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Abstract
It is well-known that some equational theories such as groups or boolean algebras can be defined by
fewer equational axioms than the original axioms. However, it is not easy to determine if a given
set of axioms is the smallest or not. Malbos and Mimram investigated a general method to find a
lower bound of the cardinality of the set of equational axioms (or rewrite rules) that is equivalent to
a given equational theory (or term rewriting systems), using homological algebra. Their method
is an analog of Squier’s homology theory on string rewriting systems. In this paper, we develop
the homology theory for term rewriting systems more and provide a better lower bound under a
stronger notion of equivalence than their equivalence. The author also implemented a program to
compute the lower bounds.
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1 Introduction

The purpose of this paper is to find a lower bound of the number of axioms that are equivalent
to a given equational theory. For example, the theory of groups is given by the following
axioms:

G1. m(m(x1, x2), x3) = m(x1,m(x2, x3)), G2. m(x1, e) = x1, G3 m(e, x1) = x1,

G4. m(i(x1), x1) = e, G5. m(x1, i(x1)) = e.
(1)

It is well-known that G2 and G5 can be derived from only {G1, G3, G4}. Moreover, the
theory of groups can be given by two axioms: the axiom

m(x1, i(m(m(i(m(i(x2),m(i(x1), x3))), x4), i(m(x2, x4))))) = x3

together with G4 is equivalent to the group axioms [4]. If we use the new symbol n which
corresponds to the “multiplication of inverses” m(i(x1), i(x2)), a single axiom,

n(x1, n(n(n(e, x2), n(n(n(e, x3), x3), x4)), n(n(e, x1), x2))) = x4,

is equivalent to the group axioms [5]. However, no single axiom written in symbols m, i, e is
equivalent to the group axioms. This is stated without proof by Tarski [9] and published
proofs are given by Neumann [4] and Kunen [2]. Malbos and Mimram developed a general
method to calculate a lower bound of the number of axioms that are “Tietze-equivalent” to
a given complete term rewriting system (TRS) [3, Proposition 23]. We omit the definition
of Tietze equivalence here, but roughly speaking, it is an equivalence between equational
theories (or TRSs) (Σ1, R1), (Σ2, R2) where signatures Σ1 and Σ2 are not necessarily equal
to each other, while the usual equivalence between TRSs is defined for two TRSs (Σ, R1),
(Σ, R2) over the same signature (specifically, by ∗←→R1 = ∗←→R2).
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In this paper, we will develop Malbos and Mimram’s theory more, and show an inequality
which gives a better lower bound of the number of axioms with respect to the usual equivalence
between TRSs over the same signature. For the theory of groups, our inequality gives that
the number of axioms equivalent to the group axioms is greater than or equal to 2, so we have
another proof of Tarski’s theorem above as a special case. Our lower bound is algorithmically
computable if a complete TRS is given.

We will first give the statement of our main theorem and some examples in Section 2.
Then, we will see Malbos-Mimram’s work briefly. The idea of their work is to provide an
algebraic structure to TRSs and extract information of the TRSs, called homology groups,
which are invariant under Tietze equivalence. The basics of such algebraic tools are given in
Section 3, and we will see the idea of the construction of the homology groups of TRSs in
Section 4. Finally, in Section 5, we will prove our main theorem.

2 Main Theorem

In this section, we will see our main theorem and some examples. Throughout this paper,
we assume that any terms are over the set of variables {x1, x2, . . . } and all signatures we
consider are unsorted. For a signature Σ, let T (Σ) denote the set of terms over the signature
Σ and the set of variables {x1, x2, . . . }.

I Definition 1. Let (Σ, R) be a TRS. The degree of R, denoted by deg(R), is defined by

deg(R) = gcd{#il −#ir | l→ r ∈ R, i = 1, 2, . . . }

where #it is the number of occurrences of xi in t for t ∈ T (Σ) and we define gcd{0} = 0 for
convenience. For example, deg({f(x1, x2, x2)→ x1, g(x1, x1, x1)→ e}) = gcd{0, 2, 3} = 1.

Let (Σ, R = {l1 → r1, . . . , ln → rn}) be a TRS and CP(R) = {(t1, s1), . . . , (tm, sm)} be
the set of the critical pairs of R. For any i ∈ {1, . . . ,m}, let ai, bi be the numbers in
{1, . . . , n} such that the critical pair (ti, si) is obtained by lai → rai and lbi → rbi , that is,
ti = rai

σ ← lai
σ = C[lbi

σ]→ C[rbi
σ] = si for some substitution σ and single-hole context C.

Suppose R is complete. We fix an arbitrary rewriting strategy and for a term t, let nrj(t) be
the number of times lj → rj is used to reduce t into its R-normal form with respect to the
strategy. To state our main theorem, we introduce a matrix D(R) and a number e(R):

I Definition 2. Suppose d = deg(R) is prime or 0. If d = 0, let R be Z, and if d is prime,
let R be Z/dZ (integers modulo d). For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let D(R)ij be the integer
nrj(si)− nrj(ti) + δ(bi, j)− δ(ai, j) where δ(x, y) is the Kronecker delta. The matrix D(R)
is defined by D(R) = (D(R)ij)i=1,...,m,j=1,...,n.

I Definition 3. Let R be Z or Z/pZ for any prime p. If an m× n matrix M over R is of
the form

e1 0 . . . . . . . . . . . . . . . 0
0 e2 0 . . . . . . . . . . . . 0
... 0

. . . 0 . . . . . . . . .
...

...
... 0 er 0 . . . . . .

...
...

...
... 0 0 . . . . . .

...
...

...
...

...
...

. . . . . .
...

0 0 . . . . . . . . . . . . . . . 0


and ei divides ei+1 for every 1 ≤ i < r, we say M is in Smith normal form. We call eis the
elementary divisors.
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It is known that every matrix overR can be transformed into Smith normal form by elementary
row/column operations, that is, (1) switching a row/column with another row/column, (2)
multiplying each entry in a row/column by an invertible element in R, and (3) adding a
multiple of a row/column to another row/column [7, 9.4]. (If d = 0, the invertible elements
in R ∼= Z are 1 and −1, and if d is prime, any nonzero elements in R = Z/dZ are invertible.)
In general, the same fact holds for any principal ideal domain R.

I Definition 4. We define e(R) as the number of invertible elements in the Smith normal
form of the matrix D(R) over R.

Note that if R = Z/dZ for a prime d, e(R) is equal to the rank of D(R) since every nonzero
elements in Z/dZ is invertible.

We state the main theorem.

I Theorem 5. Let (Σ, R) be a complete TRS and suppose d = deg(R) is 0 or prime. For
any set of rules R′ equivalent to R, i.e., ∗←→R′ =

∗←→R, we have

#R′ ≥ #R− e(R). (2)

We shall see some examples.

I Example 6. Consider the signature Σ = {0(0), s(1), ave(2)} and the set R of rules

A1.ave(0, 0) → 0, A2.ave(x1, s(x2)) → ave(s(x1), x2), A3.ave(s(0), 0) → 0,
A4.ave(s(s(0)), 0) → s(0), A5.ave(s(s(s(x1))), x2) → s(ave(s(x1), x2)).

