emotions because their framework can operate with a smaller subset of all
seven emotions, which is undoubtedly more practical in real-world scenarios.
Furthermore, they provide more complex models that provide an output based
on temporal information of past frames. The provided model can operate in
real-time and is also pre-trained on FER2013 dataset [125].

For the input of EmoPy, we similarly pre-process the input face region as
in 3.5.1. We expand the face region by margin m, but we also convert the
image to grayscale. This time, we do not normalize the input image, because
the model was not trained in this manner. The output of the model is facial
categories with their associated probabilities. We choose the most likely one
and ignore the rest.

3.6 Spatial information

In addition to visual information such as facial features, we can extract addi-
tional information which relates to the spatial features of the space captured.
However, these methods usually need some knowledge of the scene captured,
so they cannot be applied in general. However, in our assumptions, we ex-
pected the full knowledge of the scene, thus we are not limited, and we can
apply a wide range of available methods.

3.6.1 Trajectory

One of the most intuitive ways to get some spatial information in the scene
is to focus on the movement in space itself. More specifically, extraction of
individual’s trajectories. The best way to analyze motion in space and to work
with trajectories is in the top-down (or bird’s eye) view. However, in most
real cases of tracking people, we are unable to place the camera to achieve
this kind of perspective. This placement would also prevent the possibility of
obtaining further facial descriptors. Fortunately, we can transform some parts
of the original image to resemble similar to a top-down view.

Formally, we can utilize 2-D projective transformation between real-world
and image ground plane with its main component known as homography ma-
trix. Since the perspective problem is considered as one of the most difficult
and precise topics in CV that goes beyond the possibilities of this work, we
recommend one of the most popular books [18] in this field, where a detailed
explanation can be found. However, if we resort to a brief explanation, then
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the homography matrix H relates the transformation between two planes (up
to a non-zero scale factor s) as follows:

s

x′y′
1

 = H

xy
1

 =

h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3


xy

1

 . (3.15)

H has eight degrees of freedom, which means there are eight unknowns that
need to be solved for, and it is generally normalized with h3,3 = 1 or h2

1,1 +
h2

1,2 + h2
1,3 + h2

2,1 + h2
2,2 + h2

2,3 + h2
3,1 + h2

3,2 + h2
3,3 = 1.

Typically, an estimate of the matrix H is done by finding point correspon-
dences between the target planes. One point correspondence gives two linearly
independent equations, and four correspondences are needed for a minimal so-
lution. If more than four correspondences are known, then a more accurate
solution can found according to the predefined cost function. Finally, the ma-
trix H can be estimated running Direct Linear Transform (DLT) algorithm
[18].

There are many scenarios in CV where a homography may be required.
However, the question is how it relates to trajectories. If we have at least
four ground-truth world measurements of the ground plane that are visible
in the camera frame, we can build frame-to-world point correspondences and
estimate the matrix H. Further, we can use this matrix to transform each
point (x, y) that lies on the ground plane in scene coordinates to real-world
coordinates. For a specific example of tracking people, we assume that people
are walking on a common ground plane. Thus we can take their bottom center
point of the bounding box and transform it with H to get the corresponding
point in real-world coordinates. As a result, we can precisely estimate posi-
tions where people have walked, not in frame coordinates, but in real-world
coordinates that we previously measured in the calibration phase.

3.6.2 Height estimation

In the previous section, we presented a 2-D transformation that can transform
point coordinates between planes. This section deals with a related problem
known as single-view metrology, which uses projective geometry to recover a
structure of the 3-D world objects from a single image with several reference
measurements. Since this section again contains complex theoretical concepts
such as vanishing points, vanishing lines, we assume that the reader got ac-
quainted with them from the suggested book [18].

Let us have a visible ground plane p represented as a floor in the scene, the
vanishing point v in the vertical direction of the p, vanishing line l of the p,
tr and br are the top and base points of the reference object, respectively and
tx and bx are the top and base points of the object to be measured. All base
points must lie on the p, and all top points must lie on a line that intersects
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3. Methodology

(a) (b) (c)

Figure 3.6: Example of the 2-D projective transformation. a) Source image.
b) Top-down view of the corridor floor generated from (a) using the four
corners of a floor tile to compute the homography. c) A planar surface viewed
by two camera positions is related by homography H, thus any point can be
transformed between these different planes. Source: [18]

.

the according to the base point and is perpendicular to p. Then, the α metric
factor can be found by the following equation:

α = − ||br × tr||
Zr(l · br)||v × tr||

. (3.16)

With the α calculated, we can estimate a height Zx for an arbitrary object
that stands on the ground plane by the following equation:

Zx = − ||bx × tx||
α(l · bx)||v × tx||

. (3.17)

The application of this formula is most easily understood from Fig. 3.7 and
the proof can be found in [19].

