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Abstract
This paper presents and proves a new non-trivial upper bound on the number of maximal repeats
of compressed strings. Using Theorem 1 of Raffinot’s article “On Maximal Repeats in Strings”,
this upper bound can be directly translated into an upper bound on the number of nodes in the
Compacted Directed Acyclic Word Graphs of compressed strings.

More formally, this paper proves that the number of maximal repeats in a string with z (self-
referential) LZ77-factors and without q-th powers is at most 3q(z + 1)3 − 2. Also, this paper proves
that for 2000 ≤ z ≤ q this upper bound is tight up to a constant factor.
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1 Introduction

A repeat of a string S is a substring of S which occurs at least twice in S. A repeat P of S
is a maximal repeat, if every string which properly contains P occurs less often in S than P
itself. Usually there are much less maximal repeats than repeats. Nevertheless the set of
maximal repeats still contains all of the information about the repeats. These repeats have,
as shown by Gusfield in [9], many applications in computational biology. A good overview of
the importance of repeats in computational biology together with a deeper analysis of local
repeats is also given by Nicolas et al. in [10] on ResearchGate.

Maximal repeats are also closely linked to string compression and succinct data structures:
Furuya et al. show in their recent arXiv-article [8] that there is a connection between maximal
repeats and the grammar compression algorithm RePair and they use this connection to
create an improved version of this algorithm. Raffinot proves in [12] that there is a natural
one-to-one correspondence between the maximal repeats of a string and the number of
internal nodes in its Compacted Directed Acyclic Word Graph (CDAWG).

The CDAWG of a string is a useful data structure which was introduced by Blumer et al.
in [2] and has most advantages of suffix trees and acyclic directed word graphs while usually
being much smaller than each of them. The CDAWG is therefore a powerful tool for string
processing.
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Figure 1 The suffix tree of a7 (= aaaaaaa).
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18:2 On Maximal Repeats in Compressed Strings
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Figure 2 The CDAWG of a7.

One might hope that well-compressible strings have highly structured suffix trees and
thereby small CDAWGs. This, however, is unfortunately not the case. Even the arguably
best compressible string, aq−1, which does have the simple looking suffix tree shown in Figure
1, also has the CDAWG shown in Figure 2 with q − 2 internal nodes. This shows that there
is no non-trivial upper bound on either the number of nodes of a CDAWG of a string S or
the number of maximal repeats of S which is only dependent on the compressed size of S.
This fact may also explain the apparent lack of research regarding the number of nodes in
CDAWGs of general compressible strings.

There are, however, some non-trivial bounds for the number of nodes in CDAWGs which
take the structure of the underlying strings into account. For example Blumer et al. suggest
in [2] that the number of nodes in a CDAWG of an English lower-case string S is between
0.26 times the length of S and 0.29 times the length of S. Blumer et al. prove in [3] formulas
for the average size of the CDAWG of a random string. Stronger results have been found
by Radoszewski and Rytter who prove in [11] that the number of nodes of the CDAWG of
Thue-Morse words is linear in the compressed size of the word and thereby logarithmic in the
size of the word itself. A similar result is shown by Epifanio et al. in [6] for Sturmian words.

Belazzougui et al. prove in [1] that the number of edges in the CDAWG of the string is
bounded from below by the number of self-referential LZ77-factors. Therefore a string S over
the alphabet Σ with z LZ77-factors has at least z

|Σ| − 1 maximal repeats. This lower bound
is met, for example, by a string in which every character occurs only once. While this string
is not compressible, it does not have maximal repeats.

While Raffinot was motivated by the possibility of translating the better-known results
for CDAWGs to maximal repeats, this paper’s motivation was the other way round. The
main goal was to find a new, more general upper bound for the number of nodes in the
CDAWGs of compressed strings and it turned out to be very useful that Raffinot’s result
can be applied the other way round too.

The number z of LZ77-factors proved itself to be a very useful indicator of the complexity
of strings in the past. For example Charikar et al. proved in [4] that even the minimal number
of non-self-referential LZ77-factors is a lower bound for the smallest grammar compression.
The self-referential version of LZ77 was used for example by Tanimura in [13] in order to
show that the size of the t-truncated suffix tree is bounded by zt. Additionally, since high
powers lead to CDAWGs with a high number of nodes, the additional structure of the string
is measured by the highest power q − 1 in the string.

