
Gluing for Type Theory
Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary
akaposi@inf.elte.hu

Simon Huber
University of Gothenburg, Sweden
simonhu@chalmers.se

Christian Sattler
University of Gothenburg, Sweden
sattler@chalmers.se

Abstract
The relationship between categorical gluing and proofs using the logical relation technique is folklore.
In this paper we work out this relationship for Martin-Löf type theory and show that parametricity
and canonicity arise as special cases of gluing. The input of gluing is two models of type theory
and a pseudomorphism between them and the output is a displayed model over the first model.
A pseudomorphism preserves the categorical structure strictly, the empty context and context
extension up to isomorphism, and there are no conditions on preservation of type formers. We look
at three examples of pseudomorphisms: the identity on the syntax, the interpretation into the set
model and the global section functor. Gluing along these result in syntactic parametricity, semantic
parametricity and canonicity, respectively.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Martin-Löf type theory, logical relations, parametricity, canonicity, quotient
inductive types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.25

Funding Ambrus Kaposi: The author was supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunications) and COST Action EUTypes CA15123.
Simon Huber : I acknowledge the support of the Centre for Advanced Study (CAS) in Oslo, Norway,
which funded and hosted the research project Homotopy Type Theory and Univalent Foundations
during the academic year 2018/19.

Acknowledgements The authors thank Thorsten Altenkirch, Simon Boulier, Thierry Coquand,
András Kovács and Nicolas Tabareau for discussions related to the topics of this paper.

1 Introduction

Categorical gluing [11, Section 4.10] is a method to form a new category from two categories
and a functor between them. This goes back to the Artin gluing of Grothendieck toposes [5,
Exposé IV, Section 9.5]. Given a functor F from category S toM, an object in the glued
category is a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). Models of logics and type
theories can be given as categories with extra structure and gluing can be extended to these
models. Gluing was used to prove properties of closed proofs in intuitionistic higher-order
logic [21] and normalisation for simple type theory [14, 26] and System F [2]. In programming
language semantics, similar results are proved more syntactically using the technique of
logical relations [22, 24], see [15] for an introduction and [13, 1] for more recent proofs using
this technique. It is folklore that logical relations correspond to gluing. Logical relations
scale to real-world systems [27, 19] while gluing is a more abstract construction which can
be applied to systems with well-understood categorical semantics.

© Ambrus Kaposi, Simon Huber, and Christian Sattler;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211062006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9897-8936
mailto:akaposi@inf.elte.hu
mailto:simonhu@chalmers.se
mailto:sattler@chalmers.se
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Gluing for Type Theory

In this paper we develop the correspondence between proof-relevant logical predicates
and gluing for Martin-Löf type theory. Logical relations were defined for type theory to prove
free theorems in syntactic [7] and semantic (Reynolds-style) [6] ways. Proof-relevant logical
predicates were employed to prove normalisation and canonicity for type theory [4, 10, 20].
We unify these approaches by defining gluing in an abstract way, for any pseudomorphism
between two models of type theory. An important characteristic of our approach is using an
algebraic syntax of type theory. By this we mean the well-typed syntax of type theory given
as a quotient inductive-inductive type (QIIT, [18]). A model of this syntax is just an algebra
of the QIIT which turns out to be the same as a category with families (CwF, [12]) with
extra structure. A pseudomorphism of models is a map from sorts in one model to sorts in
the other model which preserves the categorical structure strictly and the empty context
and context extension up to isomorphism. We show that gluing can be performed along any
pseudomoprhism and gluing preserves Π, Σ, Bool and an infinite hierarchy of universes.

Our motivational guideline for this paper is the following.

1. Gluing over identity is syntactic parametricity.
2. Gluing over the interpretation into the set model is semantic parametricity.
3. Gluing over the global section functor is canonicity.
4. Gluing over Yoneda is normalisation.
5. Gluing over Yoneda composed with the set interpretation is definability/completeness.

In this paper we only generalise steps 1–3. The Yoneda embedding (from the syntax
to the presheaf model over a wide subcategory of contexts and substitutions) is also a
pseudomorphism, so our paper applies to steps 4–5 as well. However, Yoneda has extra
structure that we do not employ in this paper. This extra structure is needed to obtain full
normalisation or completeness.

Structure of the paper

After summarizing related work and the metatheory, we define our object type theory in
Section 2 and as an example we define its set model (Section 3). Then we define the notion
of pseudomorphism (Section 4) and gluing for any pseudomorphism (Section 5). Afterwards,
in Section 6 we define a non-trivial pseudomorphism: the global section functor which goes
from the syntax to the set model and maps types to terms of the type in the empty context.
We put together the pieces in Section 7 by obtaining parametricity and canonicity for our
object theory using gluing. We conclude and summarize further work in Section 8.

Contribution

The contribution of this paper is showing that gluing can be defined for any pseudomorphism
for Martin-Löf type theory. To our knowledge, this is the first general construction from
which both parametricity and canonicity arise.

Related work

Sterling and Spitters [26] developed gluing for simple type theory and show how it relates
to syntactic proofs of normalisation by logical relations and semantic proofs based on
normalisation by evaluation. Altenkirch, Hofmann and Streicher developed gluing for System
F and prove normalisation in their unpublished note [2]. Rabe and Sojakova [23] defined a
syntactic framework for logical relations which applies to theories formulated in the Edinburgh

A. Kaposi, S. Huber, and C. Sattler 25:3

Logical Framework (LF). Shulman [25] developed gluing for type theory in the context of
type-theoretic fibration categories and proves homotopy canonicity for a 1-truncated version
of homotopy type theory. Compared to Shulman, we work with a notion of model closer
to the syntax of type theory: categories with families. In previous work [4] we proved
normalisation for type theory with Π, a base type and a base family. The logical predicate
used in that proof is an instance of the abstract gluing technique presented in this paper.
Coquand [10] proves canonicity and normalisation for a richer type theory with Bool and
a hierarchy of universes. His canonicity proof is an unfolding of the canonicity proof given
in this paper.

Metatheory and notation

Our metatheory is Martin-Löf’s extensional type theory. We have a cumulative hierarchy of
universes Set0, Set1, . . . with Setω on top. Sometimes we omit the universe indices. Function
space is denoted by → with constructor λ and application written as juxtaposition. We
use implicit arguments extensively, e.g. we would write the type of function composition as
(B → C) → (A → B) → (A → C) instead of (A : Set) → (B : Set) → (C : Set) → (B →
C)→ (A→ B)→ (A→ C). When a metavariable is not quantified explicitly (such as A, B,
C), we assume implicit quantification and implicit application as well. Sometimes we omit
explicit arguments for readability, in this case we write underscore _ instead of the argument.
Pairs are denoted by × with constructor – , – and destructors .1 and .2. Both → and × come
with η laws. The one-element type is denoted 1 with constructor ∗, the two-element type is
denoted 2, its constructors being ∗ and ∗∗ and its eliminator case. Equality is denoted =
and we use equational reasoning to write equality proofs. We use equality reflection in the
metatheory (not in our object theory described in Section 2). Following Hofmann [16], our
arguments can be translated to an intensional type theory with function extensionality and
uniqueness of identity proofs.

