
Faster Queries for Longest Substring Palindrome
After Block Edit
Mitsuru Funakoshi
Department of Informatics, Kyushu University, Japan
mitsuru.funakoshi@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
Palindromes are important objects in strings which have been extensively studied from combinatorial,
algorithmic, and bioinformatics points of views. Manacher [J. ACM 1975] proposed a seminal
algorithm that computes the longest substring palindromes (LSPals) of a given string in O(n) time,
where n is the length of the string. In this paper, we consider the problem of finding the LSPal after
the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and
answers the length of the LSPals in O(` + log logn) time, after a substring in T is replaced by a
string of arbitrary length `. This outperforms the query algorithm proposed in our previous work
[CPM 2018] that uses O(`+ logn) time for each query.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases palindromes, string algorithm, periodicity

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.27

Related Version https://arxiv.org/abs/1901.10722

Funding Yuto Nakashima: Supported by JSPS KAKENHI Grant Number JP18K18002.
Shunsuke Inenaga: Supported by JSPS KAKENHI Grant Number JP17H01697.
Hideo Bannai: Supported by JSPS KAKENHI Grant Number JP16H02783.
Masayuki Takeda: Supported by JSPS KAKENHI Grant Number JP18H04098.

1 Introduction

Palindromes are strings that read the same forward and backward. Finding palindromic
structures in strings has important applications in analysis of DNA, RNA, and protein
sequences, and thus a variety of efficient algorithms for finding palindromic structures
occurring in a given string have been proposed (e.g., see [3, 18, 12, 15, 19, 14, 10] and
references therein).

In this paper, we consider the fundamental problem of finding the longest substring
palindrome (LSPal) in a given string T . Observe that the longest substring palindrome is also
a maximal (non-extensible) palindrome in the string, whose center is an integer position if its

© Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 27; pp. 27:1–27:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mitsuru.funakoshi@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:bannai@inf.kyushu-u.ac.jp
mailto:takeda@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.CPM.2019.27
https://arxiv.org/abs/1901.10722
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Faster Queries for Longest Substring Palindrome After Block Edit

length is odd, or a half-integer position if its length is even. Hence, in order to compute the
LSPal of a given string T , it suffices to compute all maximal palindromes in T . Manacher [16]
gave an elegant O(n)-time algorithm to find all maximal palindromes in a given string of
length n. Manacher’s algorithm utilizes symmetry of palindromes and character equality
comparisons only, and therefore works in O(n) time for any alphabet. There is an alternative
suffix tree [21] based algorithm which works in O(n) time in the case of an integer alphabet
of polynomial size in n [13]. Finding the longest substring palindrome in the streaming model
has also been considered [6, 11].

Now we consider the following question: what happens to those palindromes if the string
T is edited? It seems natural to ask this kind of question since a typical biological sequence
can contain some uncertainties such that there are multiple character possibilities at some
positions in the sequence. In our recent work [9], we initiated this line of research and showed
the following results. Let n be the length of the input string T and σ the alphabet size.
1-ELSPal. We can preprocess T in O(n) time and space such that later, we can answer in

O(log min{σ, logn}) time the longest substring palindrome after a single character edit
operation (insertion, deletion, or substitution).

`-ELSPal. We can preprocess T in O(n) time and space such that later, we can answer
in O(`+ logn) time the longest substring palindrome after a block-wise edit operation,
where ` is the length of the new block that substitutes the substring in T .

In this paper, we further pursue the second variant of the problem (`-ELSPal) where an
existing substring is replaced with a new string (block) of length `. We remark that the length
` of a new block is arbitrary. The main result of this paper is an O(`+ log logn)-time query
algorithm that answers the longest substring palindrome after a block-wise edit operation,
with O(n)-time and space preprocessing.

Note that `-ELSPal is a generalization of 1-ELSPal, where ` = 1 for insertion and
substitution and ` = 0 for deletion. Therefore, the result of this paper achieves O(log logn)-
time query algorithm for 1-ELSPal. This is as efficient as the O(log min{σ, logn})-time query
of [9] when the alphabet size σ is at least O(logn) (e.g., in the case of an integer alphabet).

Related work

Amir et al. [1] proposed an algorithm to find the longest common factor (LCF) of two
strings, after a single character edit operation is performed in one of the strings. Their data
structure occupies O(n log3 n) space and uses O(log3 n) query time, where n is the length
of the input strings. Their data structure can be constructed in O(n log4 n) expected time.
Urabe et al. [20] considered the problem of computing the longest Lyndon word after an
edit operation. They showed O(logn)-time queries for a single character edit operation and
O(` log σ + logn)-time queries for a block-wise edit operation, both using O(n) time and
space for preprocessing. We note that in these results including ours in this current paper,
edit operations are given as queries and thus the input string(s) remain static even after each
query. This is due to the fact that changing the data structure dynamically can be too costly
in many cases. It is noteworthy, however, that very recently Amir et al. [2] solved dynamic
versions for the LCF problem and some of its variants. In particular, when n is the maximum
length of the string that can be edited, they showed a data structure of O(n logn) space that
can be dynamically maintained and can answer 1-ELSPal queries in O(

