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Abstract
A strictly locally testable language is characterized by its set of admissible factors, prefixes and
suffixes, called tiles. We over-approximate reachability sets in string rewriting by languages defined
by sparse sets of tiles, containing only those that are reachable in derivations. Using the partial
algebra defined by a tiling for semantic labeling, we obtain a transformational method for proving
local termination. These algebras can be represented efficiently as finite automata of a certain shape.
Using a known result on forward closures, and a new characterisation of overlap closures, we can
automatically prove termination and relative termination, respectively. We report on experiments
showing the strength of the method.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases relative termination, semantic labeling, locally testable language, overlap
closure

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.21

1 Introduction

Methods for proving termination of rewriting (automatically) can be classified [25] into
syntactical (using a precedence on letters), semantical (map each letter to a function on some
domain), or transformational. Applying a transformation, one hopes to obtain an equivalent
termination problem that is easier to handle.

One such transformation is semantic labeling [24]. This will typically increase the number
of rules, sometimes drastically so. We consider here a specific semantic domain, called the
k-shift algebra, consisting of words of length k − 1, with the “shift left” operation.

When we use this algebra (in Section 3) for semantically labeling a string w, each labeled
letter is a k-factor of w, called a tile.

Our implementation uses values of k from 2 to 8. Self labeling [17] can be seen as
unrestricted shifting. The 2-shift algebra is used in root labeling [19] which first appeared in
Termination Competitions in 2006. MultumNonMulta [12] took first place in both categories
Standard and Relative SRS of the 2018 competition [13] mainly due to the use of 2-tiling.

A sparse tiling contains just those tiles that can occur during derivations starting in a
given language. The shift algebra given by those tiles then is a partial model [3]. In Section 4,
we present an algorithm to complete a given set of tiles with respect to a given rewriting
system (i. e., to construct a minimal partial model) and provide an efficient implementation
that can handle large sets of tiles.

We apply this method to derivations starting from right-hand sides of forwards closures
(Section 5) and overlap closures (Section 7) since local termination on these languages implies
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21:2 Sparse Tiling

global termination (a known result), and relative termination (Section 6), respectively. In
all, we obtain a transformational method for proving termination and relative termination:
construct a closed set of tiles, and then use it for semantic labeling. This can be combined
with other methods for proving termination, e. g., weights (linear interpretations of slope 1).

We obtain yet another automated termination proof for Zantema’s Problem {a2b2 → b3a3},
which is a classical benchmark, see Example 5.6. Our implementation is part of the Matchbox
termination prover, and it easily solves several termination problems from the Termination
Problems Database1 that appear hard for other approaches, e. g., Examples 8.3 and 8.4.
Sparse tiling contributed to Matchbox winning the categories SRS Standard and SRS Relative
of the Termination Competition 2019, see Section 9.

Our application area is string rewriting, and our implementation is tailored to that.
Still, for proving correctness, we use the language of term rewriting, as this allows to re-use
concepts and results.

2 Notation

Given a set of letters Σ, i. e., an alphabet, a string is a finite sequence of letters over Σ. The
number of its components is the length of the string, and the string of length zero, the empty
string, is denoted by ε. If there is no ambiguity, we denote the string with letters a1, . . . , an

by a1 . . . an. We deal, however, also with strings of strings, and then use the list notation
[a1, . . . , an]. Let alphabet(w) denote the set of letters that occur in the string w. By Prefix(S)
and Suffix(S) we denote the set of prefixes and suffixes resp. of strings from the set S, and
Prefixk(S) and Suffixk(S) denotes their restriction to strings of length k.

2.1 Rewriting and Reachability
A string rewriting system over alphabet Σ is a set of rewrite rules. We use standard concepts
and notation (see, e. g., Book and Otto [1]) with this extension: A constrained rule is a pair
of strings l, r, together with a constraint c ∈ {factor, prefix, suffix} that indicates where the
rule may be applied. The corresponding rewrite relations are

→l,r,factor = {(xly, xry) | x, y ∈ Σ∗},
→l,r,prefix = {(ly, ry) | y ∈ Σ∗},
→l,r,suffix = {(xl, xr) | x ∈ Σ∗}.

A constrained rule (l, r, c) is denoted by l→c r. Standard rewriting corresponds to the
factor constraint, therefore → abbreviates →factor. For a rewrite system R, we define →R as
the union of the rewrite relations of its rules. For a relation ρ on Σ∗ and a set L ⊆ Σ∗, let
ρ(L) = {y | ∃x ∈ L, (x, y) ∈ ρ}. Hence the set of R-reachable strings from L is →∗R(L), or
R∗(L) for short. A language L ⊆ Σ∗ is closed w.r.t. R if →R(L) ⊆ L.

I Example 2.1. For R = {cc →factor bc, ba →factor ac, c →suffix bc, b →suffix ac}, we have
bbb→suffix bbac→factor bacc. The reachability set R∗({bc, ac}) is (a+ b)b∗c. This set is closed
with respect to R.

A rewriting system R over Σ is called terminating on L ⊆ Σ∗, if for each w ∈ L, each
R-derivation starting at w is finite, and R is called terminating, written SN(R), if it is

1 The Termination Problems Database, Version 10.6, see http://termination-portal.org/wiki/TPDB.
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terminating on Σ∗. A rewriting system R is called terminating relative to a rewriting system
S on L, if each (R ∪ S)-derivation starting in L has a only a finite number of R rule
applications. If L is not given, we mean Σ∗ and write SN(R/S).

2.2 Forward Closures

Given a rewrite system R over alphabet Σ, a closure C = (l, r) of R is a pair of strings with
l→+

R r such that each position of r is involved in some step of the derivation. In particular,
we use forward closures [15].

The set FC(R) of forward closures of R is defined as the least set of pairs (l, r) of strings
that contains R and satisfies

if (s, xuy) ∈ FC(R) and (u, v) ∈ FC(R) then (s, xvy) ∈ FC(R),
if (s, xu) ∈ FC(R) and (uy, v) ∈ FC(R) for u 6= ε 6= y then (sy, xv) ∈ FC(R).

The set FC(R) can also be characterized without recursion in the second partner, as observed
by Herrmann [11] in the term rewriting case. This can be used to recursively characterize
the set RFC(R) = rhs(FC(R)) of right hand sides of forward closures directly [6].

RFC(R) can also be characterized by factor and suffix rewriting.

I Proposition 2.2. RFC(R) = (R ∪ forw(R))∗(rhs(R)), where

forw(R) = {l1 →suffix r | (l1l2 → r) ∈ R, l1 6= ε 6= l2}.

They are related to termination by

I Theorem 2.3 ([2]). R is terminating on Σ∗ if and only if R is terminating on RFC(R).

For a self-contained proof see Section 6 in [26].

I Example 2.4. For R = {cc → bc, ba → ac} we have forw(R) = {c →suffix bc, b →suffix ac}
and RFC(R) = (a+ b)b∗c, cf. Example 2.1. As RFC(R) contains no R-redex, R is trivially
terminating on RFC(R), therefore R is terminating by Theorem 2.3.

Later in the paper, we use tiled rewriting to approximate RFC(R), and we obtain the
termination proof of Example 2.4 automatically, see Examples 3.10 and 4.3.

2.3 Partial Algebras and Partial Models

We will recall concepts and notation from [3]. A partial Σ-algebra A = (A, J·K) consists of
a non-empty set A and for each n-ary f ∈ Σ a partial function JfK : An ⇀ A. Given A
and a partial assignment of variables α : V ⇀ A, the interpretation Jt, αK of t ∈ Term(Σ, V )
is defined as usual, noting that it will not always be defined. If t is ground, we simply
write JtK. A partial algebra is a partial model of a rewrite system R if for each rewrite rule
(l→ r) ∈ R, and each assignment α : Var(l)→ A, definedness of Jl, αK implies Jl, αK = Jr, αK.
For a partial Σ-algebra A = (A, J·K), a term t ∈ Term(Σ, X), and a partial assignment
α : Var(t) ⇀ A, let Jt, αK∗ denote the set of defined values of subterms of t under α, i. e.,
{Js, αK | s E t ∧ Js, αK is defined}. For T ⊆ A, let LangA(T ) denote the set ot ground terms
that can be evaluated inside T , i. e., {t ∈ Term(Σ) | JtK∗ ⊆ T}, and let LangA = LangA(A).
Note that a partial algebra is a deterministic (tree) automaton with set of states A, and
partiality means that the automaton may be incomplete.