To conclude, with this single-view metrology framework, we can measure
the real-world height of the object that stands on the ground plane (with
known tx and bx that are bounding box top or bottom point, respectively). It
works for uncalibrated cameras, only real-world measurements on the ground
plane and beyond are sufficient for calculating the v and l.
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3.6. Spatial information

(a) (b)

(c) (d)

Figure 3.7: Measuring heights in single images. (a) The aim is to compute the
height of the human figure relative to the height of the column (reference).
The vanishing line of the ground plane has been computed and is shown blue.
(b) The unknown height Zx can be computed from image quantities only as
shown in 3.17 (c) A photograph of a garden shed in Oxford. (d) Once the
height of the window top edge from the floor has been measured (reference),
the height of the man is computed to be 178.8 cm which is about 1 cm off the
ground truth. Source: [19]

.
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Chapter 4
Implementation

This chapter contains information related to the implementation of the pro-
posed framework. The whole implementation is done in Python language with
the dependence on several other frameworks and libraries, including OpenCV,
Tensorflow, and Darknet. The main application functionality spans eight
Python modules.

4.1 Module tracking app

This module is the main entry point of the application. It contains only one
essential function that is responsible for running the proposed framework. In
this function, we first load the input image stream, calibration parameters
and other components such as object detectors, feature extractors, tracker,
and image viewer. Then there is a loop that runs the algorithms as long as
input frames are available. The application can be run either from an IDE or
from the command line with various input parameters.

4.2 Module detection

The detection module contains multiple wrappers for various object and face
detectors proposed in 3.3. It is responsible for loading these models based on
input parameters, detecting objects in the input frame, and filtering detections
by input criteria.

4.3 Module feature extraction

In this module, we propose to interface and pre-processing to various appear-
ance feature extractors including age, gender, and emotion models, but also
height estimator. The module also contains a function that assigns face regions
to people bounding boxes.
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4. Implementation

4.4 Module kalman filter

This module is vital for the proposed motion analysis method because it con-
tains the configuration of the utilized filter. Our approach uses Kalman Filter
implementation from famous FilterPy [86] library. The module is also respon-
sible for converting filter’s internal state to visualizable bounding box and for
converting measurements to filter’s input.

4.5 Module matching

The matching module contains an efficient implementation of a proposed dis-
tance metric, namely the cosine metric for appearance (section 3.3.5.2) and
enhanced Euclidean distance for the state (section 3.3.5.1). Metrics are cal-
culated by NumPy, which is a high-performance linear algebra library written
in C language. To make the computations as efficient as possible, we utilize
the NumPy broadcasting technique.

4.6 Module tracking

In the tracking module, we propose PeopleTracker class that is responsible
for the actual matching of detections and tracks. It is mostly inspired by
code from [103], but some modifications in the matching algorithm were made.
Successfully matched tracks are updated from here, and unmatched detections
are transformed to tentative tracks.

4.7 Module track

An instance of Person class from the track module represents a single person
that was detected in the scene. Each person instance has set of attributes
including id, color for visualization, status, creation frame number, time since
the last update, age in frame units, last body bounding box, last face bounding
box, Kalman filter instance, and dictionary with gathered features.

4.8 Module output statistics

This module is responsible for transforming all possible data to brief output
statistics. It includes a class TrackingEvaluator which evaluates the tracking
performance of the algorithm based on provided annotations. Class Output-
Statistics is responsible for converting gathered data about people to usable
outputs.
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4.9. Module visualization

4.9 Module visualization

Visualization module contains all drawing related functions including plot-
ting output graphs using Matplotlib and Seaborn libraries. It implements an
ImageViewer class that is responsible for showing the preview of processed
images. The ImageViewer class also contains functionality that allows easier
debugging by allowing users to pause the algorithm or process the stream by
one frame at a time.
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Chapter 5
Evaluation

In this chapter, we firstly discuss the reason behind creating a new dataset.
We further present achieved results with our proposed framework, and lastly,
we propose additional improvements for future work.