Using these two variables, this paper gives an upper bound for the number of maximal
repeats and the number of nodes in the CDAWG which is proven in section 3:

I Theorem 1. Let S be a string. Let z be the number of (self-referential) LZ77-factors in
an LZ77-decomposition of S. Let q be a number such that S does not contain q-th powers.
Then the number of maximal repeats in S is bounded from above by 3q(z + 1)3 − 2. Also, the
Compacted Directed Acyclic Word Graph (CDAWG) of S has at most 3q(z + 1)3 nodes.

Additionally this paper shows:
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I Theorem 2. For 2000 ≤ z ≤ q there is a string S without q-th powers which can be
expressed by z (self-referential) LZ77-factors and which has at least 1

500qz
3 maximal repeats.

This result, which is proven in section 4, shows that for 2000 ≤ z ≤ q the upper bound given
by Theorem 1 is tight up to a constant factor.

2 Definitions

Let Σ be an alphabet. A string with length denoted by |S| is the concatenation of characters
S[0]S[1] · · ·S[|S| − 1] of Σ. For the sake of convenience we also define S[−1] = $ and
S[|S|] = $ with $ /∈ Σ. The substring S[i..j] with 0 ≤ i ≤ j ≤ |S| − 1 is the concatenation
S[i]S[i + 1] · · ·S[j]. For i > j the substring S[i..j] is defined to be the empty string with
length 0. A prefix is a substring of the form S[0..j] and a suffix is a substring of the form
S[i..|S| − 1].

A maximal pair of S is a triple (n,m, l) ∈ N3 with l ≥ 1 such that S[n..n+ l− 1] is equal
to S[m..m+ l − 1] and this property can not be extended to any side. More formally:
∀i ∈ N with 0 ≤ i < l : S[n+ i] = S[m+ i] but
S[n− 1] 6= S[m− 1] and
S[n+ l] 6= S[m+ l].

Since for a maximal pair (n,m, l) the inequality S[n− 1] 6= S[m− 1] holds, the indices n and
m can not be equal. Furthermore, only S[n..n+ l − 1] and S[m..m+ l − 1] are required to
be in S. The characters S[n − 1], S[m − 1], S[n + l], S[m + l] may be outside of S. This
implies that S[n..n+ l] and S[m..m+ l] are in S$.

The distance d of a maximal pair (n,m, l) is the distance d = m− n of the two starting
indices.

A maximal repeat of a string S is a substring S[n..n+ l− 1] such that there is a maximal
pair (n,m, l) for some indices n, m.

For example, in the string banana, the substring na is not a maximal repeat, because
every occurrence of na is preceded by a. The substring ana, however, is a maximal repeat
with maximal pair given by (1, 3, 3). The distance of this maximal pair is 2.

A (self-referential) LZ77-decomposition of a string S is a factorization S = F1F2 . . . Fz in
LZ77-factors F1, F2, . . . , Fz such that for all i ∈ 1, 2, . . . , z

the factor Fi is a single character or
the substring Fi occurs twice in F1F2 . . . Fi. (i.e. there is an occurrence of Fi in F1F2 . . . Fi
which does not use the last character of F1F2 . . . Fi)

In this paper, all LZ77-decompositions are allowed to be self-referential. Therefore we will
only use the term LZ77-decomposition.

Normally the LZ77-definition requires the number of LZ77-factors of a string to be
minimized. Since all theorems of this paper also hold for non-minimized LZ77-decompositions,
this minimization is not required in this paper.

For example, see the following strings on the left-hand side with possible corresponding
LZ77-factors, separated by “·”, on the right-hand side:

01001010 = 0 · 1 · 0 · 010 · 10,
banana = b · a · n · ana,
aaaa = a · aaa and
aaaa = a · a · a · a (not minimal).

A period of a string S is a number ∆ such that all characters in S with distance ∆ are
equal. If the minimal period ∆min of a non-empty string S is at most |S|2 , the string S is a
fractional power with exponent |S|

∆min
.

CPM 2019
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Fractional powers are also called repetitions in the literature. However, in order to keep
them apart from the maximal repeats, the name fractional power will be used.

