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Abstract
We consider a generic framework for anti-unification of simply typed lambda terms. It helps to
compute generalizations which contain maximally common top part of the input expressions, without
nesting generalization variables. The rules of the corresponding anti-unification algorithm are
formulated, and their soundness and termination are proved. The algorithm depends on a parameter
which decides how to choose terms under generalization variables. Changing the particular values
of the parameter, we obtained four new unitary variants of higher-order anti-unification and also
showed how the already known pattern generalization fits into the schema.
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1 Introduction

A term r is generalization of a term t, if t can be obtained from r by a variable substitution.
The problem of finding common generalizations of two or more terms has been investigated
quite intensively. The main idea is to compute least general generalizations (lggs) which max-
imally keep the similarities between the input terms and uniformly abstract over differences
in them by new variables. For instance, if the input terms are t = f(a, a) and s = f(b, b), we
are interested in their lgg f(x, x). It gives more precise information about the nature of t
and s than their other generalizations such as, e.g., f(x, y) or just x. Namely, it shows that t
and s not only have the same head f , but also each of them has its both arguments equal.

The technique of computing generalizations is called anti-unification. It was introduced
in 1970s [17, 18] and saw a renewed interest in recent years (see, e.g., [3, 2, 11, 6, 1]), mostly
motivated by various applications (see, e.g., [5, 13, 19, 20]).

Concerning anti-unification for higher-order terms, lggs are not unique and special
fragments or variants of the problem have to be considered to guarantee uniqueness of lggs.
Such special cases include generalizations with higher-order patterns [8, 7, 15, 16], object
terms [9], restricted terms [21], etc. For instance, a pattern lgg of λx.f(g(x)) and λx.h(g(x))
is λx.Y (x), ignoring the fact that those terms have a common subterm g(x). It happens
because the pattern restriction requires free variables to apply to sequences of distinct bound
variables. That’s why we get a generalization in which the free variable Y applies to the
bound variable x, and not to the more complex common subterm g(x) of the given terms.
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10:2 A Generic Framework for Higher-Order Generalizations

Pattern generalizations have been successfully used, e.g., in term indexing [16] and in
software code analysis for quick bug fixing [19]. Another advantage is that they can be
computed efficiently, in linear time [8]. However, some problems require more expressive
variants than patterns, as, for instance, the application of higher-order anti-unification in
automatic detection of recursion schemes in functional programming [5]. Combination of
increased expressive power and good computational properties was the motivation behind
the introduction of functions-as-constructors terms (fc-terms) in higher-order unification [12].
We address a similar problem for anti-unification in this paper.

One difficulty comes from the fact that not all lggs are good characterizations of general-
ized terms. For instance, for λx.f(g(x)) and λx.f(h(x)) both λx.X(f(g(x)), f(h(x))) and
λx.f(Y (g(x), h(x))) are lggs (where X and Y are fresh generalization variables), but the
latter one is better, since it shows that the input terms have the common head f . This
observation leads to the notion of top-maximal generalization, which keeps the maximally
large common top part of the input terms. This is a very natural property, which, by default,
was guaranteed for pattern lggs, but not necessarily for lggs in richer variants.

Another problem is related with nested generalization variables, which may affect least
generality. In practice, such a nesting causes nondeterminism, an undesirable property. Once
a difference between terms is detected, it should be abstracted by a generalization variable
and no attempt to further generalize should be made under it. This leads to a variant of
generalization, which we call shallow with respect to generalization variables, since these
variables are not nested. We concentrate on computing top-maximal shallow lggs.

In this setting the interesting question is, what terms are permitted under generalization
variables? For the pattern case they are distinct bound variables, but we want more expressive
variants. Instead of coming up with different particular cases and designing special anti-
unification algorithms for them, we formulate a generic algorithm which always computes
top-maximal shallow generalizations, and prove its soundness and termination (Sect. 4). The
particular cases can be obtained by instantiating a parameter in one of the rules of the
algorithm, which is responsible for choosing terms under generalization variables. Changing
the specific values of the parameter, we obtained several new unitary (i.e., with single lgg)
variants of higher-order anti-unification: projection-based (Sect. 5.1), generalizations with
common subterms (Sect. 5.2.1), relaxed fc (Sect. 5.2.2), and fc (Sect. 5.2.3). We also show
how pattern generalization fits into the schema (Sect. 5.2.4). Completeness results for these
variants are given. Additional variants of higher-order anti-unification can be developed
using our schema by specifying how terms under generalization variables are chosen. For
reader’s convenience, some illustrative examples are put in the appendix.

2 Preliminaries

We consider simply-typed signature, where types are constructed from a set of basic types
(denoted by δ) by the grammar τ ::= δ | τ→ τ, where→ is associative to the right. Variables
(denoted by X,Y, Z, x, y, z, . . .) and constants (denoted by a, b, c, f, g, h, . . .) have an assigned
type. The set of variables is denoted by V and the set of constants by C. λ-terms (denoted
by t, s, r, . . .) are built using the grammar t ::= x | c | λx.t | t1 t2 where x is a variable and
c is a constant, and are typed as usual. Terms of the form (. . . (h t1) . . . tm), where h is a
constant or a variable, will be written as h(t1, . . . , tm), and terms of the form λx1. · · · .λxn.t
as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn.

Other standard notions of the simply typed λ-calculus, like bound and free occurrences
of variables, subterms, α-conversion, β-reduction, η-long β-normal form, etc. are defined
as usual (see, e.g., [4]). t↓η denotes the η-normal form of t. We denote the fact that t is a
(strict) subterm of s using the infix binary symbol v (@). Bound variables will be denoted
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by lowercase letters and free variables by capital letters. The symbols fv(t) and bv(t) are
used to denote the sets of free and bound variables, respectively, of a term t. This notation
extends to a set of terms as well. A term t is closed if fv(t) = ∅.

By default, terms are assumed to be written in η-long β-normal form. Therefore, all
terms have the form λx1, . . . , xn.h(t1, . . . , tm), where n,m ≥ 0, h is either a constant or a
variable, t1, . . . , tm also have this form, and the term h(t1, . . . , tm) has a basic type. For a
term t = λx1, . . . , xn.h(t1, . . . , tm) with n,m ≥ 0, its head is defined as head(t) = h.

When we write an equality between two λ-terms, we mean α, β and η equivalence.
Positions in λ-terms are defined with respect to their tree representation in the usual

way, as string of integers. For instance, in the term f(λx.λy.g(λz.h(z, y), x), λu.g(u)), the
symbol f stands in the position ε (the empty sequence), the occurrence of λx. stands in the
position 1, the bound occurrence of y in 1.1.1.1.1.2, the bound occurrence of u in 2.1.1, etc.
Hence, abstractions in this context are treated as symbols. We denote the symbol occurring
in position p in a term t by symb(t, p) and the subterm of t at position p by t|p. We write
p1 ≤ p2 if the position p1 is a prefix of p2. The strict part of this ordering is denoted by <.
The set of all positions of a term t is denoted by Pos(t).

Substitutions and their composition (◦) are defined as usual. Namely, (σ◦ϑ)X = ϑ(σ(X)).
We extend the application of substitutions to terms in the usual way and denote it by postfix
notation. Variable capture is avoided by implicitly renaming variables to fresh names upon
binding. A substitution σ is more general than a substitution ϑ, denoted σ � ϑ, if there
exists a substitution ϕ such that σ ◦ ϕ = ϑ. The strict part of this relation is denoted by ≺.
The relation � is a partial order and generates the equivalence relation which we denote by
'. We overload � by defining s � t if there exists a substitution σ such that sσ = t.

