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Abstract
The suffix trees are fundamental data structures for various kinds of string processing. The suffix
tree of a string T of length n has O(n) nodes and edges, and the string label of each edge is encoded
by a pair of positions in T . Thus, even after the tree is built, the input text T needs to be kept
stored and random access to T is still needed. The linear-size suffix tries (LSTs), proposed by
Crochemore et al. [Linear-size suffix tries, TCS 638:171-178, 2016], are a “stand-alone” alternative to
the suffix trees. Namely, the LST of a string T of length n occupies O(n) total space, and supports
pattern matching and other tasks in the same efficiency as the suffix tree without the need to store
the input text T . Crochemore et al. proposed an offline algorithm which transforms the suffix tree
of T into the LST of T in O(n log σ) time and O(n) space, where σ is the alphabet size. In this
paper, we present two types of online algorithms which “directly” construct the LST, from right to
left, and from left to right, without constructing the suffix tree as an intermediate structure. Both
algorithms construct the LST incrementally when a new symbol is read, and do not access to the
previously read symbols. The right-to-left construction algorithm works in O(n log σ) time and O(n)
space and the left-to-right construction algorithm works in O(n(log σ + logn/ log logn)) time and
O(n) space. The main feature of our algorithms is that the input text does not need to be stored.
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1 Introduction

Suffix tries are conceptually important string data structures that are the basis of more
efficient data structures. While the suffix trie of a string T supports fast queries and
operations such as pattern matching, the size of the suffix trie can be Θ(n2) in the worst case,
where n is the length of T . By suitably modifying suffix tries, we can obtain linear O(n)-size
string data structures such as suffix trees [24], suffix arrays [20], directed acyclic word graphs
(DAWGs) [4], compact DAWGs (CDAWGs) [5], position heaps [10], and so on. In the case of
the integer alphabet of size polynomial in n, all these data structures can be constructed in
O(n) time and space in an offline manner [8, 9, 11, 13, 16, 18, 21]. In the case of a general
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ordered alphabet of size σ, there are left-to-right online construction algorithms for suffix
trees [23], DAWGs [4], CDAWGs [17], and position heaps [19]. Also, there are right-to-left
online construction algorithms for suffix trees [24] and position heaps [10]. All these online
construction algorithms run in O(n log σ) time with O(n) space.

Suffix trees are one of the most extensively studied string data structures, due to their
versatility. The main drawback is, however, that each edge label of suffix trees needs to
be encoded as a pair of text positions, and thus the input string needs to be kept stored
and be accessed even after the tree has been constructed. Crochemore et al. [7] proposed
a new suffix-trie based data structure called linear-size suffix tries (LSTs). The LST of T
consists of the nodes of the suffix tree of T , plus a linear-number of auxiliary nodes and suffix
links. Each edge label of LSTs is a single character, and hence the input text string can be
discarded after the LST has been built. The total size of LSTs is linear in the input text
length, yet LSTs support fundamental string processing queries such as pattern matching
within the same efficiency as their suffix tree counterpart [7].

Crochemore et al. [7] showed an algorithm which transforms the given suffix tree of string
T into the LST of T in O(n log σ) time and O(n) space. This algorithm is offline, since it
requires the suffix tree to be completely built first. No efficient algorithms which construct
LSTs directly (i.e. without suffix trees) and in an online manner were known.

This paper proposes two online algorithms that construct LSTs directly from the given
string. The first algorithm is based on Weiner’s suffix tree construction [24], and constructs
the LST of T by scanning T from right to left. On the other hand, the second algorithm is
based on Ukkonen’s suffix tree construction [23], and constructs the LST of T by scanning T
from left to right. Both algorithms construct the LST incrementally when a new symbol is
read, and do not access the previously read symbols. This also means that our construction
algorithms do not need to store the input text, and the currently processed symbol in
the text can be immediately discarded as soon as the symbol at the next position is read.
The right-to-left construction algorithm works in O(n log σ) time and O(n) space and the
left-to-right construction algorithm works in O(n(log σ + log n

log log n )) time and O(n) space.

2 Preliminaries

Let Σ denote an alphabet of size σ. An element of Σ∗ is called a string. For a string T ∈ Σ∗,
the length of T is denoted by |T |. The empty string, denoted by ε, is the string of length 0.
For a string T of length n, T [i] denotes the i-th symbol of T and T [i : j] = T [i]T [i+1] . . . T [j]
denotes the substring of T that begins at position i and ends at position j for 1 ≤ i ≤ j ≤ n.
Moreover, let T [i : j] = ε if i > j. For convenience, we abbreviate T [1 : i] to T [: i] and
T [i : n] to T [i :], which are called prefix and suffix of T , respectively.

2.1 Linear-size suffix trie
The suffix trie STrie(T ) of a string T is a trie that represents all suffixes of T . The suffix
link of each node U in STrie(T ) is an auxiliary link that points to V = U [2 : |U |]. The
suffix tree [24] STree(T ) of T is a path-compressed trie that represents all suffixes of T . We
consider the version of suffix trees where the suffixes that occur twice or more in T can
be represented by non-branching nodes. The linear-size suffix trie LST(T ) of a string T ,
proposed by Crochemore et al. [7], is another kind of tree that represents all suffixes of T ,
where each edge is labeled by a single symbol. The nodes of LST(T ) are a subset of the
nodes of STrie(T ), consisting of the two following types of nodes:
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Figure 1 The suffix trie, linear-size suffix trie, and suffix tree of T = abaaba$.

1. Type-1: The nodes of STrie(T ) whose that also nodes of STree(T ).
2. Type-2: The nodes of STrie(T ) that not type-1 nodes and their suffix links point to type-1

nodes.
A non-suffix type-1 node has two or more children and a type-2 node has only one child.
When T ends with a unique terminate symbol $ that does not occur elsewhere in T , then all
type-1 nodes in LST(T ) has two or more children. The nodes of STrie(T ) that are neither
type-1 nor type-2 nodes of LST(T ) are called implicit nodes in LST(T ).

We identify each node in LST(T ) by the substring of T that is the path label from root
to the node in STrie(T ). Let U and V be nodes of LST(T ) such that V is a child of U . The
edge label of (U, V ) = c is the same as the label of the first edge on the path from U to V in
STrie(T ). If V is not a child of U in STrie(T ), i.e. the length of the path label from U to
V is more than one, we put the + sign on V and we call V a +-node. Figure 1 shows an
example of a suffix trie, linear-size suffix trie, and suffix tree.

For convenience, we assume that there is an auxiliary node ⊥ as the parent of the root of
LST (T ), and that the edge from ⊥ to the root is labeled by any symbol. This assures that
for each symbol appearing in T the root has a non + child. This will be important for the
construction of LSTs and pattern matching with LSTs (c.f. Lemma 2).