3 Upper Bound

The main goal of this section is to prove that the number of maximal repeats of a string S
that can be written with z LZ77-factors and that does not contain a q-th power is bounded
from above by 3q(z + 1)3 − 2.

While it is easier to count the number of maximal pairs than to count the number of
maximal repeats directly, there might be many maximal pairs for a single maximal repeat.
Therefore, it is necessary to choose a subset of the maximal pairs which presents every
maximal repeat at least once and which does not contain too many elements.

The following two lemmata will lead to a suitable subset of the maximal pairs, by showing
that it is sufficient to count the maximal pairs (n,m, l) in which n is smaller than m and n
as well as m are close to the boundary between two LZ77-factors.

I Lemma 3. The triple (n,m, l) is a maximal pair if and only if (m,n, l) is a maximal pair.

Proof. This lemma follows directly from the symmetry of the definition of maximal pairs. J

I Lemma 4. Let S be a string. Let F1F2 . . . FzFz+1 = S$ be an LZ77-decomposition of
S$ and s1, s2, . . . , sz, sz+1 be the starting indices of the LZ77-factors in S$. Let (n,m, l)
be a maximal pair in S. Then there is a maximal pair (n′,m′, l) such that the equation
S[n..n+ l − 1] = S[n′..n′ + l − 1] holds and the intervals [n′, n′ + l] and [m′,m′ + l] contain
starting indices sj and sk respectively.

Proof. Let n′ and m′ the minimal indices such that S[n− 1..n+ l] = S[n′ − 1..n′ + l] and
S[m − 1..m + l] = S[m′ − 1..m′ + l]. By construction (n′,m′, l) is a maximal pair and
S[n..n+ l − 1] = S[n′..n′ + l − 1] holds.

Assume the interval [n′− 1, n′+ l] is inside an interval [si, si + |Fi|− 1] and thereby inside
the LZ77-factor Fi.

Since the interval contains more than one character, every substring of Fi has an earlier
occurrence. This contradicts the minimality of n′.

Therefore the last index in the interval [n′− 1, n′ + l] lies inside another LZ77-factor than
the first index in this interval. This implies the interval [n′, n′ + l] contains some starting
index sj . Similarly, the interval [m′,m′ + l] contains some starting index sk. J

The next two lemmata will show some properties of maximal pairs with overlap. These
properties will be important in the proof of the upper bound for the subset of maximal pairs.

I Lemma 5. Let S be a string. Let further (na,ma, la) and (nb,mb, lb) be different maximal
pairs in S such that there is an index c with c ∈ [na, na + la] and c ∈ [nb, nb + lb]. Then the
distances da = ma − na and db = mb − nb are unequal.

Proof. By contradiction:
Assume The equation da = db holds:
This implies na − nb = ma −mb

Case 1: na = nb (see for example Figure 3):
Using na = nb and thereby ma = mb, it follows that la 6= lb holds. This, however implies

0 < min(la, lb) < max(la, lb) (1)
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· · · σi σi+1 σi+2 σi+3 σi+4 σi+5 σi+6 σi+7 · · · σj σj+1 σj+2 σj+3 σj+4 σj+5 σj+6 σj+7 · · ·

la

lb

la

lb

na, nb ma, mbc

Figure 3 Case 1 of Lemma 5. The characters σi+5 and σj+6 have to be unequal because of their
position just outside (na,ma, la) and have to be equal because of their position in (nb,mb, lb).

· · · σi σi+1 σi+2 σi+3 σi+4 σi+5 σi+6 σi+7 · · · σj σj+1 σj+2 σj+3 σj+4 σj+5 σj+6 σj+7 · · ·

la

lb

la

lb

nb na mb mac

Figure 4 Case 2 of Lemma 5. The characters σi+2 and σj+3 have to be unequal because of their
position just outside (na,ma, la) and have to be equal because of their position in (nb,mb, lb).

and thereby

S[na + min(la, lb)]
1= S[ma + min(la, lb)].

Hence, either (na,ma, la) or (nb,mb, lb) is not a maximal pair.
Therefore this case is not possible.