2 Type theory

By type theory we mean the (generalised) algebraic structure in Figure 1 with four sorts, 26
operators, and 34 equations. The four sorts are those of contexts, types, substitutions, and
terms. Contexts and types are indexed by a universe level which is a metatheoretic natural
number. Furthermore, types are indexed by contexts and terms by a context and a type in
that context so that we can only mention well-typed terms. Substitutions are indexed by
their domain and codomain, both contexts.

We explain the operators and laws for the substitution calculus (first column, operators id
to , ◦) as follows: Con and Sub form a category (id to idr); there is a contravariant, functorial
action of substitutions on types and terms (–[–] to [◦]), thus types (of fixed level) form a
presheaf on the category and terms form a presheaf on its category of elements; there is
an empty context · with a unique (·η) empty substitution ε into it, thus · is the terminal
object of the category; extended contexts can be formed using – . – and there is a natural
isomorphism between substitutions into ∆ BA and a pair of a substitution σ into ∆ and a
term of type A[σ] (– , – to , ◦). The substitution calculus is the same as the structure of a
category with families (CwF, [12]) with contexts and types indexed over natural numbers
representing universe levels. In the CwF language, context extension is called comprehension.
We denote n-fold iteration of the weakening substitution p by pn (where p0 = id), and we
denote De Bruijn indices by natural numbers, i.e. 0 := q, 1 := q[p], . . . , n := q[pn]. We define

FSCD 2019

25:4 Gluing for Type Theory

Con : N→ Set Σ : (A : Ty iΓ)→ Ty j (Γ . A)→
Ty : N→ Con i→ Set Ty (i t j) Γ
Sub : Con i→ Con j → Set – , – : (u : Tm ΓA)→ Tm Γ (B[id, u])→
Tm : (Γ : Con i)→ Ty j Γ→ Set Tm Γ (ΣAB)
id : Sub Γ Γ projl : Tm Γ (ΣAB)→ Tm ΓA
– ◦ – : Sub Θ ∆→ Sub Γ Θ→ Sub Γ ∆ projr : (t : Tm Γ (ΣAB))→
ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν) Tm Γ (B[id, projl t])
idl : id ◦ σ = σ Σβ1 : projl (u, v) = u

idr : σ ◦ id = σ Σβ2 : projr (u, v) = v

–[–] : Ty i∆→ Sub Γ ∆→ Ty iΓ Ση : (projl t, projr t) = t

–[–] : Tm ∆A→ (σ : Sub Γ ∆)→ Σ[] : (ΣAB)[σ] = Σ (A[σ]) (B[σ↑])
Tm Γ (A[σ]) , [] : (u, v)[σ] = (u[σ], v[σ])

[id] : A[id] = A > : Ty 0 Γ
[◦] : A[σ ◦ δ] = A[σ][δ] tt : Tm Γ>
[id] : t[id] = t >η : (t : Tm Γ>) = tt
[◦] : t[σ ◦ δ] = t[σ][δ] >[] : >[σ] = >
· : Con 0 tt[] : tt[σ] = tt
ε : Sub Γ · U : (i : N)→ Ty (i+ 1) Γ
·η : (σ : Sub Γ ·) = ε El : Tm Γ (U i)→ Ty iΓ
– . – : (Γ : Con i)→ Ty j Γ→ Con (i t j) c : Ty iΓ→ Tm Γ (U i)
– , – : (σ : Sub Γ ∆)→ Tm Γ (A[σ])→ Uβ : El (cA) = A

Sub Γ (∆ . A) Uη : c (El a) = a

p : Sub (Γ . A) Γ U[] : (U i)[σ] = (U i)
q : Tm (Γ . A) (A[p]) El[] : (El a)[σ] = El (a[σ])
.β1 : p ◦ (σ, t) = σ Bool : Ty 0 Γ
.β2 : q[σ, t] = t true : Tm Γ Bool
.η : (p, q) = id false : Tm Γ Bool
, ◦ : (σ, t) ◦ ν = (σ ◦ ν, t[ν]) if : (C : Ty i (Γ . Bool))→
Π : (A : Ty iΓ)→ Ty j (Γ . A)→ Tm Γ (C[id, true])→

Ty (i t j) Γ Tm Γ (C[id, false])→
lam : Tm (Γ . A)B → Tm Γ (ΠAB) (t : Tm Γ Bool)→ Tm Γ (C[id, t])
app : Tm Γ (ΠAB)→ Tm (Γ . A)B Boolβ1 : if C uv true = u

Πβ : app (lam t) = t Boolβ2 : if C uv false = v

Πη : lam (app t) = t Bool[] : Bool[σ] = Bool

Π[] : (ΠAB)[σ] = Π (A[σ]) (B[σ↑]) true[] : true[σ] = true

lam[] : (lam t)[σ] = lam (t[σ↑]) false[] : false[σ] = false
if[] : (if C uv t)[σ] =

if (C[σ↑]) (u[σ]) (v[σ]) (t[σ])

Figure 1 Type theory as a generalised algebraic structure. σ↑ abbreviates (σ ◦ p, q).

A. Kaposi, S. Huber, and C. Sattler 25:5

lifting of a substitution σ : Sub Γ ∆ by σ↑ : Sub (Γ . A[σ]) (∆ . A) := (σ ◦ p, q). We observe
that it has the property ↑[] : (σ↑)[δ, t] = (σ ◦ δ, t).

Π-types are characterized by a natural isomorphism between Tm Γ (ΠAB) and Tm (Γ .
A)B (lam and app). We define the usual application as t $u := (app t)[id, u]. A ⇒ B

abbreviates ΠA (B[p]). Σ-types are given by the constructor – , – and projections projl and
projr and they support an η-law. There is a unit type > with one constructor tt and an η-law
and there is a hierarchy of Tarski-universes, given by natural isomorphisms between Ty iΓ
and Tm Γ (U i) for every i.1 As terms of Π-, Σ- and U-types are characterized by natural
isomorphisms, we stated the substitution law for only one of the two directions, the other
can be derived. We illustrate how to do this for app and state the other laws.

app[] : (app t)[σ↑] Πβ= app (lam ((app t)[σ↑])) lam[]= app ((lam (app t))[σ]) Πη= app (t[σ])
$[] : (t $u)[σ] = t[σ] $u[σ]
projl[] : (projl t)[σ] = projl (t[σ])
projr[] : (projr t)[σ] = projr (t[σ])
c[] : (cA)[σ] = c (A[σ])

Finally, we have booleans with a dependent eliminator if into any universe. Sometimes for
readability we omit the first argument (C) of if and write _ instead.

Note that the well-typedness of some of the equations depends on previous equations.
For example, the left-hand side of .β2 has type Tm Γ (A[p][σ, t]), while the right-hand side
has Tm Γ (A[σ]), and these types are equal by [◦] and .β1. In an intensional metatheory,
we would need to transport the left-hand side over these equations. We use an extensional
metatheory, so we do not write such dependencies.

As an example we write the polymorphic identity function as lam (lam q). Note that lam
and q have several implicit arguments that we did not write down. However, when we write a
term, these implicit arguments should be clear from the context. In this example, saying that
it has type Tm · (Π (U 0) (El q⇒ El q)) fixes all its implicit arguments. We don’t have raw
terms with a type assignment or type inference system, we only work with fully annotated
well-typed terms where lots of information is implicit (as usual in mathematics). This is
sometimes called intrinsic or well-typed syntax, see [3] for an introduction.