R satisfies deg(R) = 0 and has one critical pair C:

We can see the matrix D(R) is the 5× 1 zero matrix. The zero matrix is already in Smith
normal form and e(R) = 0. Thus, for any R′ equivalent to R, #R′ ≥ #R = 5. This means
there is no smaller TRS equivalent to R. Also, Malbos-Mimram’s lower bound, denoted by
s(H2(Σ, R)), is equal to 3, though we do not explain how to compute it in this paper. (We
will briefly see the meaning of s(H2(Σ, R)) in Section 4.)

I Example 7. We compute the lower bound for the theory of groups, (1). A complete TRS
R for the theory of groups is given by

G1. m(m(x1, x2), x3)→ m(x1,m(x2, x3)) G2. m(e, x1)→ x1
G3. m(x1, e)→ x1 G4. m(x1, i(x1))→ e

G5. m(i(x1), x1)→ e G6. m(i(x1),m(x1, x2))→ x2
G7. i(e)→ e G8. i(i(x1))→ x1
G9. m(x1,m(i(x1), x2))→ x2 G10. i(m(x1, x2))→ m(i(x2), i(x1)).

Since deg(R) = 2, we set R = Z/2Z. R has 48 critical pairs and we get the 10 × 48
matrix D(R) given in the appendix. The author implemented a program which takes a
complete TRS as input and computes its critical pairs, the matrix D(R), and e(R). The
program is available at https://github.com/mir-ikbch/homtrs. The author checked
e(R) = rank(D(R)) = 8 by the program, and also by MATLAB’s gfrank function (https:
//www.mathworks.com/help/comm/ref/gfrank.html). Therefore we have #R− e(R) = 2.
This provides a new proof that there is no single axiom equivalent to the theory of groups.

Malbos-Mimram’s lower bound is given by s(H2(Σ, R)) = 0.
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Figure 1 The critical pairs of R.

I Example 8. Let Σ = {−(1), f (1),+(2), ·(2)} and R be

A1. − (−x1)→ x1, A2. − f(x1)→ f(−x1),
A3. − (x1 + x2)→ (−x1) · (−x2), A4. − (x1 · x2)→ (−x1) + (−x2).

We have deg(R) = 0 and R has four critical pairs (Figure 1). The corresponding matrix
D(R) and its Smith normal form are computed as

D(R) =


0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1

 


0 0 1 1
2 0 0 0
0 0 0 0
0 0 0 0

 


0 0 1 0
2 0 0 0
0 0 0 0
0 0 0 0

 


1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 .

Thus, #R− e(R) = 3. This tells R does not have any equivalent TRS with 2 or fewer rules,
and it is not difficult to see R has an equivalent TRS with 3 rules, {A1, A2, A3}.

Malbos-Mimram’s lower bound for this TRS is given by s(H2(Σ, R)) = 1.

Although the equality of (2) is attained for the above three examples, it is not guaranteed
the equality is attained by some TRS R′ in general.

3 Preliminaries on Algebra

In this section, we give a brief introduction to module theory, homological algebra, and
Squier’s theory of homological algebra for string rewriting systems (SRSs) [8]. Even though
Squier’s theory is not directly needed to prove our theorem, it is helpful to understand the
homology theory for TRSs, which is more complicated than SRSs’ case.

3.1 Modules and Homological Algebra
We give basic definitions and theorems on module theory and homological algebra without
proofs. For more details, readers are referred to [7, 6] for example.

Modules are the generalization of vector spaces in which the set of scalars form a ring,
not necessarily a field.

I Definition 9. Let R be a ring and (M,+) be an abelian group. For a map · : R×M →M ,
(M,+, ·) is a left R-module if for all r, s ∈ R and x, y ∈M , we have

r · (x+ y) = r · x+ r · y, (r + s) · x = r · x+ s · x, (rs) · x = r · (s · x)
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where rs denotes the multiplication of r and s in R. We call the map · scalar multiplication.
For a map · : M × R → M , (M,+, ·) is a right R-module if for any r, s ∈ R and

x, y ∈M ,

(x+ y) · r = x · r + y · r, x · (r + s) = x · r + x · s, x · (sr) = (x · s) · r.

If ring R is commutative, we do not distinguish between left R-modules and right R-modules
and simply call them R-modules.

Linear maps and isomorphisms of modules are also defined in the same way as for vector
spaces.

I Definition 10. For two left R-modules (M1,+1, ·1), (M2,+2, ·2), a group homomorphism
f : (M1,+1)→ (M2,+2) is an R-linear map if it satisfies f(r ·1 x) = r ·2 f(x) for any r ∈ R

and x ∈M1. An R-linear map f is an isomorphism if it is bijective, and two modules are
called isomorphic if there exists an isomorphism between them.

I Example 11. Any abelian group (M,+) is a Z-module under the scalar multiplication
n · x = x+ · · ·+ x︸ ︷︷ ︸

n

.

I Example 12. For any ring R, the direct product Rn = R× · · · ×R︸ ︷︷ ︸
n

forms a left R-module

under the scalar multiplication r · (r1, . . . , rn) = (rr1, . . . , rrn).

I Example 13. Let R be a ring and X be a set. RX denotes the set of formal linear
combinations∑

x∈X
rxx (rx ∈ R)

where rx = 0 except for finitely many xs. The underline is added to emphasize a distinction
between r ∈ R and x ∈ X. RX forms a left R-module under the addition and the scalar
multiplication defined by(∑

x∈X
rxx

)
+
(∑
x∈X

sxx

)
=
∑
x∈X

(rx + sx)x, s ·

(∑
x∈X

rxx

)
=
∑
x∈X

(srx)x.

If X is the empty set, RX is the left R-module {0} consisting of only the identity element. We
simply write 0 for {0}. RX is called the free left R-module generated by X. If #X = n ∈ N,
RX can be identified with Rn.

A left R-module M is said free if M is isomorphic to RX for some X. Free modules have
some similar properties to vector spaces. If a left R-module F if free, there exists a basis
(i.e., a subset that is linearly independent and generating) of F . If a free left R-module F
has a basis (v1, . . . , vn), any R-linear map f : F →M is uniquely determined if the values
f(v1), . . . , f(vn) are specified. Suppose F1, F2 are free left R-modules and f : F1 → F2 is
an R-linear map. If F1 has a basis (v1, . . . , vn) and F2 has a basis (w1, . . . , wm), the matrix
(aij)i=1,...,n,j=1,...,m where aijs satisfy f(vi) = ai1w1 + · · · + aimwm for any i = 1, . . . , n is
called a matrix representation of f .

We define submodules and quotient modules, as in linear algebra.

I Definition 14. Let (M,+, ·) be a left (resp. right) R-module. A subgroup N of (M,+) is
a submodule if for any x ∈ N and r ∈ R, the scalar multiplication r · x (resp. x · r) is in N .

For any submodule N , the quotient group M/N is also an R-module. M/N is called the
quotient module of M by N .

FSCD 2019



24:6 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

For submodules and quotient modules, the following basic theorems are known:

I Theorem 15 (First isomorphism theorem). [7, Theorem 7.8] Let (M,+, ·), (M ′,+′, ·′) be
left (or right) R-modules, and f : M →M ′ be an R-linear map.
1. The inverse image of 0 by f , ker f = {x ∈M | f(x) = 0}, is a submodule of M .
2. The image of M by f , im f = {f(x) | x ∈M}, is a submodule of M ′.
3. The image im f is isomorphic to M/ ker f .