Case 2: na 6= nb (see for example Figure 4):
Without loss of generality na > nb holds. Since na ≤ c and c ≤ nb+ lb hold, the inequality

0 ≤ na − nb − 1 < lb (2)

follows and using na − nb = ma −mb we get

S[na − 1] = S[nb + (na − nb − 1)] 2= S[mb + (na − nb − 1)]
= S[mb + (ma −mb − 1)] = S[ma − 1]

Hence, (na,ma, la) is not a maximal pair.
Therefore this case is not possible.

Since all cases contradict the assumption, the distances da and db are unequal. J

I Lemma 6. Let S be a string. Let further (na,ma, la) and (nb,mb, lb) be maximal pairs
in S with distances da 6= db. Define the difference of the distances ∆d = da − db. Then
S[max(na, nb)..min(na + la, nb + lb)− 1] is |∆d|-periodic.

Proof. Without loss of generality na ≥ nb holds. Then max(na, nb) = na holds and the
string S[max(na, nb)..min(na + la, nb + lb)− 1] has length min(la, nb − na + lb).

Let x be a natural number such that 0 ≤ x < x+ |∆d| < min(la, nb − na + lb) holds.

CPM 2019
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· · · σi σi+1 σi+2 σi+3 σi+4 σi+5 σi+6 σi+7 · · · σj σj+1 σj+2 σj+3 σj+4 σj+5 σj+6 σj+7 · · ·

la

lb

la

lb

nanb mbma

Figure 5 Case 1 of Lemma 6. The characters σi+2 and σj+2 have to be equal because of their
position in (nb,mb, lb) and the characters σj+2 and σi+4 have to be equal because of their position
in (na,ma, la).

· · · σi σi+1 σi+2 σi+3 σi+4 σi+5 σi+6 σi+7 · · · σj σj+1 σj+2 σj+3 σj+4 σj+5 σj+6 σj+7 · · ·

la

lb

la

lb

nanb mb ma

Figure 6 Case 2 of Lemma 6. The characters σi+2 and σj+4 have to be equal because of their
position in (na,ma, la) and the characters σj+4 and σi+4 have to be equal because of their position
in (nb,mb, lb).

Case 1: ∆d < 0 (see for example Figure 5):
In this case

0 ≤ na − nb ≤ x+ (na − nb)
x+ (na − nb) < nb − na + lb + (na − nb) = lb (3)

and

0 < x+ |∆d| < la (4)

hold. Therefore

S[na + x] = S[nb + x+ (na − nb)]
3= S[mb + x+ (na − nb)]
= S[ma + x− (ma −mb) + (na − nb)]
= S[ma + x−∆d]
= S[ma + x+ |∆d|]
4= S[na + x+ |∆d|]

holds.
Case 2: ∆d > 0 (see for example Figure 6):

In this case

0 ≤ x < la (5)

and
0 < x+ |∆d| = x+ ∆d = x+ (ma −mb)− (na − nb) ≤ x+ (ma −mb)
x+ (ma −mb) = x+ ∆d + (na − nb)

= x+ |∆d|+ (na − nb) < nb − na + lb + (na − nb) = lb (6)
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hold. Therefore

S[na + x] 5= S[ma + x]
= S[mb + x+ (ma −mb)]
6= S[nb + x+ (ma −mb)]
= S[na + x+ (ma −mb)− (na − nb)]
= S[na + x+ ∆d]
= S[na + x+ |∆d|]

holds.

Therefore for all numbers x with 0 ≤ x < x+ |∆d| < min(la, nb − na + lb) the equation
S[na+x] = S[na+x+|∆d|] holds. Therefore the string S[max(na, nb)..min(na+la, nb+lb)−1]
is |∆d|-periodic. J

To use the periodicities we will utilize the following lemma. The simplification used here
was presented in the book of Crochemore and Rytter in [5]. The original Lemma comes from
the article [7] of Fine and Wilf.

I Lemma 7 (Weak Periodicity Lemma). Let P be a string with periods ∆1 and ∆2 such that
∆1 + ∆2 ≤ |P |. Then gcd(∆1,∆2) is a period of P .