We call algebras of the algebraic structure presented in Figure 1 models of type theory.
When referring to different models, we put the model as a subscript, i.e. ConM refers to
contexts in modelM, idM : SubM ΓM ΓM refers to the identity substitution in this model.
For metavariables, we usually use the same subscript as for the two occurrences of ΓM in
the type of idM.

We introduce some basic notions for working with models. These notions are obtained
mechanically by viewing Figure 1 as a scheme for a quotient inductive-inductive type
(QIIT, [18]).

1 We learned this representation of universes from Thierry Coquand. Note that Russell universes
could be represented by replacing El and c by the sort equation Ty iΓ = Tm Γ (U i) and the equation
A[σ]Ty = A[σ]Tm relating type and term substitutions. The latter equation is well-typed because of
the former.

FSCD 2019

25:6 Gluing for Type Theory

A (strict) morphism H between modelsM and N consists of four functions between the
sorts which preserve all the 26 operators (up to equality). We use subscripts to mark
which component we mean, e.g. some of the components are the following.

HCon : ConM i→ ConN i
HTy : TyM j Γ→ TyN j (H Γ)
HSub : SubM Γ ∆→ SubN (H Γ) (H ∆)
HTm : TmM ΓA→ TmN (H Γ) (H A)
H[] : HTy (A[σ]M) = (HTy A)[HSub σ]N
H. : HCon (Γ .M A) = HCon Γ .N HTy A

HΠ : HTy (ΠMAB) = ΠN (HTy A) (HTy B)
Hlam : HTm (lamM t) = lamN (HTm t)
Happ : HTm (appM t) = appN (HTm t)

Sometimes we omit subscripts for readability, e.g. above we wrote H Γ instead of HCon Γ
and we also did not decorate metavariables with subscripts, all Γ above live in ConM, all
σ in SubM etc. We will follow this convention later.
A displayed model Q over a modelM encodes a model with a strict morphism toM. It
is given by four families, 26 operations, and 34 equalities, all of which are over those of
M, e.g.

ConQ : (i : N)→ ConM i→ Set
TyQ : (j : N)→ ConQ iΓ→ TyM j Γ→ Set
SubQ : ConQ iΓ→ ConQ j∆→ SubM Γ ∆→ Set
TmQ : (ΓQ : ConQ iΓ)→ TyQ j ΓQA→ TmM ΓA→ Set
–[–]Q : TyQ j∆QA→ SubQ ΓQ∆Q σ → TyQ j ΓQ (A[σ]M)
– .Q – : (ΓQ : ConQ iΓ)→ TyQ j ΓQA→ ConQ (i t j) (Γ .M A)
ΠQ : (AQ : TyQ iΓQA)→ TyQ j (ΓQ .Q AQ)B → TyQ (i t j) ΓQ (ΠMAB)
lamQ : TmQ (ΓQ .Q AQ)BQ t→ TmQ ΓQ (ΠQAQBQ) (lamM t)
appQ : TmQ ΓQ (ΠQAQBQ) t→ TmQ (ΓQ .Q AQ)BQ (appM t)
ΠβQ : appQ (lamQ tQ) = tQ

A section I of a displayed model Q over M is like a dependent morphism, encoding
a section to the strict morphism to M encoded by Q. It contains, among others, the
following components.

ICon : (Γ : ConM i)→ ConQ iΓ
ITy : (A : TyM j Γ)→ TyQ j (I Γ)A
ISub : (σ : SubM Γ ∆)→ SubQ (I Γ) (I ∆)σ
IA[σ] : I (A[σ]M) = (I A)[I σ]Q
I. : I (Γ .M A) = I Γ .Q I A
IΠ : I (ΠMAB) = ΠQ (I A) (I B)
Ilam : I (lamM t) = lamQ (I t)
Iapp : I (appM t) = appQ (I t)

A. Kaposi, S. Huber, and C. Sattler 25:7

We assume the existence of the quotient inductive-inductive type (QIIT, [18]) specified
by Figure 1. We thus have an initial model S, called the syntax. For every modelM, the
recursor recM is the unique morphism from S toM. For every displayed model Q over S,
the eliminator elimQ is the unique section of Q.

2.1 The identity type
In our construction of gluing we will assume that the target model has identity types. Identity
types extend type theory as given in Figure 1 with the following operators and equations.

Id : (A : Ty iΓ)→ Tm ΓA→ Tm ΓA→ Ty iΓ
refl : (u : Tm ΓA)→ Tm Γ (IdAuu)
J :

(
C : Ty i (Γ . A . Id (A[p]) (u[p]) 0)

)
→ Tm Γ (C[id, u, reflu])→

(e : Tm Γ (IdAuv))→ Tm Γ (C[id, v, e[p]])
Idβ : JC w (reflu) = w

Id[] : (IdAuv)[σ] = Id (A[σ]) (u[σ]) (v[σ])
refl[] : (reflu)[σ] = refl (u[σ])

J[] : (JC w e)[σ] = J (C[σ↑↑]) (w[σ]) (e[σ])

IdAuv expresses that u is equal to v, there is one constructor refl expressing reflexivity and
there is the eliminator J which says that given a family over identities and a witness of that
family for refl we get that there is an element of that family for every identity proof.

3 The Set model

As an example of a simple model, we define the set model (standard model, metacircular
model). In this model, contexts are sets, types are families over their contexts, substitutions
are functions, and terms are dependent functions. Context extension is metatheoretic
Σ, otherwise everything is modelled by its metatheoretic counterparts, e.g. Π-types are
dependent functions, lam is λ, app is metatheoretic application. We list a few components
for illustration.

Con i := Seti
Ty j Γ := Γ→ Setj
Sub Γ ∆ := Γ→ ∆
Tm ΓA := (γ : Γ)→ Aγ

A[σ] := λγ.A (σ γ)
· := 1

ε := λ_.∗
Γ BA := (γ : Γ)×Aγ
(σ, t) := (σ, t)
p := projl
q := projr
ΠAB := λγ.(α : Aγ)→ B (γ, α)

FSCD 2019

25:8 Gluing for Type Theory

lam t := λγ.λα.t (γ, α)
app t := λγ.t γ.1 γ.2

Πβ : app (lam t) = λγ′.(λγ.λα.t (γ, α)) γ′.1 γ′.2
→β= λγ′.t (γ′.1, γ′.2) ×η= λγ′.t γ′

→η= t

U i := λ_.Seti
El a := a

c a := a

Bool := 2

true := ∗
false := ∗∗
if C t u v := case t u v
IdAuv := (u = v)

The β-law for Π uses the metatheoretic β- and η-laws for the functions and η for pairs.
Using the recursor we can define an interpreter for our syntax which maps syntactic terms

to metatheoretic objects.

J–K : ConS i → Seti := recSet
Con

J–K : TyS j Γ → JΓK→ Setj := recSet
Ty

J–K : SubS Γ ∆→ JΓK→ J∆K := recSet
Sub

J–K : TmS ΓA → (γ : JΓK)→ JAK γ := recSet
Tm

For example, the interpretation of the polymorphic identity function is

Jlam (lam q)K : (γ : 1)→ (A : Set0)→ A→ A = λγ.λA.λa.a.