√
n log2.5 n) time,

after O(n log2 n) time preprocessing.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:3

2 Preliminaries

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = xyz, x, y and z are called a prefix, substring, and suffix of T , respectively. For two
strings X and Y , let lcp(X,Y) denote the length of the longest common prefix of X and Y .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T , and for
two integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins at position i and
ends at position j. For convenience, let T [i..j] = ε when i > j. An integer p ≥ 1 is said to
be a period of a string T iff T [i] = T [i + p] for all 1 ≤ i ≤ |T | − p. If a string B is both a
proper prefix and a proper suffix of another string T , then B is called a border of T .

For any string P , let PR denote the reversed string of P . A string P is called a palindrome
if P = PR. A non-empty substring palindrome T [i..j] is said to be a maximal palindrome of
T if T [i− 1] 6= T [j + 1], i = 1, or j = |T |. For any non-empty substring palindrome T [i..j] in
T , i+j

2 is called its center. It is clear that for each center q = 1, 1.5, . . . , n− 0.5, n, we can
identify the maximal palindrome T [i..j] whose center is q (namely, q = i+j

2). Thus, there are
exactly 2n − 1 maximal palindromes in a string of length n (including empty ones which
occur at center i+j

2 when T [i] 6= T [j]).
A rightward longest common extension (rightward LCE) query on a string T is to compute

lcp(T [i..|T |], T [j..|T |]) for given two positions 1 ≤ i 6= j ≤ |T |. Similarly, a leftward LCE
query is to compute lcp(T [1..i]R, T [1..j]R). We denote by RightLCET (i, j) and LeftLCET (i, j)
rightward and leftward LCE queries for positions 1 ≤ i 6= j ≤ |T |, respectively. An outward
LCE query is, given two positions 1 ≤ i < j ≤ |T |, to compute lcp((T [1..i])R

, T [j..|T |]). We
denote by OutLCET (i, j) an outward LCE query for positions i < j in the string T .

Manacher [16] showed an elegant online algorithm which computes all maximal palin-
dromes of a given string T of length n in O(n) time. An alternative offline approach is to use
outward LCE queries for 2n− 1 pairs of positions in T . Using the suffix tree [21] for string
T$TR# enhanced with a lowest common ancestor data structure [4], where $ and # are
special characters which do not appear in T , each outward LCE query can be answered in
O(1) time. For any integer alphabet of size polynomial in n, preprocessing for this approach
takes O(n) time and space [8, 13].

A palindromic substring P of a string T is called a longest substring palindrome (LSPal)
if there are no palindromic substrings of T which are longer than P . Since any LSPal of T is
always a maximal palindrome of T , we can find all LSPals and their lengths in O(n) time.

In this paper, we consider the problem of finding an LSPal after a substring of T is
replaced with another string. The problem is formally defined as follows:

I Definition 1 (Longest substring palindrome query after block edit).
Preprocess: A string T of length n.
Query input: An interval [i, j] ⊆ [1, n] and a string X of length `.
Query output: (The length of) a longest substring palindrome in the edited string T ′ =

T [1..i− 1]XT [j + 1..n].
The query in the above problem is called an `-block edit longest substring palindrome query
(`-ELSPal query in short). In the following section, we will propose an O(n)-time and
space preprocessing scheme such that subsequent `-ELSPal queries can be answered in
O(`+ log logn) time. We remark that in this problem string edits are only given as queries,
i.e., we do not explicitly rewrite the original string T into T ′ and T remains unchanged for
further queries. We also remark that in our problem the length ` of a substring X that
substitutes a given interval (substring) can be arbitrary.

CPM 2019

27:4 Faster Queries for Longest Substring Palindrome After Block Edit

Let `′ be the length of the substring to be replaced, i.e., `′ = j − i+ 1. Our block-wise
edit operation generalizes character-wise substitution when `′ > 0 and ` > 0, character-wise
insertion when `′ = 0 and ` > 0, and character-wise deletion when `′ > 0 and ` = 0.

The following properties of palindromes are useful in our algorithms.

I Lemma 2. Any border B of a palindrome P is also a palindrome.

Proof. Since P is a palindrome, for any 1≤m≤|P |, clearly P [1..m]=(P [|P | −m+ 1..|P |])R.
Since B is a border of P , we have that B = P [1..|B|] = (P [|P | − |B|+ 1..|P |])R = BR. J

Let T be a string of length n. For each 1 ≤ i ≤ n, let MaxPalEndT (i) denote the set
of maximal palindromes of T that end at position i. Let Si = s1, . . . , sg be the sequence
of lengths of maximal palindromes in MaxPalEndT (i) sorted in increasing order, where
g = |MaxPalEndT (i)|. Let dj be the progression difference for sj , i.e., dj = sj − sj−1 for
2 ≤ j ≤ g. For convenience, let d1 = 0. We use the following lemma which is based on
periodic properties of maximal palindromes ending at the same position.