5.1 Dataset

There are many public annotated datasets [2, 20, 22] for a person tracking task
and many others targeting soft-biometrics [125, 137]. However, their focus is
a little different than what is needed for the evaluation of this thesis. Firstly,
individuals only appear in a few images of the sequence, which is not entirely
the case for retail, where it is required to maintain the individual’s long-term
identity even in the case of multiple occlusions. Secondly, these datasets do
not focus on the joint task of tracking and soft-biometrics extraction. The
available tracking sequence lacks additional information about people and the
scene parameters that are required to calibrate the camera. It was, therefore,
advisable to create an in-the-wild dataset to simulate a real scenario.

The 14th floor of the FCE CTU building was used to create a dataset,
where it was possible to place a camera to a place that is most similar to the
retail case. In total, over 10,000 images were captured, of which 2463 frames
were hand-annotated with person bounding-boxes and identities. There are a
total of 7028 bounding boxes with 11 person identities. Face regions were not
annotated because it would have no added value for the evaluation. Related
individual’s soft-biometrics data such as age, gender, and height are known,
but ground-truth data for emotions and trajectories are not available. There
are only male representatives in the dataset. Captured frames are not further
pre-processed.
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5.2 Hardware and software setup

The speed performance of algorithms is tightly dependent on the utilized
hardware and software setup. The proposed methods were tested on the
computer available in ImproLab. The testing setup consisted of Intel i5 -
7600K @ 3.80GHz, NVIDIA GeForce RTX 2080 TI, 16 GB RAM, and SSD
disk. The software dependencies were CUDA 10, cuDNN 7.5, Tensorflow 1.13,
OpenCV 3.4.2, and the latest version of Darknet. All third-party libraries were
compiled for GPU support.

5.3 Tracking results

In order to be able to compare individual tracking solutions among each other,
it is necessary to determine a suitable metric. Because metrics for object
detection and tracking in the video can often be non-intuitive and complex,
the well-known MOTP and MOTA metrics are adopted in this work. MOTP
metrics focus on the quality of detected regions, while MOTA focuses on
tracking accuracy, and its calculation affects the number of false positives
(FP), false negatives (FN), and identity switches (IDSW). Factors affecting
MOTA are also compared, as it is interesting to see how they change depending
on the detection network. The metrics are described in more detail in section
1.5; however, to be concise, higher MOTA or MOTP means better.

We present our results in table 5.1 for different object detection architec-
tures – YOLOv2, YOLOv3, YOLOv3 SPP, and Faster R-CNN with ResNet50
backbone. For the retail usage, the number of identity switches (IDSW) is a
crucial metric, and in this aspect, the Faster R-CNN outperformed other de-
tectors by a large margin. We also provide some output predictions in Fig.
5.1 and example video in [143] demonstrating robustness of the proposed al-
gorithms.

YOLOv2 YOLOv3 YOLOv3 SPP Faster R-CNN
MOTP 0.795 0.84 0.89 0.87
MOTA 0.825 0.94 0.905 0.94

FN 879 306 470 228
FP 147 132 223 167

IDSW 14 8 10 2
FPS 26.62 22.2 16.29 17.37

Table 5.1: Tracker evaluation table.

In the table with results, we can see that the more complex the archi-
tecture employed, the more accurate the results, which again verified the fact
presented in the introduction chapter, that a robust object detector is a key to
proper tracking. Specifically, we can observe the number of missed detections
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5.4. Soft-biometrics results

(a) (b) (c)

Figure 5.1: Image examples of our framework. (a) An example of a person
facing the camera so his biometrics can be accurately estimated. Only the
height value is inaccurate by 2 cm, which is a very precise outcome. (b) An
example of people who are close to each other without affecting the tracker
accuracy. (c) An example of people who are even closer than in (b). The
person in the middle is fully occluded, and no detection is available for him.
However, the red circle is trying to predict his position, in case he reappears
in the scene. The prediction of soft-biometrics for the person with ID 13 is
inaccurate by one year and 3 cm.