In the description of our algorithms, we will use the following notations. For any node
U , parent(U) denotes the parent node of U . For any edge (U, V ), label(U, V ) denotes the
label of the edge connecting U and V , For a node U and symbol c, child(U, c) denotes the
child of U whose incoming edge label is c, if it exists. We denote +(U) = true if U is a
+-node, and +(U) = false otherwise. The suffix link of a node U is defined as slink(U) = V ,
where V = U [2 : |U |]. The reversed suffix link of a node U with a symbol c ∈ Σ is defined
as rlink(U, c) = V , if there is a node U such that cU = V . It is undefined otherwise. For
any type-1 node U , t1parent(U) denotes the nearest type-1 ancestor of U , and t1child(U, c)
denotes the nearest type-1 descendant of U on c edge. For any type-2 node U , child(U) is
the child of U , and label(U) is the label of the edge connecting U and its child.

2.2 Pattern matching using linear-size suffix trie
In order to efficiently perform pattern matching on LSTs, Crochemore et al. [7] introduced
fast links that are a chain of suffix links of edges.

I Definition 1. For any edge (U, V ), let fastLink(U, V ) = (slinkh(U), slinkh(V )) such that
slinkh(U) 6= parent(slinkh(V )) and slinkh−1(U) = parent(slinkh−1(V )), where slink0(U) = U

and slinki(U) = slink(slinki−1(U)).

CPM 2019
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Figure 2 Illustration for our pattern matching algorithm with LST. The dashed arrows represent
fast links. The number in parentheses show the orders of applications of fast links when traversing
Pi = c1c2c3c4c5 on the edge ei.

Here, h is the minimum number of suffix links that we need to traverse so that slinkh(U) 6=
parent(slinkh(V )). Namely, after taking h suffix links from edge (U, V ), there is at least one
type-2 node in the path from slinkh(U) to slinkh(V ). Since type-2 nodes are not branching, we
can use the labels of the type-2 nodes in this path to retrieve the label of the edge (U, V ) (see
Lemma 2 below). Provided that LST(T ) has been constructed, the fast link fastLink(U, V )
for every edge (U, V ) can be computed in a total of O(n) time and space [7].

I Lemma 2 ([7]). The underlying label of a given edge (U, V ) of length ` can be retrieved in
O(` log σ) time by using fast links.

Crochemore et al. [7] claimed that due to Lemma 2 one can perform pattern matching for
a given pattern P in O(|P | log σ) time with the LST. However, the proofs provided in [7] for
the correctness and time efficiency of their pattern matching algorithm looks unsatisfactory
to us, because the algorithm of Crochemore et al. [7] does not seem to guarantee that the
label of a given edge is retrieved sequentially from the first symbol to the last one (see
also [22]). Still, in the following lemma we present an algorithm which efficiently performs
the longest prefix match for a given pattern on the LST with fast links:

I Lemma 3. Given LST(T ) and a pattern P , we can find the longest prefix P ′ of P that
occurs in T in O(|P ′| log σ) time.

Proof. Let P1P2 · · ·Pm = P ′ be the factorization of P ′ such that P1 · · ·Pi is a node in
LST(T ) for 1 ≤ i < m, P1 · · ·Pi = parent(P1 · · ·Pi+1) for 1 ≤ i < m− 1, and P1 · · ·Pm−1 is
the longest prefix of P ′ that is a node in LST(T ). If P1 · · ·Pm−1 = P ′, then Pm = ε. In what
follows, we consider a general case where Pm 6= ε.

Suppose we have successfully traversed up to P1 · · ·Pi−1, and let U be the node repre-
senting P1 · · ·Pi−1. If U has no out-going edge labeled c1 = Pi[1] = P [|P1 · · ·Pi−1|+ 1], then
the traversal terminates on U . Suppose U has an out-going edge labeled c1 and let V be
the child of U with the c1-edge. We denote this edge by ei = (U, V ). See also Figure 2 for
illustration. If V is a not +-node, then we have read c1 and set U ← V and continue with
the next symbol c2 = Pi[2] = P [|P1 · · ·Pi−1| + 2]. Otherwise (if V is a +-node), then we
apply fastLink from edge (U, V ) recursively, until reaching the edge (U ′, V ′) such that V ′ is
not a +-node. Then we move onto V ′. Note that by the definition of fastLink, V ′ is always a
type-2 node. We then continue the same procedure by setting U ← V ′ with the next pattern
symbol c2. This will be continued until we arrive at the first edge (U, V ) such that V is a
type-1 node. Then, we trace back the chain of fastLink’s from (U, V ) until getting back to
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the type-2 node V ′′ whose out-going edge has the next symbol to retrieve. We set U ← V ′′

and continue with the next symbol. This will be continued until we traverse all symbols cj

in Pi for increasing j = 1, . . . , |Pi| along the edge ei, or find the first mismatching symbols.
The correctness of the above algorithm follows from the fact that every symbol in label

of the edge ei is retrieved from a type-2 node that is not branching, except for the first
one retrieved from the type-1 node that is the origin of ei. Since any type-2 node is not
branching, we can traverse the edge ei with Pi iff the underlying label of ei is equal to Pi for
1 ≤ i ≤ m− 1. The case of the last edge em where the first mismatching symbols are found
is analogous.

To analyze the time complexity, we consider the number of applications of fastLink. For
each 1 ≤ i ≤ m− 1, the number of applications of fastLink is bounded by the length of the
underlying label of edge ei, which is |Pi|. This is because each time we follow a fastLink, at
least one new symbol is retrieved. Hence we can traverse P1 · · ·Pm−1 in O(|P1 · · ·Pm−1| log σ)
time. For the last fragment Pm, we consider the number of applications of fastLink until we
find the type-2 node X whose out-going edge has the first mismatching symbol. Since the
first application of fastLink for Pm begins with an edge whose destination has string depth
|P1 · · ·Pm−1| and since each symbol appearing in T is represented by a node as a child of
the root, the number of applications of fastLink until finding X is bounded by |P1 · · ·Pm−1|.
Note that this is independent of the length of the edge em which can be much longer than
Pm. After finding X, we can traverse Pm as in the same way to previous Pi’s. Thus, we
can traverse Pm in O(|P1 · · ·Pm| log σ). Overall, it takes O(|P1 · · ·Pm| log σ) time to traverse
P ′ = P1 · · ·Pm. This completes the proof. J

Algorithm 6 in Appendix shows a pseudo-code of our pattern matching algorithm with the
LST in Lemma 3.