FSCD 2019
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2.4 Languages defined by Tilings
A strictly locally testable language is specified by considering prefixes, factors, and suffixes
of bounded length, called tiles. We give an equivalent definition that allows a uniform
description, using end markers C,B /∈ Σ. A similar formalization is employed for two-
dimensional tiling in [8].

I Definition 2.5. For an alphabet Γ, k ≥ 1 and ai ∈ Γ, the k-tiled version of a string
a1 . . . an is the string over Γk of all k-tiles, i. e., factors of length k:

tiledk(a1 . . . an) = [a1 . . . ak, a2 . . . ak+1, . . . , an−k+1 . . . an]

This string is empty in case n < k. Let tilesk(w) denote alphabet(tiledk(w)).

I Definition 2.6. For k ≥ 0 and w ∈ Σ∗, the k-bordered version of w is bordk(w) = CkwBk

over Σ ∪ {C,B}. By btiledk(w) we abbreviate tiledk(bordk−1(w)), and btilesk(w) stands for
alphabet(btiledk(w)).

I Example 2.7. btiled2(abbb) = tiled2(bord1(abbb)) = tiled2(CabbbB) = [Ca, ab, bb, bb, bB],
thus btiles2(abbb) = {Ca, ab, bb, bB}. Further, btiles2(ε) = {CB}, btiles2(a) = {Ca, aB}, and
btiled3(a) = [CCa,CaB, aBB].

I Definition 2.8. For k ≥ 1, the language defined by a set of tiles T ⊆ btilesk(Σ∗) is

Lang(T ) = {w ∈ Σ∗ | btilesk(w) ⊆ T}.

This is a characterization of the class of strictly locally k-testable languages [16, 23], a
subclass of regular languages.

I Example 2.9. For k = 2 and T = {Ca, ab, ba, aB} we obtain Lang(T ) = a(ba)∗.

3 Tiled Rewrite Systems and Shift Algebras

We apply the method of semantic labelling w.r.t. a partial model to transform a local
termination problem to a global one. Our contribution is to use the k-shift algebra. We
obtain Algorithm 4.1 that over-approximates reachability sets w.r.t. rewriting, and is guaran-
teed to halt.

One application is to approximate right-hand sides of forward closures, to prove global
termination (Algorithm 5.1). Later, we approximate right-hand sides of overlap closures to
prove relative termination (Algorithm 8.1).

Our intended application area is string rewriting. For proving correctness we want to use
concepts and results from local termination [3], so we need a translation to term rewriting.
We view strings as terms with unary symbols, and a nullary symbol (representing ε), where
the rightmost (!) position in the string is the topmost position in the term. As in [3],
we choose this order (left to right in the string means bottom to top in the term) since
we later use deterministic automata, working from left to right on the string, realising
evaluation in the algebra, which goes bottom to top. This choice also has the notational
consequence that a string rewriting rule, e. g., ab→ baa, is translated to a term rewriting
rule ((z)a)b→ ((z)b)a)a, where z is a variable, which we abbreviate to (z)ab→ (z)baa. This
is just postfix notation for function application, recommended also by Sakarovitch [18], p. 12.

I Definition 3.1 (The k-shift algebra). For T ⊆ btilesk(Σ∗), the partial algebra Shiftk(T )
over signature Σ∪ {ε,B} has domain tilesk−1(C∗Σ∗B∗), the interpretation of ε is Ck−1, and
each letter (unary symbol) c ∈ Σ ∪ {B} is interpreted by the unary function that maps p to
Suffixk−1(pc) if pc ∈ T , and is undefined otherwise.
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We have the following obvious connection (modulo the translation between words and
terms) between the language of the algebra (i. e., all terms that have a defined value) and
the language of the set of tiles (i. e., all words that can be covered):

I Proposition 3.2. For any set of k-tiles T , LangShiftk(T ) = Prefix(Lang(T ) ·Bk−1).

We need the prefix closure since a language of a partial algebra always is subterm-closed,
according to the definition from [3], a feature that had already been criticised in [4].

To apply semantic labelling, we need a partial algebra that is a partial model. A k-shift
algebra is a model for a rewrite system R only if R does not change the k−1 topmost symbols.
This property can be guaranteed by the following closure operation that also translates our
notion of constrained string rewriting to the standard notion of term rewriting:

I Definition 3.3. For a constrained string rewriting system R over Σ define its context
closure, the term rewriting system CCk(R) over Σ ∪ {ε,B}, where ε is a constant, all other
symbols are unary, and z is a variable symbol, as follows. Note that the second subset consists
of ground rules.

CCk(R) = {(z)ly → (z)ry | (l→factor r) ∈ R, y ∈ tilesk−1(Σ∗B∗)} ∪
{(ε)ly → (ε)ry | (l→prefix r) ∈ R, y ∈ tilesk−1(Σ∗B∗)} ∪
{(z)ly → (z)ry | (l→suffix r) ∈ R, y = Bk−1}

Constrained rewrite steps of R on Σ∗ are directly related to term rewrite steps of the
context closure of R on (the set of terms corresponding to) Σ∗Bk−1:

I Proposition 3.4. s→R t iff (ε)sBk−1 →CCk(R) (ε)tBk−1.

Since CCk(R) does keep the k − 1 topmost (rightmost) symbols intact, the shift algebra
of T is a partial model provided it contains a sufficiently large set of tiles:

I Proposition 3.5. For a set of k-tiles T and a rewriting system R, if LangShiftk(T ) is closed
with respect to R, then Shiftk(T ) is a partial model for CCk(R).

In Section 4 we provide an algorithm for constructing such a closed set T .
Given a partial model, we use it for semantic labeling. The labeling of CCk(R) with respect

to Shiftk(T ) (see [3], Def. 6.3) produces a term rewriting system that can be re-transformed
to a string rewriting system by replacing each function symbol c, that is labelled with an
element p from the algebra, to the string (the tile) pc. The following definition avoids the
round-trip, and shows how to label the string rewriting system directly.

I Definition 3.6. For a rule l →c r over signature Σ with c ∈ {factor, prefix, suffix}, we
define a set of rules over signature btilesk(Σ∗) by

btiledk(l→factor r) = {tiledk(xly)→factor tiledk(xry) | x ∈ TC, y ∈ TB}
btiledk(l→prefix r) = {tiledk(xly)→prefix tiledk(xry) | x = Ck−1, y ∈ TB}
btiledk(l→suffix r) = {tiledk(xly)→suffix tiledk(xry) | x ∈ TC, y = Bk−1}

where TC = tilesk−1(C∗Σ∗), TB = tilesk−1(Σ∗B∗), and for a set of tiles T ⊆ btilesk(Σ∗) let

btiledT (l→c r) = btiledk(l→c r) ∩ T ∗ × T ∗ × {c},

the set of tiled rules that use tiles from T only. Both btiledk and btiledT are extended to sets
of rules. Note that {Ck−1} = tilesk−1(C∗) and {Bk−1} = tilesk−1(B∗).

FSCD 2019
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I Example 3.7. The set btiled2(ba→factor ac) contains 16 rules, among them [Cb, ba, aB]→
[Ca, ac, cB], [Cb, ba, aa] → [Ca, ac, ca], . . . , [ab, ba, aB] → [aa, ac, cB], . . . , [cb, ba, ac] →
[ca, ac, cc], and btiled2(b →suffix ac) = {[Cb, bB] → [Ca, ac, cB], [ab, bB] → [aa, ac, cB],
[bb, bB]→ [ba, ac, cB], [cb, bB]→ [ca, ac, cB]}. ForS = {ac, ba, bb, cc} we get btiledS(ba→factor
ac) = {[bb, ba, ac]→ [ba, ac, cc]} and for any strict subset T of S, btiledT (ba→factor ac) = ∅.