3 Special forms of terms, generalization problems

In this section we first introduce certain special forms of terms and then discuss the general-
ization problem where the generalization terms may be of a special restricted form.

I Definition 1 (Restricted terms). Let B be a set of variables and s be a term such that
B ∩ bv(s) = ∅. Assume that distinct bound variables have distinct names in s. We say that
a term t is B-restricted in s if t is a subterm of s such that (i) t is η-equivalent to some
t′ ∈ B ∪ bv(s), or (ii) t = (f t1 · · · tn), where n > 0, f ∈ C ∪ B ∪ bv(s) and each ti, 1 ≤ i ≤ n,
is a B-restricted term in s.

I Definition 2 (Relaxed functions-as-constructors triples). Let F and B be two disjoint sets
of variables and s be a term such that F ∩ bv(s) = B ∩ bv(s) = ∅. It is also assumed that
distinct bound variables have distinct names in s. We say that the triple (F,B, s) is a relaxed
functions-as-constructors triple or, shortly, rfc-triple, if the following conditions are satisfied:

Argument restriction: For all occurrences of (X t1 · · · tn) in s, where X ∈ F, ti is a B-
restricted term in s for each 0 < i ≤ n.

Local restriction: For all occurrences of (X t1 · · · tn) in s, where X ∈ F, for each 0 < i, j ≤ n,
if i 6= j, then ti↓η 6v tj↓η.

Functions-as-constructors triples are rfc-triples obeying a global restriction:

I Definition 3 (Functions-as-constructors triples). Let F, B, and s be as in Definition 2 and
(F,B, s) be an rfc-triple. We say that it is a functions-as-constructors triple or, shortly,
fc-triple, if the following extra condition is satisfied:

Global restriction: For each two different occurrences of terms (X t1 · · · tn) and (Y s1 · · · sm)
in s with X,Y ∈ F, for each 0 < i ≤ n, 0 < j ≤ m, we have ti↓η 6@ sj↓η.
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10:4 A Generic Framework for Higher-Order Generalizations

I Definition 4 (Pattern triples). Let F, B, and s be as in Definition 2 and (F,B, s) be an
rfc-triple. A triple is pattern if the following stronger form of the argument restriction holds:

Argument restriction for patterns: For all occurrences of (X t1 · · · tn) in s, where X ∈ F,
we have ti↓η ∈ B ∪ bv(s) for each 0 < i ≤ n.

Note that for patterns the local restriction reduces to checking whether ti↓η’s are distinct
bound variables, and the global restriction is automatically fulfilled. Hence, pattern triples
are also a special case of fc-triples.

I Definition 5 (Rfc-terms, fc-terms, patterns, shallow terms). Let F be a set of variables and
t be a term such that F ∩ bv(t) = ∅. Then t is an F-rfc-term (resp., F-fc-term, F-pattern), if
(F, ∅, t) is an rfc-triple (resp., fc-triple, pattern-triple). We say that t is an F-shallow term if
for every subterm (X t1 · · · tn) of t with X ∈ F, we have F ∩ (∪ni=1fv(ti)) = ∅.

A term t is shallow, if it is an fv(t)-shallow term. Rfc-terms, fc-terms and patterns are
defined analogously.

Note that pattern coincides with the well-known higher-order patterns [14] fragment.
Every pattern is an fc-term. Every fc-term is an rfc-term. Every rfc-term is a shallow term.

I Example 6. Consider the following terms:

t1 = λx, y. f(X(x, λz1.y(z1)), Y (λz2.y(z2), x), λu.Z(x, u))
t2 = λx, y. f(X(g(x), p(λz1.y(z1), λz2.y(z2))), h(Y (g(x), g(h(x))))),
t3 = λx. f(X(g(x), h(x)), h(Y (g(x), g(h(x))))),
t4 = λx. f(X(x, g(a)), x), t5 = λx. f(X(x, g(x)), x), t6 = λx, y. f(X(Y (x), y)).

t1 is a pattern; t2 is an fc-term but not a pattern; t3 is an rfc-term but not an fc-term; t4 is
a shallow term but not an rfc-term, the argument restriction is violated; t5 is a shallow term
but not an rfc-term, the local restriction is violated; t6 is not a shallow term.

A term t is called a generalization or an anti-instance of two terms t1 and t2 if t � t1 and
t � t2. It is the least general generalization (lgg), also known as a most specific anti-instance,
of t1 and t2, if there is no generalization s of t1 and t2 which satisfies t ≺ s.

An anti-unification triple (shortly AUT) has the form X( #»x ) : t , s where λ #»x .X( #»x ),
λ #»x .t, and λ #»x .s are terms of the same type, t and s are in η-long β-normal form, and X does
not occur in t and s. An anti-unifier of an AUT X( #»x ) : t , s is a substitution σ such that
dom(σ) = {X} and λ #»x .X( #»x )σ is a term which generalizes both λ #»x .t and λ #»x .s.

An anti-unifier σ of X( #»x ) : t , s is least general (or most specific) if there is no anti-unifier
ϑ of the same problem that satisfies σ ≺ ϑ. Obviously, if σ is a least general anti-unifier of
an AUT X( #»x ) : t , s, then λ #»x .X( #»x )σ is a lgg of λ #»x .t and λ #»x .s.

If r is a generalization of t and s, the set of generalization variables (genvars) of t and s
in r is the set genvar(r, t, s) := fv(r) \ (fv(s) ∪ fv(t)).

Our main interest is in generalizations, which retain the common parts of the given
terms as much as possible, at least until the first differences in each branch during top-down
traversal of the given terms. This intuition is formalized in the following definition:

I Definition 7 (Top-maximal generalization). Let s and t be terms of the same type in η-long
β-normal form such that the bound variables are renamed uniformly: the ith bound variable in
depth-first pre-order traversal in s and in t have the same name xi. A common generalization
r of s and t is their top-maximal common generalization, if the following conditions hold:
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If symb(s, ε) = symb(t, ε), then symb(r, ε) = symb(s, ε).
If p ∈ Pos(s) ∩ Pos(t) such that symb(s, q) = symb(t, q) for all positions q < p and
symb(s, p) = symb(t, p), then p ∈ Pos(r) and symb(r, p) = symb(s, p).
If p ∈ Pos(s) ∩ Pos(t) such that symb(s, q) = symb(t, q) for all positions q < p and
symb(s, p) 6= symb(t, p), then p ∈ Pos(r) and symb(r, p) is a genvar.

I Example 8. Let s = λx.f(g(x)) and t = λx.f(h(x)). Then r1 = λx.X(f(g(x)), f(h(x)))
is their shallow but not top-maximal generalization, while r2 = λx.f(Y (g(x), h(x))) is both
top-maximal and shallow. Also, r3 = λx.f(Z(x)) is a top-maximal shallow generalization.

3.1 Variants of higher-order anti-unification
In the literature, a variant of a unification or anti-unification problem is obtained by imposing
restrictions on the form of solutions to the problem (in contrast to fragments, where the
form of input is restricted). Here we define variants of higher-order anti-unification problem,
which we will be solving in the coming sections.

The main variant we consider is what we call the top-maximal genvar-shallow variant:

Given: Two terms t and s of the same type in η-long β-normal form.
Find: A top-maximal generalization r of t and s such that r is a genvar(r, t, s)-shallow term.