I Lemma 3 ([9]).
(i) For any 1 ≤ j < g, dj+1 ≥ dj.
(ii) For any 1 < j < g, if dj+1 6= dj, then dj+1 ≥ dj + dj−1.
(iii) Si can be represented by O(log i) arithmetic progressions, where each arithmetic progres-

sion is a tuple 〈s, d, t〉 representing the sequence s, s+ d, . . . , s+ (t− 1)d with common
difference d.

(iv) If t ≥ 2, then the common difference d is a period of every maximal palindrome which
ends at position i in T and whose length belongs to the arithmetic progression 〈s, d, t〉.

See also Fig. 3 in the next section. Each arithmetic progression 〈s, d, t〉 is called a group
of maximal palindromes. Similar arguments hold for the set MaxPalBegT (i) of maximal
palindromes of T that begin at position i. For all 1 ≤ i ≤ n we can compute MaxPalEndT (i)
and MaxPalBegT (i) in total O(n) time: After computing all maximal palindromes of T in
O(n) time, we can bucket sort all the maximal palindromes with their ending positions and
with their beginning positions in O(n) time each.

3 Algorithm for `-ELSPal

Consider to substitute a string X of length ` for the substring T [ib..ie] beginning at position
ib and ending at position ie, where ie − ib + 1 = `′ and X 6= T [ib..ie]. Let T ′ = T [1..ib −
1]XT [ie + 1..n] be the string after the edit.

In order to compute (the lengths of) maximal palindromes that are affected by the
block-wise edit operation, we need to know the first (leftmost) mismatching position between
T and T ′, and that between TR and T ′

R. Let h and l be the smallest integers such
that T [ht] 6= T ′[ht] and TR[l] 6= T ′

R[l], respectively. If such h does not exist, then let
h = min{|T |, |T ′|}+ 1. Similarly, if such l does not exist, then let l = min{|T |, |T ′|}+ 1. Let
j1 = lcp(T [ib..n], XT [ie..n]), j2 = lcp((T [1..ie])R

, (T [1..ib]X)R), pb = ib +j1, and pe = ie−j2.
There are two cases: (1) If j1 = j2 = 0, then the first and last characters of T [ib..ie] differ
from those of X. In this case, we have ib = h and ie = n− l + 1. We use these positions ib
and ie to compute maximal palindromes after the block-wise edit. (2) Otherwise, we have
pb = ib + j1 = h and pe = ie − j2 = n− l + 1. We use these positions pb and pe to compute
maximal palindromes after the block-wise edit. See Figure 1 for illustration.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:5

In the next subsection, we describe our algorithm for Case (1). Case (2) can be treated
similarly, by replacing ib and ie with pb and pe, respectively. Our algorithm can handle the
case where pe < pb. Remark that pb and pe can be computed in O(`) time by naïve character
comparisons and a single LCE query each.

! ! " # " ! " " # #

$% $&

'

" ! " # (')

(1)

!"

$ % $ # $ $ % %

$ % %

&' &()()'

!" !*

+

!*

+,

(2-1)

! ! " # " ! " " # #! ! " # " ! " " # #! " " # #

! " " " # #

$% $&

'&
'%

(

()

*+

*,

*,

*+

(2-2)

! ! " # " ! " #

$%

! ! " # " ! " " # #! ! " # " ! " ! # "

&' &()(

)'

$*

+ ! " #

$*

$%

+,

$*

(2-3)

Figure 1 Illustration for the mismatching position between T and T ′, and that between TR and
T ′R. In particular, (2-2) is the sub-case of Case (2) with pe < pb, and (2-3) is the sub-case of Case
(2) with j1 > `.

We remark that the longest extension of the maximal palindromes in T which are
unchanged or shortened after the block edit can be found O(1) time upon query, after
O(n)-time and space preprocessing, using similar techniques to the 1-ELSPal queries from
our previous work [9]. Also, the longest maximal palindromes that have centers in the new
block can be computed in O(`) time after O(n)-time and space preprocessing, in a similar
way to our previous algorithm for the 1-ELSPal [9]. Hence, in this paper we concentrate on
the maximal palindromes of T which get extended after the block edit. The next observation
describes such maximal palindromes.

I Observation 4 ([9]). For any s ∈ MaxPalEndT (ib − 1), the corresponding maximal
palindrome T [ib−s..ib−1] centered at 2ib−s−1

2 gets extended in T ′ iff OutLCET ′(ib−s−1, ib) ≥
1. Similarly, for any s ∈ MaxPalBegT (ie + 1), the corresponding maximal palindrome
T [ie + 1..ie + s] centered at 2ie+s+1

2 gets extended in T ′ iff OutLCET ′(ie, ie + s+ 1) ≥ 1.