This translation is faithful, in the following sense:

I Proposition 3.8. btiledT (R) is exactly the (string rewriting translation of the) labeling of
CCk(R) with respect to Shiftk(T ).

To actually enumerate btiledT (R) in an implementation, we will fuse both parts of
Definition 3.6 by restricting contexts x and y to be elements of T ∗ right from the beginning.

I Theorem 3.9. For k ≥ 1 and T ⊆ btilesk(Σ∗), if Lang(T ) is closed with respect to R, then
R is terminating on Lang(T ) if and only if btiledT (R) is terminating.

Proof. By Proposition 3.8 and Theorem 6.4 from [3], applicable due to Proposition 3.5. J

I Example 3.10 (Example 2.4 continued). Let R = {cc → bc, ba → ac}. Then RFC(R) =
Lang(T ) for the set of tiles T = {Ca,Cb, ab, ac, bb, bc, cB}. The set RFC(R) is closed w.r.t. R
by definition and tiledT (R) is empty, therefore terminating. By Theorem 3.9, R is terminating
on RFC(R), thus by Theorem 2.3, R is terminating. See Example 4.3 for a computation that
produces T from R.

4 Completion in Shift Algebras

To apply Theorem 3.9, we need an R-closed set T of tiles. The following algorithm computes
such a set by starting from an initial set S, and successively adding tiles that become reachable
via R-steps. This is similar to other algorithms that produce rewrite-closed automata [5].
Due to the algebra we use, we have the stronger property of guaranteed termination.

I Algorithm 4.1.
Specification:

Input: A term rewriting system R over Σ, a finite partial Σ-algebra A = (A, J·K), a set
S ⊆ A.
Output: A minimal set T ⊆ A such that S ⊆ T and LangA(T ) is closed w.r.t. R.

Implementation: Let T =
⋃

i Ti for the sequence S = T0 ⊆ T1 ⊆ · · · where

Ti+1 = Ti ∪
⋃
{Jr, αK∗ | (l→ r) ∈ R,α : Var(l)→ Ti, Jl, αK∗ ⊆ Ti}

where it is sufficient to compute a finite prefix.

Proof. This algorithm terminates, since the sequence Ti is increasing, and bounded from
above by A, so it is eventually constant. The result is R-closed by construction. J

This algorithm will be applied to CCk(R), and we construct the context closure on the
fly: in each step, we use only those contexts that are accessible in Shiftk(Ti).

Let us first specify the representation of Shiftk(T ). This algebra is a deterministic
automaton, possibly incomplete.
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I Definition 4.2. For k ≥ 1, a finite automaton over alphabet Σ ∪ {C,B} is a k-shift
automaton if its states are in tilesk−1(C∗Σ∗B∗), its initial state is Ck−1, its final state is
Bk−1, and for each transition p

c→ q, state q is the suffix of length k − 1 of pc. Such an
automaton A represents the set of tiles (of length k) tiles(A) = {pc | p c→A q}.

Condition Jl, αK∗ ⊆ Ti of Algorithm 4.1 is equivalent to the existence of a path in the
automaton Ti that starts at state p = α(z) and is labelled l. We call this a redex path p l→ q.
Adding tiles then corresponds to adding edges and states. Whenever we add edges for some
reduct path p

r→ q′, corresponding to Jr, αK∗ ⊆ Ti, the target state of each transition is
determined by the shift property of the automaton. This is in contrast to other completion
methods where there is a choice of adding fresh states, or re-using existing states.

The set of states could be defined to be btilesk−1(Σ∗) in advance, but for efficiency, we
only store accessible states, and add states as soon as they become accessible.

With the automata representation, we implement btiledT (R) as follows: To determine
xly in Definition 3.6, we compute all pairs p, q of states with p l→ q. This can be done by
starting at each p, but our implementation uses the product-of-relations method of [22]. Note
that p, the state where the redex path starts, is actually x, the left context.

From state q, we follow all paths of length k− 1 to determine the set of y (right contexts).
For each such pair (x, y), we add the path starting at x labeled ry. Note that this path (for
the context-closed reduct) meets the path for ly (the context-closed redex) in the end, since
the automaton is a shift automaton. The tree search for possible y can be cut short if we
detect that these paths meet earlier.

The following example demonstrates completion only. For examples that use the completed
automaton for semantic labeling, see Section 5.

I Example 4.3 (Example 3.10 continued). In order to illustrate the use of shift automata for
implementing Algorithm 4.1, consider again R = {cc→ bc, ba→ ac} with forw(R) = {c→suffix
bc, b→suffix ac}. We choose k = 2 and represent btiled2(rhs(R)) = {[Cb, bc, cB], [Ca, ac, cB]}
by the left automaton in Figure 1. Here, completion refers to the set of rules C = CC2(R ∪
forw(R)) = {ccy → bcy, bay → acy, cB → bcB, bB → acB | y ∈ {a, b, c,B}}. In the initial
automaton we look for paths of the form p

l→ q for some rule l → r ∈ C. Two such paths
exist, a cB→ B and b

cB→ B. Completion therefore adds the paths a bcB→ B and b
bcB→ B for

the corresponding right-hand sides, resulting in the new edges a b→ b and b
b→ b (and no

new nodes), depicted by the right automaton A. No further completion steps are possible,
thus RFC(R) ⊆ Lang(tiles(A)) with tiles(A) = {Ca,Cb, ab, ac, bb, bc, cB}. Note that for this
simple example, ⊆ could be replaced by equality, but in general the algorithm yields an
over-approximation.

C b

a c B

a

b

c

c

B

C b

a c B

a

b

b

c

c

b

B

Figure 1 Constructing the shift automaton for RFC({cc → bc, ba → ac}) for k = 2.
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5 Examples of Termination Proofs via Forward Closures

We transform a termination problem as follows:

I Algorithm 5.1.
Specification:

Input: A rewriting system R over Σ, a number k
Output: A rewriting system R′ over btiledk(Σ) such that SN(R) ⇐⇒ SN(R′)

Implementation (and correctness): By Theorem 2.3, SN(R) iff SN(R) on RFC(R). By
Proposition 2.2, RFC(R) = (R∪forw(R))∗(rhs(R)). By Algorithm 4.1, we construct T such
that Lang(T ) contains rhs(R) and is closed w.r.t. R∪ forw(R), that is, RFC(R) ⊆ Lang(T ).
We then use the algebra Shift(T ) as a partial model for CCk(R). By Theorem 3.9 and the
previous, SN(R) iff SN(btiledT (R)).

This approach had already been described in [3], Section 8, but there it was left open how
to find a suitable partial algebra. An implementation used a finite-domain constraint solver,
but then only small domains could be handled. In the present paper, we instead construct a
suitable k-shift algebra by completion. Even if it is large, it might help solve the termination
problem, cf. Example 5.6 below. We give a few smaller examples first.

I Example 5.2. We apply Algorithm 5.1 with k = 3 to R = {ab3 → bbaab}. We obtain 11
reachable tiles and 12 labeled rules. All of them can be removed by weights. We start with
the automaton for btiled3(bbaab) (solid edges in Figure 2).

C2 Cb b2

ba a2

ab bB B2b b

a

a

b

B B

b

b

b

a

Figure 2 The 3-shift automaton for RFC(ab3 → bbaab).

It contains no R-redex. There is a forw(R)-redex for ab→suffix bbaab starting at ba. We
add a reduct path, starting with two fresh (dashed) edges. This creates a forw(R)-redex for
ab→suffix bbaab from b2. To cover this, we add the loop at b2 (dotted). Now we have a R-redex
ba→ a2 → ab→ b2 → b2. The corresponding reduct path is ba→ ab→ b2 → ba→ a2 → ab.
The redex needs to be right-context-closed with a, and with b, as these are the possible
continuations from b2. So we context-close the reduct path as well, adding one more edge
ab

a→ ba (dash-dotted), as ab b→ b2 is already present. This introduces an R-redex from ab

to b2, with right extensions a and b. The extended reduct paths are already present. The
automaton is now closed with respect to R ∪ forw(R). It represents the set of tiles

T = {CCb,Cbb, bba, bbb, baa, bab, aab, aba, abb, abB, bBB}.