The problem statement implies that we are looking for r which is least general among all
top-maximal genvar-shallow generalizations of t and s. There can still exist a term which is
less general than r, is a top-maximal generalization of both s and t, but is not a genvar-shallow
term. Also, there can exist a genvar-shallow generalization of s and t which is less general
than r, but it is not a top-maximal generalization of s and t.

By imposing various conditions on r, we get other special problems such as, cs (common
subterms), rfc, fc, and pattern variants of higher-order anti-unification.

First, we define the cs-variant. We need an auxiliary definition of extension of a set of
terms by variables (bound in the context):

I Definition 9. Let B be a set of variables and S be a set of terms such that bv(S) ∩ B = ∅.
By B-extension of S we understand the set S ∪ (B \ fv(S)).

Now, the definition of generalization with common subterms can be formulated as follows:

I Definition 10 (CS-generalization). A generalization r of two terms s and t is called their
common-subterms generalization, shortly cs-generalization, if it is a genvar(r, s, t)-shallow
top-maximal generalization of t and s satisfying the following condition:
Common subterms condition: Let p be a position in r, r|p = X(r1, . . . , rn) for a genvar

X and some terms r1, . . . , rn, and B be the set of all variables bound by λ at positions
above p, i.e., B := {x | symb(r, q) = λx for some position q < p}. Then {r1, . . . , rn} is
the B′-extension of some set of common subterms of s|p and t|p, where B′ ⊆ B.

A cs-generalization r of s and t is their least general cs-generalization (cs-lgg) if no
cs-generalization r′ of s and t satisfies r ≺ r′.

In this definition, top-maximality guarantees that all positions q < p in r are also
positions in t and s and symb(r, q) = symb(t, q) = symb(s, q) (modulo α-renaming of t and s).
Therefore it may well happen that variables from B appear in t|p or in s|p. Since r is a
generalization, r1, . . . , rn must contain all variables from B that appear in t|p or in s|p, for
otherwise one can not get t|p and s|p from r|p by a substitution for X. Hence, actually, we
have B ∩ (fv(t|p) ∪ fv(s|p)) ⊆ B′ ⊆ B in Definition 10.
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10:6 A Generic Framework for Higher-Order Generalizations

The cs-variant is the problem of computing cs-generalizations. The rfc, fc, and pat-
tern variants are defined similarly, based on the following definition of the corresponding
generalizations:

I Definition 11 (RFC-, FC-, pattern-generalizations). A generalization r of s and t is their
rfc-generalization if r is an rfc- term. It is a least general rfc-generalization (rfc-lgg) of s and
t if no rfc-generalization r′ of s and t satisfies r ≺ r′. The rfc-variant of higher-order anti-
unification s the problem of computing rfc-generalizations. Fc- and pattern generalizations,
lggs, and variants are defined in the same way.

I Example 12. We bring examples of various lggs and show how they related to each other.
Let t = λx.f(h(g(g(x))), h(g(x)), a) and s = λx.f(g(g(x)), g(x), h(a)). Then

r0 = λx.f(X(h(g(g(x))), g(g(x))), X(h(g(x)), g(x)), X(a, h(a))) is a shallow top-maximal
lgg of t and s.
r1 = λx.f(X(g(g(x))), X(g(x)), Z(a)) is a cs-lgg of t and s. We have r1 ≺ r0.
r2 = λx.f(X(g(g(x))), X(g(x)), Z) is a top-maximal rfc-lgg of t and s. We have r2 ≺ r1.
r3 = λx.f(X(g(x)), Y (g(x)), Z) is a top-maximal fc-lgg of t and s and r3 ≺ r2.
r4 = λx.f(X(x), Y (x), Z) is a top-maximal pattern-lgg of t and s. Also here r4 ≺ r3.

More precise relationships between cs, rfc, fc, and pattern variants will be investigated in
Section 5.2 below.

Top-maximality is an important requirement for an lgg to exist. If we do not require it,
we might have �-incomparable generalizations. For instance, in Example 8, r1 and r2 are
not comparable by � and r1 and r3 are not either. On the other hand, two top-maximal
shallow generalizations r2 and r3 are: r3 ≺ r2.

For patterns, top-maximality means also least generality. This is not the case for shallow
terms, as Example 8 shows. In fact, from that example we can see that top-maximality does
not imply least generality for fc- and rfc-generalizations either, because r1 and r2 are both
fc- and rfc-generalizations of s and t.

4 Generic anti-unification transformation rules

Transformation rules for anti-unification work on triples A;S; r, which we call states. Here A
is a set of AUTs of the form {X1( # »x1) : t1 , s1, . . . , Xn( # »xn) : tn , sn} that are pending to
anti-unify, S is a set of already solved AUTs (the store), and r is a generalization (computed
so far). The goal is, given two terms t and s, compute a generalization r which is a
genvar(r, t, s)-shallow term. We aim at computing lggs.

The transformation rules given below are generic. At first, they help us to obtain a top-
maximal genvar-shallow generalization. From it, we can obtain more special generalizations
(e.g., rfc, fc, patterns) by deciding which kind of arguments are allowed under genvars.

I Remark 13. We assume that in the set A ∪ S each occurrence of λ binds a distinct name
variable and that each generalization variable occurs in A ∪ S only once.

The set of transformations G is defined by the following rules:

Dec: Decomposition
{X( #»x ) : h(t1, . . . , tm) , h(s1, . . . , sm)} ]A; S; r =⇒

{Y1( #»x ) : t1 , s1, . . . , Ym( #»x ) : tm , sm} ∪A; S; r{X 7→ λ #»x .h(Y1( #»x ), . . . , Ym( #»x ))},
where Y1, . . . , Yn are fresh variables of the appropriate types.
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Abs: Abstraction
{X( #»x ) : λy.t , λz.s} ]A; S; r =⇒

{X ′( #»x , y) : t , s{z 7→ y}} ∪A; S; r{X 7→ λ #»x , y.X ′( #»x , y)}.
where X ′ is a fresh variable of the appropriate type.

Sol: Solve
{X( #»x ) : t , s} ]A; S; r =⇒

A; {Y (y1, . . . , yn) : (Ct y1 · · · yn) , (Cs y1 · · · yn)} ∪ S; r{X 7→ λ #»x .Y (q1, . . . , qn)},
where t and s are of a basic type, head(t) 6= head(s), q1, . . . , qn are distinct subterms of t or
s, Ct and Cs are terms such that (Ct q1 · · · qn) = t and (Cs q1 · · · qn) = s, Ct and Cs do not
contain any x ∈ #»x , and Y , y1, . . . , yn are distinct fresh variables of the appropriate type.

Mer: Merge
∅; {X( #»x ) : t1 , s1, Y ( #»y ) : t2 , s2}]S; r =⇒ ∅; {X( #»x ) : t1 , s1}∪S; r{Y 7→ λ #»y .X( #»xπ)},
where π : { #»x} → { #»y } is a bijection, extended as a substitution, with t1π = t2 and s1π = s2.

To compute generalizations for t and s, we start with the initial state {X : t , s}; ∅;X,
where X is a fresh variable, and apply the transformations as long as possible. These final
states have the form ∅;S; r, Then, the result computed by G is r.

We use the letters Ct and Cs in the Solve rule because these terms resemble multi-
contexts. Each of them have a form λz1, . . . , zn.C

′
t and λz1, . . . , zn.C

′
s, where the bound

variables z1, . . . , zn play the role of holes. In the store we keep the η-long β-normal form of
(Ct y1 · · · yn) and (Cs y1 · · · yn). When applied to q1, . . . , qn, Ct and Cs give, respectively, t
and s. However, it should be emphasized that it is not the choice of Ct and Cs that might
cause branching applications of Sol, but the choice of the subterms q1, . . . , qn. Moreover,
choosing different special forms of q1, . . . , qn, we obtain different special versions of the
anti-unification algorithm.