It follows from Observation 4 that it suffices to compute outward LCE queries efficiently for
all maximal palindromes which end at position ib− 1 or begin at position ie + 1 in the edited
string T ′. The following lemma, which is a generalization of Lemma 21 from [9], shows how
to efficiently compute the extensions of any given maximal palindromes that end at position
ib − 1. Those that begin at position ie + 1 can be treated similarly.

I Lemma 5. Let T be a string of length n over an integer alphabet of size polynomially
bounded in n. We can preprocess T in O(n) time and space so that later, given a list of any
f maximal palindromes from MaxPalEndT (ib − 1), we can compute in O(` + f) time the
extensions of those f maximal palindromes in the edited string T ′, where ` is the length of a
new block.

CPM 2019

27:6 Faster Queries for Longest Substring Palindrome After Block Edit

s α
!

T [1..ib-1] T [ie+1..n]X

s τ ’

!"#$%

!

T [1..ib-1] T [ie+1..n]X

s τ ’

s+(t-1)d
β

!"#$%

s+

!

T [1..ib-1] T [ie+1..n]X

s τ ’ " #

!"#

Figure 2 Illustration for Lemma 5, where solid arrows represent the matches obtained by naïve
character comparisons, and broken arrows represent those obtained by LCE queries. This figure
only shows the case where s′ < s, but the other case where s′ > s can be treated similarly.

Proof. Let us remark that the maximal palindromes in the list can be given to our algorithm
in any order. Firstly, we compute the extensions of given maximal palindromes from the list
until finding the first maximal palindrome whose extension τ is at least one, and let s′ be the
length of this maximal palindrome. Namely, s′ + 2τ is the length of the extended maximal
palindrome for s′, and the preceding maximal palindromes (if any) were not extended. Let s
be the length of the next maximal palindrome from the list after s′, and now we are to compute
the extension λ for s. See also Figure 2. There are two cases: (1) If 0 < τ < `, then we first
compute δ = LeftLCET (ib−s−1, ib−s′−1). We have two sub-cases: (1-a) If δ < τ , then λ = δ.
(1-b) Otherwise (δ ≥ τ), then we know that λ is at least as large as τ . We then compute the
remainder of λ by naïve character comparisons. If the character comparison reaches the end
of X, then the remainder of λ can be computed by OutLCET (ib − s− `− 1, ie + 1). Then we
update τ with λ. (2) If τ ≥ `, then we can compute λ by LeftLCET (ib − s− 1, ib − s′ − 1),
and if this value is at least `, then by OutLCET (ib − s− `− 1, ie + 1). The extensions of the
following palindromes can also be computed similarly.

The following maximal palindromes from the list after s can be processed similarly. After
processing all the f maximal palindromes in the given list, the total number of matching
character comparisons is at most ` since each position ofX is involved in at most one matching
character comparison. Also, the total number of mismatching character comparisons is
O(f) since for each given maximal palindrome there is at most one mismatching character
comparison. The total number of LCE queries on the original text T is O(f), each of which
can be answered in O(1) time. Thus, it takes O(`+ f) time to compute the length of the f
maximal palindromes of T ′ that are extended after the block edit. J

However, there can be Ω(n) maximal palindromes beginning or ending at each position
of a string of length n. In what follows, we show how to reduce the number of maximal
palindromes that need to be considered, by using periodic structures of maximal palindromes.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:7

Figure 3 Example for Lemma 6, where Y = accbaaabaaabaaabaaabaaabaaabaa and Z =
abaaabaaabccc. Here u = a and v = aba. The first five maximal palindromes (uv)ku = (aaba)ka
with 2 ≤ k ≤ 5 belong to the same arithmetic progression (i.e. the same group) with common
difference |uv| = d = 4. For this group of maximal palindromes, α = 10, β = 2, and γ = 12. Notice
that the sixth maximal palindrome uvu = aabaa belongs to another group since the length difference
between it and the seventh one aa is 3.

Let 〈s, d, t〉 be an arithmetic progression representing a group of maximal palindromes
ending at position ib−1. For each 1 ≤ j ≤ t, we will use the convention that s(j) = s+(j−1)d,
namely s denotes the jth shortest element for 〈s, d, t〉. For simplicity, let Y = T [1..ib − 1]
and Z = XT [ie + 1..n]. Let Ext(s(j)) denote the length of the maximal palindrome that is
obtained by extending s(j) in Y Z.

I Lemma 6 ([9]). For any 〈s, d, t〉 ⊆ MaxPalEndT (ib − 1), there exist palindromes u, v and
a non-negative integer p, such that (uv)t+p−1u (resp. (uv)pu) is the longest (resp. shortest)
maximal palindrome represented by 〈s, d, t〉 with |uv| = d. Let α = lcp((Y [1..|Y | − s1])R

, Z)
and β = lcp((Y [1..|Y | − st])R

, Z). If there exists sh ∈ 〈s, d, t〉 such that sh + α = st + β,
then let γ = lcp((Y [1..|Y | − sh])R

, Z). Then, for any s(j) ∈ 〈s, d, t〉 \ {sh}, Ext(s(j)) =
s(j) + 2 min{α, β + (t− j)d}. Also, if sh exists, then Ext(sh) = sh + 2γ ≥ Ext(s(j)) for any
j 6= h.