Absent from T are
CCB,CBB,CΣB (meaning that RFC(R) does not contain strings of length 0 or 1),
as well as CaΣ,Cba,ΣaB (meaning that RFC(R) starts with b2 and ends with b),
and a3 (meaning that RFC(R) does not have a3 as a factor).
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Finally, we compute btiledT (R). There are three R-redex paths in the automaton,
starting at b2, ba, ab, respectively, and all ending in b2. They will be right-context-closed by
Σ2, resulting in the following 3× 22 = 12 tiled rules, where x, y ∈ Σ:

[bba, bab, abb, b3, bbx, bxy]→ [b3, b3, bba, baa, aab, abx, bxy]
[baa, aab, abb, b3, bbx, bxy]→ [bab, abb, bba, baa, aab, abx, bxy]
[aba, bab, abb, b3, bbx, bxy]→ [abb, b3, bba, baa, aab, abx, bxy]

With the following weights, all rules are strictly decreasing:

bbb 7→ 8, bab 7→ 4, abb 7→ 3, bba 7→ 3, others 7→ 0.

This shows termination of btiledT (R), thus, of R.

The following observation, similar to semantic unlabeling [20], allows to use the partial
algebra for removing rules without labeling:

I Proposition 5.3. If the set of tiles T is R-closed, and R0 ⊆ R such that tiledT (R0) = ∅,
then SN(R) on Lang(T ) if and only if SN(R \R0) on Lang(T ).

Proof. Let R1 = R \R0. By Theorem 3.9, each R-derivation corresponds to a btiledT (R)-
derivation. By assumption, this is a btiledT (R1)-derivation. This can be mapped back to a
R1-derivation, using the same theorem. J

If R0 is nonempty, this produces a strictly smaller termination problem on the original
alphabet. This results in a modification of Algorithm 5.1:

I Algorithm 5.4.
Specification:

Input: A rewriting system R over Σ, a number k
Output: A rewriting system R′ over Σ such that SN(R) ⇐⇒ SN(R′), or failure.

Implementation: By Algorithm 4.1, construct T such that Lang(T ) contains rhs(R) and
is closed w.r.t. R ∪ forw(R), that is, RFC(R) ⊆ Lang(T ). Let R0 ⊆ R consist of all rules
(l→ r) ∈ R with btiledT (l→ r) = ∅. If ∅ 6= R0, then output R \R0, else fail.

I Example 5.5. We apply Algorithm 5.4, for k = 2, to R = {ab→ bca, bc→ cbb, ba→ acb}.
This is SRS/Zantema/z018 from TPDB. We construct the 2-shift automaton, see Figure 3, and
we find that btiledT (ab→ bca) = ∅. The algorithm outputs {bc→ cbb, ba→ acb}. Note that

C c

a

b

B

a

c

b

B

b

c

Baac

bc

Figure 3 The 2-shift automaton for RFC(z018).
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the automaton contains redexes for (a→suffix bca) ∈ forw(ab→ bca) (from states C, c, and b)
but the criterion is the occurrence of ab → bca only. To handle the resulting termination
problem, we reverse all strings in all (remaining) rules, obtaining {cb → bbc, ab → bca}.
Again we apply Algorithm 5.4 and this time we find that ab does not occur in the automaton.
This leaves {cb→ bbc}. Applying the algorithm one more time, we find that there is no cb
in the 2-shift automaton for RFC(cb→ bbc). The algorithm outputs ∅, and we have proved
termination of z018.

I Example 5.6. We prove termination of Zantema’s problem {a2b2 → b3a3}, a classical
benchmark. We give an outline of the proof that consists of a chain of transformations.
Each node (r, s) denotes a rewrite system with r rules on s letters. The arrows −→RFCk

All and
−→RFCk

Rem denote application of Algorithm 5.1 and Algorithm 5.4 respectively, and W→ denotes
removal of rules by weights.

(1, 2) RFC2−→
All

(4, 4) RFC5−→
Rem

(3, 4) RFC2−→
All

(12, 8) RFC3−→
All

(105, 26) W→ (60, 26)

RFC5−→
Rem

(37, 26) RFC2−→
All

(97, 44) W→ (65, 43) RFC5−→
Rem

(36, 43) W→ (28, 43) RFC2−→
All

(86, 68)

W→ (50, 62) RFC3−→
All

(246, 128) W→ (42, 84) RFC5−→
Rem

(2, 44) W→ (0, 0)

It is even possible to give a termination proof without using weights at all:

(1, 2) RFC2−→
All

(4, 4) RFC5−→
Rem

(3, 4) RFC3−→
All

(40, 15) RFC2−→
All

(105, 26) RFC5−→
Rem

(65, 26) RFC5−→
Rem

(52, 26)

RFC5−→
Rem

(37, 26) RFC2−→
All

(97, 44) RFC5−→
Rem

(37, 43) RFC5−→
Rem

(36, 43) RFC2−→
All

(110, 68) RFC5−→
Rem

(80, 64)

RFC2−→
All

(192, 93) RFC5−→
Rem

(96, 89) RFC3−→
Rem

(58, 79) RFC5−→
Rem

(32, 66) RFC3−→
Rem

(0, 0).

I Example 5.7. We show that our method can be applied as a preprocessor for other termin-
ation provers. We consider R = {0000 → 1001, 0101 → 0010}, which is SRS/Gebhardt/16
from the TPDB. After the chain of transformations

(2, 2) RFC3−→
All

(98, 20) W→ (24, 11) RFC2−→
Rem

(17, 10) W→ (15, 8),

the resulting problem can be solved by TTT2 [14] quickly, via KBO. TTT2 did not solve this
problem in the Termination Competition 2018.

6 Overlap Closures and Relative Termination

We now apply our approach to prove relative termination. With relative termination, the
RFC method does not work.

I Example 6.1. R/S may nonterminate although R/S terminates on RFC(R ∪ S). For
example, let R = {ab→ a} and S = {c→ bc}. We have RFC(R ∪ S) = a ∪ b+c. This does
not have a factor ab, therefore SN(R/S) on RFC(R ∪ S). On the other hand, ¬SN(R/S)
because of the loop abc→R ac→S abc.

Therefore, we use overlap closures instead. To prove correctness of this approach, we use
a characterization of overlap closures as derivations in which every position between letters
is touched. A new left-recursive characterization of overlap closures (Corollary 7.1) allows us
to enumerate ROC(R) by completion.
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Let OC(R) denote the set of overlap closures [10], and let ROC(R) = rhs(OC(R)). A
position between letters in the starting string of a derivation is called touched by the derivation
if it has no residual in the final string.

I Example 6.2. For the rewrite system R = {ab→ baa} over alphabet {a, b}, all positions
labelled by | in the starting string a|a|ba|b are touched by the derivation aabab→R abaaab→R

baaaaab→R baaaabaa. The position between b and a in the starting string has the residual
position between a and b in the final string.

I Lemma 6.3. [7, Lemma 3] The set OC(R) of overlap closures of R is the set of all
R-derivations where all initial positions between letters are touched.

Termination has been characterized by forward closures ([2]). In the following we obtain
a characterization of relative termination by overlap closures.

I Definition 6.4. For a finite or infinite R-derivation A, let Inf(A) denote the set of rules
that are applied infinitely often in A. (For a finite derivation, Inf(A) = ∅.)

I Proposition 6.5. For each R-derivation A, there are finitely many R-derivations B1, . . . , Bk

that start in ROC(R), and Inf(A) =
⋃

i Inf(Bi).

Proof. If A is empty, then k = 0. If A has a finite prefix that is an OC, then k = 1 and
B1 is the (infinite) suffix. Else, the start of A has a position that is never touched during
A. We can then split the derivation, and use induction by the length of the start of the
derivation. J

I Proposition 6.6. SN(R/S) if and only if for each (R ∪ S)-derivation A, Inf(A) ∩R = ∅.