4 Pseudomorphism

In this section we define morphisms of models of type theory which are strict on the category
structure and weak on · and –.–. We call such a morphism a pseudomorphism, its components
are listed in Figure 2. In terms of using comprehension categories [17] to describe models
of type theory, this corresponds to the notion of morphism that relates the Grothendieck
fibrations strictly, but the comprehension maps only up to natural isomorphism.

Just as a strict morphism (described in Section 2), a pseudomorphism F maps contexts
in S to contexts inM, types in S to types inM, etc. Identity, composition and action on
substitution are preserved strictly (Fid, F◦, F[] and F[]). The empty context and context
extension are preserved up to definitional isomorphism. Definitional isomorphism between
two contexts Γ : Con i, ∆ : Con j is defined as follows.

(f : Γ ∼= ∆) := (f.1 : Sub Γ ∆)× (f.2 : Sub ∆ Γ)× (f.12 : f.1 ◦f.2 = id)× (f.21 : f.2 ◦f.1 = id)

F..1◦ denotes a naturality condition that F. has to satisfy. The empty substitution ε and the
comprehension operators (– , –), p, q are preserved strictly, but this is up to the weakness of
· and ..

Categorically, a pseudomorphism is a functor on categories of contexts with natural
transformations on types and terms with the following properties: it preserves terminal
objects; given A : TyS j∆, if a pair of σ : SubS Γ ∆ and t : TmS Γ (A[σ]S) has the universal
property of the context extension of ∆ with A in S, then the pair of F σ and F t has the
universal property of the context extension of F ∆ with F A inM.

A. Kaposi, S. Huber, and C. Sattler 25:9

FCon : ConS i→ Con i
FTy : TyS j Γ→ Ty j (F Γ)
FSub : SubS Γ ∆→ Sub (F Γ) (F ∆)
FTm : TmS ΓA→ Tm (F Γ) (F A)
Fid : F idS = id
F◦ : F (σ ◦S δ) = F σ ◦ F δ
F[] : F (A[σ]S) = (F A)[F σ]
F[] : F (t[σ]S) = (F t)[F σ]
F· : F ·S ∼= ·
Fε : F εS = F·.2 ◦ ε
F. : F (Γ .S A) ∼= F Γ . F A
F..1◦ : F..1 ◦ F (σ↑S) = (F σ)↑ ◦ F..1
F, : F (σ,S t) = F..2 ◦ (F σ, F t)
Fp : F pS = p ◦ F..1
Fq : F qS = q[F..1]

Figure 2 The components of a pseudomorphism F from S toM. For readability, we omit the
subscripts S from the metavariable names and all the M subscripts. That is, when we write Con or
id we mean ConM and idM. We overload the different parts of F , i.e. write F for FCon, FTy, FSub

and FTm. ∼= denotes definitional isomorphism, see in the text.

We derive the following naturality condition.

F..2◦ : F..2 ◦M (F σ)↑M F..12= F..2 ◦ (F σ)↑M ◦ F..1 ◦ F..2
F..1◦=

F..2 ◦ F..1 ◦ F (σ↑S) ◦ F..2
F..21= F (σ↑S) ◦M F..2

From this it follows that F (σ↑S) = F..2 ◦M (F σ)↑M ◦M F..1.

Note that every strict morphism F is automatically pseudo, with F·.1 = F·.2 = idM and
F..1 = F..2 = idM.

A pseudomorphism automatically preserves type formers: Σ and > are preserved weakly,
Π and U are preserved in a lax way and Bool in an oplax way. For example, we can define a
map from F (ΠAB) to Π (F A) (F B[F..2]) as follows. We start using the eliminator of Π in
S on a variable:

app q : TmS (Γ .ΠAB . A[p]) (B[p↑]).

Then we apply the pseudomorphism F and get a map inM:

F (app q) : TmM
(
F (Γ .ΠAB . A[p])

) (
F (B[p↑])

)
.

Applying the substitution F..2 ◦ (F..2↑) and using the properties of F we obtain

F (app q)[F..2 ◦ (F..2↑)] : TmM
(
F Γ . F (ΠAB) . F A[p])

) (
F B[F..2 ◦ (p↑)])

)
,

and finally we use the constructor of Π inM:

lam
(
F (app q)[F..2 ◦ (F..2↑)]

)
: TmM

(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

)
.

FSCD 2019

25:10 Gluing for Type Theory

We define a similar map for U, a map from Bool to F Bool and maps in both directions for
Σ and >. To express the latter we introduce the following abbreviation for a definitional
isomorphism between types A,B : Ty Γ.

(g : A ∼=Γ B) := (g.1 : Tm (Γ . A) (B[p]))× (g.2 : Tm (Γ . B) (A[p]))×
(g.12 : g.1[p, g.2] = q)× (g.21 : g.2[p, g.1] = q)

For a pseudomorphism F the following comparison maps can be given.

FΠ.1 : Tm
(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

[
p
])

FU.1 : Tm (F Γ . F (U i)) (U i)
FBool.2 : Tm (F Γ . Bool) (F Bool[p])
FΣ : F (ΣS AB) ∼=F Γ ΣM (F A) (F B[F..2])
F> : F > ∼=F Γ >

The definition of FU.1 is similar to that of FΠ.1: we first use the eliminator El on a variable,
then apply F , then adjust the context using F..2, finally use the constructor c. For Bool,
we go in the other direction and use the eliminator in M on a variable and return the
corresponding constructors in S with F applied to them. For Σ we combine these methods
to obtain maps in both directions. The maps for > are trivial.

FΠ.1 := lam
(
F (app q)[F..2 ◦ (F..2↑)]

)
FU.1 := c

(
F (El q)[F..2]

)
FBool.2 := if _ q (F true[p]) (F false[p])
FΣ.1 :=

(
F (projl q), F (projr q)

)
[F..2]

FΣ.2 := F (1, 0)
[
F..2 ◦ (F..2 ◦ (p, projl q), projr q)

]
FΣ.12 : FΣ.1[p, FΣ.2] =

(F (projl q), F (projr q))[F (p, (1, 0))][F..2 ◦ (F..2 ◦ (p, projl q), projr q)] =

(projl q, projr q) ΣηM= q
FΣ.21 : FΣ.2[p, FΣ.1] =

F (1, 0)[F (p, projlq, projr q) ◦ F..2] =

F (projl q, projr q)[F..2] ΣηS= F q[F..2]
Fq,F.= q

F>.1 := tt
F>.2 := F tt[p]

F>.12 : F>.1[p, F>.2] = tt[p, F tt[p]] = tt >ηM= q

F>.21 : F>.2[p, F>.1] = F tt[p] = F (tt[p])[F..2] >ηS= F q[F..2] = q

At the end of Section 6 we remark on the (im)possibility of comparison maps in the other
direction such as FΠ.2.

5 Gluing

In this section, given a pseudomorphism F from model S to modelM, we define a displayed
model PF (P for short) over S. We call this model gluing along F and its components are
given in Figure 3. We omit some S and all M subscripts for readability.