See Figure 3 for a concrete example of Lemma 6. It follows from Lemma 6 that it
suffices to consider only three maximal palindromes from each group (i.e. each arithmetic
progression). Then using Lemma 5, one can compute the longest maximal palindrome that
gets extended in O(`+ logn) time, and this is exactly how the algorithm from our previous
paper [9] works.

To further speed up computation, we take deeper insights into combinatorial properties
of maximal palindromes in MaxPalEndT (ib − 1). Let G1, . . . , Gm be the list of all groups for
the maximal palindromes from MaxPalEndT (ib − 1), which are sorted in increasing order of
their common difference. When m = O(log logn), O(`+ log logn)-time queries immediately
follow from Lemmas 5 and 6. In what follows we consider the more difficult case where
m = ω(log logn). Recall also that m = O(logn) always holds.

For each Gr = 〈sr, dr, tr〉 with 1 ≤ r ≤ m, let αr, βr, γr, ur, and vr be the corresponding
variables used in Lemma 6. If there is only a single element in Gr, let βr be the length
of extension of the palindrome and αr = βr−1. For each Gr, let Sr (resp. Lr) denote the
shortest (resp. longest) maximal palindrome in Gr, namely, |Sr| = sr(1) and |Lr| = sr(tr).

Each group Gr is said to be of type-1 (resp. type-2) if αr < dr (resp. αr ≥ dr).

CPM 2019

27:8 Faster Queries for Longest Substring Palindrome After Block Edit

Let k (1 ≤ k ≤ m) be the unique integer such that Gk is the type-2 group where
dk is the largest common difference among all the type-2 groups. Additionally, let G′k =
Gk∪{ukvkuk, uk}. Note that uk belongs to one of G1, . . . , Gk−1, and ukvkuk belongs to either
Gk or one of G1, . . . , Gk−1. In the special case where αk = βk + tdk, the extensions of uk

and ukvkuk can be longer than the extension of the shortest maximal palindrome in Gk (see
Figure 4 for a concrete example). Thus, it is convenient for us to treat G′k = Gk∪{ukvkuk, uk}
as if it is a single group. We also remark that this set G′k is defined only for this specific
type-2 group Gk.

accbaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabccc

!" #" !" #" !"

$"

%"

&"

'"

Figure 4 Example for G′
k = Gk ∪{ukvkuk, uk}, where the extensions of ukvkuk and uk are longer

than the extensions of any maximal palindromes in Gk.

I Lemma 7. There is a longest substring palindrome in the edited string T ′ that is obtained
by extending the maximal palindromes in Gm, Gm−1, or G′k.

Proof. The lemma holds if the two following claims are true:

B Claim (1). The extensions of the maximal palindromes in G1, . . . , Gk−1, except for ukvkuk

and uk, cannot be longer than the extension of the shortest maximal palindrome in Gk.

B Claim (2). Suppose both Gm and Gm−1 are of type-1. Then, the extensions of the
maximal palindromes from Gk+1, . . . , Gm−2, which are also of type-1, cannot be longer than
the extensions of the maximal palindromes from Gm or Gm−1.

Proof for Claim (1). Here we consider the case where the maximal palindrome ukvkuk does
not belong to Gk, which implies that the shortest maximal palindrome Sk in Gk is (ukvk)2uk

(The other case where ukvkuk belongs to Gk can be treated similarly). Now, ukvkuk belongs
to one of G1, . . . , Gk−1. Consider the prefix P = T [1..ib−|ukvkuk|−1] of T that immediately
precedes ukvkuk. The extension of ukvkuk is obtained by lcp(PR, Z). Consider the prefix
P ′ = T [1..ib−|(ukvk)2uk|] of T that immediately precedes. It is clear that P is a concatenation
of P ′ and ukvk. Similarly, the prefix T [1..ib − |uk| − 1] of T that immediately precedes uk is
a concatenation of P and ukvk. From Lemma 6 and the definition of G′k, it suffices for us to
consider only the three maximal palindromes from G′k. For any other maximal palindrome
Q from G1, . . . , Gk−1, assume on the contrary that Q gets extended by at least dk to the left
and to the right. If |ukvk| = dk < |Q| < |ukvkuk|, then there is an internal occurrence of ukvk

inside the prefix (ukvk)2 of (ukvk)2uk. Otherwise (|uk| < |Q| < |ukvk| = dk or |Q| < |uk|),
there is an internal occurrence of ukvk inside ukvkuk. Here we only consider the first case

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:9

!

