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Abstract
In the k-mismatch problem we are given a pattern of length m and a text and must find all locations
where the Hamming distance between the pattern and the text is at most k. A series of recent
breakthroughs have resulted in an ultra-efficient streaming algorithm for this problem that requires
only O(k log m

k
) space [Clifford, Kociumaka, Porat, SODA 2019]. In this work, we consider a strictly

harder problem called dictionary matching with k mismatches, where we are given a dictionary of
d patterns of lengths ≤ m and must find all their k-mismatch occurrences in the text, and show
the first streaming algorithm for it. The algorithm uses O(kd logk d polylog m) space and processes
each position of the text in O(k logk d polylog m +occ) time, where occ is the number of k-mismatch
occurrences of the patterns that end at this position. The algorithm is randomised and outputs
correct answers with high probability.
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1 Introduction

The pattern matching problem is the fundamental problem of string processing and has been
studied for more than 40 years. Most of the existing algorithms are deterministic and assume
the word-RAM model of computation. Under these assumptions, we must store the input
in full, which is infeasible for modern massive data applications. The streaming model of
computation was designed to overcome the restrictions of the word-RAM model. In this
model, we assume that the text arrives as a stream, one character at a time. The characters
are assumed to be integers that fit in O(logn)-bit machine words, where n is the length of
the stream. Each time a new character of the text arrives, we must update the output. The
space complexity of an algorithm is defined to be all the space used, including the space we
need to store the information about the pattern(s) and the text. The time complexity of
an algorithm is defined to be the time we spend to process one character of the text. The
streaming model of computation aims for algorithms that use as little space and time as
possible. All streaming algorithms we discuss in this paper are randomised by necessity.
They can err with probability inverse-polynomial in the length of the input.

The first sublinear-space streaming algorithm for exact pattern matching was suggested by
Porat and Porat in FOCS 2009 [26]. For a pattern of length m, their algorithm uses O(logm)
space and O(logm) time per character. Later, Breslauer and Galil gave a O(logm)-space
and O(1)-time algorithm [8].

The first algorithm for dictionary matching was developed by Aho and Corasick [1].
The algorithm assumes the word-RAM model of computation, and for a dictionary of
d patterns of length at most m, uses Ω(md) space and O(1 + occ) amortised time per
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21:2 Streaming Dictionary Matching with Mismatches

character, where occ is the number of the occurrences ending at this position. Apart from
the Aho–Corasick algorithm, other word-RAM algorithms for exact dictionary matching
include [3,4,7,13,14,16,19,21,22,27]. In ESA 2015, Clifford et al. [9] showed a streaming
dictionary matching algorithm that uses O(d logm) space and O(log log(m+ d) + occ) time
per character. In ESA 2017, Golan and Porat [18] showed an improved algorithm that uses
the same amount of space and O(1 + occ) time per character for constant-size alphabets.

In the k-mismatch problem we are given a pattern of length m and a text and must find all
alignments of the pattern and the text where the Hamming distance is at most k. By reduction
to the streaming exact pattern matching, Porat and Porat [26] showed the first streaming
k-mismatch algorithm with space O(k3 log7 m/ log logm) and time O(k2 log5 m/ log logm).
The complexity has been subsequently improved in [10,11,17]. The current best algorithm
uses only O(k log m

k ) space and O(log m
k (
√
k log k + log3 m)) time per character [11].

In the problem of dictionary matching with k mismatches, we are given a set (dictionary)
of d patterns of maximal length m and must find all their k-mismatch occurrences in
the text. This problem is strictly harder than both k-mismatch and dictionary matching,
and on the other hand, it is well-motivated by practical applications in cybersecurity and
bioinformatics. In the word-RAM model, dictionary matching with k mismatches has been
addressed in [2, 24,25]. Muth and Manber [24] gave a randomised algorithm for k = 1, and
Baeza-Yates and Navarro [2] and Navarro [25] gave the first algorithms for a general value of
k. The time complexity of the algorithms is good on average, but in the worst case can be
Ω(md) per character.

1.1 Our results
In this work, we commence a study of dictionary matching with k mismatches in the streaming
model of computation. Our contribution is twofold. First, we show a streaming dictionary
matching algorithm that uses space sublinear in m and time sublinear in both m and d

(Section 4). Similar to previous work on streaming pattern matching, we assume that we
receive the dictionary first, preprocess it (without accounting for the preprocessing time),
and then receive the text.

I Theorem 1. For any k ≥ 1, there is a streaming algorithm that solves dictionary matching
with k mismatches in Õ(kd logk d) space and Õ(k logk d+ occ) worst-case time per arriving
character. The algorithm is randomised and its answers are correct w.h.p.1 Both false-positive
and false-negative errors are allowed.

Hereafter occ is the number of k-mismatch occurrences of the patterns that end at the
currently processed position of the text, i.e., it is at most d and typically it is much smaller
than the total number of the occurrences of the patterns in the text. Our algorithm makes
use of a new randomised variant of the k-errata tree (Section 3), a famous data structure of
Cole, Gottlieb, and Lewenstein for dictionary matching with k mismatches [12]. This variant
of the k-errata tree allows to improve both the query time and the space requirements and
can be considered as a generalisation of the z-fast tries [5, 6], that have proved to be useful
in many streaming applications.

Compare our result to a streaming algorithm that can be obtained by a repeated applica-
tion of the k-mismatch algorithm [11]:

1 Õ hides a multiplicative factor polynomial in log m and w.h.p. means that the error probability is at
most 1/nc for an arbitrary given constant c.
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I Corollary 2 (of Clifford, Kociumaka, and Porat [11]). For any k ≥ 1, there is a streaming
algorithm for dictionary matching with k mismatches that uses Õ(dk) space and Õ(d

√
k)

time per character. The algorithm is randomised and its answers are correct w.h.p.