A. Kaposi, S. Huber, and C. Sattler 25:11

ConP iΓ := Ty i (F Γ)
TyP j ΓP A := Ty j (F Γ . ΓP . F A[p])
SubP ΓP ∆P σ := Tm (F Γ . ΓP) (∆P[F σ ◦ p])
TmP ΓP AP t := Tm (F Γ . ΓP) (AP[id, F t[p]])
idP := q
σP ◦P δP := σP[F δ ◦ p, δP]
AP[σP]P := AP[F σ ◦ p2, σP[p], q]
tP[σP]P := tP[F σ ◦ p, σP]
·P := >
εP := tt
ΓP .P AP := Σ

(
ΓP[p ◦ F..1]

) (
AP[p ◦ F..1 ◦ p, 0, q[F..1 ◦ p]]

)
σP,P tP := (σP, tP)
pP := projl q
qP := projr q

ΠP AP BP := Π
(
F A[p2]

) (
Π
(
AP[p2, q]

) (
BP
[
F..2 ◦ (p4, 1), (3, 0), FΠ.1[p4, 2] $ 1

]))
lam tP := lam

(
lam

(
tP
[
F..2 ◦ (p3, 1), (2, 0)

]))
app tP :=

(
app (app tP)

)[
p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

]
ΣP AP BP := Σ

(
AP
[
p, projl (FΣ.1[p2, q])

])(
BP
[
F..2 ◦ (p3, projl (FΣ.1[p2, q])), (2, 0), projr (FΣ.1[p2, q])

])
(uP,P vP) := (uP, vP)
projlP tP := projl tP
projrP tP := projr tP
>P := >
ttP := tt
UP i := El (FU.1[p2, q])⇒ U i
ElP aP := El (app aP)
cP AP := lam (cAP)
BoolP := Σ Bool

(
Id (F BoolS [p3]) (FBool.2[p3, q]) 1

)
trueP := (true, refl (F trueS [p]))
falseP := (false, refl (F falseS [p]))
ifP CP tP uP vP := J_(if _(projl tP)uP vP) (projr tP)

Figure 3 The displayed model PF obtained by gluing along F . We write P instead of PF , we
omit some S and all M subscripts for readability. The full version of ifP (with the _s filled in) is
given in Appendix B.

FSCD 2019

25:12 Gluing for Type Theory

In the introduction we remarked that in categorical gluing an object in the glued model
consists of a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). We could follow this line and
define the gluing as a model with contexts such triples that comes with a strict “projection”
morphism to S. This could be called the fibrational or display map approach. Instead our
definition is more type theoretic, it uses indexed families, doubly (for the correspondence
between fibrations and families see e.g. [8, p. 221]). Firstly, the glued model is given as
a displayed model, that is, for each Γ : ConS i we have a set ConP iΓ. Secondly, instead
of setting ConP iΓ to (∆ : ConM i)× SubM∆ (F Γ), we use the built-in notion of indexed
families in M, that is: types. Hence a context over Γ is an M-type in context F Γ. We
remark that the glueing construction also works with the former choice of contexts.

Types in type theory can be thought of as proof-relevant predicates over their context
and this is the intuition we adopt for describing the glued model. This is in line with the
logical predicate view of gluing. We start with ConP iΓ: a predicate at Γ is indexed over the
F -image of Γ. A predicate at a type A is indexed over the image of Γ for which the predicate
holds and the image of A. For a substitution σ : Sub Γ ∆, we state the fundamental lemma:
if the predicate holds at Γ, the predicate holds at ∆ for the F -image of the substitution. In
short, images of substitutions respect the predicate. For terms, we similarly state that the
image of a term respects the predicate.

We continue by explaining what the logical predicate says at different contexts and types.
The predicate at the empty context ·P is always true. At extended contexts the predicate
is given pointwise by a Σ-type. ΓP . AP is in context F (Γ . A), but ΓP only needs the
component F Γ, which we obtain using the isomorphism F..1 from F (Γ .S A) to F Γ . F A
followed by first projection. AP is first indexed over F Γ, which is given by p ◦ F..1 ◦ p, then
over ΓP, which is the first component of the Σ-type referenced by q, then over F A, which is
provided by the F..1 part of the isomorphism.

The predicate at a Π-type holds for a function of type F (ΠAB) if whenever it holds for
an input, it holds for the output. Let’s look at how we express that the predicate holds at B
for the output! We are in context

Θ := F Γ . ΓP︸︷︷︸
3

.F (ΠS AB)︸ ︷︷ ︸
2

.F A[p2]︸ ︷︷ ︸
1

.AP[p2, q]︸ ︷︷ ︸
0

where we wrote the de Bruijn indices referring to each component underneath. BP is a
predicate indexed over F (Γ .S A), ΓP .P AP and F B[p]. The first index is given by F..2,
which puts together the F Γ (forgetting the last four elements in Θ by p4) and the F A
components (last but one element in Θ, i.e. 1). The second index is given by de Bruijn indices
3 and 0. The last index is the result of applying the function given by De Bruijn index 2.
We have to use the comparison map FΠ.1 defined in Section 4 which turns an F (ΠAB) into
a Π (F A) (F B[F..2]). We supply its dependencies F Γ by p4 and F (ΠAB) by 2 and we use
old-style application $ with input 1 to get the result.

The predicate at a Σ-type holds if it holds pointwise. Here we use the comparison map
FΣ.1 combined with projl and projr to obtain F A and F B from F (ΣS AB). The predicate
at > is trivial. The predicate at the universe is the space of predicates expressed as functions
into U i. The domain of this function space is again obtained by applying the comparison
map FU.1. The predicate at Bool for b in F Bool says that there is anM-boolean to which
we apply the comparison map FBool.2 (which turns it into F Bool), the result is equal to b.

The substition and term part of the gluing model is fairly straightforward. The most
interesting component is ifP where we use J to eliminate the right projection of tP (which is
the equality in the second component of BoolP), then we case split on the first projection

A. Kaposi, S. Huber, and C. Sattler 25:13

by ifM and return uP and vP in the true and false cases, respectively. We omitted some
arguments of J and if for readability, the full version is given in Appendix B. There we also
verify that all equalities of the displayed model of type theory hold.

6 Global section functor

In this section we define the global section functor and show that it is a pseudomorphism. In
the next section we will use this property to derive canonicity for type theory.

A model S supports a global section functor if it has the following two properties:
SubS ·S Γ : Seti whenever Γ : ConS i
TmS ·S (A[ρ]S) : Setj whenever A : TyS j Γ, ρ : SubS ·S Γ.

For example, the syntax S (defined at the end of Section 2) supports a global section functor
because syntactic substitutions and terms are in the lowest metatheoretic universe and this
universe hierarchy is cumulative. The Set model (defined in Section 3) also supports a global
section functor because Γ : ConSet i means Γ : Seti and SubSet ·Set Γ = 1 → Γ : Seti, and
similarly for the second condition.

The global section functor GS is a pseudomorphism from such an S to the set model
Set of Section 3. It maps a context to the set of closed substitutions into that context.
It maps a type to the function sending a closed substitution to the set of closed terms of
the type substituted by the input substitution. Substitutions and terms are mapped to
postcomposition and substitution by the closed substitution, respectively. We write G instead
of GS for readability.