I Theorem 16 (Third isomorphism theorem). [7, Theorem 7.10] Let M be a left (or right)
R-module, N be a submodule of M , and L be a submodule of N . Then (M/L)/(N/L) is
isomorphic to M/N .

I Theorem 17. [7, Theorem 9.8] Let R be Z or Z/pZ for some prime p. Every submodule
of a free R-module is free. Moreover, if an R-module M is isomorphic to Rn, then every
submodule N of M is isomorphic to Rm for some m ≤ n. (In general, this holds for any
principal ideal domain R.)

Let M be a left R-module. For S ⊂ M , the set RS of all elements in M of the form∑k
i=1 risi (k ∈ Z≥0, ri ∈ R, si ∈ S) is a submodule ofM . If RS = M , S is called a generating

set of S and the elements of S are called generators ofM . Let S = {si}i∈I be a generating set
of M for some indexing set I. For a set X = {xi}i∈I , the linear map ε : RX 3 xi 7→ si ∈M
is a surjection from the free module RX. The elements of ker ε, that is, elements

∑
xi∈X rixi

satisfying ε(
∑
xi∈X rixi) =

∑
xi∈X risi = 0, are called relations of M .

Now, we introduce one of the most important notions to develop the homology theory of
rewriting systems, free resolutions. We first start from the following example.

I Example 18. Let M be the Z-module defined by

Z{a, b, c, d, e}/Z{a+ b+ c− d− e, 2b− c, a+ 2c− b− d− e}.

We consider the Z-linear map between free Z-modules f0 : Z3 → Z{a, b, c, d, e} defined by

f0(1, 0, 0) = a+ b+ c− d− e, f0(0, 1, 0) = 2b− c, f0(0, 0, 1) = a+ 2c− b− d− e.

We can see that the image of f0 is the set of relations of M . In other words, im f0 = ker ε
for the linear map ε : Z{a, b, c, d, e} →M which maps each element to its equivalence class.
Then, we consider the “relations between relations”, that is, triples (n1, n2, n3) which satisfy
f0(n1, n2, n3) = n1(a+ b+ c− d− e) +n2(2b− c) +n3(a+ 2c− b− d− e) = 0, or equivalently,
elements of ker f0. We can check ker f0 = {m(−1, 1, 1) | m ∈ Z}. This fact can be explained
in terms of rewriting systems. If we write relations in the form of rewrite rules

A1. a+ b+ c→ d+ e, A2. 2b→ c, A3. a+ 2c→ b+ d+ e,

we see {A1, A2, A3} is a complete rewriting system with two joinable critical pairs

We associate these critical pairs with an equality between formal sums A2 +A3 = A1, and it
corresponds to

f0(−1, 1, 1) = −(a+ b+ c− d− e)︸ ︷︷ ︸
−A1

+ (2b− c)︸ ︷︷ ︸
A2

+ (a+ 2c− b− d− e)︸ ︷︷ ︸
A3

= 0.



M. Ikebuchi 24:7

In fact, this correspondence between critical pairs and “relations between relations” is a key
to the homology theory of TRSs.

We define a linear map f1 : Z → Z3 by f1(1) = (−1, 1, 1) and then f1 satisfies im f1 =
ker f0. We can go further, that is, we can consider ker f1, but it clearly turns out that
ker f1 = 0.

We encode the above information in the following diagram:

Z f1−→ Z3 f0−→ Z{a, b, c, d, e} ε−→M (3)

where im f1 = ker f0, im f0 = ker ε and ε is surjective. Sequences of modules and linear maps
with these conditions are called free resolutions:

I Definition 19. A sequence of left R-modules and R-linear maps

· · · fi+1−−−→Mi+1
fi−→Mi

fi−1−−−→ · · ·

is called an exact sequence if im fi = ker fi−1 holds for any i.
Let M be a left R-module. For infinite sequence of free modules Fi and linear maps

fi : Fi+1 → Fi, ε : F0 →M , if the sequence

· · · f1−→ F1
f0−→ F0

ε−→M

is exact and ε is surjective, the sequence above is called a free resolution of M . If the sequence
is finite, it is called a partial free resolution.

(Exact sequences and free resolutions are defined for right R-modules in the same way.)

Notice that the exact sequence (3) can be extended to the infinite exact sequence

· · · → 0→ · · · → 0→ Z f1−→ Z3 f0−→ Z{a, b, c, d, e} ε−→M

since ker f1 = 0. Thus, the sequence (3) is a free resolution of M .
As there are generally several rewriting systems equivalent to a given equational theory,

free resolutions of M are not unique. However, we can construct some information of M
from a (partial) free resolution which does not depend on the choice of the free resolution.
The information is called homology groups. To define the homology groups, we introduce the
tensor product of modules.

I Definition 20. Let N be a right R-module and M be a left R-module. Let F (N ×M) be
the free abelian group generated by N ×M . The tensor product of N and M , denoted by
N ⊗R M , is the quotient group of F (N ×M) by the subgroup generated by the elements of
the form

(x, y) + (x, y′)− (x, y + y′), (x, y) + (x′, y)− (x+ x′, y), (x · r, y)− (x, r · y)

where x, x′ ∈ N , y, y′ ∈M , r ∈ R. The equivalence class of (x, y) in N ⊗R M is written as
x⊗ y.

For a right R-module N and a R-linear map f : M →M ′ between left R-modules M,M ′,
we write N ⊗ f : N ⊗R M → N ⊗R M ′ for the map (N ⊗ f)(a⊗ x) = a⊗ f(x). N ⊗ f is
known to be well-defined and be a group homomorphism.

Let · · · f1−→ F1
f0−→ F0

ε−→M be a free resolution of a left R-module M . For a right R-module
N , we consider the sequence

· · · N⊗f1−−−−→ N ⊗R F1
N⊗f0−−−−→ N ⊗R F0. (4)

FSCD 2019
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Then, it can be shown that im(N ⊗ fi) ⊂ ker(N ⊗ fi−1) for any i = 1, 2, . . . . In general, a
sequence · · · fi+1−−−→Mi+1

fi−→Mi
fi−1−−−→ · · · of left/right R-modules satisfying im fi ⊂ ker fi−1

for any i is called a chain complex. The homology groups of a chain complex are defined to
be the quotient group of ker fi−1 by im fi:

I Definition 21. Let (C•, f•) denote the pair ({Ci}i=0,1,..., {fi : Ci+1 → Ci}i=0,1,...). For a
chain complex · · · fi+1−−−→ Ci+1

fi−→ Ci
fi−1−−−→ · · · , the abelian group Hj(C•, f•) defined by

Hj(C•, f•) = ker fj−1/ im fj

is called the j-th homology groups of the chain complex (C•, f•).

The homology groups of the chain complex (4) depend only on M , N , and R:

I Theorem 22. [6, Corollary 6.21] Let M be a left R-module and N be a right R-module.
For any two resolutions · · · f1−→ F1

f0−→ F0
ε−→ M , · · · f

′
1−→ F ′1

f ′0−→ F ′0
ε−→ M , we have a group

isomorphism

Hj(N ⊗R F•, N ⊗ f•) ∼= Hj(N ⊗R F ′•, N ⊗ f ′•).

We end this subsection by giving some basic facts on exact sequences.

I Proposition 23. [7, Proposition 7.20 and 7.21]
1. M1

f−→M2 → 0 is exact if and only if ker f = 0.
2. 0→M1

f−→M2 is exact if and only if im f = M2.
3. If M1 is a submodule of M2, the sequence 0→M2

ι−→M1
π−→M1/M2 → 0 is exact where

ι is the inclusion map ι(x) = x and π is the projection π(x) = [x].