As it can be seen, the time complexity of Corollary 2 depends on d in linear way, which
is prohibitive for applications where the stream characters arrive at a high speed and the
size of the dictionary is large, up to several thousands of patterns, as we must be able to
process each character before the next one arrives to benefit from the space advantages of
streaming algorithms.

Our second contribution is a space lower bound for streaming dictionary matching with
mismatches. In Section 6 we show the following claim by reduction from the Index problem
(see the proof for the definition):

I Lemma 3. Any streaming algorithm for dictionary matching with k mismatches such that
its answers are correct w.h.p. requires Ω(kd) bits of space.

2 Preliminaries: Fingerprints and sketches

In this section, we give the definitions of two hash functions that we use throughout the
paper. We first give the definition of Karp–Rabin fingerprints that let us decide whether two
strings are equal.

IDefinition 4 (Karp–Rabin fingerprints, Karp–Rabin [20]). For a fixed prime p and r ∈ [0, p−1]
chosen uniformly at random, the Karp—Rabin fingerprint of a string S = S[1]S[2] . . . S[m]
is defined as a quadruple Φ(S) = (ϕ(S), ϕR(S), r|S| mod p, r−|S| mod p), where ϕ(S) =∑m

i=1 S[i] · rm−i mod p and ϕR(S) =
∑m

i=1 S[i] · ri−1 mod p.

I Fact 5. For r ∈ [0, p − 1] chosen uniformly at random, the probability of two distinct
strings of equal lengths ` ≤ m over the integer alphabet [0, p− 1] to have equal Karp–Rabin
fingerprints is at most m/p.

Consider a string Z that is equal to the concatenation of two strings X and Y of length at
mostm, that is Z = XY . We can compute in O(1) time ϕ(Z) given ϕ(X) and ϕ(Y ), and ϕ(Y )
given ϕ(Z) and ϕ(X). Furthermore, given the Karp–Rabin fingerprint of S[1]S[2] . . . S[m],
we can compute the Karp–Rabin fingerprint of S[m]S[m− 1] . . . S[1] in O(1) time.

We now remind the definition of k-mismatch sketches that will allow us to decide whether
two strings are at Hamming distance at most k.

I Definition 6 (k-mismatch sketch, Clifford, Kociumaka, and Porat [11]). For a fixed prime
p and r ∈ [0, p− 1] chosen uniformly at random, the k-mismatch sketch skk(S) of a string
S = S[1]S[2] . . . S[m] is defined as a tuple (φ0(S), . . . , φ2k(S), φ′0(S), . . . , φ′k(S),Φ(S)), where
φj(S) =

∑i=m
i=1 S[i] · ij mod p and φ′j(S) =

∑i=m
i=1 S[i]2 · ij mod p for j ≥ 0.

I Lemma 7 (Clifford, Kociumaka, and Porat [11]). Given the sketches skk(S1) and skk(S2)
of two strings of equal lengths ` ≤ m, in Õ(k) time one can decide (with high probability)
whether the Hamming distance between S1 and S2 is at most k. If so, one can report each
mismatch p between S1 and S2 as well as S1[p] and S2[p]. The algorithm uses O(k) space.

I Lemma 8 (Clifford, Kociumaka, and Porat [11]). We can construct one of the sketches
skk(S1), skk(S2), or skk(S1S2) given the other two in Õ(k) time using O(k) space, provided
that all the processed strings are over the alphabet [0, p − 1] and are of length at most m.
Furthermore, we can compute skk(Sm), where Sm is a concatenation of m copies of S, in
Õ(k) time as well under the same assumption.

CPM 2019
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3 Algorithm based on the randomised k-errata tree

In this section, we show a streaming algorithm for dictionary matching with k mismatches
based on a new randomised implementation of the k-errata tree, a data structure introduced
by Cole, Gottlieb, and Lewenstein [12].

I Lemma 9. There is a streaming algorithm for dictionary matching with k mismatches
that uses Õ(k · (m+ d logk d)) space and Õ(k logk d+ occ) time per character, where occ is
the number of the occurrences. On request, the algorithm can output the mismatches in Õ(k)
time per occurrence. The algorithm is randomised and its answers are correct w.h.p.

We start by showing a randomised version of the k-errata tree. The k-errata tree [12] is a
data structure that supports dictionary look-up with k mismatches queries: Given a query
string Q, find all patterns in the dictionary that are at the Hamming distance at most k from
it. The k-errata tree is a collection of compact tries that can answer a dictionary look-up
with k mismatches for a string Q of length m in time O(m + logk d log logm + occ). The
query algorithm consists of O(logk d) calls to a procedure called PrefixSearch. This procedure
takes three arguments, a compact trie τ , a node u (or a position on an edge) in τ , and a
string S, and must find the longest path in τ that starts at u and is labelled by a prefix of S.
In our case, τ is always one of the compact tries of the k-errata tree, and S is always one
of the suffixes of Q. Cole, Gottlieb, and Lewenstein [12] showed that one can use the suffix
tree on the patterns in the dictionary to answer the PrefixSearch queries deterministically in
O(log logm) time after O(m)-time shared preprocessing. Unfortunately, this solution uses
too much space and time for our purposes. In the randomised version of the k-errata tree,
we implement each of the compact tries as a z-fast trie:

I Fact 10 (z-fast tries, Belazzougui et al. [6]). Consider a string S and suppose that we can
compute the Karp—Rabin fingerprint of any prefix of S in tϕ time. A compact trie on a set
of r strings of length at most m can be implemented in O(r) space to support the following
queries in O(tϕ · logm) time: Given S, find the highest node v such that the longest prefix of
S present in the trie is a prefix of the label of the root-to-v path. The answers are correct
w.h.p.2

This gives an efficient implementation of all PrefixSearch queries if u is the root of a
compact trie, but there are more details for the general case. We provide full details, as well
as the definition of the k-errata tree, in Appendix A.