GCon Γ : ConSet i︸ ︷︷ ︸
=Seti

:= SubS ·S Γ

GTy A : TySet j (G Γ)︸ ︷︷ ︸
=G Γ→Setj

:= λρ .TmS ·S (A[ρ]S)

GSub σ : SubSet (G Γ) (G ∆)︸ ︷︷ ︸
=G Γ→G ∆

:= λρ . σ ◦S ρ

GTm t : TmSet (G Γ) (GA)︸ ︷︷ ︸
=(ρ:G Γ)→GAρ

:= λρ . t[ρ]S

Note that this pseudomorphism is indeed weak on the empty context: SubS · · is isomorphic
to 1 (the empty context in Set) by ·ηS , but not necessarily equal. Similarly, SubS ·S (Γ .S A)
is isomorphic to (ρ : SubS ·S Γ)×TmS ·S (A[ρ]S) by comprehension (.β1S , .β2S , .ηS), but
not necessarily equal. In Appendix A we show that G is indeed a pseudomorphism satisfying
the conditions in Figure 2.

Remark on comparison maps. In Section 4 we showed that pseudomorphisms support
certain comparison maps, for example

FΠ.1 : Tm
(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

[
p
])

can be defined for any pseudomorphism F . The global section functor gives a good way to
show that this comparison map is not an isomorphism in general (as opposed to FΣ.1). The
other direction would be a

GΠ.2 : TmSet
(
G Γ .Set ΠSet (GA) (GB[G..2])

) (
G (ΠS AB)[p]

)︸ ︷︷ ︸
=(ρ:SubS ·S Γ)×

(
(u:TmS ·S (A[ρ]S))→TmS ·S (B[ρ,u]S)

)
→TmS ·S (ΠS AB[ρ]S)

,

FSCD 2019

25:14 Gluing for Type Theory

providing a way to turn a metatheoretic function between terms into a term of a function
type in S. However if e.g. S = S, A = Nat and B = Bool, then following Cantor there are
more metatheoretic functions from natural numbers to booleans than terms. Similarly, if
GBool.2 was an isomorphism, it would have an inverse

GBool.1 : TmSet (G Γ .Set G BoolS) BoolSet︸ ︷︷ ︸
=(ρ:SubS ·S Γ)×TmS ·S BoolS→2

,

but if S is a model without equality reflection where booleans are defined by a quotient
then there are more than two terms of type Bool (while internally to S there are only
two elements).

7 Reaping the fruits

Let I be the identity morphism from S to S, which is obviously a strict morphism, hence
pseudo.2 Elimination into gluing along I produces a function whose input is a term t in
context Γ and whose output is a term in context Γ extended by elimPI

Con Γ which expresses
that the predicate holds at Γ. The type of the output term says that the predicate holds at
A for t. This is the fundamental lemma or parametricity theorem.

elimPI

Tm : (t : TmS ΓA)→ TmS (Γ . elimPI

Con Γ)
(
(elimPI

Ty A)[id, t[p]]
)

Let us look at the “hello world” example of parametricity, the case where Γ = · and
A = Π (U i) (El q ⇒ El q). Now using the fact that elimPI

is a section, the type of elimPI

Tm t

computes to

TmS (· .>)
(

Π (U i)
(

Π (El q⇒ U i)
(

Π (El 1)
(
El (1 $ 0)⇒ El (1 $(t $ 2 $ 0))

))))
,

where the type is the object theoretic syntax for

(A : Seti)(C : A→ Seti)(a : A)→ C a→ C (t A a).

Given a fixed type A : TyS i · and an element u : TmS · A we have

(elimPI

Tm t)[ε, tt] $ cA $ lam (c (Id (A[ε]) 0u[ε])) $u $ reflu : Tm ·
(
IdA (t $ cA $u)u

)
,

that is, we get that for any A and u, t $ cA $u is equal to u.
Eliminating into gluing along recSet (the interpretation into the set model, see end of

Section 3) produces Reynolds-style parametricity. It says that if there is an interpretation of
the context Γ for which the predicate holds at Γ, the predicate holds at A for the interpretation
of t.

elimPrecSet

Tm : (t : TmS ΓA)→ (γ : JΓK)× (γ̄ : elimPrecSet

Con Γ γ)→ elimPrecSet

Ty A (γ, γ̄, JtK γ)

Eliminating into gluing along the global section functor GS from the syntax to the set
model gives the following.

elimPG

Tm : (t : TmS ΓA)→ (ρ : SubS · Γ)× (ρ̄ : elimPG

Con Γ ρ)→ elimPG

Ty A (ρ, ρ̄, t[ρ])

If t is a boolean in the empty context, the type of elimPG

Tm t (id, ∗) is elimPG

Ty Bool (ρ, ∗, t) which
is equal to (b : 2)× (case b trueS falseS = t), i.e. canonicity.

2 Note that the target of the pseudomorphism needs to have identity types, so technically I is the
embedding of the syntax without identity types into the syntax with identity types. Alternatively, we
can extend gluing for identity types.

A. Kaposi, S. Huber, and C. Sattler 25:15

8 Conclusions and further work

In this paper we defined gluing for pseudomorphisms of models of type theory thus generalising
parametricity and canonicity. We did not try to derive the most general notion of gluing, e.g.
we require that the target model supports >-, Σ-, Id-types in addition to what we have in
the domain model. It would have been possible to give a less indexed variant of gluing where
> and Σ are not needed, but Id types (or (F Bool)-indexed inductive families) would be still
required to support gluing for Bool. A less indexed variant however would be more tedious
to work with because the glued model would involve some metatheoretic equalities.

In the future we would like to generalise our construction to richer type theories having
an identity type, inductive and coinductive types. We believe that this is possible without
any extra conditions.

Normalisation by evaluation (NBE) for type theory is also defined using a proof-relevant
logical predicate [4]. This logical predicate is given by gluing along the Yoneda embedding
from the syntax to the presheaf model over the category of contexts and renamings. This is
a pseudomorphism, so we obtain a glued model using our method. However, the universe in
this model is not what we want. As a second step after gluing, NBE requires the definition
of quote and unquote (sometimes called reify and reflect) functions from terms for which
the predicate holds to normal forms and from neutral terms to witnesses of the predicate,
respectively. We need to include these as part of the universe in the glued model to make
the construction work. The predicate for Bool also needs to be adjusted.

We would also like to investigate examples of non-strict pseudomorphisms apart from
global section and Yoneda for which the construction in this paper could be useful; for
example, to derive canonicity proofs for type theories justified by models other than the
set model.

References
1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. PACMPL, 2:23:1–23:29, 2017.
2 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation

for system F . Unpublished draft, 1997.
3 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive

types. In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

4 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Type Theory,
in Type Theory. Logical Methods in Computer Science, Volume 13, Issue 4, October 2017.
doi:10.23638/LMCS-13(4:1)2017.

5 Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Theorie de Topos et Co-
homologie Etale des Schemas I, volume 269 of Lecture Notes in Mathematics. Springer,
1971.

6 Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent
type theory. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 503–516. ACM, 2014. doi:10.1145/2535838.
2535852.

7 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for Free — Parametricity
for Dependent Types. Journal of Functional Programming, 22(02):107–152, 2012. doi:
10.1017/S0956796812000056.

FSCD 2019

http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.23638/LMCS-13(4:1)2017
http://dx.doi.org/10.1145/2535838.2535852
http://dx.doi.org/10.1145/2535838.2535852
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S0956796812000056

25:16 Gluing for Type Theory

8 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986.

9 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories
and Martin-Löf type theories. Mathematical Structures in Computer Science, 24(6), 2014.