One can easily show that rules map a state to a state: For each expression X( #»x ) : t ,
s ∈ A∪S, the terms X( #»x ), t and s have the same type, s and t are in η-long β-normal form,
and X does not occur in t and s. Moreover, all genvars are distinct.

The property that each occurrence of λ in A∪S binds a unique variable is also maintained.
It guarantees that in the Abs rule, the variable y is fresh for s. After the application of the
rule, y will appear nowhere else in A ∪ S except X ′( #»x , y) and, maybe, t and s.

I Theorem 14. Let t and s be terms. Any sequence of transformations in G starting from the
initial state {X : t , s}; ∅;X terminates and each computed result r is a genvar(r, t, s)-shallow
top-maximal generalization of t and s.

Proof. Let the size of an AUT Z( #»z ) : p , q be the number of symbols occurring in p or q,
and the size of a set of AUTs be the multiset of sizes of AUTs it contains. Then the first three
rules in G strictly reduce the size of A. Mer applies when A is empty and strictly reduces the
size of S. Hence, the algorithm terminates. The computed result is an genvar(r, t, s)-shallow
term, since no rule puts one generalization variable on top of another.

Proving that a computed result is a generalization is more involved. First, we prove
that if A1;S1; r =⇒ A2;S2; rϑ is one step, then for any X( #»x ) : t , s ∈ A1 ∪ S1, we have
X( #»x )ϑ � t and X( #»x )ϑ � s. Note that if X( #»x ) : t , s was not transformed at this step,
then this property trivially holds for it. Therefore, we assume that X( #»x ) : t , s is selected
and prove the property for each rule. We only illustrate it for Sol here, for the other rules
the proof proceeds as in [8].
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Sol: We have ϑ = {X 7→ λ #»x .Y (q1, . . . , qn)}, where q1, . . . , qn are distinct subterms in t or
s. Let ψ1 = {Y 7→ λy1, . . . , yn.(Ct y1 · · · yn)} and ψ2 = {Y 7→ λy1, . . . , yn.(Cs y1 · · · yn)}.
Since (Ct q1 · · · qn) = t, (Cs q1 · · · qn) = s, and Ct and Cs do not contain any variable
x ∈ #»x , we get X( #»x )ϑψ1 = X( #»x ){X 7→ λ #»x .t, . . .} = t, X( #»x )ϑψ2 = X( #»x ){X 7→
λ #»x .s, . . .} = s, and, hence, X( #»x )ϑ � t and X( #»x )ϑ � s.

We proceed by induction on the length l of the transformation sequence. We will prove a
more general statement: If A0;S0; rϑ0 =⇒∗ ∅;Sn; rϑ0ϑ1 · · ·ϑn is a transformation sequence
in G, then for any X( #»x ) : t , s ∈ A0∪S0 we have X( #»x )ϑ1 · · ·ϑn � t and X( #»x )ϑ1 · · ·ϑn � s.

When l = 1, it is exactly the one-step case we just proved. Assume that the statement
is true for any transformation sequence of the length n and prove it for a transformation
sequence A0;S0;ϑ0 =⇒ A1;S1;ϑ0ϑ1 =⇒∗ ∅;Sn;ϑ0ϑ1 · · ·ϑn of the length n+ 1.

Below the composition ϑiϑi+1 · · ·ϑk is abbreviated as ϑki with k ≥ i. Let X( #»x ) : t , s

be an AUT selected for transformation at the current step. (Again, the property trivially
holds for the AUTs which are not selected). We have to consider each rule, but, like above,
only Sol is illustrated. For the other rules the proof is similar to the one in [8].

Sol: We have X( #»x )ϑ1
1 = Y (q1, . . . , qn) where Y is in the store. By the induction hypothesis,

Y (q1, . . . , qn)ϑn2 � t and Y (q1, . . . , qn)ϑn2 � s. Therefore, X( #»x )ϑn1 � t and X( #»x )ϑn1 � s.

Finally, note that the obtained generalization is top-maximal, because the algorithm
proceeds inserting common top-parts of the input terms in the generalization term as much as
possible, and introduces a generalization variable only when a difference is encountered. J

I Corollary 15. The result computed by G for closed terms s and t is a shallow top-maximal
generalization of s and t.

As one can notice, the store keeps track of the differences between the original terms
and suggests how to obtain them from the generalization. If the computed generaliz-
ation for t and s is λ #»x .Y (q1, . . . , qn) and the store contains the AUT Y (y1, . . . , yn) :
(Ct y1 · · · yn) , (Cs y1 · · · yn), the substitution {Y 7→ λy1, . . . , yn.(Ct y1 · · · yn)} gives t and
{Y 7→ λy1, . . . , yn.(Cs y1 · · · yn)} gives s.

I Theorem 16 (Uniqueness modulo '). Assume that the set {q1, . . . , qn}, Ct, and Cs in the
Solve rule are uniquely determined (modulo renaming of bound variables). Assume that for a
given t′ and s′, G can compute their generalizations r1 and r2 with different sequence of rule
applications. Then r1 ' r2.

Proof. In [8] it was proved that different order of the Mer rule application gives equivalent
solutions, provided that the other rules are applied in a unique way to the selected AUT. The
same for Abs and Dec rules. Sol can be applied also only in one way, since {q1, . . . , qn}, Ct,
and Cs are uniquely determined. Therefore, the theorem follows from Theorem 4 in [8]. J

4.1 The Solve rule
The Solve rule is generic and leaves room for special versions of the algorithm depending
on how the subterms q1, . . . , qn are chosen. The choice of Ct and Cs is also important
since they might affect applicability of the Merge rule. To illustrate the latter, consider the
generalization derivation for the terms λx.f(g(x, a), g(a, x)) and λx.f(h(x, a), h(a, x)):

{λx.f(g(x, a), g(a, x)) , λx.f(h(x, a), h(a, x))}; ∅; X =⇒Abs, Dec

{X1(x) : g(x, a) , h(x, a), X2(x) : g(a, x) , h(a, x)}; ∅; λx.f(X1(x), X2(x)) =⇒Sol
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{X2(x) : g(a, x) , h(a, x)}; {Y (y1, y2) : g(y1, y2) , h(y1, y2)};
λx.f(Y (x, a), X2(x)) =⇒Sol

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2), Z(z1, z2) : g(a, z1) , h(z2, z1)};
λx.f(Y (x, a), Z(x, a)).

Here we chose Ct, Cs terms differently in two applications of Sol: First time, we had
q1 = x, q2 = a and we replaced in t = g(x, a) and s = h(x, a) all occurrences of the q’s by
fresh variables. Second time, in t = g(a, x) and s = h(a, x), we again took q1 = x, q2 = a, but
the occurrence of q2 in t is not replaced by a new variable. It resulted into the terminal store.
However, the obtained generalization is not an lgg. An lgg would be λx.f(Y (x, a), Y (a, x)).

If in the second application of Sol we again replaced all occurrences of the q’s by fresh
variables, we would make the step, leading to the mentioned lgg:

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2), Z(z1, z2) : g(z2, z1) , h(z2, z1)};
λx.f(Y (x, a), Z(x, a)) =⇒Mer

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2)}; λx.f(Y (x, a), Y (a, x)).