3 Right-to-left online algorithm

In this section, we present an online algorithm that constructs LST(T ) by reading T from
right to left. Let Ti = LST(T [i :]) for 1 ≤ i ≤ n. Our algorithm constructs Ti from Ti+1
incrementally when c = T [i] is read. For simplicity, we assume that T ends with a unique
terminal symbol $ such that T [i] 6= $ for 1 ≤ i < n.

We remark that the algorithm does not construct fast links of the LSTs. The fast links
can easily be constructed in O(n) time after LST(T ) has been constructed.

Let us first recall Weiner’s suffix tree contraction algorithm on which our right-to-left
LST construction algorithm is based. Weiner’s algorithm uses the reversed suffix links of
the suffix tree called hard Weiner links. We in particular consider the version of Weiner’s
algorithm that also explicitly maintains soft-Weiner links [6] of the suffix tree. In the suffix
tree of a text T , there is a soft-Weiner link for a node V with a symbol c iff cV is a substring
of T but cV is not a node in the suffix tree. It is known that the hard-Weiner links and the
soft-Weiner links are respectively equivalent to the primary edges and the secondary edges of
the directed acyclic word graph (DAWG) for the reversal of the input string [4].

Given the suffix tree for T [i+ 1 :], Weiner’s algorithm walks up from the leaf representing
T [i + 1 :] and first finds the nearest branching ancestor V such that aV is a substring of
T [i + 1 :], and then finds the nearest branching ancestor V ′ such that cV ′ = U ′ is also a
branching node, where c = T [i]. Then, Weiner’s algorithm finds the insertion point for a new
leaf for T [i :] by following the reversed suffix link (i.e. the hard-Weiner link) from V ′ to U ′,
and then walking down the corresponding out-edge of U ′ with the difference of the string
depths of V and V ′. A new branching node U is made at the insertion point if necessary.

CPM 2019
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Figure 3 Upper: The DAWG version of Weiner’s algorithm when updating the suffix tree for
T [i + 1 :] to the suffix tree for T [i :]. Lower: Our right-to-left LST construction when updating
Ti+1 = LST(T [i+ 1 :]) to Ti = LST(T [i :]).

New soft-Weiner links are created from the nodes between the leaf for T [i+ 1 :] and V to
the new leaf for T [i :].

Now we consider our right-to-left LST construction. See the lower diagram of Figure 3
for illustration. The major difference between the DAWG version of Weiner’s algorithm and
our LST construction is that in our LST we explicitly create type-2 nodes which are the
destinations of the soft-Weiner links. Hence, in our linear-size suffix trie construction, for
every type-1 node between V and the leaf for T [i+ 1 :], we explicitly create a unique new
type-2 node on the path from the insertion point to the new leaf for T [i :], and connect them
by the reversed suffix link labeled with c. Also, we can directly access the insertion point U
by following the reversed suffix link of V , since U is already a type-2 node before the update.

The above observation also gives rise to the number of type-2 nodes in the LST. Blumer
et al. [4] proved that the number of secondary edges in the DAWG of any string of length n
is at most n− 1. Hence we have:

I Lemma 4. The number of type-2 nodes in the LST of any string of length n is at most n−1.

The original version of Weiner’s suffix tree construction algorithm only maintains a Boolean
value indicating whether there is a soft-Weiner link from each node with each symbol. We
note also that the number of pairs of nodes and symbols for which the indicators are true is
the same as the number of soft-Weiner links (and hence the DAWG secondary edges).
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We have seen that LSTs can be seen as a representation of Weiner’s suffix trees or the
DAWGs for the reversed strings. Another crucial point is that Weiner’s algorithm only needs
to read the first symbols of edge labels. This enables us to easily extend Weiner’s suffix tree
algorithm to our right-to-left LST construction. Below, we will give more detailed properties
of LSTs and our right-to-left construction algorithm.

Let us first observe relations between Ti and Ti+1.

I Lemma 5. Any non-leaf type-1 node U in Ti exists in Ti+1 as a type-1 or type-2 node.

Proof. If there exist two distinct symbols a, b ∈ Σ such that Ua,Ub are substrings of T [i+1 :],
then clearly U is a type-1 node in Ti+1. Otherwise, then let b be a unique symbol such that
Ub is a substring of T [i+ 1 :]. This symbol b exists since U is not a leaf in Ti. Also, since U
is a type-1 node in Ti, there is a symbol a 6= b such that Ua is a substring of T [i :]. Note
that in this case Ua is a prefix of T [i :] and this is the unique occurrence of Ua in T [i :].
Now, let U ′ = U [2 :]. Then, U ′a is a prefix of T [i+ 1 :]. Since U ′b is a substring of T [i+ 1 :],
U ′ is a type-1 node in Ti+1 and hence U is a type-2 node in Ti+1. J

As was described above, only a single leaf is added to the tree when updating Ti+1 to Ti.
The type-2 node of Ti that becomes type-1 in Ti is the insertion point of this new leaf.

I Lemma 6. Let U be the longest prefix of T [i :] such that U is a prefix of T [j :] for some
j > i. U is a node in Ti+1.

Proof. If U = ε then U is the root. Otherwise, since U occurs twice or more in T [i :] and
T [i : i+ |U |] 6= T [j : j+ |U |], U is a type-1 node in Ti. By Lemma 5, U is a node in Ti+1. J

By Lemma 6, we can construct Ti by adding a branch on node U , where U is the longest
prefix of T [i :] such that U is a prefix of T [j :] for some j > i. This node U is the insertion
point for Ti. The insertion point U can be found by following the reversed suffix link labeled
by c from the node U [2 :] i.e. U = rlink(U [2 :], c). Since U is the longest prefix of T [i :] where
U [2 :] occurs at least twice in T [i+ 1 :], U [2 :] is the deepest ancestor of the leaf T [i+ 1 :]
that has the reversed suffix link labeled by c. Therefore, we can find U by checking the
reversed suffix links of the ancestors of T [i+ 1 :] walking up from the leaf. We call this leaf
representing T [i+ 1 :] as the last leaf of Ti+1.

After we find the insertion point, we add some new nodes. First, we consider the addition
of new type-1 nodes.

I Lemma 7. There is at most one type-1 node U in Ti such that U is a type-2 node in Ti+1.
If such a node U exists, then U is the insertion point of Ti.

Proof. Assume there is a type-1 node U in Ti such that U is a type-2 node in Ti+1. There
are suffixes UV and UW such that |V | > |W | and V [1] 6= W [1]. Since U is a type-2 node
in Ti+1, UV = T [i :] and UW = T [j :] for some j > i. Clearly, such a node is the only one
which is the branching node. J

From Lemma 7, we know that new type-1 node is added at the insertion point if it is a type-2
node. The only other new type-1 node is the new leaf representing T [i :].