(FN) and identity switches (IDSW) is decreasing with more robust architec-
ture. Faster R-CNN generally has more ”ghost” detections (FP), but it was
something we expected already in the Methodology chapter, and it is not such
a problem that would significantly affect the results of the framework.

Interesting observations are worse results achieved by the modified YOLOv3
with spatial pyramid pooling (SPP) architecture. According to the original
paper, it should work better on small objects, and although it provided more
accurate bounding boxes (MOTP), all other aspects suggest that it is not very
suitable for tracking algorithms.

The fact that FPS is decreasing with the complexity of object detector
architecture is no surprise. Generally speaking, the bottle-neck of the tracker
is the object detector. Based on our observations and measurements, the
tracking algorithm without the object detector component can run at around
500 FPS. It is, therefore, necessary for any task to select the suitable object
detector first. In our case, even with the complex Faster R-CNN, the tracking
achieves near real-time performance.

5.4 Soft-biometrics results

The evaluation of soft-biometrics is a bit more complicated. It is not possible
to obtain precise ground-truth for trajectories and emotions, so there is no
room for evaluation. However, three more remaining features could be possibly
evaluated – age, gender, and height. We decided to choose only age and height
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for the evaluation because we could not find a female representative at the time
of the dataset creation.

The situation is even more complicated because some biometric informa-
tion cannot always be extracted. It may happen that a person will always be
back to the camera and it will not be possible to extract his facial information,
or a person moves very fast or is occluded all the time, so it is not possible to
estimate his height. Therefore, we only evaluate cases where it is possible to
extract suitable soft-biometric data.

We use mean absolute error (MAE) metric described in section 1.5 for
evaluation instead of root-mean-square error (RMSE) because it has easier
interpretation. Description of the utilized detectors can be found in Method-
ology chapter.

In table 5.2, we present our outcome for age estimation for various face
detectors. From the results, we can observe that the alignment feature in
MTCNN has a great positive impact on accuracy, but it drastically reduces
the FPS. Tensorflow Mobilenet SSD architecture provides the best trade-off
between performance (FPS) and accuracy (Age MAE).

faced Mobilenet SSD MTCNN
Age MAE 5.21 3.82 2.65

FPS 78.41 119.86 7.01

Table 5.2: Age estimation evaluation table.

The last table 5.3 focuses on the influence of object detector on height
estimation. YOLO architectures generally provide less accurate bounding
boxes, thus making the height error larger. The achieved results correspond to
the MOTP outcome in table 5.1. We can also see that the speed performance
degradation compared to the original FPS is negligible. To conclude, height
estimation works well in most cases, and it has a little computational overhead.

YOLOv2 YOLOv3 Faster R-CNN
Height MAE 7.31 5.84 4.09

FPS 26.35 21.97 17.17

Table 5.3: Height estimation evaluation table.

5.5 Further work

This complicated and broad task is not something that can be fully accom-
plished in one final thesis. Therefore, in this section, we suggest some im-
provements for future work.
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5.5. Further work

5.5.1 Tracking improvements

Current state-of-the-art object detectors are already achieving outstanding
results. People are detected in most cases when they are visible. The problem
arises when people are entirely occluded, so they are not visible to the camera,
but we still need to retain their identity when they show up. This is a situation
where having robust tracker helps.

Our tracker can deal with short-term occlusions which are mostly situation
when people pass by. However, it is not designed for the case when individuals
are completely missing for a few seconds. To improve in this manner, the
missing tracks would need to be kept in the memory for a more extended
period than 50 frames, but also a new matching metric for these cases would
need to be developed.

The tracking performance could also be improved by adding a non-linear
state filter such as unscented Kalman filter or particle filter, which would
improve the matching phase. The reason is that not all people behave linearly
in their movement. Therefore, the current filter may occasionally diverge.

From our observation, utilized object detectors are already robust with
default parameters and pre-trained models. Therefore, there is no reason for
re-training them for a particular task with people. There could be significant
speed-up improvement by proposing an object detector that can detect faces
and people simultaneously.

5.5.2 Soft-biometrics extraction improvements

Our framework can extract face information (age, gender, emotion), height,
and trajectory. This information can only be obtained under certain condi-
tions. If no face is visible during the whole tracking session, then it is not
possible to output any face information. If the object moves quickly, then ex-
tracted height information is not accurate. Moreover, if an object is occluded,
then trajectory information might contain gaps.