I Proposition 24. Suppose we have an exact sequence of R-modules 0 → M1 → M2 →
M3 → 0. If M3 is free, then M2 is isomorphic to M1 ×M3.
The proof is given by using [7, Proposition 7.22].

3.2 String Rewriting Systems and Homology Groups of Monoids
For an alphabet Σ, Σ∗ denotes the set of all strings of symbols over Σ. Σ∗ forms a monoid
under the operation of concatenation with the empty string serving as the identity, and we
call Σ∗ the free monoid generated by Σ. For a string rewriting system (SRS) (Σ, R), we write
M(Σ,R) for the set defined byM(Σ,R) = Σ∗/ ∗←→R. We can seeM(Σ,R) is a monoid under the
operations [u] · [v] = [uv] where [w] denotes the equivalence class of w ∈ Σ∗ with respect to
∗←→R.

We say that two SRSs (Σ1, R1), (Σ2, R2) are isomorphic if the monoidsM(Σ1,R1),M(Σ2,R2)
are isomorphic. It is not difficult to show that for any two SRSs (Σ, R1), (Σ, R2) with the
same signature, if R1 and R2 are equivalent (i.e., ∗←→R1 = ∗←→R2), then (Σ, R1) and (Σ, R2)
are isomorphic. Roughly speaking, the notion that two SRSs are isomorphic means that the
SRSs are equivalent but their alphabets can be different. For example, let Σ1 be {a, b, c}
and R1 be {abb→ ab, ba→ c}. Then, (Σ1, R1) is isomorphic to (Σ2, R2) where Σ2 = {a, b}
and R2 = {abb→ ab}. Intuitively, since c is equivalent to ba with respect to the congruence
∗←→R1 , c is redundant as long as we consider strings modulo ∗←→R1 and (Σ2, R2) is the SRS
made by removing c from (Σ1, R1).

If a monoid S is isomorphic toM(Σ,R) for an SRS (Σ, R), we call (Σ, R) a presentation
of the monoid S.
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Let S be a monoid and consider the free Z-module ZS. ZS can be equipped with a ring
structure under the multiplication

(∑
w∈S nww

) (∑
w∈Smww

)
=
∑
w,v∈S nwmvwv where

nwmv is the usual multiplication of integers and wv is the multiplication of the monoid S.
ZS as a ring is called the integral monoid ring of S. When we think of ZS as a ring, we
write Z〈S〉 instead of ZS.

We consider Z〈S〉-modules. The group of integers Z forms a left (resp. right) Z〈S〉-module
under the scalar multiplication (

∑
w∈S nww) ·m =

∑
w∈S nwmw (resp. m · (

∑
w∈S nww) =∑

w∈S nwmw). Let · · ·
∂1−→ F1

∂0−→ F0
ε−→ Z be a free resolution of Z over the ring Z〈S〉. The

i-th monoid homology Hi(S) is defined as the i-th homology group of the chain complex
(Z⊗Z〈S〉 F•,Z⊗ ∂•), i.e.,

Hi(S) = Hi(Z⊗Z〈S〉 F•,Z⊗ ∂•) = kerZ⊗ ∂i−1/ imZ⊗ ∂i.

If S is isomorphic toM(Σ,R) for some SRS (Σ, R), it is known that there is a free resolution
in the form of

· · · → (Z〈S〉)P ∂2−→ (Z〈S〉)R ∂1−→ (Z〈S〉)Σ ∂0−→ (Z〈S〉){?} ε−→ Z

for some set P . Squier [8] showed that if the SRS (Σ, R) is complete and reduced1, there
is ∂2 : (Z〈S〉)P → (Z〈S〉)R for P = (the critical pairs of R) so that we can compute
H2(S) = ker ∂1/ im ∂2 explicitly. This is an analog of Example 18, but we omit the details
here. For an abelian group G, let s(G) denote the minimum number of generators of G (i.e.,
the minimum cardinality of the subset A ⊂ G such that any element x ∈ G can be written
by x = a1 + · · · + ak − ak+1 − · · · − am for a1, . . . , am ∈ A). Then, we have the following
theorem:

I Theorem 25. Let (Σ, R) be an SRS and S = M(Σ,R). Then #Σ ≥ s(H1(S)), #R ≥
s(H2(S)).

To prove this theorem, we use the following lemma:

I Lemma 26. Let X be a set. The group homomorphism Z⊗Z〈S〉 (Z〈S〉)X → ZX, n〈w〉x 7→
nx is an isomorphism.

This lemma is proved in a straightforward way.

Proof of Theorem 25. Since Z ⊗Z〈S〉 (Z〈S〉)X ∼= ZX by the above lemma, s(Z ⊗Z〈S〉
(Z〈S〉)X) = s(ZX) = #X. For any set Y and group homomorphism f : ZX → ZY ,
since ker f is a subgroup of ZX, we have #X ≥ s(ker f). For any subgroup H of
ker f , ker f/H is generated by [x1], . . . , [xk] if ker f is generated by x1, . . . , xk. Thus
#Σ ≥ s(ker ∂0/ im ∂1) = s(H1(S)), #R ≥ s(ker ∂1/ im ∂2) = s(H2(S)). J

Note that Hi(S) does not depend on the choice of presentation (Σ, R) by Theorem 22.
Therefore, Theorem 25 can be restated as follows: Let (Σ, R) be an SRS. For any SRS (Σ′, R′)
isomorphic to (Σ, R), the number of symbols #Σ′ is bounded below by s(H1(M(Σ,R))) and
the number of rules #R′ is bounded below by s(H2(M(Σ,R))).

1 An SRS (Σ, R) is reduced if for each l → r ∈ R, r is normal w.r.t. →R and there does not exist
l′ → r′ ∈ R such that l′ = ulv 6= l for some u, v ∈ Σ∗
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4 An Overview of the Homology Theory of TRSs

In this section, we will briefly see the homology theory of TRSs, which is the main tool to
obtain our lower bounds.

We fix a signature Σ. Let t = 〈t1, . . . , tn〉 be a n-uple of terms and suppose that for each ti,
the set of variables in ti is included in {x1, . . . , xm}. For an m-uple of term s = 〈s1, . . . , sm〉,
we define the composition of t and s by

t ◦ s = 〈t1[s1/x1, . . . , sm/xm], . . . , tn[s1/x1, . . . , sm/xm]〉

where ti[s1/x1, . . . , sm/xm] denotes the term obtained by substituting sj for xj in ti for each
j = 1, . . . ,m in parallel. (For example, f(x1, x2)[g(x2)/x1, g(x1)/x2] = f(g(x2), g(x1)).) By
this definition, we can think of any m-uple 〈s1, . . . , sm〉 of terms as a (parallel) substitution
{x1 7→ s1, . . . , xm 7→ sm}. Recall that, for a TRS R, the reduction relation →R between
terms is defined as t1 →R t2 ⇐⇒ t1 = C[l ◦ s], t2 = C[r ◦ s] for some single-hole context C,
m-uple s of terms, and rewrite rule l→ r ∈ R whose variables are included in {x1, . . . , xm}.
This definition suggests that the pair of a context C and an m-uple of terms (or equivalently,
substitution) s is useful to think about rewrite relations. Malbos and Mimram [3] called
the pair of a context and an m-uple of terms a bicontext. For a bicontext (C, t) and a
rewrite rule A, we call the triple (C,A, t) a rewriting step. The pair of two rewriting steps
(�, l1 → r1, s), (C, l2 → r2, t) is called a critical pair if the pair (r1 ◦ s, C[r2 ◦ t]) of terms is a
critical pair in the usual sense given by l1 → r1, l2 → r2.