Next, we consider the addition of the new branch from the insertion point. By Lemma 7,
there are no type-1 nodes between the insertion point and the leaf for T [i :] in Ti. Thus, any
node V in the new branch is a type-2 node and this node is added if V [2 :] is a type-1 node.
This can be checked by ascending from leaf T [i+ 1 :] to U [2 :], where U is the insertion point.
Regarding the labels of the new branch, for any new node V and its parent W , the label of

CPM 2019



30:8 Online Algorithms for Constructing Linear-Size Suffix Trie

i i+1

VU

c

c

(a)

+
+

Y

U

P

d

d

Z

a

d
Q

a

+

b
b
R

(b)

Figure 4 Illustration of (a) new branch addition and (b) type-2 nodes addition. The new nodes,
edges, and reverse suffix link are colored red.

(W,V ) edge is the same as the label of the first edge between W [2 :] and V [2 :]. The node V
is a +-node if V [2 :] is a +-node or there is a node between W [2 :] and V [2 :]. Figure 4 (a)
shows an illustration of the branch addition: V can be found by traversing the ancestors of
i+ 1 leaf. After we find the insertion point U = rlink(V, c), we add a new leaf i and type-2
nodes for each type-1 node between i+ 1 leaf and V .

Last, consider the addition of type-2 nodes when updating the insertion point U to a
type-1 node. In this case, we add a type-2 node dU for any d ∈ Σ such that dU occurs in T [i :].

I Lemma 8. Let U be the insertion point of Ti. Consider the case where U is a type-2 node
in Ti+1. Let Z be the nearest type-1 descendant of U and Y be the nearest type-1 ancestor of
U in Ti+1. For any node Q such that Q = rlink(Z, d) for some d ∈ Σ, P = rlink(Y, d) is the
parent of Q in Ti+1 and there is a type-2 node R between P and Q in Ti.

Proof. First, we prove that P is the parent of Q in Ti+1. Assume on the contrary that P is
not the parent of Q. Then, there is a node Q[: j] = dZ[: j − 1] for some |P | < j < |Q|. Thus,
Z[: j − 1] is a type-1 ancestor of Z and a type-1 descendant of Y , however this contradicts
the definition of Z or Y .

Second, we prove that there is a type-2 node between P and Q in Ti. Since U is a type-2
node in Ti+1 and Q = dZ is a node in Ti+1, dU occurs in T [i+ 1 :] but is not a node in Ti+1.
Since U is a type-1 node in Ti, dU is a type-2 node Ti. J

See Figure 4 (b) for an illustration of type-2 nodes addition. It follows from Lemma 8
that we can find the position of new type-2 nodes by first following the reversed suffix link
of the nearest type-1 descendant Z of U in Ti+1. Then, we obtain the parent P of Z, and
obtain Y by following the suffix link of P . The string depth of a new type-2 node R equal to
the string depth of U plus one. We can determine whether R is a +-node using the difference
of the string depths of Y and U . By Lemma 5, the total number of type-2 nodes added this
way for all positions 1 ≤ i ≤ n is bounded by the number of type-1 and type-2 nodes in Tn

for the whole text T .
Algorithm 1 in Appendix shows a pseudo-code of our right-to-left linear-size suffix trie

construction algorithm. For each symbol c = T [i] read, the algorithm finds the deepest node
U in the path from the root to the last leaf for T [i + 1 :] for which rlink(U, c) is defined,
by walking up from the last leaf (line 5). If the insertion point insertPoint = rlink(U, c) is
a type-1 node, the algorithm creates a new branch. Otherwise (if insertPoint is a type-2
node), then the algorithm updates insertPoint to type-1 and adds a new branch. The branch
addition is done in lines 10–21.

Also, the algorithm adds nodes R such that R = rlink(insertPoint, d) for some d ∈ Σ in
Ti. The algorithm finds the locations of these nodes by checking the reversed suffix links of
the nearest type-1 ancestor and descendant of insertPoint by using createType2(insertPoint).
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Let Y be the nearest type-1 ancestor of insertPoint and Z be the nearest type-1 descendant
of insertPoint. For a symbol d such that rlink(Z, d) is defined, let P = rlink(Y, d) and
Q = rlink(Z, d): the algorithm creates type-2 node R and connects it to P and Q.

A snapshot of right-to-left LST construction is shown in Figure 8 of Appendix.
We discuss the time complexity of our right-to-left online LST construction algorithm.

Basically, the analysis follows the amortization argument for Weiner’s suffix tree construction
algorithm. First, consider the cost for finding the insertion point for each i.

I Lemma 9. Our algorithm finds the insertion point of Ti in O(log σ) amortized time.

Proof. For each iteration, the number of type-1 and type-2 nodes we visit from the last
leaf to find the insertion point is at most depth(Li+1) − depth(Ui) + 1, where Li+1 is the
leaf representing T [i+ 1 :] and Ui is the insertion point for the new leaf representing T [i :]
in Ti, respectively, and depth(X) denotes the depth of any node X in Ti. See also the
lower diagram of Figure 3 for illustration. Therefore, the total number of nodes visited
is

∑
1≤i<n depth(Li+1) − depth(Ui) + 1 ≤ 2n. Since finding each reversed suffix link takes

O(log σ) time, the total cost for finding the insertion points for all 1 ≤ i ≤ n is O(n log σ),
which is amortized to O(log σ) per iteration. J

Last, the computation time of a new branch addition in each iteration is as follows.

I Lemma 10. Our algorithm adds a new leaf and new type-2 nodes between the insertion
point and the new leaf in Ti in O(log σ) amortized time.

Proof. Given the insertion point for Ti, it is clear that we can insert a new leaf in O(log σ)
time. For each new type-2 node in the path from the insertion point and the new leaf for
T [i :], there is a corresponding type-1 node in the path above the last leaf T [i + 1 :] (see
also the lower diagram of Figure 3). Thus the cost for inserting all type-2 nodes can be
charged to the cost for finding the insertion point for Ti, which is amortized O(log σ) per a
new type-2 node by Lemma 9. J

By Lemmas 9 and 10, we get the following theorem:

I Theorem 11. Given a string T of length n, our algorithm constructs LST(T ) in O(n log σ)
time and O(n) space online, by reading T from the right to the left.