I Lemma 11. A dictionary of d patterns of maximal length m can be preprocessed into a
data structure which we call randomised k-errata tree that uses Õ(kd logk d) space and allows
retrieving all the patterns that are within Hamming distance k from Q or one of its prefixes
in Õ(k logk d + occ) time, assuming that we know the k-mismatch sketches of all prefixes
of Q. The answers are correct w.h.p.

We are now ready to give the proof of Lemma 9.

Proof of Lemma 9. During the preprocessing step, the algorithm builds the k-errata tree for
the reverses of the patterns. During the main step, the algorithm maintains the Karp–Rabin
fingerprints and the k-mismatch sketches of the m longest prefixes of the text in a round-robin
fashion updating them in Õ(k) time when a new character arrives (Lemma 8). If the text

2 Error probability comes from the collision probability for Karp–Rabin fingerprints.



P. Gawrychowski and T. Starikovskaya 21:5

ends with a k-mismatch occurrence of some pattern Pi, there is a suffix of the text of length
|Pi| ≤ m such that the Hamming distance between it and some pattern in the dictionary
is bounded by k. It means that we can retrieve all occurrences of such patterns by using
the randomised k-errata tree for the reverse of the m-length suffix of the text. We can
retrieve the fingerprint and the k-mismatch sketch of any substring of this suffix in Õ(k)
time (Lemma 8), and therefore perform the dictionary look-up query in Õ(k logk d + occ)
time. In total, the algorithm uses Õ(k · (m+ d logk d)) space and Õ(k logk d+ occ) time per
character. J

4 Improving space

The algorithm of Corollary 2 is efficient in terms of space, but not in terms of time. The
algorithm of Lemma 9 is efficient in terms of time, but not in terms of space. In this section,
we show that it is possible to achieve sublinear dependency on m for space, and in m and d
for time:

I Theorem 12. There is a streaming algorithm that solves the problem of dictionary matching
with k mismatches, for any k ≥ 1, in Õ(kd logk d) space and Õ(k logk d + occ) amortised
time per character. The algorithm is randomised and its answers are correct w.h.p. Both
false-positive and false-negative errors are allowed.

Note that the time complexity of the algorithm is amortised. In Appendix 5 we show
how to de-amortise the running time to obtain our main result, Theorem 1. The techniques
that we use have flavour similar to [9–11,18], but make a significant step forward to allow
both mismatches and multiple patterns.

I Definition 13 (k-period, Clifford et al. [10]). The k-period of a string S = S[1]S[2] . . . S[m]
is the minimal integer π > 0 such that the Hamming distance between S[π + 1,m] and
S[1,m− π] is at most 2k.

I Observation 14. If the k-period of S is larger than d, there can be at most one k-mismatch
occurrence of S per d consecutive positions of the text.

Hereafter we assume k log log d < logk d (all logs are base two), which is true for any d ≥ 3
and k ≥ 1. For d = 1, 2 we can use Corollary 2 to achieve the complexities of Theorem 1.
Furthermore, we assume that the lengths of the patterns are at least 3d, for shorter patterns
we can use the algorithm of Lemma 9. We partition the dictionary into two smaller
dictionaries: the first dictionary D1 contains the patterns Pi such that the k-period of their
suffix τi = Pi[|Pi| − 2d + 1, |Pi|] is larger than d, and the second dictionary D2 contains
patterns Pi such that the k-period of their suffix τi is at most d. In Section 4.2 we show
a streaming algorithm that finds all k-mismatch occurrences of the patterns in D1, and in
Section 4.3 a streaming algorithm for D2. We run the two algorithms in parallel to obtain
Theorem 12.

4.1 Reminder: The k-mismatch algorithm of Porat and Porat
We first give an outline of the k-mismatch algorithm of Porat and Porat [26] and explain
how it can be applied to the dictionary matching setting.

Porat and Porat showed that the k-mismatch problem for a pattern P can be reduced to
exact pattern matching in the following way. Let Q = {q1, q2, . . . , qlog m/ log log m} be the set
of the first logm/ log logm primes larger than logm, and R = {r1, r2, . . . , rk log m/ log log m}

CPM 2019



21:6 Streaming Dictionary Matching with Mismatches

be the set of the first k logm/ log logm primes larger than logm. A subpattern (Pi)`
q,r of

a pattern Pi is defined by two primes q ∈ Q, r ∈ R and an integer 1 ≤ ` ≤ q · r, namely,
P `

q,r = P [`]P [q · r + `]P [2q · r + `] . . . and so on until the end of P . The prime number
theorem implies that q ∈ Õ(1) and r ∈ Õ(k), and therefore for a fixed q, r there are Õ(k)
subpatterns.

I Lemma 15 (Porat–Porat [26]). Consider an alignment of the pattern Pi and the text.
Given the subset of the subpatterns of Pi that match exactly at this alignment, there is a
deterministic Õ(k2)-time algorithm that outputs “No” if the Hamming distance between Pi

and T is larger than k, and the true value of the Hamming distance otherwise.