The composition of two bicontexts (C, t), (D, s) (t = 〈t1, . . . , tn〉, s = 〈s1, . . . , sm〉) is
defined by

(C, t) ◦ (D, s) = (C[D ◦ t], s ◦ t)

where D ◦ t = D[t1/x1, . . . , tn/xn] and note that the order of composition is reversed in the
second component. With this composition, we can define the small category of bicontexts K
as

Objects : natural numbers,
Morphisms K(n,m) (n,m ∈ N) : bicontexts (C, t) where t = 〈t1, . . . , tn〉 and each ti and
C have variables in {x1, . . . , xm} (except � in C),
Identity idn = (�, 〈x1, . . . , xn〉),
Composition ◦ : K(n,m)×K(k, n)→ K(k,m) : defined above.

To apply homological algebra to TRSs, we construct an algebraic structure from K. We
write Z〈K〉 for the (small) category whose objects are natural numbers, set of morphisms
(Z〈K〉)(n,m) is the free abelian group generated by K(n,m) (i.e., any element in (Z〈K〉)(n,m)
is written in the form of formal sum

∑
(C,t)∈K(n,m) λ(C,t)(C, t) where each λ(C,t) is in Z and

is equal to 0 except for finitely many (C, t)s). The composition on Z〈K〉 is defined by∑
(C,t)

λ(C,t)(C, t)

 ◦
∑

(D,s)

µ(D,s)(D, s)

 =
∑
(C,t)

∑
(D,s)

λ(C,t)µ(D,s)((C, t) ◦ (D, s)).

By this definition, we can see that this composition ◦ is bilinear, that is,

a ◦ (b1 + b2) = a ◦ b1 + a ◦ b2, (5)
(a1 + a1) ◦ b = a1 ◦ b+ a2 ◦ b (6)
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for any a, a1, a2 ∈ (Z〈K〉)(n,m), b, b1, b2 ∈ (Z〈K〉)(k, n). Also, we have

a ◦ 0 = 0 ◦ b = 0. (7)

One may notice that this looks something similar to the ring structure. Indeed, Z〈K〉 forms
the structure called ringoid, which is defined as follows:

I Definition 27. A ringoid R is a small category in which each hom-set R(X,Y ) is equipped
with a structure of abelian group (R(X,Y ),+) and satisfies (5, 6, 7).

Intuitively, a ringoid R is a “multi-sorted” ring where sorts are the hom-sets R(X,Y ) for
any objects X,Y of R and it has an addition + : R(X,Y )×R(X,Y )→ R(X,Y ) for each
pair (X,Y ) of objects, and a multiplication ◦ : R(Y, Z)×R(X,Y )→ R(X,Z) for each triple
(X,Y, Z) of objects. If R has exactly one object ?, the ringoid R can be identified with the
ring (R(?, ?),+, ◦). (Note that the morphisms correspond to the elements of the ring, not
objects.) We can also define modules over a ringoid. For a ringoid R, a left R-module M
associates each object X of R with an abelian group M(X) and has a “multi-sorted” scalar
multiplication · : R(X,Y )×M(X)→M(Y ) for each pair of objects X,Y of R. This notion
is interpreted as a functor from the category R to the category of abelian groups:

I Definition 28. Let R be a ringoid. A left R-module is a functor M : R → Ab satisfying

M(a+ b) = M(a) +M(b), M(0) = 0 (a, b ∈ R(X,Y ), X, Y ∈ Obj(R))

where Ab is the category of abelian groups. We define the scalar multiplication · : R(X,Y )×
M(X)→M(Y ) by a ·m = M(a)(m).

A right R-module is defined as a left Rop module.
For two left R-modules M1,M2, an R-linear map f : M1 →M2 is a natural transforma-

tion such that each component fX : M1(X)→M2(X) is a group homomorphism.

If R has exactly one object ?, M can be identified with the left R(?, ?)-module (M(?),+, ·).
A free R-module is defined as follows.

I Definition 29. Let R be a ringoid and P be a family of sets PX (X ∈ Obj(R)). The
free left R-module generated by P , denoted by RP is defined as follows. For each object
X ∈ Obj(R), (RP )(X) is the abelian group of formal finite sums∑

xY ∈PY , Y ∈Obj(R)

axY
xY , (axY

∈ R(Y,X))

and for each morphism r ∈ R(X,Z),

r ·

( ∑
xY ∈PY , Y ∈Obj(R)

axY
xY

)
=

∑
xY ∈PY , Y ∈Obj(R)

(r ◦ axY
)xY .

For Z〈K〉, we write Cxt for elements of ((Z〈K〉)P )(X) instead of (C, t)x, and (D + C)xt for
Dxt+ Cxt.

The tensor product of two modules over a ringoid is also defined.

I Definition 30. Let R be a ringoid, M1 be a right R-module, and M2 be a left R-module.
For a family of groups {GX | X ∈ P} for some indexing set P , its direct sum, denoted
by
⊕

X∈P GX , is the subset of the direct product defined by {(gX)X∈P ∈
∏
X∈P GX |

gX = 0 except for finite Xs}. The direct sum of groups also forms a group.
The tensor product M1 ⊗RM2 is the quotient abelian group of

⊕
X∈RM1(X)⊗R(X,X)

M2(X) by relations (aop · x)⊗ y − x⊗ (a · y) for all a ∈ R(Y,X), x ∈M(X), y ∈M(Y ).
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Now, we outline Malbos-Mimram’s construction of the homology groups of TRSs.
1. We begin by defining the quotient ringoid Z〈K〉

(Σ,R)
of Z〈K〉 by some relations so that

Z〈K〉
(Σ,R)

depends only on the Tietze equivalence class of (Σ, R). Z〈K〉
(Σ,R)

corresponds
toM(Σ,R) in the case (Σ, R) is an SRS.

2. From this step, we write R for Z〈K〉
(Σ,R)

. It can be shown that we have a partial free
resolution

RP3
∂2−→ RP2

∂1−→ RP1
∂0−→ RP0

ε−→ Z

where every Pi is a family of sets (Pi)j given by (P0)1 = {1}, (P0)j = ∅ (j 6= 1),
(P1)j = Σ(j) = {f ∈ Σ | f is of arity j}, (P2)j = {l → r ∈ R | l→ r is of arity j},
(P3)j = {((�, A, s), (C,B, t)) : critical pair | A,B ∈ (P2)j}. Z is a left R-module
defined as the quotient of RP by all relations of the form

∑
i(κi(u) ◦ t)?〈ti〉 −�?〈u ◦ t〉

for every term u ◦ t where P1 = {?}, Pj = ∅ (j 6= 1) and κi is defined later.
3. By taking the tensor product Z⊗R, we have the chain complex

Z⊗R RP3
Z⊗∂2−−−→ Z⊗R RP2

Z⊗∂1−−−→ Z⊗R RP1
Z⊗∂0−−−→ Z⊗R RP0 (8)

where Z above is the R-module defined by Z(i) = Z (the abelian group of integers) for
each object i, and the scalar multiplication is given by (C, t) · k = k.