Now we will formulate general rules for choosing the subterms q1, . . . , qn and terms Ct
and Cs in Sol. The rules will depend on a generic selection function. The function chooses
subterms that satisfy a condition allowing them to appear under genvars. Our goal is to show
that if q1, . . . , qn, Ct, and Cs in Sol are chosen according to the rules, then the computed
generalization is least general among all similar generalizations.

Note that the condition of Sol implies that q1, . . . , qn contain all variables from #»x that
appear in t or in s, and contain none from #»x that appear neither in t nor in s.

We call (p1, p2) an extended position pair if p1 and p2 are either positions (positive integer
sequences), or p1 is a position and p2 = • (a special symbol), or p1 = • and p2 is a position.
The symbol • is not comparable with any position with respect to prefix ordering ≤. The
latter is extended to pairs componentwise: (p1, p2) ≤ (l1, l2) iff pi ≤ li, i ∈ {1, 2}. Then for
its strict part, (p1, p2) < (l1, l2) iff either p1 < l1 and p2 ≤ l2, or p1 ≤ l1 and p2 < l2.

Given two terms t1 and t2, a triple of subterm occurrence in t1 or t2 is a triple (p1, p2, s)
where (p1, p2) is an extended position pair such that

if pi ∈ Pos(ti), i ∈ {1, 2}, then s = t1|p1 = t2|p2 ,
if p1 ∈ Pos(t1) and p2 = •, then s = t1|p1 and s does not occur in t2,
if p1 = • and p2 ∈ Pos(t2), then s = t2|p2 and s does not occur in t1.

Now we define a selection function which will be used to define the ways we could select
the terms q1, . . . , qn in the Sol rule. It will depend on a special condition, a parameter, whose
specific values will give specific variants of higher order generalizations in the next sections.

I Definition 17. Given a set of variables { #»x} and terms t1 and t2, the Select function with
the parametric condition cond, Selectcond({ #»x}, t1, t2), is the set of all subterm occurrence
triples Q = {(p1

1, p
2
1, s1), . . . , (p1

k, p
2
k, sk)} in t1 or in t2 such that

1. cond({ #»x}, t1, t2, Q) holds.
2. If a variable from { #»x} appears in position p in t1 (resp. in t2), then there exist p′ ≤ p

and l such that (p′, l, t1|p′) ∈ Q (resp. (l, p′, t2|p′) ∈ Q).
3. For all (p1, p2, s) ∈ Q, there is no (p′1, p′2, s′) ∈ Q such that (p′1, p′2) < (p1, p2) holds.

Now we define general rules for choosing q1, . . . , qn, Ct, and Cs in Sol. Let {X( #»x ) : t , s}
] A be the set of AUTs on which Sol operates. Let Selectcond({ #»x}, t, s) = Q. The rule of
choosing q1, . . . , qn in Sol is the following:
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10:10 A Generic Framework for Higher-Order Generalizations

QR: {q1, . . . , qn} = {q | (p1, p2, q) ∈ Q for some p1 and p2}.

For the rule for Ct and Cs, we will need a special notation. By t[p 7→ x] we denote a term
obtained from t by replacing its subterm at position p by the variable x. If the position p
does not exist in t, or if p = •, then t[p 7→ x] = t.

CR: Let Q = {(pi1, li1, qi), . . . , (pik, lik, qi) | 1 ≤ i ≤ n}. Then:

Ct = λy1, . . . , yn. t[p11 7→ y1] · · · [p1k1 7→ y1] · · · [pn1 7→ yn] · · · [pnkn
7→ yn]

Cs = λy1, . . . , yn. s[l11 7→ y1] · · · [l1k1 7→ y1] · · · [ln1 7→ yn] · · · [lnkn
7→ yn].

CR says that no eligible occurrence of each qi is kept in Ct and Cs. In those positions, if
they still exist in Ct and Cs, we have the variable yi.

The next step is to define special cases of the generic algorithm by specifying cond.

5 Special cases

The special cases of the generic algorithm are obtained by deciding what kind of subterms
from the input terms we would like to preserve in the generalization under genvars.

We distinguish between two classes of (top-maximal, genvar-shallow) generalizations:

(a) Those which do not care about common subterms under different-head terms to be
generalized but, rather, take both different-head terms entirely in the generalization, and

(b) Those which try to find similarities under different-head terms to be generalized and
select their certain common subterms to the generalization.

We call the first class projection-based variant, since the generalizations there give original
terms by projection substitutions. The second class corresponds to the common-subterm
variant, introduced earlier. There are several subcategories in this class, as we will see.

5.1 Projection-based variant
This is the simplest case. If t and s appear in the Sol rule, we should keep both of them in
the generalization. Therefore, we specify Select and, consequently, QR and CR as follows:

Specifying Selectcond({ #»x}, t, s): cond is always true.
The instance of QR: q1 = t, q2 = s.
The instance of CR: Ct = λz1, z2. z1, Cs = λz1, z2. z2.

After applying Sol with Selectcond specified above, the new AUT in the store will have
the form Y (y1, y2) : y1 , y2. By the exhaustive application of the Mer rule we get that if
the computed result contains genvars, then it contains only one such variable (maybe with
multiple occurrences). Therefore, we can ignore Mer and use the same variable. The store is
not needed at all, since merging is superfluous and the anti-unifiers are fixed to projections.
The instance of Sol rule is denoted by Sol-PrB, and the obtained algorithm by Gprb.

Generalizations that retain both terms whose heads are different are called imitation-free
generalizations in [10] (where only second-order generalizations are considered), motivated
from [9]. The name originates from the fact that one does not need imitation anti-unifiers.
We prefer the name projection-based, since it directly indicates how the anti-unifiers look.

I Theorem 18. Gprb computes a projection-based genvar(r, t, s)-shallow top-maximal gene-
ralization r of the input terms t and s in linear time.
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Proof. Top-maximality and shallowness of r follow from Theorem 14, the projection-based
property from the instances on QR and CR, and the linear time complexity from the fact that
each symbol in the input is processed only once, when it is put into the generalization. J

I Theorem 19 (Completeness of Gprb). If r0 is a projection-based genvar(r0, t, s)-shallow
top-maximal generalization of t and s, then Gprb computes r, starting from t and s, such
that r0 � r.

Proof sketch. Top maximal projection-based genvar-shallow generalizations of t and s can
differ from each other only by the number of duplicates among genvars. Gprb maximizes their
sharing. Hence, r is less general than any projection-based genvar-shallow generalization. J

I Corollary 20. Projection-based variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 19 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

Interestingly, projection-based generalizations are least general among all top-maximal
generalizations that do not nest genvars:

I Theorem 21. Let r1 and r2 be respectively genvar(r1, t, s)- and genvar(r2, t, s)-shallow
top-maximal generalizations of t and s. Assume that r1 is projection-based. Then r2 � r1.

Proof. By the definition of projection-based generalization, the symbols occurring above the
positions of genvars are common for t and s. Top-maximality requires that common symbols
are retained in the generalization. Let r1 and r2 contain a genvar in position p. Since they are
top-maximal, all symbols above p are common in s and t. Since r1 is genvar(r1, t, s)-shallow
and projection-based, r1|p should have a form Y (t|p, s|p), where Y is a genvar.

Also, r2 is genvar(r1, t, s)-shallow. Therefore, r2|p has a form X(q1, . . . , qn), where each qi
is a subterm of t|p or s|p. Since r2 is a generalization of t and s, there exist substitutions σ1
and σ2 such that X(q1, . . . , qn)σ1 = t|p and X(q1, . . . , qn)σ2 = s|p. Then r1|p can be obtained
from r2|p by the substitution {X 7→ λy1, . . . , yn. Y (X(y1, . . . , yn)σ1, X(y1, . . . , yn)σ2)}.