The following theorem says that for analysis of relative termination, we can restrict to
derivations starting from right-hand sides of overlap closures.

I Theorem 6.7. SN(R/S) if and only if SN(R/S) on ROC(R ∪ S)).

Proof. The implication from left to right is trivial, as we consider a subset of derivations.
For the other direction, let A be an (R ∪ S)-derivation. Using Proposition 6.5 we obtain
B1, . . . , Bk for A such that

Inf(A) ∩R = (
⋃

i

Inf(Bi)) ∩R =
⋃

i

(Inf(Bi) ∩R) =
⋃

i

∅ = ∅,

thus SN(R/S) by Proposition 6.6. J

7 Computation of Overlap Closures by Completion

We employ the following left-recursive characterisation of ROC(R) (proved in the Appendix)
that is suitable for a completion algorithm.

I Corollary 7.1. ROC(R) is the least set S such that
1. rhs(R) ⊆ S,
2. if tx ∈ S and (xu, v) ∈ R for some t, x, u 6= ε then tv ∈ S;
3. if xt ∈ S and (ux, v) ∈ R for some t, x, u 6= ε then vt ∈ S;
4. if tut′ ∈ S and (u, v) ∈ R then tvt′ ∈ S;
5. if tx ∈ S and yv ∈ S and (xwy, z) ∈ R for some t, x, y, v 6= ε then tzv ∈ S.

FSCD 2019
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Note that Item 4 is the standard (factor) rewriting relation of R, Item 2 is suffix rewriting
with respect to forw(R), and Item 3 is prefix rewriting with respect to

backw(R) = {l2 →prefix r | (l1l2 → r) ∈ R, l1 6= ε 6= l2}.

Item 5 is an inference rule with two premises, and cannot be written as a rewrite relation.
As we still want to apply the partial algebra approach, we have two options: modify that
approach to allow more premises, or modify our translation, as follows.

Starting from the automaton constructed in Section 3, we add a path from final state
Bk−1 to initial state Ck−1, consisting of k − 1 transitions labelled C. The language of this
automaton is Lang(T )Bk−1(Ck−1 Lang(T )Bk−1)∗. Note that this is still a shift automaton.
Then an application of Item 5 of Corollary 7.1 with (xwy, t) ∈ R is realized by a standard
rewrite step xBk−1Ck−1y →factor t.

Similar to Definition 3.1, Proposition 3.2, Definition 3.3, we have

I Definition 7.2. For T ⊆ btilesk(Σ∗) the looped partial algebra Shiftok(T ) has signature
Σ ∪ {C,B}, domain tilesk−1((Ck−1Σ∗Bk−1)∗), the interpretation of ε is Ck−1, and each
letter c ∈ Σ∪{C,B} maps p to Suffixk−1(pc), if pc ∈ T ∪ tilesk(Bk−1Ck−1), and is undefined
otherwise.

I Proposition 7.3. For a set of tiles T , we have

LangShifto
k

(T ) = Prefix(Lang(T )Bk−1(Ck−1 Lang(T )Bk−1)∗).

I Definition 7.4. Let CCo
k(R) = {(z)xBk−1Ck−1ye→ (z)re | (xwy →factor r) ∈ R, x 6= ε 6=

y, e ∈ tilesk−1(Σ∗B∗)}.

The purpose of this construction is:

I Proposition 7.5. For a set of k-tiles T and a rewriting system R, if LangShifto
k

(T ) is closed
with respect to CCk(R ∪ forw(R) ∪ backw(R)) ∪ CCo

k(R), then ROC(R)Bk−1 ⊆ LangShifto
k

(T ).

I Example 7.6. We illustrate the completion algorithm to obtain an approximation for
ROC(R), for R = {a3 → a2b2a2}. We take k = 4 and start with the automaton for rhs(R),
and include the backwards path from B3 to C3 (the solid arrows in Figure 4).

C3 C2a Ca2 a2b ab2 b2a ba2 B3

a3

a a b b a a B3

C3

a
b

b

Figure 4 The 4-shift automaton for ROC(a3 → a2b2a2).

We now consider rules (aB3C3ae → a2b2a2e) ∈ CCo(R). These can only start at state
b2a, and the only choice for the right 3-context e in those rules is abb. The reduct path
needs two fresh edges (dashed). For rules (a2B3C3ae→ a2b2a2e) ∈ CCo(R), a redex must
start in ab2, and the only right 3-context e is still abb. The reduct path needs one extra
edge (dotted). The automaton is now closed also with respect to the other operations. We
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compute btiledT (R). There is just one R-redex, starting at ab2, with just one right extension
bba. This creates just one labeled rule

[abba, bbaa, baaa, aaab, aabb, abba]→ [abba, bbaa, baab, aabb, abba, bbaa, baab, aabb, abba].

Of course, the actual implementation will not explicitly represent the path labeled C3.
Similar to Theorem 3.9 we have

I Theorem 7.7. If Lang(T ) is closed w.r.t. R ∪ S, then SN(R/S) on Lang(T ) if and only if
SN(btiledT (R)/ btiledT (S)).

For the proof, we need an obvious extension of [3] Thm 6.4 for relative termination, by
keeping track of the origin (R or S) of labeled rules.

8 Examples of Relative Termination Proofs via Overlap Closures

We transform global relative termination SN(R/S) as follows:

I Algorithm 8.1.
Specification:

Input: rewriting systems R,S over Σ, number k
Output: rewriting systems R′, S′ over btiledk(Σ) such that SN(R/S) ⇐⇒ SN(R′/S′).

Implementation (and correctness): By Theorem 6.7, SN(R/S) iff SN(R/S) on ROC(R∪S).
By Corollary 7.1, ROC(R) is obtained by completion. By Algorithm 4.1, we construct
T such that Lang(T ) contains rhs(R) and is closed w.r.t. CC(R ∪ S) ∪ (forw(R ∪ S) ∪
backw(R ∪ S)) ∪ CCo(R ∪ S), that is, ROC(R) ⊆ Lang(T ). By Theorem 3.9 and the
previous, SN(R/S) iff SN(btiledT (R)/ btiledT (S)).

It is often the case that SN(btiledT (R)/ btiledT (S)) can be obtained with some easy
method, e. g., weights.

Similar to Algorithm 5.4, there is a variant that removes rules in case btiledT (R0∪S0) = ∅.

I Example 8.2. SN(ababa → ε/ab → bbaa) (SRS_Relative/Waldmann_06_relative/r4
from TPDB) can be solved quickly by Algorithm 8.1 with k = 4. The tiled system has 270
rules on 33 tiles, and can be solved with weights. Alternatively, tiling of width 5 produces 51
reachable tiles, where the left-hand side of the strict rule is not covered, so can be removed.

In the Termination Competition 2018, AProVE [9] solved this benchmark with double
root labeling, which is very similar to tiling of width 3, but this took more than 4 minutes.

I Example 8.3. The bowls and beans problem had been suggested by Vincent van
Oostrom [21]. It asks to prove termination of this relation:

If a bowl contains two or more beans, pick any two beans in it and move one of them
to the bowl on its left and the other to the bowl on its right.

In a direct model, a configuration is a function Z→ N with finite support. In a rewriting
model, this is encoded as a string. Several such models have been submitted to TPDB by Hans
Zantema (SRS_Standard/Zantema_06/beans[1..7]). We consider here a formalisation as
a relative termination problem (SRS_Relative/Waldmann_06_relative/rbeans).

{baa→ abc, ca→ ac, cb→ ba}/{ε→ b}

FSCD 2019
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Here, a is a bean, b separates adjacent bowls, and c transports a bean to the next bowl. The
relative rule is used to add extra bowls at either end – although it can be applied anywhere,
meaning that any bowl can be split in two, anytime, which does not hurt termination. To
the best of our knowledge, this benchmark problem had never been solved in a termination
competition. We can now give a termination proof via tiling of width 3, and using overlap
closures. This results in a relative termination problem with 560 rules on 47 letters where
305 rules can be removed by weights, and the remaining strict rules by KBO.