"#$#

%#
"#$#

"#$#

"#$#

&

"#$# "#

'#
"#$# "#

"#$# "#$#

(#

"#

Figure 5 Illustration for the proof for Claim (1) of Lemma 7.

but other cases can be treated similarly. See also Figure 5. This internal occurrence of ukvk

is immediately followed by ukvkw, where w is a proper prefix of uk with 1 ≤ |w| < |uk|.
Namely, (ukvk)2w is a proper suffix of (ukvk)2uk. On the other hand, (ukvk)2w is also a
proper prefix of (ukvk)2uk. Since (ukvk)2u is a palindrome, it now follows from Lemma 2
that (ukvk)2w is also a palindrome. Since 1 ≤ |w| < |uk|, we have |(ukvk)2w| > |ukvkuk|
(note that this inequality holds also when vk is the empty string). Then, (ukvk)2w is also
immediately preceded by ukvk because of periodicity and is extended by at least dk to the
left and to the right. Since T ′[ib] = T [ib − |(ukvk)2w| − 1] and T ′[ib] 6= T [ib], (ukvk)2w is a
maximal palindrome. However this contradicts that (ukvk)2uk belongs to Gk with common
difference dk = |ukvk|. Thus Q cannot be extended by dk nor more to the left and to the
right. Since Gk is of type-2, αk ≥ dk. Since |Q| < |(ukvk)2uk|, the extension of Q cannot be
longer than the extension for (ukvk)2uk. This completes the proof for Claim (1). C

Proof for Claim (2). Consider each group Gr = 〈sr, dr, tr〉 with k + 1 ≤ r ≤ m − 2. By
Lemma 6, sr(tr) + 2βr and sr(tr − 1) + 2αr are the candidates for the longest extensions of
the maximal palindromes from Gr. Recall that both Gm−1 and Gm are of type-1, and that
if Gr is of type-1 then Gr+1 is also of type-1. Now the following sub-claim holds:

I Lemma 8. βr = αr+1 for any k + 1 ≤ r ≤ m− 2.

Proof. If Gr+1 is a singleton, then by definition βr = αr+1 holds. Now suppose |Gr+1| ≥
2. Since the shortest maximal palindrome Sr+1 from Gr+1 is either (ur+1vr+1)2ur+1 or
ur+1vr+1ur+1, the longest maximal palindrome Lr from Gr is either ur+1vr+1ur+1 or ur+1.
The prefix T [1..ib − |Lr| − 1] of T that immediately precedes Lr contains ur+1vr+1 as a
suffix, which alternatively means (ur+1vr+1)R is a prefix of (T [1..ib − |Lr| − 1])R. Moreover,
it is clear that the prefix T [1..ib − |Sr+1| − 1] of T that immediately precedes Sr+1 contains
ur+1vr+1 as a suffix since |Gr+1| ≥ 2. In addition, αr+1 < dr+1 = |ur+1vr+1| since Gr+1 is
of type-1. From the above arguments, we get βr = αr+1. J

Since βr = αr+1 and αr+1 < dr+1, we have sr(tr) + 2βr < sr(tr) + 2dr+1. In addition,
sr(tr − 1) + 2αr < sr(tr − 1) + 2dr = sr(tr) + dr. It now follows from dr < dr+1 that
sr(tr)+dr < sr(tr)+2dr+1. Since the lengths of the maximal palindromes and their common
differences are arranged in increasing order in the groups Gk+1,Gm−2, we have that
the longest extension from Gk+1,Gm−2 is shorter than sm−2(tm−2) + 2dm−1. Since
dm−1 < dm, we have

sm−2(tm−2) + 2dm−1 < sm−2(tm−2) + dm−1 + dm ≤ sm−1(tm−1) + dm ≤ sm = sm(1).

CPM 2019

27:10 Faster Queries for Longest Substring Palindrome After Block Edit

This means that the longest extended maximal palindrome from the type-1 groups Gk+1,
. . ., Gm−2 cannot be longer than the original length of the maximal palindrome from Gm

before the extension. This completes the proof for Claim (2). C

J

It follows from Lemmas 5, 6 and 7 that given Gk, we can compute in O(`) time the length
of the LSPal of T ′ after the block edit. What remains is how to quickly find Gk, that has
the largest common difference among all the type-2 groups. Note that a simple linear search
from Gm or G1 takes O(logn) time, which is prohibited when ` = o(logn). In what follows,
we show how to find Gk in O(`+ log logn) time.

Recall that T [1..ib − |Lr−1| − 1] which immediately precedes Sr contains urvr as a suffix.
Thus, (urvr)R is a prefix of (T [1..ib − |Lr−1| − 1])R. We have the following observation.

I Observation 9. Let W1 = (T [1..ib − 1])R, and Wr = (T [1..ib − |Lr−1| − 1])R for 2 ≤ r ≤
m. Let W be the string such that lcp(Wr, Z) is the largest for all 1 ≤ r ≤ m (i.e. for all
groups G1, . . . , Gm), namely, W = arg max

1≤r≤m
lcp(Wr, Z). Then Gk = Gx such that

(a) (uxvx)R is a prefix of W ,
(b) dx ≤ lcp(W,Z), and
(c) dx is the largest among all groups that satisfy Conditions (a) and (b).