10 Thierry Coquand. Canonicity and normalisation for Dependent Type Theory. CoRR,
abs/1810.09367, 2018. arXiv:1810.09367.

11 Roy L. Crole. Categories for types. Cambridge mathematical textbooks. Cambridge University
Press, Cambridge, New York, 1993. URL: http://opac.inria.fr/record=b1088776.

12 Peter Dybjer. Internal Type Theory. In Lecture Notes in Computer Science, pages 120–134.
Springer, 1996.

13 Marcelo Fiore and Alex Simpson. Lambda Definability with Sums via Grothendieck Logical
Relations. In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, pages 147–161,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

14 Marcelo P. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus.
In Proceedings of the 4th international ACM SIGPLAN conference on Principles and practice
of declarative programming, October 6-8, 2002, Pittsburgh, PA, USA (Affiliated with PLI
2002), pages 26–37. ACM, 2002. doi:10.1145/571157.571161.

15 Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical Relations and Parametri-
city –– A Reynolds Programme for Category Theory and Programming Languages. Electronic
Notes in Theoretical Computer Science, 303(0):149–180, 2014. Proceedings of the Workshop
on Algebra, Coalgebra and Topology (WACT 2013). doi:10.1016/j.entcs.2014.02.008.

16 Martin Hofmann. Conservativity of Equality Reflection over Intensional Type Theory. In
TYPES 95, pages 153–164, 1995.

17 B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

18 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing Quotient Inductive-
inductive Types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

19 Chung kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly.
Conference Record of the Annual ACM Symposium on Principles of Programming Languages,
pages 133–146, January 2010. doi:10.1145/1926385.1926402.

20 András Kovács. Formalisation of canonicity for type theory in Agda, November 2018. URL:
https://github.com/AndrasKovacs/glue.

21 J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge University
Press, New York, NY, USA, 1986.

22 Gordon D. Plotkin. Lambda-Definability and Logical Relations. Memorandum SAI–RM–4,
University of Edinburgh, Edinburgh, Scotland, October 1973.

23 Florian Rabe and Kristina Sojakova. Logical Relations for a Logical Framework. ACM Trans.
Comput. Logic, 14(4):32:1–32:34, November 2013. doi:10.1145/2536740.2536741.

24 John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In R. E. A. Mason,
editor, Information Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris,
September 19-23, 1983, pages 513–523. Elsevier Science Publishers B. V. (North-Holland),
Amsterdam, 1983.

25 Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25:1203–1277, June 2015. arXiv:1203.3253. doi:10.1017/
S0960129514000565.

26 Jonathan Sterling and Bas Spitters. Normalization by gluing for free λ-theories. CoRR,
abs/1809.08646, 2018. arXiv:1809.08646.

27 Andrew W. Appel and David Mcallester. An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst., 23:657–683, September 2001. doi:
10.1145/504709.504712.

http://arxiv.org/abs/1810.09367
http://opac.inria.fr/record=b1088776
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1016/j.entcs.2014.02.008
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/1926385.1926402
https://github.com/AndrasKovacs/glue
http://dx.doi.org/10.1145/2536740.2536741
http://dx.doi.org/10.1017/S0960129514000565
http://dx.doi.org/10.1017/S0960129514000565
http://arxiv.org/abs/1809.08646
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/504709.504712

A. Kaposi, S. Huber, and C. Sattler 25:17

A The global section functor is a pseudomorphism

Here we verify the equalities of a pseudomorphism (see Section 4) for the global section
functor from a model S to Set (see Section 3). The definition of the global section functor is
given in Section 6, here we repeat it to save turning pages.

GCon Γ := SubS ·S Γ
GTy A := λρ .TmS ·S (A[ρ]S)
GSub σ := λρ . σ ◦S ρ
GTm t := λρ . t[ρ]S

Gid : G idS = λρ.id ◦S ρ
idlS= λρ.ρ = idSet

G◦ : G (σ ◦S δ) = λρ.(σ ◦S δ) ◦S ρ
assS= λρ.σ ◦S (δ ◦S ρ) = Gσ ◦Set G δ

G[] : G (A[δ]S) = λρ.TmS · (A[δ][ρ])
[◦]S= λρ.TmS · (A[δ ◦ ρ]) = (GA)[Gσ]Set

G[] : G (t[δ]S) = λρ.t[δ][ρ]
[◦]S= λρ.t[δ ◦ ρ] = (G t)[Gσ]Set

G· : G ·S ∼= ·Set := (λρ.∗, λ_.ε, trivial, trivial)

Gε : G εS = λρ.ε ◦ ρ ·ηS= λρ.ε = G·.2 ◦Set εSet

G..1 : SubSet (G (Γ .S A)) (G Γ .Set GA) := λρ.(p ◦ ρ, q[ρ])
G..2 : SubSet (G Γ .Set GA) (G (Γ .S A)) := λ(ρ, u).(ρ,S u)

G..12 : G..1 ◦Set G..2 = λ(ρ, u).(p ◦ (ρ,S u),S q[ρ,S , u]) .β1,.β2= λ(ρ, u).(ρ, u) = idSet

G..21 : G..2 ◦Set G..1 = λρ.(p ◦ ρ,S q[ρ]) ,◦S= λρ.(p, q) ◦ ρ .η= λρ.id ◦ ρ idlS= λρ.ρ = idSet

G..1◦ : G..1 ◦Set G (σ↑S) = λρ.(σ ◦ p ◦ ρ, q[ρ]) ,◦S= λρ.(σ ◦ p, q) ◦ ρ idlS ,.ηS=
λρ.(σ ◦ p, q) ◦ (p ◦ ρ, q[ρ]) = (Gσ)↑Set ◦Set G..1

G, : G (σ,S t) = λρ.(σ, t) ◦ ρ ,◦S= ρ.(σ ◦ ρ, t[ρ]) = G..2 ◦Set (Gσ,Set G t)
Gp : G pS = λρ.p ◦ ρ = λρ.(p ◦ ρ, q[ρ]).1 = pSet ◦Set G..1
Gq : G qS = λρ.q[ρ] = λρ.(p ◦ ρ, q[ρ]).2 = qSet[G..1]Set

B Full version of ifP and equalities in gluing

ifP is part of the glued displayed model P, see Section 5, Figure 3. Its definition is the
following including the omitted _ arguments.

ifP CP tP uP vP :=
J
(
CP
[
F..2 ◦ (p3, 1), (2, (projl tP[p2], 0)), F

(
ifS (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p3, 1)]

])(
if
(
CP
[
F..2 ◦ (p2, w), (1, (0, reflw)), F

(
ifS (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p2, w)]

])
(projl tP)uP vP

)
(projr tP)

where w abbreviates if (F BoolS [p2]) 0 (F trueS [p2]) (F falseS [p2]).
Here we check that the P satisfies all the equalities of displayed models. We note that

σP
↑P =

(
σP[p ◦ F..1 ◦ p, projl q], projr q

)
.