With all this preparation it is now possible to count maximal pairs around given indices:

I Theorem 8. Let S be a string. Let F1F2 . . . FzFz+1 = S$ be an LZ77-decomposition of
S$. Let s1, s2, . . . , sz, sz+1 be the starting indices of the LZ77-factors in S$. Let q ∈ N≥2
and i, j ∈ {1, 2, . . . , z, z + 1} be natural numbers.
Then the number of different maximal pairs (nk,mk, lk) such that for all k

the substring S[nk..si − 1] is not a fractional power with exponent greater than or equal
to q,
the substring S[si..nk + lk − 1] is not a fractional power with exponent greater than or
equal to q,
the starting index si is contained in the interval [nk, nk + lk],
the starting index si+1 is not contained in the interval [nk, nk + lk] and
the starting index sj is contained in the interval [mk,mk + lk]

is bounded from above by 18q · dlogq(|F1F2 . . . Fi|)e

Proof. By contradiction:
Assume there are at least (18q · dlogq(|F1F2 . . . Fi|)e) + 1 different maximal pairs with

the restrictions given by the prerequisites:
We will now use the pigeonhole principle until we get two pairs of maximal pairs which

have a huge overlap and similar distances.
For each of these maximal pairs (nk,mk, lk) at least one of the following options hold:
At least half of the interval [nk, nk + lk − 1] lies before si (i.e. nk + lk

2 ≤ si), or
At least half of the interval [nk, nk + lk − 1] lies after si − 1 (i.e. nk + lk

2 ≥ si).
Since there are two options and at least (18q · dlogq(|F1F2 . . . Fi|)e) + 1 maximal pairs at
least one of these options hold for⌈ (18q · dlogq(|F1F2 . . . Fi|)e) + 1

2

⌉
= (9q · dlogq(|F1F2 . . . Fi|)e) + 1

maximal pairs. By symmetry we can assume without loss of generality that there are
(9q · dlogq(|F1F2 . . . Fi|)e) + 1 of the given maximal pairs satisfying nk + lk

2 ≤ si.

CPM 2019
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Since all of these (9q · dlogq(|F1F2 . . . Fi|)e) + 1 maximal pairs (nk,mk, lk) satisfy both
si ∈ [nk, nk + lk] and si+1 /∈ [nk, nk + lk], the inequality lk ≤ |F1F2 . . . Fi| holds.

Taking the logarithm yields

0 = logq(1) ≤ logq(lk) ≤ logq(|F1F2 . . . Fi|) ≤ dlogq(|F1F2 . . . Fi|)e.

Since every logq(lk) lies in at least one of the dlogq(|F1F2 . . . Fi|)e intervals [h, h+ 1] with
0 ≤ h < dlogq(|F1F2 . . . Fi|)e, the pigeonhole principle yields that there has to be a natural
number L′ such that⌈ (9qdlogq(|F1F2 . . . Fi|)e) + 1

dlogq(|F1F2 . . . Fi|)e

⌉
≥ 9q + 1

of these maximal pairs have length L′ ≤ logq(lk) ≤ 1 + L′.
For L = qL

′ this gives a natural number L such that L ≤ lk ≤ qL holds for these 9q + 1
maximal pairs.

Therefore there is a real number θ such that
for at least 3q + 1 of these 9q + 1 maximal pairs L ≤ lk ≤ θL holds and
for at least 6q + 1 of these 9q + 1 maximal pairs θL ≤ lk ≤ qL holds.

With the given restrictions si ∈ [nk, nk + lk] and sj ∈ [mk,mk + lk] from the main
assumption as well as nk + lk

2 ≤ si from the application of the pigeonhole principle it follows
that nk + lk

2 ≤ si ≤ nk + lk and mk ≤ sj ≤ mk + lk hold. Therefore

sj − si −
lk
2 ≤ (mk + lk)−

(
nk + lk

2

)
− lk

2 = mk − nk = dk and

dk = mk − nk = mk − (nk + lk) + lk ≤ sj − si + lk

hold and dk lies in the interval [sj − si − lk
2 , sj − si + lk].