Because of top-maximality and shallowness, r1 and r2 have genvars in the same positions.
The projection-based property implies that r1 contains only one genvar, which we denoted
by Y above. Repeating the above reasoning for each genvar position finishes the proof. J

A disadvantage of projection-based generalizations is that if two subterms do not have the
same head, projection-based generalization does not focus on their common parts. However,
often it is interesting to report the commonalities between such subterms. This is what
common-subterm generalization is about.

5.2 Generalization with common subterms

5.2.1 CS-variant
In the definition of cs-generalizations (Definition 10) we just required the set {r1, . . . , rn}
to originate from some set of common subterms of s|p and t|p. Such a relaxed definition
will allow us in the next sections to relate the cs-variant to more specific categories such as
rfc-, fc-, and pattern variants. However, for the Select function we need a stronger way to
choose {r1, . . . , rn}, since we aim at computing lggs. Therefore, we introduce the notion of
position-maximal common subterm of two terms:
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I Definition 22. Let t1, t2, and s be terms such that for some positions p1 of t1 and p2 of
t2, we have t1|p1 = t2|p2 = s. We say that s is a (p1, p2)-maximal common subterm of t1
and t2 if

p1 = ε or p2 = ε, or
p1 = p′1.i1 and p2 = p′2.i2 for some p′1, i1, p′2, and i2, and t1|p′

1
6= t2|p′

2
.

A common subterm of two terms is position-maximal if it is their (p1, p2)-maximal
common subterm for some positions p1 of t1 and p2 of t2.

The set of position-maximal common subterm occurrence triples of t1 and t2 is defined as
pmcso(t1, t2) := {(p1, p2, s) | s is a (p1, p2)-maximal common subterm of t1 and t2}.

Given an pmcso(t1, t2) and a set of variables χ such that no bound variable occurring as
the term of a triple of pmcso(t1, t2) is in χ, an χ-extension of pmcso(t1, t2) is the set

pmcsoχ(t1, t2) := pmcso(t1, t2)
∪ {(p, •, x) | x ∈ χ \ fv(t2), p is the first position with t1|p = x}
∪ {(•, p, x) | x ∈ χ \ fv(t1), p is the first position with t2|p = x}.

Remark. Since it is enough to have one occurrence of (p, •, x) and (•, p, x), it does not matter
how p is computed. We can, e.g., assume that it is the first leftmost-outermost position.

I Example 23. The set of all position-maximal common subterms of f(g(x), g(x), g(g(x)))
and h(g(g(x)), a, b) is {g(x), g(g(x))}, where g(x) is the (1, 1.1)- and (2, 1.1)-maximal common
subterm, and g(g(x)) is the (3, 1)-maximal common subterm.

Now, we obtain the special case of the Sol rule for position-maximal common subterms
by choosing cond and, as a consequence, QR, as follows:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q = pmcso{ #»x }(t, s).
The instance of QR: {q1, . . . , qn} is the { #»x} ∩ (fv(t) ∪ fv(s))-extension of the set of all

position-maximal common subterms of t and s.

cond and the item 2 of the definition of Select (Definition 17) imply that we have
{ #»x} ∩ (fv(t) ∪ fv(s))-extension in the instance of QR. Without item 2, it would be just
{ #»x}-extension. Note that for computing cs-generalizations, if would be sufficient to take { #»x}-
extensions, but we aim at computing cs-lggs, that’s why we would keep only the necessary
variables from { #»x} in generalizations. The necessary ones are those that appear in t or in s.

Yet another remark, which concerns the difference between cs-generalizations and Select
is that the q′s we get from QR form the set of all position-maximal common subterms of
the terms to be generalized, while in cs-generalization the free variables apply to some set
of common subterms of those terms. This difference is motivated by our wish to have, on
the one hand, rfc-, fc-, and pattern-lggs later as special cs-generalizations and, on the other
hand, to compute cs-lggs by the specific version of Sol. The specified instance of cond does
not imply any special form of Ct and Cs. They are like it was defined in CR.

The obtained instance of Sol is denoted by Sol-CS, and the obtained algorithm by Gcs.
We get the theorem, in which (and in the analogous theorems for rfc, fc, and patterns below)
n is the size of the input:

I Theorem 24. Gcs computes a cs-generalization of two terms in time O(n3).

Proof. Top-maximality and genvar-shallowness follow from Theorem 14. The cs-generali-
zation property follows from the instance ofQR. Selecting position-maximal common subterms
from two terms can take quadratic time, and Gcs can perform this operation linearly many
times. Hence the cubic time complexity. Merging at the end can not make it worse. J
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I Theorem 25 (Completeness of Gcs). Let r0 be a cs-generalization of t and s. Then Gcs
computes a generalization r of t and s such that r0 � r.

Proof sketch. Cs-generalizations differ from each other by the amount of position-maximal
common subterms they take in the generalization, and by the number of duplicate general-
ization variables. The Select function makes sure that Gcs puts in generalizations as many
position-maximal common subterms as possible, and the exhaustive application of Mer makes
all possible sharings of genvars. These arguments imply that r0 � r. J

I Corollary 26. Cs-variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 25 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

I Example 27. Let t = λx1.f(g1(x1, a), g2(λx2.h(x2))), s = λy1.f(h1(a, a), h2(λy2.h(y2))).
Gcs gives λx1.f(Z1(x1, a), Z2(λx2.h(x2))). (See Example 44 in Appendix.) If we had { #»x}-
extension in the instance of QR, we would get λx1.f(Z1(x1, a), Z3(x1, λx2.h(x2))), which is
more general than λx1.f(Z1(x1, a), Z2(λx2.h(x2))).

I Example 28. let t = λx.f(g(x), h(x, a)) and s = λy.h(g(y), a). Then Gcs gives the final
state ∅; {Y (y1, y2, y3) : f(y2, h(y1, y3)) , h(y2, y3)}; λx.Y (x, g(x), a).

In some applications, it is desirable that the arguments of free variables are not subterms
of each other. This requirement leads to generalization for (relaxed) fc- and patterns. These
special cases also rely on position-maximal common subterm computation, but the obtained
set is filtered. For those variants, in the sections below, we assume that the input terms are
closed. Otherwise we will need to add some extra tests to make sure that free variables from
the input appear in the generalization only if they do not violate the rfc-, fc-, or patterns
restrictions. It will just make things more cumbersome without giving any special insights
about the problem. Therefore, for simplicity, we prefer to work with closed input.

For closed input terms, genvar-shallow generalizations are just shallow generalizations.
Therefore, below we will mention only the latter.

5.2.2 RFC-variant
From Definition 11 it follows that rfc-generalizations are shallow, but not necessarily top-
maximal. Moreover, even top-maximal rfc-generalizations do not have to be cs-generalizations.
For instance, if s = λx.f(h1(g1(x)), h1(g2(x))) and t = λx.f(h2(g1(x)), h2(g2(x))), then
r = λx.f(X(g1(x), g2(x)), X(g1(x), g2(x))) is an rfc-generalization of s and t, but it is not a
cs-generalization. However, top-maximal rfc-lggs are cs-generalizations:

I Theorem 29. Let r be a top-maximal rfc-lgg of s and t. Then r is their cs-generalization.