Using this reduction, we show a streaming algorithm that uses Õ(k3d) space and processes
each character of the text in Õ(k2 log log(m+ d)) time. On request, the algorithm can tell
in Õ(k2) time if there is a k-mismatch occurrence of a pattern Pi that ends at the current
position of text. During the preprocessing step, for each pair of primes q ∈ Q, r ∈ R, we
build a compact trie on the reverses of the subpatterns (Pi)`

q,r. Furthermore, we preprocess
each trie (using a depth-first traversal) to be able to tell in O(1) time if the reverse of the
subpattern (Pi)`

q,r is a prefix of the reverse of the subpattern (Pi′)`′

q,r.
During the main stage, for each pair of primes q ∈ Q, r ∈ R and an integer 1 ≤ ` ≤ q · r

we define a text substream T `
q,r = T [`]T [q · r + `]T [2q · r + `] . . . and so on until the end

of T . We then run the streaming dictionary matching algorithm of Clifford et al. [9] for
the substream T `

q,r and the dictionary of subpatterns (Pi)`′

q,r, where i = {1, 2, . . . , d} and
1 ≤ `′ ≤ q · r. At each position, the streaming dictionary matching algorithm outputs the id
of the longest subpattern that matches at this position. In total for each pair of primes there
are Õ(k) substreams and Õ(kd) subpatterns per substream, and therefore the algorithm uses
Õ(k3d) space and Õ(k log log(m+ kd)) time per character, the latter is because each time a
new character T [p] arrives, where p = q · r + `, we must update exactly one substream T `

q,r

(and over all q ∈ Q, r ∈ R, there are Õ(k log log(m+ kd)) substreams to update).
Using the compact tries built at the preprocessing step, we can then check, for any

subpattern (Pi)`
q,r, if it matches at this position in O(1) time and therefore can decide if

there is a k-mismatch occurrence of Pi in Õ(k2) by Lemma 15.

4.2 Streaming algorithm for patterns with large periods
In this section, we show a streaming algorithm for the dictionary D1 that contains patterns Pi

such that the k-period of their suffix τi = Pi[|Pi| − 2d+ 1, |Pi|] is at least d.

I Lemma 16. If for each pattern in the dictionary D1 the k-period of its 2d-length suffix is
larger than d, then there is a streaming algorithm for dictionary matching with k mismatches
that uses Õ(kd logk d) space and Õ(k logk d+occ) amortised time per character. The algorithm
is randomised and its answers are correct w.h.p.

Note that any k-mismatch occurrence of a pattern Pi ends with a k-mismatch occurrence
of τi. The first step of our algorithm is to retrieve the occurrences of τi. To do so, we run
the streaming algorithm of Lemma 9. At each position of the text, the algorithm outputs
all indices i such that there is a k-mismatch occurrence of τi ending at this position. After
having found the occurrences of τi, our second step is to check if they can be extended into
full occurrences of Pi which we do with the help of the streaming algorithm explained in
Section 4.1.

We now analyse the complexity of the algorithm. To find occurrences of the suffixes τi,
we need Õ(kd logk d) space and Õ(k logk d + occ) time per character. The algorithm of
Section 4.1 uses Õ(k3d) space and Õ(k log log(m + kd)) time per character. To test if an
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occurrence of τi can be extended into an occurrence of Pi, we need Õ(k2) time. Importantly,
by Observation 14, there is at most one k-mismatch occurrence of τi per d positions of the
text. Hence, we will need Õ(k2d) time to test all k-mismatch occurrences of the suffixes τi

that end at any d consecutive positions of the text. Lemma 16 follows.

4.3 Streaming algorithm for patterns with small periods
In this section, we show a streaming algorithm for the second dictionary D2 that contains
patterns Pi such that the k-period of their suffix τi = Pi[|Pi| − 2d+ 1, |Pi|] is at most d.

I Lemma 17. If for each pattern in the dictionary D2 the k-period of its 2d-length suffix is
smaller than d, then there is a streaming algorithm for dictionary matching with k mismatches
that uses Õ(kd logk d) space and Õ(k logk d+occ) amortised time per character. The algorithm
is randomised and its answers are correct w.h.p.

We define τ ′i , |τ ′i | ≥ |τi|, to be the longest suffix of Pi with the k-period at most d. Two
cases are possible:
1. The suffix τ ′i equals Pi (in other words, the k-period of Pi is at most d);
2. The suffix τ ′i is a proper suffix of Pi.

We first assume that Case 1 holds for all the patterns in D2, and then extend the algorithm
to Case 2 as well. We start by showing a simple but important property of patterns with
small periods.

I Lemma 18. Consider a position r of the text. Let j · d be the largest multiple of d that
is smaller than r and L be the longest suffix of T [j · d−m+ 1, j · d] with the 2k-period at
most d. Every k-mismatch occurrence of Pi ∈ D2 in T that ends at the position r is fully
contained in LT [j · d+ 1, r].

Proof. Consider an occurrence T [`, r] of a pattern Pi ∈ D2 that ends at the position r. Since
the length of Pi is at most m, ` ≥ r −m+ 1 > j · d−m+ 1. Now, let ρ ≤ d be the k-period
of Pi. Since the Hamming distance between T [`, r] and Pi is at most k, the 2k-period of
T [`, r] is at most ρ. Indeed, the Hamming distance between T [`+ ρ− 1, r] and T [`, r− ρ+ 1]
is at most 2k plus the Hamming distance between Pi[ρ, |Pi|] and Pi[1, |Pi| − ρ+ 1] which can
be upper bounded by 2k in its turn. Therefore, the 2k-period of T [`, j · d] is at most ρ and
hence it is contained in L. J

4.3.1 Algorithm for Case 1
We are now ready to describe the algorithm for the Case 1. During the preprocessing stage,
we build the k-errata tree for the reverses of all the patterns in D2. During the main stage
of the algorithm, we maintain the suffix L and an associated data structure D. The data
structure D will be used to answer the following queries in Õ(k) time: Given a suffix of L
defined by its starting and ending positions, return its 4k-mismatch sketch.