Of the 6q + 1 maximal pairs (nk,mk, lk) with θL ≤ lk ≤ qL, each dk is in at least one of
the 6q intervals [sj − si − qL

2 + h · 1
4L, sj − si −

qL
2 + (h+ 1) 1

4L] with 0 ≤ h < 6q. Therefore,
the pigeonhole principle yields that at least⌈

(6q + 1)
1
4L

3
2qL

⌉
=
⌈

(6q + 1) 1
6q

⌉
= 2

of these maximal pairs have distances da, db with |da−db| ≤ 1
4L. Using Lemma 5 and Lemma

6 as well as nk + θL
2 ≤ nk + lk

2 ≤ si and si ≤ nk + lk for all these maximal pairs, we obtain
that there is a maximal pair (nα,mα, lα) such that nα ≤ si − θ

2L and such that S[nα..si − 1]
has a period of 0 < ∆α ≤ 1

4L.
Similarly it can be shown that of the 3q + 1 maximal pairs (nk,mk, lk) with L ≤ lk ≤ θL,

there is a maximal pair (nβ ,mβ , lβ) such that nβ ≤ si − 1
2L and such that S[nβ ..si − 1] has

a period of 0 < ∆β ≤ θ
2qL.

Since S[nα..si − 1] is not a fractional power with exponent greater than or equal to q, we
obtain si−nα

∆α
< q. With θL

2 ≤
lα
2 ≤ si − nα and ∆α ≤ 1

4L it follows that θ < q
2 and hence

∆β ≤ 1
4L hold.

Since S[max(nα, nβ)..si − 1] has length of at least 1
2L and is ∆α-periodic as well as

∆β-periodic with ∆α + ∆β ≤ 1
2L the periodicity lemma is applicable and shows that

S[max(nα, nβ)..si − 1] is gcd(∆α,∆β)-periodic. This implies that S[si − ∆α..si − 1] is
gcd(∆α,∆β)-periodic. Since S[nα..si − 1] is ∆α-periodic and at least one substring with
length ∆α is gcd(∆α,∆β)-periodic, even S[nα..si − 1] is gcd(∆α,∆β)-periodic.
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However with gcd(∆α,∆β) ≤ ∆β ≤ θ
2qL this implies that the substring S[nα..si− 1] with

at least θ
2L characters has a period with length of at most θ

2qL. Therefore S[nα..si − 1] is a
fractional power with exponent greater than or equal to q.

This however contradicts the assumption and thereby proves the theorem. J

Now it is time to prove Theorem 1 which was stated in the introduction:

I Theorem 1. Let S be a string. Let z be the number of (self-referential) LZ77-factors in
an LZ77-decomposition of S. Let q be a number such that S does not contain q-th powers.
Then the number of maximal repeats in S is bounded from above by 3q(z + 1)3 − 2. Also, the
Compacted Directed Acyclic Word Graph (CDAWG) of S has at most 3q(z + 1)3 nodes.

Proof. Lemma 3 shows that it is sufficient to count maximal pairs (nk,mk, lk) with nk < mk.
Lemma 4 shows that we can additionally require si ∈ [nk, nk + lk] and sj ∈ [mk,mk + lk] for
some starting indices si and sj of the z + 1 LZ77-factors of the string S$.

Since the first LZ77-factor is always a single character, the equation |F1| = 1 = q0 holds.
Since S does not contain a q-th power, every LZ77-factor can at most multiply the length
of the string by the factor q. Therefore |F1F2 . . . Fi| ≤ q|F1F2 . . . Fi−1| holds. Induction
therefore yields |F1F2 . . . Fi| ≤ qi−1. This implies dlogq(|F1F2 . . . Fi|)e ≤ i− 1

Since $ does not occur in S, the last LZ77-factor of S$ consists of only the character
$ = S[|S|]. Since nk < mk ≤ |S| − lk holds, the inequality nk + lk < |S| holds as well. This
implies that sz+1 is not contained in [nk, nk + lk].

Using Theorem 8 and summing up over all pairs (si, sj) with si ≤ sj and si ≤ sz yield
that there are at most

z∑
i=1

z+1∑
j=i

(
18q · dlogq(|F1F2 . . . Fi|)e

)
≤ 18q

z∑
i=1

z+1∑
j=i

(i− 1)

= 18q
z∑
i=1

(i− 1)(z + 2− i)

= 18q
z∑
i=1

(−i2 + i(z + 3)− (z + 2))

= 3q(z3 + 3z2 − 4z)
≤ 3q(z + 1)3 − 2

maximal repeats in S.
Raffinot shows in Theorem 1 of [12] that the maximal repeats of a string S are exactly

the representatives of the internal states of the CDAWG of S. This implies that the CDAWG
of S has at most 3q(z + 1)3 states. J

4 Tightness

The goal of this section is to prove that for every q, z with 2000 ≤ z ≤ q there are strings
without q-th powers which can be described with z LZ77-factors and which have at least

1
500qz

3 maximal repeats. This also proves that the upper bound given in the last section can
not be improved by more than a constant factor.