The following example applies Algorithm 8.1 to a relative termination problem that comes
from the dependency pairs transformation.

I Example 8.4. The system {ababaababa → abaababababaab} is part of the enumeration
SRS_Standard/Wenzel_16, and it was not solved in Termination Competitions up to 2018.
In the competition of 2019, Matchbox obtained a termination proof with outline

(1, 2) DP→ (9, 3) ROC3−→
All

(56, 17) W→ (34, 14) EDG→ (24, 14) ROC3−→
Rem

(18, 10) ROC3−→
All

(276, 46)

W→ (212, 39) EDG→ (206, 39) ROC3−→
Rem

(151, 29) ROC3−→
All

(2558, 138) W→ (1962, 115)

EDG→ (1960, 115) ROC3−→
Rem

(1082, 86) W→ (156, 44),

where −→ROCk

All and −→ROCk

Rem denote an application of Algorithm 8.1, or its variant for rule
removal, respectively. DP→ stands for the dependency pairs transformation, and EDG→ denotes
the restriction to a strongly connected component of the (estimated) dependency graph. The
proof ends successfully with an empty graph.

There are two more systems {ababaababa → abaabababaab} and
{abaababaab→ aababaabaabab} with the same status. Intermediate systems have up to 3940
rules.

9 Experimental Evaluation

Sparse tiling is implemented in the termination prover Matchbox2 that won the categories
SRS Standard and SRS Relative in the Termination Competition 2019. Matchbox employs a
parallel proof search with a portfolio of algorithms, including Algorithm 8.1.

For relative termination, we use weights, matrix interpretations over the naturals, and
tiling of widths 2, 3, 5, 8 (in parallel), cf. Example 8.3. For standard termination, we use
RFC matchbounds, and (in parallel) the dependency pairs (DP) transformation, creating a
relative termination problem, to which we apply weights, matrix interpretations over natural
and arctic numbers, and tiling of width 3 (only), cf. Example 8.4.

Table 1 shows performance of variants of these strategies on SRS benchmarks of TPDB,
as measured on Starexec, under the Termination profile (5 minutes wall clock, 20 minutes
CPU clock, 128 GByte memory). In all experiments, we keep using weights and (for standard
termination) the DP transform. The bottom right entry of each sub-table contains the result
for the full strategy, used in competition.

We note a strong increase in the last column (matrices:yes) of the left sub-table. We
conclude that sparse tiling is important for relative termination proofs. The right sub-table
shows a very weak increase in the corresponding column. We conclude that with Matchbox’
current search strategy for standard termination, other methods overshadow tiling, e. g.,
RFC matchbounds are used in 578 proofs, and arctic matrices in 389 proofs.

2 https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox

https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox
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Table 1 Number of termination proofs obtained by variants of Matchbox.

SRS Relative matrices
Starexec Job 33975 no yes

tilling no 1 72
yes 176 225

SRS Standard RFC matchbounds, matrices
Starexec Job 33976 none both

tilling no 100 1122
yes 512 1133

For relative termination, the method of tiling, with weights, but without matrices, is
already quite powerful with 176 proofs, a number between those for AProVE (163) and
MultumNonMulta (192).

Table 2 shows the widths used in tiling proofs for relative SRS. The sum of the bottom
row is larger than the total number of proofs (225) since one proof may use several widths.

Table 2 Number of termination proofs for relative SRS, using given width of tiling.

width 2 3 5 8
proofs 150 57 38 11

We observe that short tiles appear more often. We think the reason is that larger tiles
tend to create larger systems that are more costly to handle, while resources (time and
space on Starexec) are fixed. This is also the reason for using width 3 only, for standard
termination.

10 Conclusion

We have presented sparse tiling, a method to compute a regular over-approximation of
reachability sets, using sets of tiles, represented as automata, and we applied this to the
analysis of termination and relative termination. The method is an instance of semantic
labeling via a partial algebra. Our contribution is the choice of the k-shift algebra.

We also provide a powerful implementation in Matchbox that contributed to winning
the SRS categories in the Termination Competition 2019. An exact measurement of that
contribution is difficult since termination proof search (in Matchbox) depends on too many
parameters.

Interesting open questions (that are independent of any implementation) are about the
relation between sparse tilings of different widths, and between sparse tilings and other
methods, e.g., matchbounds.

Since our focus for the present paper is string rewriting, we also leave open the question
of whether sparse tiling would be useful for termination of term rewriting.
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A Composition Trees of Overlap Closures

In this section we derive a left-recursive characterization of overlap closures in string rewriting.
By left-recursive, we mean that the recursive descent takes place only in the left partners.
The definition of overlap closures recurses in both arguments (we always overlap a closure
with a closure):

I Definition A.1 ([10]). For a rewrite system R, the set OC is defined as the least set
such that
1. R ⊆ OC,
2. if (s, tx) ∈ OC and (xu, v) ∈ OC for some t, x, u 6= ε then (su, tv) ∈ OC;
2’. if (s, xt) ∈ OC and (ux, v) ∈ OC for some t, x, u 6= ε then (us, vt) ∈ OC;
3 if (s, tut′) ∈ OC and (u, v) ∈ OC then (s, tvt′) ∈ OC;
3’. if (u, v) ∈ OC and (svs′, t) ∈ OC then (sus′, t) ∈ OC.

The following recursive definition is left-recursive (we overlap a closure with a rule). We
need an extra rule (Item 4) and drop a rule (Item 3’), the others correspond to Definition A.1.

I Definition A.2. For a rewrite system R, the set OC′ is defined as the least set such that
1. R ⊆ OC′,
2. if (s, tx) ∈ OC′ and (xu, v) ∈ R for some t, x, u 6= ε then (su, tv) ∈ OC′;
2’. if (s, xt) ∈ OC′ and (ux, v) ∈ R for some t, x, u 6= ε then (us, vt) ∈ OC′;
3. if (s, tut′) ∈ OC′ and (u, v) ∈ R then (s, tvt′) ∈ OC′;
4. if (s, tx) ∈ OC′ and (u, yv) ∈ OC′ and (xwy, z) ∈ R for some t, x, y, v 6= ε then

(swu, tzv) ∈ OC′.

The main result of this Appendix is that the set OC′ covers the overlap closures up to
inverse rewriting of left hand sides:

I Theorem A.3. OC = {(s, t) | s→∗R s′ ∧ (s′, t) ∈ OC′}.

Since we are interested in right-hand sides of closures, these extra rewrite steps do not hurt.
In order to prove Theorem A.3, it is useful to represent a closure by a tree that describes

the way the closure is formed: the composition tree of the closure. Each node of a composition
tree denotes an application of one of the inference rules of Definitions A.1 and A.2. An extra
node type 3’ denotes an →R-step as seen in Theorem A.3.
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I Definition A.4 ([7]). Define the signature Ω = {1, 2, 2′, 3, 3′, 4}, where 1 is unary, 4 is
ternary, and the other symbols are binary. The set CT of composition trees is defined as the
set of ground terms over Ω.

I Definition A.5. A composition tree represents a set of string pairs, as follows:

〈1〉 = {(`, r) | (`→ r) ∈ R},
〈2(c1, c2)〉 = {(su, tv) | (s, tx) ∈ 〈c1〉, (xu, v) ∈ 〈c2〉, t, x, u 6= ε},
〈2′(c1, c2)〉 = {(us, vt) | (s, xt) ∈ 〈c1〉, (ux, v) ∈ 〈c2〉, t, x, u 6= ε},
〈3(c1, c2)〉 = {(s, tvt′) | (s, tut′) ∈ 〈c1〉, (u, v) ∈ 〈c2〉},
〈3′(c1, c2)〉 = {(sus′, t) | (svs′, t) ∈ 〈c1〉, (u, v) ∈ 〈c2〉},

〈4(c1, c2, c3)〉 = {(swu, tzv) | (s, tx) ∈ 〈c1〉, (u, yv) ∈ 〈c2〉,
(xwy, z) ∈ 〈c3〉, t, x, y, v 6= ε} .