4 Left-to-right online algorithm

In this section, we present an algorithm that constructs the linear-size suffix trie of a text T
by reading the symbols of T from the left to the right. Our algorithm constructs a slightly-
modified data structure called the pre-LST defined as follows: The pre-LST preLST(T ) of a
string T is a subgraph of STrie(T ) consisting of two types of nodes,
1. Type-1: The root, branching nodes, and leaves of STrie(T ).
2. Type-2: The nodes of STrie(T ) that are not type-1 nodes and their suffix links point to

type-1 nodes.
The main difference between preLST(T ) and LST(T ) is the definition of type-1 nodes. While
LST(T ) may contain non-branching type-1 nodes that correspond to non-branching internal
nodes of STree(T ) which represent repeating suffixes, preLST(T ) does not contain such type-1
nodes. When T ends with a unique terminal symbol $, the pre-LST and LST of T coincide.

Our algorithm is based on Ukkonen’s suffix tree construction algorithm [23]. For each
prefix T [: i] of T , there is a unique position ki in T [: i] such that T [ki : i] occurs twice or
more in T [: i− 1] but T [ki− 1 : i] occurs exactly once in T [: i]. In other words, T [ki− 1 : i] is
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Figure 5 Illustration for updating the parts of Pi−1 that correspond to T [j : i−1] for j < ki. The
purple diamond shows the active point. The new + sign, node, and its suffix link are colored red.

the shortest suffix of T [: i] that is represented as a leaf in the current pre-LST preLST(T [: i]),
and T [ki : i] is the longest suffix of T [: i] that is represented in the “inside” of preLST(T [: i]).
The location of preLST(T [: i]) representing the longest repeating suffix T [ki : i] of T [: i] is
called the active point, as in the Ukkonen’s suffix tree construction algorithm. We also call
ki the active position for T [: i]. Our algorithm keeps track of the location for the active point
(and the active position) each time a new symbol T [i] is read for increasing i = 1, . . . , n.
We will show later that the active point can be maintained in O(log σ) amortized time per
iteration, using a similar technique to our pattern matching algorithm on LSTs in Lemma 3.
In order to “neglect” extending the leaves that already exist in the current tree, Ukkonen’s
suffix tree construction algorithm uses the idea of open leaves that do not explicitly maintain
the lengths of incoming edge labels of the leaves. However, we cannot adapt this open leaves
technique to construct pre-LST directly, since we need to add type-2 node on the incoming
edges of some leaves. Fortunately, there is a nice property on the pre-LST so we can update
it efficiently. We will discuss the detail of this property later. Below, we will give more
detailed properties of pre-LSTs and our left-to-right construction algorithm.

Let Pi = preLST(T [: i]) be the pre-LST of T [: i]. Our algorithm constructs Pi from Pi−1
incrementally when a new symbol c = T [i] is read.

There are two kinds of leaves in preLST(T [: i]), the one that are +-nodes and the other
ones that are not +-nodes. There is a boundary in the suffix link chain of the leaves that
divides the leaves into the two groups, as follows:

I Lemma 12. Let T [j : i] be a leaf of Pi, for 1 ≤ j < k. There is a position l such that
T [j : i] is a +-node for 1 ≤ j < l and not a +-node for l ≤ j < ki.

Proof. Assume on the contrary there is a position j such that T [j : i] is not a +-node and
T [j + 1 : i] is a + node. Since T [j : i] is not a +-node, T [j : i− 1] is a node. By definition,
T [j + 1 : i− 1] is also a node. Thus T [j + 1 : i] is not a +-node, which is a contradiction. J

Intuitively, the leaves that are +-nodes in Pi are the ones that were created in the last step
of the algorithm with the last read symbol T [i].

When updating Pi−1 into Pi, the active position ki−1 for T [: i− 1] divides the suffixes
T [j : i − 1] into two parts, the j < ki−1 part and the j ≥ ki−1 part. First, we consider
updating the parts of Pi−1 that correspond to T [j : i− 1] for j < ki−1.

I Lemma 13. For any leaf T [j : i − 1] of Pi−1 with j < ki−1 − 1, T [j : i − 1] is implicit
in Pi.

Proof. Consider updating Pi−1 to Pi. T [ki−1 − 1 : i − 1] cannot be a type-1 node in Pi.
Therefore, T [ki−1−2 : i−1] is implicit in Pi. T [j : i−1] for j < ki−1−1 are also implicit. J
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I Lemma 14. If T [j : i − 1] is a leaf in Pi−1, then T [j : i] is a +-leaf in Pi, where
1 ≤ j < ki−1 − 1.

Proof. Assume on the contrary that T [j : i− 1] is a leaf in Pi−1 but T [j : i] is not a +-leaf
in Pi. Then T [j : i− 1] is a node in Pi. Since T [j : i− 1] is a leaf in Pi−1, T [j : i− 1] cannot
be a type-1 node in Pi. Moreover, T [j + 1 : i − 1] is a leaf in Pi−1, thus T [j + 1 : i − 1]
cannot be a type-1 node in Pi and T [j : i − 1] cannot be a type-2 node in Pi. Therefore,
T [j : i− 1] is neither type-1 nor type-2 node in Pi, which contradicts the assumption. J

Lemma 13 shows that we do not need to add nodes on the leaves of Pi−1 besides T [k − 1 : i]
leaf and Lemma 14 shows that we can update all leaves T [j : i] for l ≤ j < k − 1 to a +-leaf.
Therefore, besides the leaf for T [k − 1 : i], once we update a leaf to + node, we do not need
to update it again. Figure 5 shows an illustration of how to update this part.

Next, we consider updating the parts of Pi−1 that correspond to T [j : i− 1] for j ≥ ki−1.
If T [ki−1 : i] exists in the current LST (namely T [ki−1 : i] occurs in T [: i − 1]), then the
j ≥ ki−1 part of the current LST does not need to be updated. Then we have ki = ki−1 and
T [ki : i] is the active point of Pi. Otherwise, we need to create new nodes recursively from
the active point that will be the parents of new leaves. There are three cases for the active
point T [ki−1 : i− 1] in Pi−1:

Case 1. T [ki−1 : i−1] is a type-1 node in Pi−1. Let T [p : i] be the longest suffix of T [ki−1 : i]
that exists in Pi−1. Since T [ki−1 : i − 1] is a type-1 node, T [j : i − 1] is also a type-1
node for ki−1 ≤ j < p. Therefore, we can obtain Pi by adding a leaf from the node
representing T [j : i− 1] for every k ≤ j < p, with edge label c by following the suffix link
chain from T [ki−1 : i− 1]. In this case, we only need to add one new type-2 node, which
is T [ki−1 − 1 : i− 1] that is connected to the type-1 node T [ki−1 : i− 1] by the suffix link.
Moreover, p will be the active position for T [: i], namely ki = p.