Due to Observation 9, the first task is to find W .

I Lemma 10. W can be found in O(`+ log logn) time after O(n)-time and space prepro-
cessing.

Proof. We preprocess T as follows. For each 1 ≤ i ≤ n, let G1, . . . , Gm be the list of groups
that represent the maximal palindromes ending at position i in T . Let W1 = (T [1..i])R and
Wr = (T [1..i− |Lr−1|])R for 2 ≤ r ≤ m. Let Ai be the sparse suffix array of sizem = O(log i)
such that Ai[j] stores the jth lexicographically smallest string in {W1, . . . ,Wm}. We build
Ai with the LCP array Li. Since there are only 2n− 1 maximal palindromes in T , Ai for
all positions 1 ≤ i ≤ n can easily be constructed in a total of O(n) time from the full suffix
array of T . The LCP array Li for all 1 ≤ i ≤ n can also be computed in O(n) total time
from the LCP array of T enhanced with a range minimum query (RMQ) data structure [4].

To find W , we binary search Aib−1 for Z[1..`] = X in a similar way to pattern matching
on the suffix array with the LCP array [17]. This gives us the range of Aib−1 such that the
corresponding strings have the longest common prefix with X. Since |Aib−1| = O(logn),
this range can be found in O(`+ log logn) time. If the longest prefix found above is shorter
than `, then this prefix is W . Otherwise, we perform another binary search on this range for
Z[`+ 1..|Z|] = T [ie + 1..n], and this gives us W . Here each comparison can be done in O(1)
time by an outward LCE query on T . Hence, the longest match for Z[`+ 1..|Z|] in this range
can also be found in O(log logn) time. Overall, W can be found in O(`+ log logn) time. J

I Lemma 11. We can preprocess T in O(n) time and space so that later, given W for a
position in T , we can find Gk for that position in O(log logn) time.

Proof. Let Di be an array of size |Ai| such that Di[j] stores the value of dr = |urvr|, where
Wr is the lexicographically jth smallest string in {W1, . . . ,Wm}. Let Ri be an array of size
|Ai| where Ri[j] stores a sorted list of common differences dr = |urvr| of groups Gr, such
that Gr stores maximal palindromes ending at position i and (urvr)R is a prefix of the string
Ai[j]. Clearly, for any j, Di[j] ⊆ Ri. See also Figure 6 for an example of Ri.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:11

Suppose that we have found W by Lemma 10, and let j be the entry of Aib−1 where the
binary search for X terminated. We then find the largest dx that satisfies Condition (b) of
Observation 9, by binary search on the sorted list of common differences stored at Rib−1[j].
This takes O(log logn) time since the list stored at each entry of Rib−1 contains at most
|Aib−1| = O(logn) elements.

We remark however that the total number of elements in Ri is O(log2 i) since each entry
Ri[j] can contain O(log i) elements. Thus, computing and storing Ri explicitly for all text
positions 1 ≤ i ≤ n can take superlinear time and space.

Instead of explicitly storing Ri, we use a tree representation of Ri, defined as follows: The
tree consists of exactly m = |Ai| leaves and exactly m non-leaf nodes. Each leaf corresponds
to a distinct entry j = 1, . . . ,m, and each non-leaf node corresponds to a value from Di. Each
leaf j is contained in a (sub)tree rooted at a node with d ∈ Di, iff there is a maximal interval
[j′..j′′] such that j′ ≤ j ≤ j′′ and Li[j+1] ≥ Di[j]. We associate each node with this maximal
interval. Since we have assumed d1 = 0, the root stores 0 and it has at most σ children. See
Figure 6 that illustrates a concrete example for T [1..ib − 1] = dddF 4

7F
2
6F

2
5F4F

3
3F

2
2F

3
1 with

ib = 3451, where

F1 = a

F2 = F 3
1

R
b

F3 = F 3
1

R
F 2

2
R

F4 = F 3
1

R
F 2

2
R
F 2

3
R
F2

F5 = F 3
1

R
F 2

2
R
F 3

3
R
F4

Rc

F6 = F 3
1

R
F 2

2
R
F 3

3
R
F4

RF5
RcF4F

2
3

F7 = F 3
1

R
F 2

2
R
F 3

3
R
F4

RF 2
5

R
F6

RF 2
3

R
F4

RcF5F4F
3
3F

2
2F

2
1 .

We remark that F 4
7F

2
6F

2
5F4F

3
3F

2
2F

3
1 , F 3

7F
2
6F

2
5F4F

3
3F

2
2F

3
1 , . . . , F1 are suffix palindromes of

T [1..ib − 1].
We can easily construct this tree in time linear in its size m = |Ai|, in a bottom up

manner. First, we create leaves for all entries j = 1, . . . ,m. Next, we build the tree in a
bottom-up manner, by performing the following operations in decreasing order of Di[j].
(1) Create a new node with Di[j], and connect this node with the highest ancestor of leaf j.
(2) We check j′ < j in decreasing order, and connect the new node with the highest ancestor

of leaf j′ iff Li[j′ + 1] ≥ Di[j]. We skip the interval corresponding to this ancestor, and
perform the same procedure until we find j′ that does not meet the above condition. We
do the same for j′′ > j.