I Example A.6. The composition tree 4(1, 2(1, 1), 3′(1, 1)) denotes all pairs obtained by the
following overlaps of rewrite steps. Times flows from top to bottom. Each of the rectangles
of height 1 is a step, corresponding to a 1 node in the tree. The grey rectangle in the top
right is 2(1, 1), the grey rectangle in the bottom is 3′(1, 1).

Let CT′ denote the composition trees that do not contain the function symbol 4. By
construction we have:

I Lemma A.7. OC =
⋃

c∈CT′〈c〉.

Adding symbols 4 does not increase expressiveness, since 〈4(c1, c2, c3)〉 ⊆ 〈2(c1, 2′(c2, c3))〉.

I Lemma A.8. OC =
⋃

c∈CT〈c〉.

In the remainder of this section, we give a semantics-preserving transformation from CT
(arbitrary composition trees) to a subset that describes the right-hand side of Theorem A.3.
Let us first characterize the goal precisely.

I Definition A.9. The set CTN is given by the regular tree grammar with variables T,D
(top, deep), start variable T , and rules

T → 3′(1, T ) | D, D → 1 | 2(D, 1) | 2′(D, 1) | 3(D, 1) | 4(D,D, 1).

Rules for D correspond to the rules of Definition A.2, creating (s′, t) ∈ OC′. Rules for T
correspond to the initial derivation s→∗R s′. Therefore,

I Lemma A.10. 〈CTN 〉 = {(s, t) | s→∗R s′ ∧ (s′, t) ∈ OC′}.

We are going to construct a term rewriting system Q on Ω that has CTN as normal forms.
It must remove all non-1 symbols from the left argument of 3′, and remove all non-1 symbols
from the rightmost argument of 2, 2′, 3, and 4. Also, it must remove all 3′ that are below
some non-3′. These conditions already determine the set of left-hand sides of Q.

For each left-hand side l, the set of right-hand sides must cover l semantically:

∀l ∈ lhs(Q) : 〈l〉 ⊆
⋃

(l,r)∈Q

〈r〉.



A. Geser, D. Hofbauer, and J. Waldmann 21:19

A term rewriting system Q over signature Ω with the desired properties is defined in
Table 3. We bubble-up 3’ symbols, e. g., 2(3′(c1, c2), c3) → 3′(c1, 2(c2, c3)) (Rule 9), and
we rotate to move non-1 symbols, e. g., 2(c1, 2(c2, c3))→ 2(2(c1, c2), c3) (Rule 1). Rotation
below 3′ goes to the left. Rules 3 and 13 show that symbol 4 cannot be avoided.

Table 3 The term rewriting system Q for composition trees.

2(c1, 2(c2, c3))→ 2(2(c1, c2), c3) (1)
2(c1, 2(c2, c3))→ 2(3(c1, c2), c3) (2)

2(c1, 2′(c2, c3))→ 4(c1, c2, c3) (3)

2(c1, 2′(c2, c3))→ 3(2(c1, c2), c3) (4)
2(c1, 3(c2, c3))→ 3(2(c1, c2), c3) (5)

2(c1, 3′(c2, c3))→ 3′(c2, 2(c1, c3)) (6)

2(c1, 3′(c2, c3))→ 2(2(c1, c2), c3)) (7)

2(c1, 3′(c2, c3))→ 2(3(c1, c2), c3)) (8)

2(3′(c1, c2), c3)→ 3′(c1, 2(c2, c3)) (9)

2(c1, 4(c2, c
′
2, c3))→ 4(2(c1, c2), c

′
2, c3) (10)

2(c1, 4(c2, c
′
2, c3))→ 4(3(c1, c2), c

′
2, c3) (11)

2(c1, 4(c2, c
′
2, c3))→ 3(3(2(c1, c

′
2), c2), c3) (12)

2′(c1, 2(c2, c3))→ 4(c1, c2, c3) (13)

2′(c1, 2(c2, c3))→ 3(2′(c1, c2), c3) (14)

2′(c1, 2′(c2, c3))→ 2′(2′(c1, c2), c3) (15)

2′(c1, 2′(c2, c3))→ 2′(3(c1, c2), c3) (16)

2′(c1, 3(c2, c3))→ 3(2′(c1, c2), c3) (17)

2′(c1, 3′(c2, c3))→ 3′(c2, 2′(c1, c3)) (18)

2′(c1, 3′(c2, c3))→ 2′(2′(c1, c2), c3) (19)

2′(c1, 4(c2, c
′
2, c3))→ 4(c2, 2′(c1, c

′
2), c3) (20)

2′(c1, 4(c2, c
′
2, c3))→ 4(c2, 3(c1, c

′
2), c3) (21)

2′(c1, 4(c2, c
′
2, c3))→ 3(3(2′(c1, c2), c

′
2), c3) (22)

2′(3′(c1, c2), c3)→ 3′(c1, 2′(c2, c3)), (23)
3(c1, 2(c2, c3))→ 3(3(c1, c2), c3) (24)

3(c1, 2′(c2, c3))→ 3(3(c1, c2), c3) (25)
3(c1, 3(c2, c3))→ 3(3(c1, c2), c3) (26)

3(c1, 3′(c2, c3))→ 3(3(c1, c2), c3) (27)

3(3′(c1, c2), c3)→ 3′(c1, 3(c2, c3)) (28)

3(c1, 4(c2, c
′
2, c3))→ 3(3(3(c1, c2), c

′
2), c3) (29)

3′(2(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (30)

3′(2′(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (31)

3′(3(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (32)

3′(3′(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (33)

3′(4(c1, c
′
1, c2), c3)→ 3′(c1, 3′(c

′
1, 3′(c2, c3))) (34)

4(c1, c
′
1, 2(c2, c3))→ 4(2(c1, c2), c

′
1, c3) (35)

4(c1, c
′
1, 2(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (36)

4(c1, c
′
1, 2(c2, c3))→ 4(3(c1, c2), c

′
1, c3) (37)

4(c1, c
′
1, 2′(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (38)

4(c1, c
′
1, 2′(c2, c3))→ 4(c1, 2(c

′
1, c2), c3) (39)

4(c1, c
′
1, 2′(c2, c3))→ 4(c1, 3(c

′
1, c2), c3) (40)

4(c1, c
′
1, 3(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (41)

4(c1, c
′
1, 3′(c2, c3))→ 3′(c2, 4(c1, c

′
1, c3)) (42)

4(c1, c
′
1, 3′(c2, c3))→ 4(2(c1, c2), c

′
1, c3) (43)

4(c1, c
′
1, 3′(c2, c3))→ 4(c1, 2′(c

′
1, c2), c3) (44)

4(c1, c
′
1, 3′(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (45)

4(c1, c
′
1, 3′(c2, c3))→ 4(3(c1, c2), c

′
1, c3) (46)

4(c1, c
′
1, 3′(c2, c3))→ 4(c1, 3(c

′
1, c2), c3) (47)

4(3′(c1, c2), c
′
1, c3)→ 3′(c1, 4(c2, c

′
1, c3)) (48)

4(c1, 3′(c
′
1, c2), c3)→ 3′(c

′
1, 4(c1, c2, c3)) (49)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(2(c1, c2), 2′(c

′
1, c

′
2), c3) (50)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(3(c1, c2), 2′(c

′
1, c

′
2), c3) (51)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(2(c1, c2), 3(c

′
1, c

′
2), c3) (52)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(3(c1, c2), 3(c

′
1, c

′
2), c3) (53)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 3(3(4(c1, c

′
1, c

′
2), c2), c3) (54)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 3(3(4(c1, c

′
1, c2), c

′
2), c3) (55)

Termination of Q follows from a lexicographic combination of an interpretation ρ that
decreases under rotation, and an interpretation σ that decreases under bubbling.

I Lemma A.11. Q terminates.