Case 2. T [ki−1 : i− 1] is a type-2 node in Pi−1. Similarly to Case 1, we add a leaf from the
node representing T [j : i− 1] for every ki−1 ≤ j < p with edge label c by following the
suffix link chain from T [ki−1 : i−1], where p is defined as in Case 1.. Then, T [ki−1 : i−1]
becomes a type-1 node, and a new type-2 node T [ki−1−1 : i−1] is added and is connected
to this type-1 node T [ki−1 : i−1] by the suffix link. Moreover, for any symbol d such that
dT [ki−1 : i− 1] is a substring of T [: i], a new type-2 node for dT [ki−1 : i− 1] is added to
the tree, and is connected by the suffix link to this new type-1 node T [ki−1 : i− 1]. These
new type-2 nodes can be found in the same way as in Lemma 8 for our right-to-left LST
construction. Finally, p will become the active position for T [: i], namely ki = p.

Case 3. T [ki−1 : i − 1] is implicit in Pi−1. In this case, there is a position p > ki−1 such
that T [p : i − 1] is a type-2 node. We create new type-1 nodes T [j : i − 1] and leaves
T [j : i] for k ≤ j < p, then do the same procedure as Case 2 for T [j : i− 1] for p ≤ j.

Figure 6 shows an illustration of how to add new leaves. Algorithm 3 shows a pseudo-code
of our left-to-right online algorithm for constructing LSTs. In Case 1 or Case 2, the algorithm
checks whether there is an out-going edge labeled with c = T [i], and performs the above
procedures (lines 19–29). In Case 3, we perform readEdge to check if the active point can
proceed with c on the edge. The function readEdge returns the location of the new active
point and sets mismatch = false if there is no mismatch, or it returns the mismatching
position and sets mismatch = true if there is a mismatch. If there is no mismatch, then we
just update the T [j : i− 1] part of the current LST for j < ki−1. Otherwise, then we create
new nodes as explained in Case 3, by split in the pseudo-code.

A snapshot of right-to-left LST construction is shown in Figure 9 of the Appendix.
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Figure 6 Illustration for updating the parts of Pi−1

that correspond to T [j : i − 1] for j ≥ ki−1. The
purple diamond and arrow show the active point and
its virtual position when reading the edge. The new
branches, nodes, and their suffix links are colored red.
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Figure 7 Illustration for our analysis
of the cost to maintain the active point.
The diamond shows the current location
of the active point. New leaves will be
created fromW to Z by following the (vir-
tual) suffix link chain of length x. When
we have reached the edge (V, Y ), we have
already retrieved the corresponding prefix
of the label between U and W . The rest
of the label can be retrieved by at most r
applications of fastLink from edge (V,Z).

We discuss the time complexity of our left-to-right online construction for LSTs. To
maintain the active point for each T [: i], we use a similar technique to Lemma 3.

I Lemma 15. The active point can be maintained in O(f(n) + log σ) amortized time per
each iteration, where f(n) denotes the time for accessing fastLink in our growing LST.

Proof. We consider the most involved case where the active point lies on an implicit node W
on some edge (U, S) in the current LST. The other cases are easier to show. Let r = |W |−|U |,
i.e., the active point is hanging off U with string depth r. Let Z be the type-2 node from
which a new leaf will be created. By the monotonicity on the suffix link chain there always
exists such a type-2 node. See Figure 7 for illustration. Let p be the number of applications
of fastLink from edge (U, S) until reaching the edge (V, Y ) on which Z lies. Since such a
type-2 node Z always exists, we can sequentially retrieve the first r symbols with at most r
applications of fastLink by the same argument to Lemma 3. Thus the number of applications
of fastLink until finding the next location of the active point is bounded by p+ r. If x is the
number of (virtual) suffix links from W to Z, then p ≤ x holds. Recall that we create at least
x+ 1 new leaves by following the (virtual) suffix link chain from W to Z. Now r is charged
to the number of text symbols read on the edge from U , and p is charged to the number of
newly created leaves, and both of them are amortized constant as in Ukkonen’s suffix tree
algorithm. Thus the number of applications of fastLink is amortized constant, which implies
that it takes O(f(n) + log σ) amortized time to maintain the active point. J

To maintain fastLink in our growing (suffix link) tree, we use the nearest marked ancestor
(NMA) data structure [1] that allows marking, unmarking, and NMA query in an online
manner in O(logn/ log logn) time each, using O(n) space on a dynamic tree of size n. By
maintaining the tree of suffix links of edges enhanced with the NMA data structure, we have
f(n) = O(logn/ log logn) for Lemma 15. This leads to the final result of this section.

I Theorem 16. Given a string T of length n, our algorithm constructs LST(T ) in O(n(log σ+
logn/ log logn)) time and O(n)space online, by reading T from the left to the right.
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5 Conclusions and Future Work

In this paper we proposed a right-to-left online algorithm which constructs linear-size suffix
trees (LSTs) in O(n log σ) time and O(n) space, and a left-to-right online algorithm which
constructs LSTs in O(n(log σ + logn/ log logn)) time and O(n) space, for an input string of
length n over an ordered alphabet of size σ. Unlike the previous construction algorithm by
Crochemore et al. [7], our algorithms do not construct suffix trees as an intermediate structure,
and do not require to store the input string. Fischer and Gawrychowski [12] showed how to
build suffix trees in a right-to-left online manner in O(n(log logn+ log2 log σ/ log log log σ))
time for an integer alphabet of size σ = nO(1). It might be possible to extend their result to
our right-to-left online LST construction algorithm. An improvement of the running time of
left-to-right online LST construction is also left for future work.

Takagi et al. [22] proposed linear-size CDAWGs (LCDAWG), which are edge-labeled
DAGs obtained by merging isomorphic subtrees of LSTs. They showed that the LCDAWG
of a string T takes only O(e + e′) space, where e and e′ are respectively the numbers of
right and left extensions of the maximal repeats in T , which are always smaller than the
text length n. Belazzougui and Cunial [2] proposed a very similar CDAWG-based data
structure that uses only O(e) space. It is not known whether these data structures can be
efficiently constructed in an online manner, and thus it is interesting to see if our algorithms
can be extended to these data structures. The key idea to both of the above CDAWG-based
structures is to implement edge labels by grammar-compression or straight-line programs,
which are enhanced with efficient grammar-compressed data structures [14, 3]. In our online
setting, the underlying grammar needs to be dynamically updated, but these data structures
are static. It is worth considering if these data structures can be efficiently dynamized by
using recent techniques such as e.g. [15].

References

1 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked Ancestor Problems. In Proc.
FOCS 1998, pages 534–544, 1998. doi:10.1109/SFCS.1998.743504.