4. The homology groups can be defined by

Hi(Σ, R) = ker(Z⊗ ∂i−1)/ im(Z⊗ ∂i).

It is shown that the homology groups of TRS depend only on the “Tietze equivalence”
class of (Σ, R). Tietze equivalence is an analog of isomorphism between SRSs; it is an
equivalence between two TRSs (Σ1, R1), (Σ2, R2) where the signatures Σ1 and Σ2 can
be different, while the usual equivalence is defined for TRSs with the same signature by
∗←→R1 = ∗←→R2 . Especially, any two TRSs (Σ, R1),(Σ, R2) are Tietze equivalent if they are
equivalent in the usual sense, ∗←→R1 = ∗←→R2 . Thus, we have the following:

∗←→R1 = ∗←→R2 =⇒ Hi(Σ, R1) ∼= Hi(Σ, R2).

For the step 1, we define the relations of Z〈K〉
(Σ,R)

. We identify elements in Z〈K〉 as follows.
(a) For two m-uples t = 〈t1, . . . , tm〉, s = 〈s1, . . . , sm〉 of terms, we identify t and s if t ∗←→R s.
(b) Similarly, for two single-hole contexts C,D, we identify C and D if C ∗←→R D. For the
last identification, we introduce operator κi which takes a term t and returns the formal sum
of single-hole contexts C1 + · · ·+ Cm where Cj (j = 1, . . . ,m) is obtained by replacing the
j-th occurrence of xi with � in t, and m is the number of the occurrences of xi in t. For
example, we have

κ1(f(g(x1, x2), x1)) = f(g(�, x2), x1) + f(g(x1, x2),�),
κ2(f(g(x1, x2), x1)) = f(g(x1,�), x1),

κ2(h(x1)) = 0.

The definition of κi can be stated inductively as follows:

κi(xi) = �, κi(xj) = 0 (j 6= i),

κi(f(t1, . . . , tn)) =
n∑
k=1

f(t1, . . . , tk−1, κi(tk), tk+1, . . . , tn).
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Then, (c) we identify formal sums of bicontexts (C1, t)+ · · ·+(Ck, t) and (D1, t)+ · · ·+(Dl, t)
if κi(u) = C1 + · · ·+ Ck, κi(v) = D1 + · · ·+ Dl for some positive integer i and terms u, v
such that u ∗←→R v. Z〈K〉

(Σ,R)
is defined as the quotient of Z〈K〉 by the equivalence class

generated by the identifications (a), (b), and (c).
We omit the definitions of the R-linear maps ε, ∂i (i = 0, 1, 2) in the step 2, but we

describe the group homomorphisms Z⊗ ∂i : Z⊗RRPi+1 → Z⊗RRPi. Let ∂̃i denote Z⊗ ∂i
for simplicity. For the step 2, we define the R-linear maps ε, ∂i (i = 0, 1, 2). For f (n) ∈ Σ,
the homomorphism ∂̃0 : Z⊗R RP1 → Z⊗R RP0 is given by

∂̃0(f) = (n− 1)1.

For a term t, we define ϕ(t) as the linear combinaton of symbols
∑
f∈Σ nff where nf

is the number of occurrences of f in t. Using this, for l → r ∈ R, the homomorphism
∂̃1 : Z⊗R RP2 → Z⊗R RP1 is given by

∂̃1(l→ r) = ϕ(r)− ϕ(l).

For a critical pair ((�, l → r, s), (C, u → v, t)), let (Di, li → ri, si), (Cj , uj → vj , tj)
(i = 1, . . . , k, j = 1, . . . , l) be rewriting steps such that r ◦ s = D1[l1 ◦ s1], D1[r1 ◦ s1] =
D2[l2 ◦ s2], . . . , Dk−1[rk−1 ◦ sk−1] = Dk[lk ◦ sk], C[v ◦ t] = C1[u1 ◦ t1], C1[v1 ◦ t1] = C2[u2 ◦
t2], . . . , Cl−1[vl−1 ◦ tl−1] = Cl[ul ◦ tl], Dk[rk ◦ sk] = Cl[vl ◦ tl]. Then the map ∂̃2((�, l →
r, s), (C, u→ v, t)) is defined by

u→ v − l→ v −
k∑
i=1

ui → vi −
l∑

j=1
lj → rj .

Malbos-Mimram’s lower bound for the number of rewrite rules is given by s(H2(Σ, R)).
(Recall that s(G) denotes the minimum number of generators of an abelian group G.) More
precisely, #Σ′ ≥ s(H1(Σ, R)) and #R′ ≥ s(H2(Σ, R)) hold for any TRS (Σ′, R′) that is
Tietze equivalent to (Σ, R). These inequalities are shown in a similar way to the proof of
Theorem 25.

5 Proof of Main Theorem

Let (Σ, R) be a complete TRS. We first simplify the tensor product Z⊗R ZPi in (8).

I Lemma 31. Let d = deg(R) and P be a family of sets P0, P1, . . . . Then, we have
Z⊗R RP ∼= (Z/dZ)

⊎
i Pi. Especially, if d = 0, Z⊗R RP ∼= Z

⊎
i Pi.

Proof. We define a group homomorphism f : Z ⊗R RP → (Z/dZ)
⊎
i Pi by f((wn)n≥0) =∑

n≥0 fn(wn) where fn : Z⊗R(n,n) RP (n)→ (Z/dZ)Pn is defined by fn(k ⊗Cat) = [k]a for
a ∈ Pn. It is enough to show each fn is an isomorphism. If #il −#ir = m for l → r ∈ R,
we have a relation of R

0 = 1⊗ (κi(l)at− κi(r)at) = 1⊗ κi(l)at− 1⊗ κi(r)at = #il ⊗ a−#ir ⊗ a = m⊗ a.

Since d divides m, fn(m ⊗ a) = [m]a = 0. Therefore fn is well-defined. To prove fn is
injective, it suffices to show qd⊗a = 0 for any q ∈ Z. Since d = gcd{#il−#ir | l→ r ∈ R, i =
1, 2, . . . }, there exist integers ci,l→r such that d =

∑
l→r∈R, i=1,2,... ci,l→r(#il −#ir). Since

(#il−#ir)⊗ a = 1⊗ (κi(l)− κi(r))a〈x1, . . . , xn〉 = 0 for each i ∈ {0, 1, . . . }, l→ r ∈ R, we
have qd⊗a = q

∑
l→r∈R, i=1,2,... ci,l→r(#il−#ir)⊗a = 0. The surjectivity of fn is trivial. J
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As special cases of this lemma, we have Z ⊗R RP0 ∼= (Z/dZ)Σ, Z ⊗R RP1 ∼= (Z/dZ)R,
and Z ⊗R RP2 ∼= (Z/dZ)CP(R). Additionally, we can see each group homomorphism ∂̃i
(i = 0, 1, 2) is a Z/dZ-linear map.

To prove Theorem 5, we show the following lemma.

I Lemma 32. Let d = deg(R). If d = 0 or d is prime, #R− e(R) = s(H2(Σ, R)) + s(im ∂̃1).