Let us first explain how we maintain L. We initialize L with an empty string and update
it each d characters. While reading the next d characters of the text, that is a substring
T [(j − 1) · d+ 1, j · d], we compute the 4k-mismatch sketches of its d prefixes in Õ(kd) time
(Lemma 8). After having reached T [j · d], we update L. It suffices to compute the longest
suffix of T [j · d−m+ 1, j · d] such that the Hamming distance between it and its copy shifted
by ρ positions, for ρ = 1, . . . , d, is at most 2k. For a fixed value of ρ, we use binary search
and the 4k-mismatch sketches. Suppose we want to decide whether the Hamming distance
between T [`, j · d − ρ + 1] and T [` + ρ, j · d] is at most 4k. First note that we must only
consider the case when T [`, j · d] is fully contained in LT [(j − 1) · d+ 1, j · d].

CPM 2019



21:8 Streaming Dictionary Matching with Mismatches

I Observation 19. If T [`, j · d] is longer than LT [(j − 1) · d+ 1, j · d], then its 2k-period is
larger than d.

Proof. If the 2k-period of T [`, j · d] is at most d, the 2k-period of T [`, (j− 1) · d] is at most d.
If T [`, (j − 1) · d] is longer than L, we obtain a contradiction. J

Since we are only interested in the case when T [`, j · d] is fully contained in LT [(j − 1) ·
d+ 1, j · d], both T [`, j · d− ρ+ 1] and T [`+ ρ, j · d] can be represented as a concatenation
of a suffix of L and a substring of T [(j − 1) · d+ 1, j · d]. We can retrieve the 4k-mismatch
of any suffix of L in Õ(k) time using the data structure D and the 4k-mismatch sketch of
any substring of T [(j − 1) · d + 1, j · d] using Lemma 8. Therefore, we can compute the
4k-mismatch sketches of both strings and hence the Hamming distance between them in
Õ(k) time using Lemma 7. In total, we need Õ(dk) time to update L, or Õ(k) amortised
time per character.

We now define the data structure D and explain how we update it. Suppose that after the
latest update the 2k-period of L is ρ ≤ d and consider a partitioning of L into non-overlapping
blocks of length ρ. We say that a block contains a mismatch if, for some i, its i-th character
is different from the i-th character of the preceding block. For convenience, we also say that
the first block in L is mismatch-containing.

I Observation 20. The total number of the blocks containing a mismatch is O(k).

Proof. By definition, the Hamming distance between L[1, |L| − ρ+ 1] and L[ρ+ 1, |L|] is at
most 4k, and it upper bounds the number of the blocks containing a mismatch. J

D consists of two parts. First, we store a binary search tree on the set of the starting
positions of all blocks containing a mismatch. Secondly, for each block L[(j − 1) · ρ+ 1, j · ρ]
containing a mismatch we store the 4k-mismatch sketch of each of its suffixes, as well as the
sketch of the suffix of L that starts at the position (j− 1) · ρ+ 1. In total, D occupies Õ(k2d)
space.

I Lemma 21. We can update D in Õ(k2) amortised time per character. After it has been
updated, we can compute the 4k-mismatch sketch of any suffix of L in Õ(k) time.

Proof. Using the 4k-mismatch sketches for L[ρ, |L|] and L[1, |L| − ρ + 1], we can find the
O(k) blocks containing a mismatch in Õ(k) time. We can then re-build the binary search
tree in Õ(k) time and compute the sketches for the O(k) mismatch-containing blocks in
Õ(k2d) time.

Given a starting position ` of a suffix of L, we use the binary search tree to determine
the streak of blocks without mismatches it belongs to, and retrieve the sketch of the suffix
starting just after the streak in Õ(k) time. The remaining part consists of a number of
repetitions of the block containing the position ` prepended with the suffix of the block. We
can compute the sketch of the block and of its suffix in Õ(k) time, and therefore we can
compute the sketch of the remaining part in Õ(k) time using Lemma 8. J

Let T [r] be the latest arrived character of the text. To retrieve the k-mismatch occurrences
that end at the position r, we use the k-errata tree for the reverses of the patterns in D2
that we build during the preprocessing stage. Let j · d be the largest multiple of d that
is at most r and let L be defined as above. By Lemma 18, any k-mismatch occurrence of
pattern Pi ∈ D2 that ends at r must be equal either to a suffix of T [j · d+ 1, r], or to the
concatenation of some suffix of L and T [j · d+ 1, r]. The data structure D allows to compute
the 4k-mismatch sketch (and therefore k-mismatch) of any suffix of L in Õ(k) time. We can
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also compute the 4k-mismatch sketch of any of the d latest suffixes of the text in Õ(k) time.
Therefore, we can retrieve the k-mismatch occurrences of the patterns for a current position
in Õ(k logk d + occ) time using the k-errata tree. In total, the algorithm for Case 1 uses
Õ(kd logk d) space and Õ(k logk d+ occ) amortised time per character.

4.3.2 Extension to Case 2 and wrapping up
Consider now Case 2. Note first that the 2k-period of a string Pi[|Pi| − |τ ′i |, |Pi|], which is τ ′i
extended by one character, must be at least d, and therefore by Observation 14 there can be
at most one k-mismatch occurrence of Pi[|Pi| − |τ ′i |, |Pi|] per d positions of the text. We use
the techniques of the algorithm for Case 1 to retrieve the occurrences of Pi[|Pi| − |τ ′i |, |Pi|],
and then use the techniques of the algorithm for patterns with large periods (Lemma 16) to
extend the retrieved occurrences.

In more detail, consider a position r of the text. As before, let j ·d be the largest multiple
of d that is smaller than r and L be the longest suffix of T [j · d − m + 1, j · d] with the
2k-period at most d. Let now L′ be the suffix L extended by one character to the left, i.e.
L′ = T [j ·d−|L|, j ·d]. By definition, the (2k+ 1)-period of L′ is at most d− 1. Furthermore,
similar to Lemma 18, we can show that any k-mismatch occurrence of Pi[|Pi| − |π′i|, |Pi|]
ending at the position r must be fully contained in L′ T [j · d+ 1, r].