2 Djamal Belazzougui and Fabio Cunial. Fast Label Extraction in the CDAWG. In Proc. SPIRE
2017, pages 161–175, 2017. doi:10.1007/978-3-319-67428-5_14.

3 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random Access to Grammar-Compressed Strings and Trees. SIAM J. Comput.,
44(3):513–539, 2015. doi:10.1137/130936889.

4 Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M.T. Chen, and Joel
Seiferas. The smallest automation recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985. doi:10.1016/0304-3975(85)90157-4.

5 Anselm Blumer, J. Blumer, David Haussler, Ross McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578–
595, 1987. doi:10.1145/28869.28873.

6 Dany Breslauer and Giuseppe F. Italiano. Near real-time suffix tree construction via the fringe
marked ancestor problem. J. Discrete Algorithms, 18:32–48, 2013. doi:10.1016/j.jda.2012.
07.003.

7 Maxime Crochemore, Chiara Epifanio, Roberto Grossi, and Filippo Mignosi. Linear-size suffix
tries. Theoretical Computer Science, 638:171–178, 2016. doi:10.1016/j.tcs.2016.04.002.

8 Maxime Crochemore and Renaud Vérin. Direct construction of compact directed acyclic
word graphs. In Combinatorial Pattern Matching, pages 116–129, 1997. doi:10.1007/
3-540-63220-4_55.

CPM 2019

http://dx.doi.org/10.1109/SFCS.1998.743504
http://dx.doi.org/10.1007/978-3-319-67428-5_14
http://dx.doi.org/10.1137/130936889
http://dx.doi.org/10.1016/0304-3975(85)90157-4
http://dx.doi.org/10.1145/28869.28873
http://dx.doi.org/10.1016/j.jda.2012.07.003
http://dx.doi.org/10.1016/j.jda.2012.07.003
http://dx.doi.org/10.1016/j.tcs.2016.04.002
http://dx.doi.org/10.1007/3-540-63220-4_55
http://dx.doi.org/10.1007/3-540-63220-4_55


30:14 Online Algorithms for Constructing Linear-Size Suffix Trie

9 Maxime Crochemore and Renaud Vérin. On compact directed acyclic word graphs. In
Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht,
pages 192–211. Springer Berlin Heidelberg, 1997. doi:10.1007/3-540-63246-8_12.

10 Andrzej Ehrenfeucht, Ross M. McConnell, Nissa Osheim, and Sung-Whan Woo. Position
heaps: A simple and dynamic text indexing data structure. Journal of Discrete Algorithms,
9(1):100–121, 2011. doi:10.1016/j.jda.2010.12.001.

11 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

12 Johannes Fischer and Pawel Gawrychowski. Alphabet-Dependent String Searching with
Wexponential Search Trees. In Proc. CPM 2015, pages 160–171, 2015. doi:10.1007/
978-3-319-19929-0_14.

13 Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets. In
MFCS 2016, pages 38:1–38:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.38.

14 Leszek Gasieniec, Roman M. Kolpakov, Igor Potapov, and Paul Sant. Real-Time Traversal in
Grammar-Based Compressed Files. In Proc. DCC 2005, page 458, 2005. doi:10.1109/DCC.
2005.78.

15 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
Sankowski. Optimal Dynamic Strings. In Proc. SODA 2018, pages 1509–1528, 2018.
doi:10.1137/1.9781611975031.99.

16 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,
656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.

17 Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki Takeda, Setsuo Arikawa,
Giancarlo Mauri, and Giulio Pavesi. On-line construction of compact directed acyclic word
graphs. Discrete Applied Mathematics, 146(2):156–179, 2005. doi:10.1016/j.dam.2004.04.
012.

18 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

19 Gregory Kucherov. On-line construction of position heaps. Journal of Discrete Algorithms,
20:3–11, 2013. doi:10.1016/j.jda.2012.08.002.

20 Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

21 Kazuyuki Narisawa, Hideharu Hiratsuka, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Efficient Computation of Substring Equivalence Classes with Suffix Arrays. Algorith-
mica, 79(2):291–318, 2017. doi:10.1007/s00453-016-0178-z.

22 Takuya Takagi, Keisuke Goto, Yuta Fujishige, Shunsuke Inenaga, and Hiroki Arimura. Linear-
Size CDAWG: New Repetition-Aware Indexing and Grammar Compression. In SPIRE 2017,
volume 10508, pages 304–316, 2017. doi:10.1007/978-3-319-67428-5_26.

23 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

24 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (SWAT 1973), pages 1–11. IEEE, 1973. doi:10.1109/SWAT.1973.13.

http://dx.doi.org/10.1007/3-540-63246-8_12
http://dx.doi.org/10.1016/j.jda.2010.12.001
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.1109/DCC.2005.78
http://dx.doi.org/10.1109/DCC.2005.78
http://dx.doi.org/10.1137/1.9781611975031.99
http://dx.doi.org/10.1016/j.tcs.2016.03.005
http://dx.doi.org/10.1016/j.dam.2004.04.012
http://dx.doi.org/10.1016/j.dam.2004.04.012
http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1016/j.jda.2012.08.002
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/s00453-016-0178-z
http://dx.doi.org/10.1007/978-3-319-67428-5_26
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13


D. Hendrian, T. Takagi, and S. Inenaga 30:15

A Supplementary Figures

7

$
$

Σ Σ

6
$

a
a

a

7

$
$

Σ Σ

6

$

a
a

a5

b

a
+

b

b

7

$
$

Σ Σ

4

$

a
a

a5

b

a

+

b

b6

b

$

a

b
7

$
$

Σ Σ

4

$

a
a

a5

b

a

+

b

b6

b

$

a

b

3

a

b

+

a

a

7

$
$

Σ Σ

4

$

a
a

a
2

b

a

+

b

b

6

b

$

a

b

3

a

b

a

a 5
a

+ +

b

$
a

7

$
$

Σ ΣΣ

7

$
$

Σ Σ

4

$

a
a

a
2

b

a

+

b

b

6

b

$

a

b

3

a

b

a

a

5
a

+

+

b

$
a$

1

a

+

a

a

abaaba$ abaaba$

abaaba$abaaba$

abaaba$ abaaba$

Σ

abaaba$ abaaba$

Figure 8 A snapshot of right-to-left online construction of LST(T ) with T = abaaba$ by
Algorithm 1. The white circles show Type-1 nodes, the black circles show Type-2 nodes, and the
rectangles show leaves. The reverse suffix links and its label are colored blue. The new branches
and nodes are colored red.
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Figure 9 A snapshot of left-to-right online construction of LST(T ) with T = abaaba$ by
Algorithm 3. The purple diamond and arrow represent the active point and its virtual position when
reading the edge label. The suffix links are colored blue. The new branches and nodes are colored
red. k is the active position and l is the boundary position for +-leaves and non-+ leaves defined in
Lemma 12.
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B Pseudo-codes