Since each node is associated with its corresponding interval in the LCP array, it suffices
for us to check the conditions Li[j′ + 1] ≥ Di[j] and Li[j′′] ≥ Di[j] only at either end of the
intervals that we encounter. Clearly, in the path from the root to leaf j, the values in Rj [j]
appear in increasing order. Thus, we can find the largest dx that satisfies Condition (b) of
Observation 9, by a binary search on the corresponding path in the tree. We augment the
tree with a level ancestor data structure [7, 5], so that each binary search takes logarithmic
time in the tree height, namely O(log logn) time. The size of the tree for position i is clearly
bounded by the number of maximal palindromes ending at position i. Thus, the total size
and construction time for the trees for all positions in T is O(n). J

CPM 2019

27:12 Faster Queries for Longest Substring Palindrome After Block Edit

j WAi[1], . . . ,WAi[m] Di Li Ri

1 abaaabaaaaaabaaaba · · · 689 - 0,1,689
2 aabaaabaaaaaabaaab · · · 1 1 0,1
3 aaabaaabaaaaaabaaa · · · 223 2 0,1,11,223
4 aaabaaabaaaaaabaaa · · · 0 22 0,1,11
5 aaabaaabaaaaaabaaa · · · 11 33 0,1,11
6 baaabaaaaaabaaabaa · · · 4 0 0,4
7 baaaaaabaaabaaaaaa · · · 37 4 0,4,37
8 caaabaaabaaaaaabaa · · · 82 0 0,82

!

"

#

$

%

&

'

%'(

!!

!

""#

#&

''

$

)

*

Figure 6 Example for Ri (left) and its corresponding tree (right). The remaining parts of the
strings WAi[1], . . . ,WAi[m] are omitted due to lack of space.

By Lemma 5, 6, 7 and 11, we can compute in O(` + log logn) time the length of the
LSPal of T ′ that are extended after the block edit.

Consequently we obtain the following theorem:

I Theorem 12. There is an O(n)-time and space preprocessing for the `-ELSPal problem
such that each query can be answered in O(`+ log logn) time, where ` denotes the length of
the block after edit.

Note that the time complexity for our algorithm is independent of the length of the original
block to edit. Also, the length ` of a new block is arbitrary.

References
1 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub

Radoszewski. Longest Common Factor After One Edit Operation. In SPIRE 2017, pages
14–26, 2017.

2 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Longest Common Factor Made Fully Dynamic. CoRR, abs/1804.08731, 2018. arXiv:1804.
08731.

3 Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in a
string. Theoretical Computer Science, 141:163–173, 1995.

4 Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In LATIN 2000,
pages 88–94, 2000.

5 Michael A. Bender and Martin Farach-Colton. The Level Ancestor Problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004.

6 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palindrome
Recognition In The Streaming Model. In STACS 2014, pages 149–161, 2014.

7 O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. System Sci.,
48(2):214–230, 1994.

8 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000.

9 Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Longest substring palindrome after edit. In CPM 2018, pages 12:1–12:14, 2018.

10 Pawel Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea.
Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes
– Finding All Maximal α-gapped Repeats and Palindromes in Optimal Worst Case Time on
Integer Alphabets. Theory Comput. Syst., 62(1):162–191, 2018.

http://arxiv.org/abs/1804.08731
http://arxiv.org/abs/1804.08731

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 27:13

11 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight
Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams. In CPM 2016,
pages 18:1–18:13, 2016.

12 Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a
word in linear time. Inf. Process. Lett., 110(20):908–912, 2010.

13 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
14 Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Comput.

Sci., 410(51):5365–5373, 2009.
15 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Finding Distinct Subpalindromes

Online. In PSC 2013, pages 63–69, 2013.
16 Glenn Manacher. A New Linear-Time “On-Line” Algorithm for Finding the Smallest Initial

Palindrome of a String. Journal of the ACM, 22:346–351, 1975.
17 U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM

Journal on Computing, 22(5):935–948, 1993.
18 W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto.

Efficient Algorithms to Compute Compressed Longest Common Substrings and Compressed
Palindromes. Theor. Comput. Sci., 410(8–10):900–913, 2009.

19 Alexandre H. L. Porto and Valmir C. Barbosa. Finding approximate palindromes in strings.
Pattern Recognition, 35:2581–2591, 2002.

20 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Longest Lyndon Substring After Edit. In CPM 2018, pages 19:1–19:10, 2018.

21 Peter Weiner. Linear Pattern Matching Algorithms. In 14th Annual Symposium on Switching
and Automata Theory, pages 1–11, 1973.

CPM 2019

	Introduction
	Preliminaries
	Algorithm for l-ELSPal