Proof. Let X(r1, . . . , rn) = r|p, where X is a genvar. Since r is an rfc-term, ({X},B, X(r1,

. . . , rn)) is an rfc-triple, where B is the set of variables bound by λ above the position p. The
terms r1, . . . , rn should contain all variables from B∩(fv(s|p)∪fv(t|p)), otherwise X(r1, . . . , rn)
can not generalize s|p and t|p. Moreover, r1, . . . , rn should be common subterms of s|p and
t|p. Otherwise it will violate the assumption that r is an lgg: if, say, rn is not a common
subterm of s|p and t|p (in the sense mentioned in the previous section), then Y (r1, . . . , rn−1)
will be again a generalization of s|p and t|p, but less general than X(r1, . . . , rn). By the
assumption, r is top-maximal. As an rfc-generalization, r is shallow. Since p was an arbitrary
position with a genvar, all these conditions imply that r is a cs-generalization of s and t. J
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Since we aim at computing rfc-lggs, we can take an instance of the Sol rule so that
it generates only those rfc-generalizations that are cs-generalizations. We call them {cs,
rfc}-generalizations. In them, in addition to the common-subterms condition in Definition 10,
the subterms of genvars should satisfy argument and local restrictions. It leads to the instance
of Select, in which cond starts from the set Q as in cs-generalizations, and removes from it
those terms that violate argument and local restrictions:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by removing from it

(a) all triples (p1, p2, q) where q↓η is not { #»x}-restricted in t , s1 and
(b) all triples (pi1, pi2, qi) for which there exists (pj1, p

j
2, qj) ∈ pmcso{ #»x }(t, s) such that

qj↓η @ qi↓η.
The instance of QR: {q1, . . . , qn} is the largest set of position-maximal common subterms

of t and s whose η-normal forms are { #»x} ∩ (fv(t) ∩ fv(s))-restricted in t or in s, and none
of those η-normal forms are subterms of each other.

Similar to the previous section, the terms Ct and Cs do not have any special form. Defining
the q’s in this way, it is easy to see that Y (q1, . . . , qn), in the generalization computed by Sol
satisfies both the argument restriction and the local restriction. The obtained rule is called
Sol-RFC, and the algorithm Grfc. We get the theorem:

I Theorem 30. Grfc computes a top-maximal {cs, rfc}-generalization in time O(n3).

Proof. From Theorem 14 we get top-maximality and shallowness (since the input is assumed
to be closed). The {cs, rfc}-property follows from the instance of QR. The O(n3) time of
computing cs-generalizations dominates the time needed to filter out subterms that violate
the rfc-property (since argument and local restrictions are checked in quadratic time). J

I Theorem 31 (Completeness of Grfc). Let r0 be a top-maximal rfc-generalization of t and
s. Then Grfc computes a generalization r of t and s such that r0 � r.

Proof sketch. Among two top-maximal rfc-generalizations, the one with all position-maximal
common subterms and all possible sharings of genvars is less general. J

I Corollary 32. Rfc-variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 31 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

I Example 33. Let t = λx.f(h1(g(g(x)), a, b), h2(g(g(x)))), s = λy.f(h3(g(g(y)), g(y), a),
h4(g(g(y)))). ThenGrfc stops with the final state ∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a),
Y2(y2) : h2(y2) , h4(y2)}; λx.f(Y1(g(x)), Y2(g(g(x)))).

5.2.3 FC-variant
Fc-generalizations are also rfc-generalizations and, hence, the properties of rfc-generalizations
are valid for fc-generalizations as well. The counterpart of Theorem 29 holds. Analogously
to the rfc case, here we aim at computing {cs, fc}-generalizations.

The peculiarity here is that we have to take into account the global condition of fc-terms.
Therefore, we need to impose a strategy on the application of the (yet to be defined) instance
of the Sol rule: It should be applied only if no other rule applies. Let at this moment A

1 We look here at t , s as a term, also in the selection functions for fc- and pattern generalizations later.
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be the set {X1( # »x1) : t1 , s1, . . . , Xk( # »xk) : tk , sk}. Let Mi, 1 ≤ i ≤ m, be the set of all
position-maximal common subterms of ti and si, and let M = ∪ki=1Mi. Then we formulate
the instance of Select, in which cond takes into account M , and filters out terms violating
argument, local, and global restrictions:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by

(a) removing all (p1, p2, q) ∈ pmcso{ #»x }(t, s) where q↓η is not { #»x}-restricted in t , s and
(b) replacing all (pi1, pi2, qi) ∈ pmcso{ #»x }(t, s) by (pj1, p

j
2, qj), where qj↓η @ qi↓η and qj ∈M .

Note that the condition (b) here includes as a special case the condition (b) from the
Select instance for rfc-generalizations. This selection function, by Definition 17, leads to the
following instance of QR:

The instance of QR: Let Q be the largest set of position-maximal common subterms of
t and s whose η-normal forms are { #»x} ∩ (fv(t) ∩ fv(s))-restricted in t or in s. Then
{q1, . . . , qn} is obtained from Q by replacing all qi ∈ Q by qj ∈M , if qj↓η @ qi↓η.

Since we take into account the whole of M when deciding which subterms to keep under
the genvars, the global restriction of fc-terms is satisfied. Similar to the cs- and rfc-variants,
the terms Ct and Cs here do not have any special form. The obtained instance of Sol is
denoted by Sol-FC, and the algorithm by Gfc. The theorems below can be proved similarly
to their rfc-counterparts:

I Theorem 34. Gfc computes a top-maximal {cs, fc}-generalization in time O(n3).

I Theorem 35 (Completeness of Gfc). Let r0 be a top-maximal fc-generalization of t and s.
Then Gfc computes a generalization r of t and s such that r0 � r.

I Corollary 36. Fc-variant of higher-order anti-unification is unitary.

I Example 37. For terms in Example 33, Gfc stops with the final state ∅; {Y1(y1) :
h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(g(y2)) , h4(g(y2))}; λx.f(Y1(g(x)), Y2(g(x))).

5.2.4 Pattern variant
Similarly to rfc- and fc-generalizations, pattern generalizations are shallow but not necessarily
top-maximal (and, consequently, not cs-generalizations). For instance, λx, y.f(X(x, y)) is
a pattern generalization of s = t = λx, y.f(g(x)), which is neither top-maximal nor cs-
generalization. However, pattern lggs are top-maximal and retain common subterms (note
the difference from rfc- and fc-generalization, where lggs are not necessarily top-maximal):

I Theorem 38. A least general pattern generalization of two terms is their cs-generalization.

Proof. Top-maximality of pattern lgg follows from completeness of pattern generalization
algorithm described in [7, 8]. The rest of the proof is similar to the proof of Theorem 29. J

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by

(a) removing all (p1, p2, q) ∈ pmcso{ #»x }(t, s) where q↓η is not { #»x}-restricted in t , s and
(b) replacing all (pi1, pi2, qi) ∈ pmcso{ #»x }(t, s) by (pj1, p

j
2, x), where x↓η @ qi↓η and x ∈ { #»x}.

We wrote Select in this form to relate it to the selection functions of the other common
subterms based generalizations (cs, rfc, fc). It leads to the instances of QR and CR:
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The instance of QR: {q1, . . . , qn} = { #»x} ∩ (fv(t) ∪ fv(s)).
The instance of CR: Ct = t, Cs = s, yi = qi.

The obtained instance of Sol is denoted by Sol-P, and the obtained algorithm by Gpat. It
is, in fact, the algorithm from [8], for the closed input. It is complete. The theorem below is
also from [8]:

I Theorem 39. Gpat computes a least general pattern generalization in time O(n).