Of course, all these shortcomings could be improved, but the significant
improvement, for now, would be retraining the face extraction models on more
in-the-wild data to improve the accuracy. There is no need to replace utilized
architectures as they achieve state-of-the-art performance on current datasets,
but it is needed to fine-tune the weights by faces that are captured at an angle,
not only from the front view. It would also help to evaluate the methods on
data from multiple environments and with more types of people.

Another improvement could be achieved by employing a model that can
do face embedding. This embedding then could be used in the matching phase
to recover long term occluded individuals.
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Conclusion

This work was focused on building a framework for task of people tracking and
soft-biometric data extraction. In the introductory chapter, we thoroughly de-
scribed the assignment with sufficient motivation, but also with its challenges.
In the following theoretical chapter, we have described the necessary theoret-
ical background in detail for understanding of this thesis. In chapter 2, we
briefly reviewed the existing solutions, and based on that some popular meth-
ods were implemented from scratch or customized from open-source reposito-
ries to meet the thesis goals. The implemented solution is then evaluated in
the evaluation chapter, and further improvements are proposed. The result is
a functioning people tracking and soft-biometrics extracting framework that
can be deployed in real-world application.

According to the table 5.1, the proposed algorithms achieve state-of-the-
art results in long-term people tracking. The best solution solution based on
Faster R-CNN achieves only two identity switches on our dataset, which is a
an outstanding outcome. The quality of the detected boxes is also very high.
Evaluated height and age soft-biometrics achieve are very precise. However, in
the upcoming work it is necessary to make an evaluation on more individuals.

The proposed methods are designed in several variations to meet different
trade-offs of accuracy versus computational expensiveness, and since the final
design of the framework is fully modular, it can be easily configured to meet
demands for various other scenarios. We put much effort into the application
design as a whole so that it can be easily expanded and it can now be deployed
in real-world applications. There are still some shortcomings in the framework,
but they are described so that they can be further worked on and we hope
that this work will be a useful as a starting point for other people interested
in this topic.
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Appendix A
Acronyms

AI artificial intelligence

ANN artificial neural network

CMOS complementary metal oxide semiconductor

CNN convolutional neural network

CTU Czech Technical University

CV computer vision

DEX Deep EXpectation

DL deep learning

DLT Direct Linear Transform

DSAE deep sparse autoencoders

Fast R-CNN fast region-based convolutional network

Faster R-CNN faster region-based convolutional network

FCE Faculty of Civil Engineering

FIT Faculty of Information Technology

FN false negatives

FP false positives

FPS frames per second

GigE Gigabit Ethernet
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Acronyms

GPU graphics processing unit

HOG histogram of oriented gradients

HSV hue-saturation-value

IDSW identity switches

ImproLab Image Processing Laboratory

IoU intersection over union

LBP local binary pattern

LSTM long short-term memory

MAE mean absolute error

ML machine learning

MLP multi layer perceptron

MOT multiple object tracking

MOTA multiple object tracking accuracy

MOTP multiple object tracking precision

MOTS multiple object tracking and segmentation

MP megapixel

MTMCT multi-target multi-camera tracking

NMS non-maximum suppression

NN neural network

PCA principal component analysis

R-CNN region-based convolutional network

ReID re-identification

RGB red-green-blue

RMSE root-mean-square error

RNN recurrent neural network
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Acronyms

RoI region of interest

RPN region proposal network

SDK software development kit

SIFT Scale-invariant feature transform

SORT simple online and real-time tracking

SPP spatial pyramid pooling

SSD single-shot detector

SSR-Net Soft Stagewise Regression Network

SURF Speeded-Up Robust Features

SVM support vector machine

YOLO you only look once
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Appendix B
Media contents

readme.txt ....................... the file with CD contents description
data ........................................... the data files directory

example sequence. the directory with example sequence from dataset
*.jpg.......................................the example images

example sequence graphs.....the directory of graphs of experiments
*.png................................. the motion output graphs

tracking example.mp4 ....................... the example video file
src.......................................the directory of source codes

models.......................the directory of deep learning modules
utils...............................the directory of helper modules
*.py........................................ the Python source files

text..........................................the thesis text directory
thesis..............the directory of LATEX source codes of the thesis
thesis.pdf ...................... the Diploma thesis in PDF format
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