Similarly to the previous section, we can maintain L′ and the associated data structure D′
using Õ(k2d) space and Õ(k2d) time per character. Using D′, we can compute the 4k-
mismatch (and therefore k-mismatch) sketch of any suffix of L′ T [j · d+ 1, r] in Õ(k) time
and hence we can find the occurrences of Pi[|Pi| − |τ ′i |, |Pi|] using the k-errata tree in
Õ(k logk d+ occ) time per character. We now need to decide which of the found occurrences
can be extended into full occurrences of Pi. In order to do this, we run the algorithm of
Section 4.1. When we find an occurrence of Pi[|Pi| − |τ ′i |, |Pi|], we test it in Õ(k2) time.

In total, the algorithm for Case 2 uses Õ(kd logk d + k2d) space and Õ(k logk d + occ)
amortised time per character. Lemma 17 and Theorem 12 follow.

5 Proof of Theorem 1 – de-amortisation

Recall that the streaming algorithm of Theorem 12 is comprised of the algorithms of Lemma 16
and of Lemma 17 ran in parallel. Below we explain how to de-amortise these two algorithms.
We use a standard approach called the tail trick that was already used in [9–11].

5.1 De-amortised algorithm with a delay
First, note that there is an easy way to de-amortise the algorithm of Lemma 16 if we allow
delaying the occurrences by d characters. In order to do that, we divide the text into
non-overlapping blocks of length d, and de-amortise the processing time of a block over the
next block, by running Θ̃(k + log d) steps of the computation per character. We will need to
memorize the occurrences that end at the last 2d positions of the text, but this requires only
O(d) space and we can afford it.

We now show how to de-amortise the algorithm for Case 1 of Lemma 17. This time,
we will not need the delay. The only step of the algorithm that requires de-amortisation is
updating L and D. We can de-amortise this step in a standard way. Namely, we de-amortise
the time we need for an update by running Θ̃(k log d) steps of the computation per each of
the next d characters of text. We also maintain the sketches of the 2d longest prefixes of the
text in a round-robin fashion using Õ(kd) space and O(k) time. If we need to extract the

CPM 2019



21:10 Streaming Dictionary Matching with Mismatches

sketch of some suffix of L before the update is finished, we use the previous version of the
data structure and the sketches of the 2d latest suffixes of the text to compute the required
values using Lemma 8.

Finally, we show how to de-amortise the algorithm of Case 2 of Lemma 17, again with
a delay of d characters. Recall that this algorithm first finds the k-mismatch occurrences
of the suffixes Pi[|Pi| − |τ ′i |, |Pi|] using an algorithm similar to the algorithm for Case 1 of
Lemma 17, which can be de-amortised with no delay as explained above, and then tests
these occurrences using the algorithm of Section 4.1, which can be de-amortised with a delay
of d characters. Importantly, there are at most d occurrences that need to be tested per d
characters, so we can memorize them until we can test them. The claim follows.

5.2 Removing the delay
We now show how to remove the delay. Recall that we assume the patterns to have lengths
larger than 3d. We partition each pattern Pi = Hi Qi, where Qi is the suffix of Pi of length d,
and Hi is the remaining prefix. The idea is to find occurrences of the prefixes Hi and of the
suffixes Qi independently, and then to see which of them form an occurrence of Pi.

As above, we have three possible cases: the k-period of Hi[|Hi| − 2d+ 1, |Hi|] is larger
than d; the k-period of Hi is at most d; the k-period of Hi is larger than d but the k-period
of Hi[|Hi| − 2d+ 1, |Hi|] is at most d.

In the second case, we do not need to change much. For the current position r of the text
we consider the largest j · d such that r − j · d ≥ d and define L to be the longest suffix of
T [j · d−m+ 1, j · d] such that its 2k-period is at most d. We store the k-errata tree on the
reverses of Pi = Hi Qi and run the de-amortised algorithm described in the previous section
that maintains the suffix L. Any k-mismatch occurrence of a pattern Pi is fully contained in
the concatenation of L and a suffix of the text of length 3d, and therefore we can find all
such occurrences using the k-errata tree as above.

We now explain how we remove the delay in the first and third cases. To find the
occurrences of Qi we use the streaming algorithm of Lemma 9. To find the occurrences
of Hi we use the de-amortised version of the algorithm of Lemma 16 or of Lemma 17, as
appropriately, that report the occurrences with a delay of at most d characters. It means
that at the time when we find an occurrence of Qi, the corresponding occurrence of Hi is
already reported, so it is easy to check whether they form an occurrence of Pi. The only
technicality is that we need to store the occurrences of Hi that we found while processing
the last d characters of the text.

To this end, we use a dynamic hashing scheme [15]. The scheme allows to store a dynamic
dictionary in linear space and with high probability guarantees constant look-up and update
times. The answers to the look-up queries are always correct. Note that we can modify the
data structure slightly to have constant time per operation if we allow the answers to be
correct only with high probability (which we can afford), namely, if an operation takes too
much time, we can simply abandon it.

We use the scheme for each of the last d positions of the text. Namely, consider a
position p of the text and suppose that we found a set of k-mismatch occurrences of the
prefixes Hi that end at p. Consider one of the prefixes, Hi, and let the Hamming distance
between a prefix Hi and the text be h ≤ k. Recall that by Fact 23 there are O(logk d) nodes
of the k-errata tree labelled by Qi. For each such node u of the k-errata tree, we insert a pair
(u, h) into the dictionary. In case we insert a pair (u, h) several times for different prefixes
Hi’s, we associate (u, h) with the set of such prefixes. Note that at any moment the total
size of the dictionaries is Õ(d logk d) as each of the patterns Hi has at most one k-mismatch
occurrence over each d consecutive positions of the text.
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Suppose we are at a position p of the text and we have run a dictionary look-up query
and found the O(logk d) nodes in the tries of the k-errata tree corresponding to the suffixes
Qi that occur at this position with at most k mismatches. For each such node u we
know the Hamming distance h′ between the occurrences and the text. We then go to the
dictionary at the position (p− 2d) and look up pairs (u, k − h′), (u, k − h′ − 1), . . . , (u, 0). If
they are in the dictionary, we report all Hi’s associated with these pairs. This step takes
O(k logk d+ occ) time.