The proof of Theorem 8 suggests that high powers are necessary in order to have many
maximal repeats. We therefore create a string Vv,q,q consisting of nested 2q-th powers first
and then build a bigger string consisting of Vv,q,q and some shortened copies of Vv,q,q.
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We therefore define for natural numbers v, d, q and c with v ≥ 1 and d ≤ q:

V0,∗,∗ :=σ0,
Vv,c,q :=(Vv−1,q,q)cσv(Vv−1,q,q)c,
Lv,c,q :=(Vv−1,q,q)cσv(Vv−1,q,q)c,
Rv,c,q :=(Vv−1,q,q)qσv(Vv−1,q,q)c,
Cv,c,q :=L1,c,qL2,c,q . . . Lv−1,c,qVv,c,qRv−1,c,q . . . R2,c,qR1,c,q and

Sv,d,q :=Vv,q,q

(
d∏
i=1

$Cv,q−i,q

)
.

In order to find the highest power and the number of LZ77-factors, it is first necessary to
show, that the Cv,q−i,q are indeed proper substrings of Vv,q,q.

I Lemma 9. For c ≤ q − 1 the string L1,c,qL2,c,q . . . Lw,c,q is a proper suffix of Vw,q,q and
the string Rw,c,q . . . R2,c,qR1,c,q is a proper prefix of Vw,q,q.

Proof. This can easily be shown with an induction over w. J

I Corollary 10. For c ≤ q − 1 the string Cv,c,q is a proper substring of Vv,q,q

This corollary leads to an upper bound for the highest power as well as for the necessary
number of LZ77-factors of Sv,d,q.

I Lemma 11. The string Sv,d,q does not contain a (2q + 1)-th power.

Proof. by contradiction:
Assume there is a q + 1-th power P in Sv,d,q.
The power P can not contain a $ because the character $ occurs only d ≤ q times in

Sv,d,q. Therefore, using the previous lemma, the power P has to be a substring of Vv,q,q.
The power P can not contain a σv because the character σv occurs only once in Vv,q,q.

Therefore the power P has to be a substring of (Vv−1,q,q)q.
The power P can not contain a σv−1 because the character σv−1 occurs only q times in

(Vv−1,q,q)q = ((Vv−2,q,q)qvv−1(Vv−2,q,q)q)q. Therefore the power P has to be a substring of
(Vv−2,q,q)2q.

It can be inductively shown that P can not contain σj for j ∈ {v−2, v−3, . . . , 1} because
the character σj occurs only 2q times in (Vj,q,q)2q = ((Vj−1,q,q)qvj(Vj−1,q,q)q)2q. Therefore
the power P has to be a substring of (Vj−1,q,q)2q.

Since there are no characters left, this is a contradiction.
Therefore the string Sv,d,q does not contain a (2q + 1)-th power. J

I Lemma 12. The string Sv,d,q can be written with at most 1 + 3v + 2d LZ77-factors.

Proof. Since the string V0,∗,∗ consist of a single letter, it can be written with a single
LZ77-factor. By induction, the string Vv,c,q = Vv−1,q,q · (Vv−1,q,q)c−1 · σv · (Vv−1,q,q)c can
be written with at most 1 + 3v LZ77-factors. Using Corollary 10 yields that the string
Sv,d,q := Vv,q,q ·

(∏d
i=1 $ · Cv,q−i,q

)
can be written with at most 1 + 3v+ 2d LZ77-factors. J

In order to give a lower bound of the maximal repeats of Sv,d,q, we show that for natural
numbers w, l, m and r with 1 ≤ w ≤ v − 1 and 1 ≤ m+ 1 ≤ q − d ≤ l, r ≤ q − 1

Mw,l,m,r,q := L1,l,qL2,l,q . . . Lw,l,q(Vw,q,q)mRw,r,q . . . R2,r,qR1,r,q.

are maximal repeats of Sv,d,q.
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I Lemma 13. For

w ≤ v − 1
m+ 1 ≤ l, r ≤ q − 1

the string Mw,l,m,r,q is a proper prefix of Cv,l,q and a proper suffix of Cv,r,q.