It is known from [8] that pattern variant of higher-order anti-unification is unitary. It can be
also seen from Theorem 16 and the definitions of the instances of QR and CR above, which
makes the choice of the q’s and C’s in Sol unique.

6 Conclusion

We described a general framework for computing top-maximal genvar-shallow generalizations
of two terms and proved its properties. Appropriate instantiation of the framework gives
concrete instances of variants of higher-order anti-unification. By instantiations, we obtained
four new unitary variants of higher-order generalization.
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A Examples

I Example 40. Let t = λx.f(g(x), g(g(x))) and s = λx.h(g(g(x)), g(x)). Then
r0 = λx.X(f(g(x), g(g(x))), h(g(g(x)), g(x))) is a shallow top-maximal lgg of t and s.
r1 = λx.Y (g(x), g(g(x))) is a top-maximal rfc-lgg of t and s. We have r1 ≺ r0. Note that
r2 = λx.Y (g(g(x)), g(x)) is also a top-maximal rfc-generalization with r1 ' r2.
r3 = λx.Z(g(x)) is a top-maximal fc-lgg of t and s. In this case we have r3 ' r1, because
r3{Z 7→ λx.Y (x, g(x))} = r1 and r1{Y 7→ λx, y.Z(x)} = r3.
r4 = λx.X(x) is a top-maximal pattern-lgg of t and s and r4 ≺ r3.

I Example 41. Let t = λx.f(x, x) and s = λx.f(g(g(x)), g(x)). Then the non-shallow term
r = λx.f(Y (Y (x)), Y (x)) is a top-maximal generalization of t and s, and it is less general
than their shallow top-maximal generalization λx.f(Z(x, g(g(x))), Z(x, g(x))).

I Example 42. Let t = λx, y.X(f(x), f(y)) and s = λx, y.X(g(y), g(x)). Then the term
r = λx, y.X(Y (f(x), g(y)), Y (f(y), g(x))) is a genvar(r, t, s)-shallow top-maximal lgg of t and
s, but not a shallow top-maximal lgg.
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I Example 43. Let t = λx.f(g(x), g(x), g(g(x))) and s = λy.h(g(g(y)), a, b). Then the
sequence of inferences in Gcs is

{X : λx.f(g(x), g(x), g(g(x))) , λy.h(g(g(y)), a, b)}; ∅; X =⇒Abs

{X ′(x) : f(g(x), g(x), g(g(x))) , h(g(g(x)), a, b)}; ∅; λx.X ′(x) =⇒Sol-CS

∅; {Y (y1, y2) : f(y1, y1, y2) , h(y2, a, b)}; λx.Y (g(x), g(g(x))).

In the Sol-CS step, we compute all position-maximal common subterms and their positions
as in Example 23. Therefore, f(y1, y1, y2) and h(y2, a, b) are obtained from

f(g(x), g(x), g(g(x)))[1 7→ y1][2 7→ y1][3 7→ y2] and
h(g(g(x)), a, b)[1.1 7→ y1][1.1 7→ y1][1 7→ y2],

respectively. To obtain t (resp., s) from the computed generalization λx.Y (g(x), g(g(x))), we
need to apply the substitution {Y 7→ λy1, y2.f(y1, y1, y2)} (resp., {Y 7→ λy1, y2.h(y2, a, b)})
to it. These substitutions can be directly read off the store.

I Example 44. Let t = λx1.f(g1(x1, a), g2(λx2.h(x2))), s = λy1.f(h1(a, a), h2(λy2.h(y2))).
Then we get the following derivation in Gcs:

{X : λx1.f(g1(x1, a), g2(λx2.h(x2))) , λy1.f(h1(a, a), h2(λy2.h(y2)))}; ∅; X =⇒Abs

{Y (x1) : f(g1(x1, a), g2(λx3.h(x2))) , f(h1(a, a), h2(λy2.h(y2)))}; ∅; λx1.Y (x1) =⇒Dec

{Y1(x1) : g1(x1, a) , h1(a, a), Y2(x1) : g2(λx2.h(x2)) , h2(λy2.h(y2))}; ∅;
λx1.f(Y1(x1), Y2(x1))

Here Sol-CS rule applies. The set of position-maximal common subterms of g1(x1, a) and
h1(a, a) is {a}. We need to extend it by x1, because x1 has been bound before (as Y1(x1)
tells) and it appears in g1(x1, a). Hence, after this extension we get the set {x1, a}, which
will be introduced in the generalization. The store also changes correspondingly:

{Y2(x1) : g2(λx2.h(x2)) , h2(λy2.h(y2))}; {Z1(z1, z2) : g1(z1, z2) , h1(z2, z2)};
λx1.f(Z1(x1, a), Y2(x1))

Also here, we use Sol-CS. The set of position-maximal common subterms of g2(λx2.h(x2))
and h2(λy2.h(y2)) is {λx2.h(x2)} (modulo α-equivalence). This set will not be extended by
any bound variable, because the only candidate, x1, appears neither in g2(λx2.h(x2)) nor in
h2(λy2.h(y2)). Therefore, we get

∅; {Z1(z1, z2) : g1(z1, z2) , h1(z2, z2), Z2(z3) : g2(z3) , h2(z3)};
λx1.f(Z1(x1, a), Z2(λx2.h(x2))).

Note that if we had { #»x}-extension instead of { #»x}∩(fv(t)∪ fv(s))-extension in the instance
of QR above, then in the last step we would get the generalization λx1.f(Z1(x1, a), Z2(x1,

λx2.h(x2))), which is more general than λx1.f(Z1(x1, a), Z2(λx2.h(x2))), computed by Gcs.

I Example 45. Let t and s be the terms, t = λx.f(h1(g(g(x)), a, b), h2(g(g(x)))), s =
λy.f(h3(g(g(y)), g(y), a), h4(g(g(y)))). Then Grfc performs the following steps:

{X : λx.f(h1(g(g(x)), a, b), h2(g(g(x)))) ,
λy.f(h3(g(g(y)), g(y), a), h4(g(g(y))))}; ∅; X =⇒Abs
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{X ′(x) : f(h1(g(g(x)), a, b), h2(g(g(x)))) ,
f(h3(g(g(x)), g(x), a), h4(g(g(x))))}; ∅; λx.X ′(x) =⇒Dec

{Z1(x) : h1(g(g(x)), a, b) , h3(g(g(x)), g(x), a),
Z2(x) : h2(g(g(x))) , h4(g(g(x))}; ∅; λx.f(Z1(x), Z2(x)) =⇒Sol-RFC

{Z2(x) : h2(g(g(x))) , h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a)}; λx.f(Y1(g(x)), Z2(x)) =⇒Sol-RFC

∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(y2) , h4(y2)};
λx.f(Y1(g(x)), Y2(g(g(x)))).

I Example 46. Let us see how fc-generalization can be computed for terms in Example 45.
We can show the part of the computation that starts with Sol-FC:

{Z1(x) : h1(g(g(x)), a, b) , h3(g(g(x)), g(x), a),
Z2(x) : h2(g(g(x))) , h4(g(g(x))}; ∅; λx.f(Z1(x), Z2(x)) =⇒Sol-FC

{Z2(x) : h2(g(g(x))) , h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a)};λx.f(Y1(g(x)), Z2(x)) =⇒Sol-FC

∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(g(y2)) , h4(g(y2))};
λx.f(Y1(g(x)), Y2(g(x))).
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