6 Proof of Lemma 3 – space lower bound

In the communication complexity setting the Index problem is stated as follows. We assume
that there are two players, Alice and Bob. Alice holds a binary string of length n, and Bob
holds an index i encoded in binary. In a one-round protocol, Alice sends Bob a single message
(depending on her input and on her random coin flips) and Bob must compute the i-th bit of
Alice’s input using her message and his random coin flips correctly with probability > 2/3.
The length of Alice’s message (in bits) is called the randomised one-way communication
complexity of the problem. The randomised one-way communication complexity of the Index
problem is Ω(n) [23].

Given a streaming algorithm for dictionary matching with k mismatches, we can construct
a randomised one-way communication complexity protocol for the Index problem as follows.
As above, let d be the size of the dictionary, and assume that n = kd. Split Alice’s string
into d blocks of length k. Let #, $, $1, . . . , $d be distinct characters different from {0, 1}. For
the j-th block Bj create a string Pj = ($j)k+1#Bj , where ($j)k+1 means that we repeat
the character $j (k + 1) times. For Bob’s input i = k · q + r we create a string T which is
equal to ($q)k+1 concatenated with a string of length k + 1 obtained from $k+1 by changing
the (r + 1)-th bit to 0. A streaming dictionary matching with k mismatches for the set of
patterns Pi and T will output a k-mismatch occurrence of Bq at the position 2k + 2 of the
text iff the r-th bit of Alice’s input is equal to 0. Therefore, if Alice preprocesses Pj as in
the streaming algorithm and sends the result to Bob, Bob will be able to continue to run
the streaming algorithm on T to decide the i-th bit of Alice’s input. Therefore, the lower
bound for communication complexity of the Index problem is a space lower bound for any
streaming algorithm for dictionary matching with mismatches. Lemma 3 follows.
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A Proof of Lemma 11 – randomised k-errata tree

We will first remind the definition of the k-errata tree of Cole et al. [12], and then show a
randomised implementation of this data structure.

A.1 Reminder: the k-errata tree
Consider a dictionary D of d patterns of maximal length m. We start with the compact
trie T for the dictionary D, and decompose it into heavy paths.

I Definition 22. The heavy path of T is the path that starts at the root of T and at each
node v on the path branches to the child with the largest number of leaves in its subtree (heavy
child), with ties broken arbitrarily. The heavy path decomposition is defined recursively,
namely, it is defined to be a union of the heavy path of T and the heavy path decompositions
of the off-path subtrees of the heavy path.

During the recursive step, we construct a number of new compact tries. For each heavy
path H, and for each node u ∈ H consider the off-path trees hanging from u. First, we
create a vertical substitution trie for u. Let a be the first character on the edge (u, v) ∈ H.
Consider an off-path tree hanging from u, and let b 6= a be the first character on the edge
from u to this tree. For each pattern in this off-path tree, we replace b by a. We consider a
set of patterns obtained by such a substitution for all off-path trees hanging from u and build
a new compact trie for this set. Next, we create horizontal substitution tries for the node u.
We create a separate horizontal substitution trie for each off-path tree hanging from u. To
do so, we take the patterns in it and cut off the first characters up to and including the first
character on the edge from u to this tree, and then build a compact trie on the resulting set
of patterns. To finish the recursive step we build the (k − 1)-errata trees for each of the new
vertical and horizontal tries.

From the construction, it follows that the k-errata tree is a set of compact tries, and each
string S in the tries originates from a pattern in the dictionary D. We mark the end of the
path labelled by S by the id of the pattern it originates from.

Queries. A dictionary look-up with k mismatches for a string Q is performed in a recursive
way as well. We will make use of a procedure called PrefixSearch. This procedure takes three
arguments: a compact trie, a starting node u (or a position on an edge) in this trie, and a
query string Q′, and must output a pointer to the end of the longest path starting at u and
labelled by a prefix of Q′. For the purposes of recursion, we introduce a mismatch credit –
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the number of mismatches that we are still allowed to make. We start with the mismatch
credit µ = k. The algorithm first runs a PrefixSearch in the trie T for the query string Q
starting from the root. If µ = 0 and the path is labelled by Q, the algorithm returns the ids
of the patterns in D that are associated with the end of the path. Otherwise, we consider the
heavy paths H1, H2, . . . ,Hj traversed by the PrefixSearch. Let ui be the position where the
PrefixSearch leaves the heavy path Hi, 1 ≤ i ≤ j. Note that for i < j, ui is necessarily a node
of T , and for i = j it can be a position on an edge. We can divide all the patterns in D into
four groups: (I) Patterns hanging off some node u in a heavy path Hi, where u is located
above ui, 1 ≤ i ≤ j; (II) Patterns in the subtrees of ui’s children not in the heavy path
Hi+1, for 1 ≤ i < j; (III) Patterns in the subtree of the position in Hj that is just below uj ;
(IV) If uj is a node, then patterns in the subtrees of uj ’s children not in the heavy path Hj .