Proof. Using Lemma 9 the string (Vw,q,q)mRw,r,q . . . R2,r,qR1,r,q is a prefix of (Vw,q,q)m+1

which is a proper prefix of Lw+1,l,q. ThereforeMw,l,m,r,q is a proper prefix of Cv,l,q. Similarly
Mw,l,m,r,q is a proper suffix of Cv,r,q. J

I Corollary 14. If 1 ≤ w ≤ v − 1 and 1 ≤ m + 1 ≤ q − d ≤ l, r ≤ q − 1 hold, the string
Mw,l,m,r,q is a maximal repeat of Sv,d,q.

Proof. Since Mw,l,m,r,q is a proper prefix of Cv,l,q, the string $Mw,l,m,r,qσ∗ appears in
Sv,d,q. Since Mw,l,m,r,q is a proper prefix of Cv,r,q, the string σ∗Mw,l,m,r,q$ appears in Sv,d,q.
These two occurrences form a maximal pair. Therefore, the string Mw,l,m,r,q is a maximal
repeat of Sv,d,q. J

I Corollary 15. The string Sv,d,q has at least (v − 1)(q − d)d2 maximal repeats

Combining Lemma 11, Lemma 12 and Corollary 15 yields Theorem 2 as given in the
introduction:

I Theorem 2. For 2000 ≤ z ≤ q there is a string S without q-th powers which can be
expressed by z LZ77-factors and which has at least 1

500qz
3 maximal repeats.

Proof. Define S = Sb z9 c,b
z
3 c−1,b q−1

2 c
. Using Lemma 11 the string S has no q-th power. Using

Lemma 12 the string S can be described with 1 + 3b z9c+ 2
(
b z3c − 1

)
≤ z LZ77-factors. Using

Corollary 15 the string S has at least(⌊z
9

⌋
− 1
)(⌊q − 1

2

⌋
−
(⌊z

3

⌋
− 1
))(⌊z

3

⌋
− 1
)2

≥
(z

9 − 2
)(q

2 −
3
2 −

z

3

)(z
3 − 2

)2

≥
(z

9 − 2 z

2000

)(q
2 −

3
2

q

2000 −
z

3 ·
q

z

)(z
3 − 2 z

2000

)2

=
(

1
9 − 2 1

2000

)(
1
2 −

3
2

1
2000 −

1
3

)(
1
3 − 2 1

2000

)2
qz3

≥ 1
500qz

3

maximal repeats. J

5 Conclusion

Since Theorem 1 suggests that well-compressed strings with many maximal repeats also have
high powers and Theorem 8 even suggests that these high powers are not hidden inside the
maximal repeats but are either a prefix or a suffix of them, it seems promising to do some
more research on the maximal repeats of strings with high powers.

It might be possible to derive a data structure from the CDAWG by merging nodes
stemming from similar powers of the same base. This data structure and its size as well as
its usability will be determined in future work.
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There are three more problems which should be researched:
The upper bound for the number of maximal repeats and the maximal repeats of the

string given in section 4 differ by a factor of almost 1500. Even for strings with very high
powers the factor is almost 500. This huge gap leaves room for further investigation.

The string in section 4 uses that the highest power is bigger than the parameter d. If the
highest power is smaller than the number of LZ77-factors, the number of maximal repeats is
only cp3z for some constant c. It is an open question, whether the upper bound given by
Theorem 1 is still tight up to constant for strings without high powers.

While the upper bound for the number of maximal repeats 3q(z + 1)3 presented in this
paper is tight up to a constant factor, the string σ1σ2 . . . σz−2(σz−1)q−1 has z LZ77-factors,
no q-th power but a (q − 1)-power and has only the q − 2 maximal repeats (σz−1)i with
1 ≤ i ≤ q− 2. Therefore, some additional structures should be taken into account in order to
get a good estimate for the number of maximal repeats in a string.
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