FSCD 2019

25:18 Gluing for Type Theory

idlP : idP ◦P σP = 0[F σ ◦ p, σP] = σP

idrP : σP ◦P idP = σP[F id ◦ p, 0] = σP[p, q] = σP[id] = σP

assP : (σP ◦P δP) ◦P νP = σP[F δ ◦ p, δP][F ν ◦ p, νP] =
σP[F (δ ◦S ν) ◦ p, δP[F ν ◦ p, νP]] = σP ◦P (δP ◦P νP)

[id]P : AP[idP]P = AP[F id ◦ p2, q[p], q] = AP[(p, q) ◦ p, q] = AP[id ◦ p, q] = AP[id] = AP

[◦]P : AP[σP ◦P δP]P = AP[F (σ ◦S δ) ◦ p2, σP[F δ ◦ p, δP][p], q] =
AP[F σ ◦ p2, σP[p], q][F δ ◦ p2, δP[p], q] = AP[σP]P[δP]P

[id]P : tP[idP]P = tP[F id ◦ p, q] = tP[p, q] = tP[id] = tP

[◦]P : tP[σP ◦P δP]P = tP[F (σ ◦ δ) ◦ p, σP[F δ ◦ p, δP]] =
tP[F σ ◦ p, σP][F δ ◦ p, δP] = tP[σP]P[δP]P

εηP : (δP : SubP ΓP ·P) = (δP : Tm (F Γ . ΓP)>) ·η= tt = εP

.β1P : pP ◦P (σP,P tP) = (projl q)[F (σ,S t) ◦ p, (σP, tP)] =
projl (q[F (σ,S t) ◦ p, (σP, tP)]) = projl (σP, tP) = σP

.β2P : qP[σP,P tP]P = (projr q)[F (σ,S t) ◦ p, (σP, tP)] =
projr (q[F (σ,S t) ◦ p, (σP, tP)]) = projr (σP, tP) = tP

.ηP : (pP,P qP) = (projl q, projr q) Ση= q = idP

, ◦P : (σP,P tP) ◦P δP = (σP, tP)[F δ ◦ p, δP] ,[]= (σP[F δ ◦ p, δP], tP[F δ ◦ p, δP]) =
(σP ◦P δP,P tP[δP]P)

ΠβP : appP (lamP tP) =(
app (app (lam (lam (tP[F..2 ◦ (p3, 1), (2, 0)]))))

)
[
p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

] Πβ=
tP[F..2 ◦ (p3, 1), (2, 0)][p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

]
=

tP[p, (projl 0, projr 0)] = tP[id] = tP

ΠηP : lamP (appP tP) =

lam
(

lam
((

app (app tP)
)[

p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0
]

[
F..2 ◦ (p3, 1), (2, 0)

]))
=

lam
(
lam

(
(app (app tP))[p3, 2, 1, 0]

))
= lam (lam ((app (app tP))[id])) ΠηS= tP

Π[]P : (ΠP AP BP)[σP]P =
Π
(
F A[F σ ◦ p2]

)(
Π
(
AP
[
F σ ◦ p2, σP[p], q

]
[p2, q]

)
(
BP
[
F..2 ◦ (F σ ◦ p4, 1), (σP[p3], 0),

F (app q)[F..2 ◦ (F..2 ◦ (F σ ◦ p4, 2), 1)]
]))

=

Π
(
F (A[σ])[p2]

)(
Π
(
AP[σP]P[p2, q]

)
(
BP
[
F..2 ◦ (F σ)↑ ◦ F..1 ◦ p2,

(
σP[p ◦ F..1 ◦ p2, projl 1], projr 1

)
, q
]

[
F..2 ◦ (p4, 1), (3, 0), F (app q)[F..2 ◦ (F..2 ◦ (p4, 2), 1)]

]))
=

ΠP (AP[σP]P) (BP[σP
↑P]P)

A. Kaposi, S. Huber, and C. Sattler 25:19

lam[]P :(lamP tP)[σP]P = lam (lam (tP[F..2 ◦ (F σ ◦ p3, 1), (σP[p2], 0)])) =
lamP (tP[σP

↑P]P)
Σβ1P :projlP (uP,P vP) = projl (uP, vP) = uP

Σβ2P :projrP (uP,P vP) = projr (uP, vP) = vP

ΣηP :(projlP tP,P projrP tP) = (projl tP, projr tP) = tP

Σ[]P :(ΣP AP BP)[σP]P =
Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (F σ ◦ p2, q)]

])(
BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (F σ ◦ p3, 1)]

)
, (σP[p2], 0),

F (projr q)[F..2 ◦ (F σ ◦ p3, 1)]
])

=
Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (p2, q)]

])(
BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (p3, 1)]

)
, (σP[p2], 0),

F (projr q)[F..2 ◦ (p3, 1)]
])

=
ΣP (AP[σP]P) (BP[σP

↑P]P)
, []P :(uP,P vP)[σP]P = (uP[F σ ◦ p, σP], vP[F σ ◦ p, σP]) = (uP[σP]P,P vP[σP]P)

>ηP :(tP : TmP ΓP>P) = (tP : Tm (F Γ . ΓP)>) >η= tt = ttP

>[]P :>P[σP]P = > = >P

tt[]P :ttP[σP]P = tt = ttP

UβP :ElP (cP AP) = El (app (lam (cAP))) Πβ= El (cAP) Uβ= AP

UηP :cP (ElP aP) = lam (c (El (app aP))) Elη= lam (app aP) Πη= aP

U[]P :(UP i)[σP]P = F (ElS q)[F..2 ◦ (F σ ◦ p2, q)]⇒ U i =
F (ElS q)[F..2 ◦ (F σ)↑ ◦ (p2, q)]⇒ U i =
F (ElS q)[F (σ↑) ◦ F..2 ◦ (p2, q)]⇒ U i = F (ElS q)[F..2 ◦ (p2, q)]⇒ U i = UP i

El[]P :(ElP aP)[σP]P = (El (app aP))[F σ ◦ p2, σP[p], q] El[]=

El ((app aP)[F σ ◦ p2, σ[p], q]) app[]= El (app (aP[F σ ◦ p, σP])) = ElP (aP[σP]P)
Bool[]P :BoolP[σP]P =

Σ Bool
(
Id (F Bool[F σ ◦ p3])(

if (F Bool[F σ ◦ p4]) 0 (F true[F σ ◦ p3]) (F false[F σ ◦ p3])
)

1
)

=
Σ Bool

(
Id (F Bool[p3])

(
if (F Bool[p4]) 0 (F true[p3]) (F false[p3])

)
1
)

= BoolP

true[]P :trueP[σP]P =
(
true, refl (F (trueS [σ])[p])

) true[]S= (true, refl (F trueS [p])) = trueP

false[]P :falseP[σP]P =
(
false, refl (F (falseS [σ])[p])

) false[]S= (false, refl (F falseS [p])) = falseP

if[]P :(ifP _ tP uP vP)[σP]P =(
J_(if _(projl tP)uP vP) (projr tP)

)
[F σ ◦ p, σP] J[],if[],projl[],projr[]=(

J_(if _(projl (tP[σP]P)) (uP[σP]P) (vP[σP]P)) (projr (tP[σP]P))
)

=
ifP _(tP[σP]P) (uP[σP]P) (vP[σP]P)

FSCD 2019

	Introduction
	Type theory
	The identity type

	The Set model
	Pseudomorphism
	Gluing
	Global section functor
	Reaping the fruits
	Conclusions and further work
	The global section functor is a pseudomorphism
	Full version of if_P and equalities in gluing