Proof. Let the two interpretations ρ and σ on natural numbers be defined by

ρ(1) = 2,
ρ(2(c1, c2)) = ρ(2′(c1, c2)) = ρ(3(c1, c2)) = ρ(c1) + 2ρ(c2),
ρ(3′(c1, c2)) = 2ρ(c1) + ρ(c2),

ρ(4(c1, c2, c3)) = ρ(c1) + ρ(c2) + 2ρ(c3),
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σ(1) = 2,
σ(2(c1, c2)) = σ(2′(c1, c2)) = σ(3(c1, c2)) = σ(c1) · σ(c2),
σ(3′(c1, c2)) = σ(c1) · σ(c2) + 1,

σ(4(c1, c2, c3)) = σ(c1) · σ(c2) · σ(c3) .

The order > on terms defined by s > t if ρ(s) > ρ(t) or ρ(s) = ρ(t) and σ(s) > σ(t) is a
reduction order. With this, the rules ` → r in 9, 28, 48, and 49 satisfy ρ(`) = ρ(r) and
σ(`) > σ(r). For instance, Rule 49 satisfies ρ(`) = ρ(r) = ρ(c1) + ρ(c′1) + ρ(c2) + 2ρ(c3)
and σ(`) = (σ(c1)σ(c2) + 1)σ(c′1)σ(c3) > σ(c1)σ(c2)σ(c′1)σ(c3) + 1 = σ(r). All other rules
`→ r in Q satisfy ρ(`) > ρ(r). For instance, Rule 54 satisfies ρ(`) = ρ(c1) + ρ(c′1) + 2ρ(c2) +
2ρ(c′2) + 4ρ(c3) > ρ(c1) + ρ(c′1) + 2ρ(c2) + 2ρ(c′2) + 2ρ(c3) = ρ(r). So Q is ordered by the
reduction order >, and so Q terminates. J

I Lemma A.12. For every composition tree c that admits a Q rewrite step, and for every
(s, t) ∈ 〈c〉 there is a composition tree c′ such that both c→Q c′ and (s, t) ∈ 〈c′〉.

Proof. The proof is done by a case analysis over all left hand sides of Q. We show only one
particularly complex case; the other cases work similarly.

Let c = 4(c1, c
′
1, 4(c2, c

′
2, c3)). By definition of 〈·〉, we get s = ŝwu, t = t̂zv, (ŝ, t̂x) ∈ 〈c1〉,

(u, yv) ∈ 〈c′1〉, (xwy, z) ∈ 〈4(c2, c
′
2, c3)〉 for some t̂, x, y, v 6= ε. Again, we get xwy = s′w′u′,

z = t′z′v′, (s′, t′x′) ∈ 〈c2〉, (u′, y′v′) ∈ 〈c′2〉, (x′w′y′, z′) ∈ 〈c3〉 for some t′, x′, y′, v′ 6= ε. We
distinguish cases according to the overlaps:
1. x ∈ Prefix(s′), y ∈ Suffix(u′). Then (ŝs′′, t̂t′x′) ∈ 〈2(c1, c2)〉 where s′′ 6= ε is defined

by s′ = xs′′. Next, (u′′u, y′v′v) ∈ 〈2′(c′1, c′2)〉 where u′′ 6= ε is defined by u′ = u′′y.
Finally, (s, t) = (ŝs′′w′u′′u, t̂t′z′v′v) ∈ 〈4(2(c1, c2), 2′(c′1, c′2), c3)〉, and we choose c→ c′ =
4(2(c1, c2), 2′(c′1, c′2), c3) by Rule 50.

2. s′ is a prefix of x, x ∈ Prefix(s′w′), y ∈ Suffix(u′). Then (ŝ, t̂t′x′′) ∈ 〈3(c1, c2)〉 where x′′ is
defined by x = s′x′′. Next, (u′′u, y′v′v) ∈ 〈2′(c′1, c′2)〉 where u′′ 6= ε is defined by u′ = u′′y.
Finally, (s, t) = (ŝw′′u′′u, t̂t′z′v′v) ∈ 〈4(3(c1, c2), 2′(c′1, c′2), c3)〉, where w′′ is defined by
w′ = x′′w′′, and we choose c→ c′ = 4(3(c1, c2), 2′(c′1, c′2), c3) by Rule 51.

3. x ∈ Prefix(s′), u′ is a suffix of y, y ∈ Suffix(w′u′). This case is symmetric to Case 2. We
use Rule 52.

4. s′ is a prefix of x, u′ is a suffix of y. Then (ŝ, t̂t′x′′) ∈ 〈3(c1, c2)〉 where x′′ is defined
by x = s′x′′. Next, (u, y′′v′v) ∈ 〈3(c′1, c′2)〉 where y′′ is defined by y = y′′u′. Finally,
(s, t) = (ŝw′′u, t̂t′z′v′v) ∈ 〈4(3(c1, c2), 3(c′1, c′2), c3)〉, where w′′ is defined by w′ = x′′w′′y′′,
and we choose c→ c′ = 4(3(c1, c2), 3(c′1, c′2), c3) by Rule 53.

5. s′w′ is a prefix of x, y ∈ Suffix(u′). Then (ŝu′′u, t̂y′v′) ∈ 〈4(c1, c2, c
′
2)〉 where x′′ is

defined by x = s′w′x′′, and u′′ is defined by u′ = x′′u′′. Next, (ŝu′′u, t̂t′x′w′y′v′v) ∈
〈3(4(c1, c2, c

′
2), c′1)〉. Finally, (s, t) = (ŝu′′u, t̂t′z′v′v) ∈ 〈3(3(4(c1, c2, c

′
2), c′1), c3)〉, by

Rule 54.
6. x ∈ Prefix(s′), w′u′ is a suffix of y. This case is symmetric to Case 5. We use Rule 55. J

I Lemma A.13. For every composition tree c that is in Q-normal form and does not contain
any 3′ symbols, we have 〈c〉 ⊆ OC′.

Proof. The claim is proven by induction on |c| as follows. If c = 1 then 〈c〉 = R ⊆ OC′.
If c = 2(c1, c2) then c2 = 1 because c is in Q-normal form. From the inductive hypothesis
for c1 we get 〈c1〉 ⊆ OC′; so 〈c〉 ⊆ OC′. The same argument applies when c = 2′(c1, c2)
or c = 3(c1, c2). If c = 4(c1, c2, c3) then c3 = 1 because c is in Q-normal form. From the
inductive hypothesis for c1 we get 〈c1〉 ⊆ OC′. From the inductive hypothesis for c2 we get
〈c2〉 ⊆ OC′. So 〈c〉 ⊆ OC′. J
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Now we are ready to prove Theorem A.3.

Proof of Theorem A.3. We prove that c ∈ OC and (s, t) ∈ 〈c〉 implies s→∗R s′ and (s′, t) ∈
OC′ for some s′. We do so by induction on c, ordered by >. If c admits a Q rewrite step
then by Lemma A.12 there is a composition tree c′ such that both c→Q c′ and (s, t) ∈ 〈c′〉.
Because c > c′, the claim follows by inductive hypothesis for c′. Now suppose that c is
in Q-normal form. If c does not contain any 3′ symbol then (s, t) ∈ OC′ by Lemma A.13,
and we choose s′ = s. Else, because c is in Q-normal form, c = 3′(1, c2) for some c2. Let
(s′′, t) ∈ 〈c2〉 and s →R s′′. From the inductive hypothesis for c2 we get s′′ →∗R s′ and
(s′, t) ∈ OC′ for some s′. So s→R s′′ →∗R s′ and the claim holds. J

From Theorem A.3, we immediately get:

I Corollary A.14. rhs(OC) = rhs(OC′).

Because OC′ is left-recursive, we can derive a recursive characterization of the set of right
hand sides of overlap closures:

I Corollary A.15 (This is Corollary 7.1). rhs(OC) is the least set S such that
1. rhs(R) ⊆ S,
2. if tx ∈ S and (xu, v) ∈ R for some t, x, u 6= ε then tv ∈ S;
3. if xt ∈ S and (ux, v) ∈ R for some t, x, u 6= ε then vt ∈ S;
4. if tut′ ∈ S and (u, v) ∈ R then tvt′ ∈ S;
5. if tx ∈ S and yv ∈ S and (xwy, z) ∈ R for some t, x, y, v 6= ε then tzv ∈ S.
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