Proof. By definition, D(R) defined in Section 2 is a matrix representation of ∂̃2. Suppose d
is prime. In this case, s(H2(Σ, R)) is equal to the dimension of H2(Σ, R) as a Z/dZ-vector
space. By the rank-nullity theorem, we have

dim(H2(Σ, R)) = dim(ker ∂̃1)− dim(im ∂̃2)
= dim(Z⊗R RP1)− dim(im ∂̃1)− dim(im ∂̃2)
= dim((Z/dZ)R)− dim(im ∂̃1)− rank(D(R))
= #R− dim(im ∂̃1)− e(R).

Suppose d = 0. We show H2(Σ, R) ∼= Z#R−r−k × Z/e1Z × · · · × Z/erZ where r =
rank(D(R)), k = s(im ∂̃1), and e1, . . . , er are the elementary divisors of D(R). Let

∂1 : Z⊗R RP1/ im ∂̃2 → Z⊗R RP0

be the group homomorphism defined by [x] 7→ ∂̃1(x). ∂1 is well-defined since im ∂̃2 ⊂ ker ∂̃1,
and ker ∂1 is isomorphic to ker ∂̃1/ im ∂̃2 = H2(Σ, R). By taking the basis v1, . . . , v#R of
Z⊗RRP1 ∼= ZR such thatD(R) is the matrix representation of ∂̃2 under the basis v1, . . . , v#R
and some basis of Z⊗RRP2, we can see Z⊗RRP1/ im ∂̃2 ∼= Z#R−r ×Z/e1Z× · · · ×Z/ekZ.
Suppose ∂1(ei[x]) = 0 for some x and i = 1, . . . , r. Since ∂1 is a homomorphism, ∂1(ei[x]) =
ei∂1([x]) ∈ Z⊗R RP0 ∼= ZΣ holds. Since ZΣ is free, we have [x] = 0. Therefore, ker ∂1 is
included in the subset of Z⊗R RP1/ im ∂̃2 isomorphic to Z#R−r × {0} × · · · × {0}. Thus,
ker ∂1 ∼= Z#R−r−k × Z/e1Z× · · · × Z/erZ.

Since Z/eZ ∼= 0 if e is invertible, Z#R−r−k × Z/e1Z × · · · × Z/ekZ ∼= Z#R−r−k ×
Z/ee(R)+1Z × · · ·Z/erZ =: G. G is generated by (1, 0, . . . , 0︸ ︷︷ ︸

#R−r−k

, [0], . . . , [0]︸ ︷︷ ︸
r−e(R)

), (0, . . . , 0, 1, [0],

. . . , [0]), (0, . . . , 0, [1], [0], . . . , [0]), (0, . . . , 0, [0], . . . , [0], [1]), so we have s(G) ≤ #R− r − k +
r − e(R) = #R − k − e(R). Let p be a prime number which divides ee(R)+1. We can see
G/pG ∼= (Z/pZ)#R−k−e(R). It is not hard to see s(G) ≥ s(G/pG), and since G/pG is a
Z/pZ-vector space, s(G/pG) = dim(G/pG) = #R− k − e(R). Thus, s(H2(Σ, R)) = s(G) =
#R− s(im ∂̃1)− e(R). J

By Lemma 32, Theorem 5 is implied by the following theorem:

I Theorem 33. Let (Σ, R) be a complete TRS and d = deg(R). If d = 0 or d is prime,

#R ≥ s(H2(Σ, R)) + s(im ∂̃1). (9)

Proof. By the first isomorphism theorem, we have an isomorphism between Z/dZ-modules

im ∂̃1 ' Z⊗R RP2/ker ∂̃1

and by the third isomorphism theorem, the right hand side is isomorphic to

Z⊗R RP2/ker ∂̃1 '
(
Z⊗R RP2/im ∂̃2

)
/
(
ker ∂̃1/im ∂̃2

)
'
(
Z⊗R RP2/im ∂̃2

)
/H2(Σ, R).
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Thus, we obtain the following exact sequence by Proposition 23:

0→ H2(Σ, R)→ Z⊗R RP2/im ∂̃2 → im ∂̃1 → 0.

By Theorem 17, since im ∂̃1 ⊂ Z⊗R RP1 ∼= (Z/dZ)R and (Z/dZ)R is a free Z/dZ-module,
im ∂̃1 is also free and by Proposition 24, we have Z ⊗R RP2/im ∂̃2 ∼= H2(Σ, R) × im ∂̃1.
Therefore, s(Z⊗RRP2/im ∂̃2) = s(H2(Σ, R)) + s(im ∂̃1). Since Z⊗RRP2/im ∂̃2 is generated
by [l1 → r1], . . . , [lk → rk] if R = {l1 → r1, . . . , lk → rk}, we obtain

k = #R ≥ s(Z⊗R RP2/im ∂̃2) = s(H2(Σ, R)) + s(im ∂̃1).

Thus, we get (9). J

Proof of Theorem 5. As we stated, H2(Σ, R) depends only on the Tietze equivalence class
of (Σ, R). Let us show s(im ∂̃1) also depends only on the Tietze equivalence class of (Σ, R).
For a left R-module M , rank(M) denotes the cardinality of a minimal linearly independent
generating set ofM , that is, a minimal generating set S ofG such that any element s1, . . . , sk ∈
Γ, and r1s1 + · · ·+ rksk = 0 =⇒ r1 = · · · = rk = 0 for any r1, . . . , rk ∈ R, s1, . . . , sk ∈ S.
It can be shown that rank(M) = s(M) if M is free. Especially, s(im ∂̃1) = rank(im ∂̃1) since
im ∂̃1 ⊂ ZR if deg(R) = 0. Also, rank(im ∂̃1) = rank(ker ∂̃0)− rank(ker ∂̃0/ im ∂̃1) is obtained
by a general theorem [7, Ch 10, Lemma 10.1]. By definition, ∂̃0 does not depend on R. Since
ker ∂̃0/ im ∂̃1 = H1(Σ, R) depends only on the Tietze equivalence class of (Σ, R), so does
rank(im ∂̃1).

In conclusion, for any TRS R′ equivalent to R, we obtain #R′ ≥ s(H2(Σ, R))+s(im ∂̃1) =
#R− e(R). J

We consider the case where every symbol in Σ is of arity 1. Notice that any TRS (Σ, R)
can be seen as an SRS and deg(R) = 0 in this case. We have rank(ker ∂̃0) = #Σ since
∂̃0(f) = 0 for any f ∈ Σ. Therefore, (9) can be rewritten to

#R−#Σ ≥ s(H2(Σ, R))− rank(H1(Σ, R)).