Algorithm 1: Right-to-left linear-size suffix trie construction algorithm.
1 child(⊥, c) := root for any c ∈ Σ; rlink(⊥, c) := root for all c ∈ Σ;
2 prevInsPoint := ⊥; prevLeaf := root; prevLabel := NULL;
3 for i = n to 1 do
4 c := T [i]; U := prevInsPoint;
5 while rlink(U, c) = NULL do U := parent(U);
6 insertPoint := rlink(U, c);
7 if type(insertPoint) = 2 then
8 createType2(insertPoint);
9 type(insertPoint) := 1;

10 create a leaf newLeaf ;
11 V := prevLeaf ; U := prevInsPoint; Y := newLeaf ;
12 while rlink(U, c) = NULL do
13 create a type-2 node X;
14 if U = prevInsPoint then a = prevLabel else a = label(U, V );
15 if +(V ) = true or child(U, a) 6= V then +(Y ) := true;
16 child(X, a) := Y ; rlink(U, c) := X; Y := X;
17 V := U ;
18 repeat U := parent(U) until type(U) = 1;
19 if U = ⊥ then a = c else a = label(U, V );
20 if +(V ) = true or child(U, a) 6= V then +(Y ) := true;
21 child(insertPoint, a) := Y ;
22 prevInsPoint := insertPoint; prevLeaf := newLeaf ; prevLabel := a;

Algorithm 2: createType2(U).
1 Function createType2(U)
2 V := U ; b = label(U); Z := t1child(U, b);
3 for d such that rlink(Z, d) 6= NULL do
4 Q := rlink(Z, d);
5 P := parent(Q);
6 if slink(P ) 6= NULL then
7 a := label(P,Q);
8 Y := slink(P );
9 create a type-2 node R;

10 child(P, a) := R; child(R, b) := Q;
11 if child(Y, a) 6= U or +(child(Y, a)) = true then +(R) := true;
12 if child(U, b) 6= Z or +(child(U, b)) = true then +(Q) := true;
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Algorithm 3: Left-to-right linear-size suffix trie construction algorithm.
1 create root and ⊥; child(⊥, c) := root for any c ∈ Σ;
2 activePoint = root; i := 1; l := 1; k := 1;
3 while i ≤ n do
4 c := T [i];
5 if child(activePoint, c) 6= NULL then
6 V := child(activePoint, c);
7 (U, i′,mismatch) := readEdge((activePoint, V ), i);
8 if type(activePoint) = 1 then
9 create a type-2 node W ;

10 V := parent(leaf [k − 1]);
11 child(W, c) := leaf [k − 1]; child(V, label(V, leaf [k − 1])) := W ;
12 +(W, c) := +(leaf [k − 1]); slink(W ) := activePoint;
13 else +(leaf [k − 1]) := true;
14 while j 6= k − 1 do +(leaf [l]) := true; l := l + 1;
15 if mismatch = false then
16 if +(U) = true then +(leaf [k − 1]) := true;
17 else split(U, activePoint, c, i, i′);
18 activePoint := U ; i := i′;
19 else
20 if type(activePoint) = 2 then
21 createType2(activePoint); type(activePoint) := 1;
22 while l 6= k − 1 do +(leaf [l]) := true; l := l + 1;
23 create a type-2 node W ; V := parent(leaf [k − 1]);
24 child(W, c) := leaf [k − 1]; child(V, label(V, leaf [k − 1])) := W ;
25 +(W, c) := +(leaf [k − 1]); slink(W ) := activePoint;
26 while child(activePoint, c) = NULL do
27 create a leaf U ;
28 child(activePoint, c) := U ; slink(leaf [k − 1]) := U ;
29 k := k + 1; leaf [k − 1] := U ; activePoint = slink(activePoint);

Algorithm 4: readEdge((U, V ), i).
1 Function readEdge(U, V, i)
2 while U 6= V do
3 c := T [i];
4 if child(U, c) = NULL then return (U, i, true);
5 else
6 if +(child(U, c)) = true then
7 (W, i,mismatch) := readEdge(fastLink(U, child(U, c)), i);
8 if mismatch = true then return (W, i, true);
9 U := W ;

10 else U := child(U, c); i := i+ 1;
11 return (U, i, false);
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Algorithm 5: split(U,X, a, i, i′).
1 Function split(U,X, a, i, i′)
2 b = label(U, child(U)); c′ := T [i′];
3 create a type-1 node W ;
4 V := parent(leaf [k − 1]);
5 child(W, c) := leaf [k − 1]; child(V, label(V, leaf [k − 1])) := W ;
6 +(W ) := +(leaf [k − 1]); newNode := W ;
7 k := k + 1; Y ′ := leaf [k − 1];
8 while X 6= U do
9 if type(x) = 1 then Y := child(X, a);

10 d = STrieDepth(Y )− STrieDepth(X);
11 while d < i′ − i do
12 X := Y ; i := i+ d;
13 Y := child(X); d := STrieDepth(Y )− STrieDepth(X);
14 if X 6= U then
15 create a type-2 node Z; create a leaf Y ′; a := label(X,Y );
16 child(X, a) := Z; child(Z, b) := Y ; createType2(Z);
17 type(Z) := 1; child(Z, c′) := Y ′;
18 if i′ − 1 > 1 then +(Z) := true;
19 if d− (i′ − 1) > 1 then +(Y ) := true;
20 slink(newNode) := Z; slink(leaf [k − 1]) := Y ′;
21 k := k + 1; leaf [k − 1] := Y ′;
22 newNode := Z; X := slink(X);
23 slink(newNode) := U ;

Algorithm 6: Fast pattern matching algorithm with the LST.
1 let P be a pattern and i be a global index.
2 Function fastMatching(P )
3 U := root; i := 1;
4 while i ≤ |P | do
5 if child(U,P [i]) 6= NULL then
6 U := fastDecompact(U, child(U,P [i]));
7 if U = NULL then return false;
8 else return false;
9 return true;

10 Function fastDecompact(U, V )
11 while U 6= V do
12 if child(U,P [i]) 6= NULL then
13 if +(child(U,P [i])) = false then
14 U := child(U,P [i]);
15 i := i+ 1;
16 else U = fastDecompact(fastLink(U), fastLink(child(U,P [i])));
17 if i > |P | then return V ;
18 else return NULL;
19 return V ;
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