We process each of these groups of patterns independently. Consider a pattern P in
group I, and let it hang from a node u ∈ Hi, where u is above ui. Let ` be the length of
the label of u, then Q and any pattern P in this subtree have a mismatch at the position
`+ 1. When creating vertical substitution tries, we removed this mismatch. Therefore, we
can retrieve all such patterns that are at the Hamming distance ≤ k from Q by running
the algorithm recursively with mismatch credit µ − 1 in the (k − 1)-errata tree that we
created for the vertical substitution trie for the node u. The patterns of groups II and IV are
processed in a similar way but using the (k − 1)-errata trees for the horizontal substitution
trees. Finally, to process the patterns of group III, we run the algorithm with mismatch
credit µ− 1 starting from the position that follows uj in Hj .

This algorithm correctly retrieves the subset of the patterns in D that are at Hamming
distance ≤ k from Q but can be slow as it makes many recursive calls. Cole et al. showed
that the number of recursive calls can be reduced to logarithmic by introducing grouping on
the substitution tries. In more detail, for each heavy path we consider its vertical substitution
tries and build a weight-balanced tree, where the leaves of the weight-balanced tree are the
vertical substitution tries, in the top-down order, and for each node of the tree, we create a
new trie by merging the tries below it. For each of these group vertical substitution tries
we build the (k − 1)-errata tree. We group the horizontal substitution tries in a similar
way, namely, we consider each node u and build a weight-balanced tree on the horizontal
substitution tries that we created for the node u.

I Fact 23 (Cole et al. [12]). The id of any pattern in D occurs in the compact tries of the
k-errata tree O(logk d) times, and as a corollary the total size of the tries is O(d logk d).

To speed up the algorithm, we search a logarithmic number (O(log d)) of group substitution
tries instead of searching each substitution trie individually. In total, we run O(logk d)
PrefixSearch operations.
I Remark 24. We will use the k-errata tree to retrieve the patterns that are within Hamming
distance k from the query string Q or from one of its prefixes. Recall that we mark each
node of the k-errata tree corresponding to an end of a dictionary pattern. Furthermore,
during the preprocessing step, we compute a pointer from each node to its nearest marked
ancestor. At the end of each PrefixSearch we follow the pointers and retrieve the patterns
corresponding to the marked nodes between the end and the start of the PrefixSearch. The
number of the PrefixSearch operations that we perform does not change.

It remains to explain how we perform the PrefixSearch operations. Cole et al. gave a
deterministic implementation of PrefixSearch that requires O(md) extra space and O(m)
time of preprocessing, which is too much for our purposes. In the next section, we will show
a randomised implementation of PrefixSearch which requires both less space and less time.
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A.2 Randomised implementation of the k-errata tree
Recall from above that the k-errata tree is a collection of compact tries. In the randomised
version of the k-errata tree, we replace each of them with a z-fast trie (see Fact 10). We also
store the k-mismatch sketch of the label of every node of the tries, which requires Õ(kd logk d)
space in total.

We now explain how we answer dictionary look-up with k mismatches. Recall that each
dictionary look-up with k mismatches is a sequence of calls to the PrefixSearch procedure,
and therefore it suffices to give an efficient implementation of PrefixSearch. We first explain
how to implement this operation if it starts at the root of some compact trie of the k-errata
tree. Assuming that we can retrieve the Karp–Rabin fingerprint of any substring of Q in O(1)
time, Fact 10 immediately implies that a PrefixSearch starting at the root of a compact trie
can be implemented in O(logm) time. Note that if the end of the PrefixSearch is a position
on an edge of the trie, then the functionality of the z-fast tries will allow us retrieving only
the edge this position belongs to, but not the position itself. As we show below, it is sufficient
for our purposes.

We now give an implementation of a PrefixSearch starting at an arbitrary position of
a compact trie by reducing it first to a PrefixSearch that starts at a node of the trie and
then to a PrefixSearch that starts at the root of the trie. We first show a reduction from a
PrefixSearch that starts at an arbitrary position on an edge to a PrefixSearch that starts at a
node. As we explained above, we might know the edge this starting position belongs to, but
the position itself. However, from the description of the query algorithm in Section A.1 it
follows that the algorithm will continue along the edge by running PrefixSearch operations
until it either runs out of the mismatch credit or reaches the lower end of the edge. We will
fast-forward to the lower end of the edge using the k-mismatch sketches. Namely, let Q′
be the query string when we entered the current tree (note that we do not change the tree
when retrieving patterns of group III). Importantly, the string Q′ is a suffix of Q. We want
to check whether we can reach the lower end of the edge and not run out of the mismatch
credit. In other words, we want to compare the number of mismatches between the label S
of the lower end of the edge and the prefix S′ of Q′ of length |S|, and the mismatch credit.
We use the k-mismatch sketches for this task. We store the sketch of S, and the sketch of
S′ can be computed in Õ(k) time as it is a substring of Q. Having computed the sketches,
we can compute the Hamming distance between S and S′ using Lemma 7. If the Hamming
distance is larger than the available mismatch credit, we stop, otherwise, we continue the
PrefixSearch from the lower end of the edge.

Finally, we show an implementation of a PrefixSearch for a string Q′ that starts at a node
u of a trie. Let S be the label of u. Our task is equivalent to performing a PrefixSearch
starting from the root of a trie for a string S Q′. Recall that Fact 10 assumes that we can
extract the Karp–Rabin fingerprint of any prefix of S Q′. We do not know the Karp–Rabin
fingerprints of the prefixes of S Q′, but we can compute them as follows. First, we use the
k-mismatch sketches similar to above to compute the at most k mismatches that occurred
on the way from the root of the trie to u. After having computed the mismatches, we can
compute any of the fingerprints in Õ(k) time by taking the fingerprint of the corresponding
substring of Q and “fixing” it in at most k positions.

So, we can answer a dictionary look-up with k mismatches query in Õ(k logk d + occ)
time, and to compute the mismatches for each of the retrieved patterns in Õ(k) time per
pattern if requested.
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