So, for SRSs, we have a lower bound of the number of the rewrite rules minus the number of
the symbols. For groups, in fact, this inequality is proved in terms of group homology [1].
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A The matrix D(R) for The Theory of Groups

For the TRS R defined in Example 7, D(R) is given by the transpose of

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0
0 0 0 1 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
1 0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 0 0 1 0


where the i-th column corresponds to the rule Gi, and the j-th row corresponds to the
critical pair Cj shown in the next pages.
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C1 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(m(x4, x5), x6)→ m(x4,m(x5, x6)), m(�, x3),
{x6 7→ x2, x1 7→ m(x4, x5)}

C2 : i(m(x1, x2))→ m(i(x2), i(x1)), m(m(x3, x4), x5)→ m(x3,m(x4, x5)), i(�),
{x5 7→ x2, x1 7→ m(x3, x4)}

C3 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4,m(i(x4), x5))→ x5, m(�, x3),
{x2 7→ m(i(x1), x5), x4 7→ x1}

C4 : m(x1,m(i(x1), x2))→ x2, m(m(x3, x4), x5)→ m(x3,m(x4, x5)), �,

{x5 7→ m(i(m(x3, x4)), x2), x1 7→ m(x3, x4)}
C5 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(i(x4),m(x4, x5))→ x5, m(�, x3),

{x2 7→ m(x4, x5), x1 7→ i(x4)}
C6 : m(i(x1),m(x1, x2))→ x2, m(m(x3, x4), x5)→ m(x3,m(x4, x5)), m(i(x1),�),

{x5 7→ x2, x1 7→ m(x3, x4)}
C7 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(i(x4), x4)→ e, m(�, x3),

{x4 7→ x2, x1 7→ i(x2)}
C8 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4, i(x4))→ e, m(�, x3),

{x2 7→ i(x1), x4 7→ x1}
C9 : m(x1, i(x1))→ e, m(m(x2, x3), x4)→ m(x2,m(x3, x4)), �,

{x4 7→ i(m(x2, x3)), x1 7→ m(x2, x3)}
C10 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4, e)→ x4, m(�, x3), {x2 7→ e, x4 7→ x1}
C11 : m(x1, e)→ x1, m(m(x2, x3), x4)→ m(x2,m(x3, x4)), �, {x4 7→ e, x1 7→ m(x2, x3)}
C12 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(e, x4)→ x4, m(�, x3), {x4 7→ x2, x1 7→ e}
C13 : i(m(x1, x2))→ m(i(x2), i(x1)), m(e, x3)→ x3, i(�), {x3 7→ x2, x1 7→ e}
C14 : m(x1,m(i(x1), x2))→ x2, m(e, x3)→ x3, �, {x3 7→ m(i(e), x2), x1 7→ e}
C15 : m(i(x1),m(x1, x2))→ x2, m(e, x3)→ x3, m(i(x1),�), {x3 7→ x2, x1 7→ e}
C16 : m(x1, i(x1))→ e, m(e, x2)→ x2, �, {x2 7→ i(e), x1 7→ e}
C17 : m(x1, e)→ x1, m(e, x2)→ x2, �, {x2 7→ e, x1 7→ e}
C18 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3, e)→ x3, i(�), {x2 7→ e, x3 7→ x1}
C19 : m(x1,m(i(x1), x2))→ x2, m(x3, e)→ x3, m(x1,�), {x2 7→ e, x3 7→ i(x1)}
C20 : m(i(x1),m(x1, x2))→ x2, m(x3, e)→ x3, m(i(x1),�), {x2 7→ e, x3 7→ x1}
C21 : m(i(x1), x1)→ e, m(x2, e)→ x2, �, {x1 7→ e, x2 7→ i(e)}
C22 : m(x1, i(x1))→ e, i(m(x2, x3))→ m(i(x3), i(x2)), m(x1,�), {x1 7→ m(x2, x3)}
C23 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3, i(x3))→ e, i(�), {x2 7→ i(x1), x3 7→ x1}
C24 : m(x1,m(i(x1), x2))→ x2, m(x3, i(x3))→ e, m(x1,�), {x2 7→ i(i(x1)), x3 7→ i(x1)}

Figure 2 The critical pairs of the complete TRS R
(Cj : l → r, l′ → r′, C, σ means Cj is the critical pair (rσ, C[r′σ]).) – Part 1.
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C25 : m(x1, i(x1))→ e, i(i(x2))→ x2, m(x1,�), {x1 7→ i(x2)}
C26 : m(x1, i(x1))→ e, i(e)→ e, m(x1,�), {x1 7→ e}
C27 : m(i(x1),m(x1, x2))→ x2, m(x3, i(x3))→ e, m(i(x1),�), {x2 7→ i(x1), x3 7→ x1}
C28 : m(i(x1), x1)→ e, i(m(x2, x3))→ m(i(x3), i(x2)), m(�, x1), {x1 7→ m(x2, x3)}
C29 : i(m(x1, x2))→ m(i(x2), i(x1)), m(i(x3), x3)→ e, i(�), {x3 7→ x2, x1 7→ i(x2)}
C30 : m(x1,m(i(x1), x2))→ x2, m(i(x3), x3)→ e, m(x1,�), {x1 7→ x2, x3 7→ x2}
C31 : m(i(x1), x1)→ e, i(i(x2))→ x2, m(�, x1), {x1 7→ i(x2)}
C32 : m(i(x1), x1)→ e, i(e)→ e, m(�, x1), {x1 7→ e}
C33 : m(i(x1),m(x1, x2))→ x2, m(i(x3), x3)→ e, m(i(x1),�), {x3 7→ x2, x1 7→ i(x2)}
C34 : m(i(x1),m(x1, x2))→ x2, m(i(x3),m(x3, x4))→ x4, m(i(x1),�), {x2 7→ m(x3, x4), x1 7→ i(x3)}
C35 : m(i(x1),m(x1, x2))→ x2, i(m(x3, x4))→ m(i(x4), i(x3)), m(�,m(x1, x2)), {x1 7→ m(x3, x4)}
C36 : i(m(x1, x2))→ m(i(x2), i(x1)), m(i(x3),m(x3, x4))→ x4, i(�), {x2 7→ m(x3, x4), x1 7→ i(x3)}
C37 : m(i(x1),m(x1, x2))→ x2, m(x3,m(i(x3), x4))→ x4, m(i(x1),�), {x2 7→ m(i(x1), x4), x3 7→ x1}
C38 : m(x1,m(i(x1), x2))→ x2, m(i(x3),m(x3, x4))→ x4, m(x1,�), {x2 7→ m(x1, x4), x3 7→ x1}
C39 : m(i(x1),m(x1, x2))→ x2, i(i(x3))→ x3, m(�,m(x1, x2)), {x1 7→ i(x3)}
C40 : m(i(x1),m(x1, x2))→ x2, i(e)→ e, m(�,m(x1, x2)), {x1 7→ e}
C41 : m(x1,m(i(x1), x2))→ x2, i(e)→ e, m(x1,m(�, x2)), {x1 7→ e}
C42 : i(i(x1))→ x1, i(e)→ e, i(�), {x1 7→ e}
C43 : i(i(x1))→ x1, i(i(x2))→ x2, i(�), {x1 7→ i(x2)}
C44 : i(i(x1))→ x1, i(m(x2, x3))→ m(i(x3), i(x2)), i(�), {x1 7→ m(x2, x3)}
C45 : m(x1,m(i(x1), x2))→ x2, i(i(x3))→ x3, m(x1,m(�, x2)), {x1 7→ i(x3)}
C46 : m(x1,m(i(x1), x2))→ x2, m(x3,m(i(x3), x4))→ x4, m(x1,�),

{x2 7→ m(i(i(x1)), x4), x3 7→ i(x1)}
C47 : m(x1,m(i(x1), x2))→ x2, i(m(x3, x4))→ m(i(x4), i(x3)), m(x1,m(�, x2)), {x1 7→ m(x3, x4)}
C48 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3,m(i(x3), x4))→ x4, i(�), {x2 7→ m(i(x1), x4), x3 7→ x1}

Figure 3 The critical pairs of the complete TRS R
(Cj : l → r, l′ → r′, C, σ means Cj is the critical pair (rσ, C[r′σ]).) – Part 2.
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