
Cartesian Tree Matching and Indexing
Sung Gwan Park
Seoul National University, Korea
sgpark@theory.snu.ac.kr

Amihood Amir
Bar-Ilan University, Israel
amir@esc.biu.ac.il

Gad M. Landau
University of Haifa, Israel
New York University, USA
landau@univ.haifa.ac.il

Kunsoo Park1

Seoul National University, Korea
kpark@theory.snu.ac.kr

Abstract
We introduce a new metric of match, called Cartesian tree matching, which means that two strings
match if they have the same Cartesian trees. Based on Cartesian tree matching, we define single
pattern matching for a text of length n and a pattern of length m, and multiple pattern matching
for a text of length n and k patterns of total length m. We present an O(n + m) time algorithm for
single pattern matching, and an O((n + m) log k) deterministic time or O(n + m) randomized time
algorithm for multiple pattern matching. We also define an index data structure called Cartesian
suffix tree, and present an O(n) randomized time algorithm to build the Cartesian suffix tree. Our
efficient algorithms for Cartesian tree matching use a representation of the Cartesian tree, called the
parent-distance representation.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Cartesian tree matching, Pattern matching, Indexing, Parent-distance
representation

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.16

Acknowledgements S.G. Park and K. Park were supported by Institute for Information & com-
munications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.
2018-0-00551, Framework of Practical Algorithms for NP-hard Graph Problems). A. Amir and G.M.
Landau were partially supported by the Israel Science Foundation grant 571/14, and Grant No.
2014028 from the United States-Israel Binational Science Foundation (BSF).

1 Introduction

String matching is one of fundamental problems in computer science, and it can be applied
to many practical problems. In many applications string matching has variants derived
from exact matching (which can be collectively called generalized matching), such as order-
preserving matching [19, 20, 22], parameterized matching [4, 7, 8], jumbled matching [9],
overlap matching [3], pattern matching with swaps [2], and so on. These problems are
characterized by the way of defining a match, which depends on the application domains
of the problems. In financial markets, for example, people want to find some patterns in

1 Corresponding author

© Sung Gwan Park, Amihood Amir, Gad M. Landau, and Kunsoo Park;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sgpark@theory.snu.ac.kr
mailto:amir@esc.biu.ac.il
mailto:landau@univ.haifa.ac.il
mailto:kpark@theory.snu.ac.kr
https://doi.org/10.4230/LIPIcs.CPM.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Cartesian Tree Matching and Indexing

the time series data of stock prices. In this case, they would like to know more about some
pattern of price fluctuations than exact prices themselves [15]. Therefore, we need a definition
of match which is appropriate to handle such cases.

The Cartesian tree [27] is a tree data structure that represents an array, only focusing on
the results of comparisons between numeric values in the array. In this paper we introduce a
new metric of match, called Cartesian tree matching, which means that two strings match if
they have the same Cartesian trees. If we model the time series stock prices as a numerical
string, we can find a desired pattern from the data by solving a Cartesian tree matching
problem. For example, let’s assume that the pattern we want to find looks like the picture
on the left of Figure 1, which is a common pattern called the head-and-shoulder [15] (in
fact there are two versions of the head-and-shoulder: one is the picture in Figure 1 and the
other is the picture reversed). The picture on the right of Figure 1 is the Cartesian tree
corresponding to the pattern on the left. Cartesian tree matching finds every position of the
text which has the same Cartesian tree as the picture on the right of Figure 1.

Even though order-preserving matching [19, 20, 22] can also be applied to finding patterns
in time series data, Cartesian tree matching may be more appropriate than order-preserving
matching in finding patterns. For instance, let’s assume that we are looking for the pattern
in Figure 1 in time series stock prices. An important characteristic of the pattern is that
the price hit the bottom (head), and it has two shoulders before and after the head. But
the relative order between the two shoulders (i.e., which one is higher) does not matter.
If we model this pattern into order-preserving matching, then order-preserving matching
imposes a relative order between two shoulders S[2] and S[6]. Moreover, it imposes an
unnecessary order between two valleys S[3] and S[5]. Hence, order preserving matching may
not be able to find such a pattern in time series data. In contrast, the pattern in Figure 1
can be represented by one Cartesian tree, and therefore Cartesian tree matching is a more
appropriate metric in such cases.

In this paper we define string matching problems based on Cartesian tree matching:
single pattern matching for a text of length n and a pattern of length m, and multiple
pattern matching for a text of length n and k patterns of total length m, and we present
efficient algorithms for them. We also define an index data structure called Cartesian suffix
tree as in the cases of parameterized matching and order-preserving matching [8, 13], and
present an efficient algorithm to build the Cartesian suffix tree. To obtain efficient algorithms
for Cartesian tree matching, we define a representation of the Cartesian tree, called the
parent-distance representation.

1

2

3

4

5

6

7 S[4] = 1

S[2] = 2 S[6] = 3

S[1] = 6 S[3] = 5 S[5] = 4 S[7] = 7

Figure 1 Example pattern S = (6, 2, 5, 1, 4, 3, 7) and its corresponding Cartesian tree.

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:3

In Section 2 we give basic definitions for Cartesian tree matching. In Section 3 we
propose an O(n+m) time algorithm for single pattern matching. In Section 4 we present an
O((n + m) log k) deterministic time or O(n + m) randomized time algorithm for multiple
pattern matching. In Section 5 we define the Cartesian suffix tree, and present an O(n)
randomized time algorithm to build the Cartesian suffix tree of a string of length n.

2 Problem Definition

2.1 Basic notations
A string is a sequence of characters in an alphabet Σ, which is a set of integers. We assume
that the comparison between any two characters can be done in O(1) time. For a string S,
S[i] represents the i-th character of S, and S[i..j] represents a substring of S starting from i

and ending at j.

2.2 Cartesian tree matching
A string S can be associated with its corresponding Cartesian tree CT (S) according to the
following rules [27]:

If S is an empty string, CT (S) is an empty tree.
If S[1..n] is not empty and S[i] is the minimum value among S, CT (S) is the tree with
S[i] as the root, CT (S[1..i − 1]) as the left subtree, and CT (S[i + 1..n]) as the right
subtree. If there are two or more minimum values, we choose the leftmost one as the root.

Since each character in string S corresponds to a node in Cartesian tree CT (S), we can treat
each character as a node in the Cartesian tree.

Cartesian tree matching is the problem to find all the matches in the text which have the
same Cartesian tree as a given pattern. Formally, we define it as follows:

I Definition 1 (Cartesian tree matching). Given two strings text T [1..n] and pattern P [1..m],
find every 1 ≤ i ≤ n−m+ 1 such that CT (T [i..i+m− 1]) = CT (P [1..m]).

For example, let’s consider a sample text T = (41, 36, 15, 8, 41, 23, 28, 16, 26, 22, 56, 29, 12,
61). If we find the pattern in Figure 1, which is P = (6, 2, 5, 1, 4, 3, 7), we can find a match
at position 5 of the text, i.e., CT (T [5..11]) = CT (P [1..7]). Note that the matched text is not
a match in order-preserving matching [20, 22] because the relative order between T [6] = 23
and T [10] = 22 is different from that between P [2] = 2 and P [6] = 3, but it is a match in
Cartesian tree matching.

3 Single Pattern Matching in O(n + m) Time

3.1 Parent-distance representation
In order to solve Cartesian tree matching without building every possible Cartesian tree, we
propose an efficient representation to store the information about Cartesian trees, called the
parent-distance representation.

I Definition 2 (Parent-distance representation). Given a string S[1..n], the parent-distance
representation of S is an integer string PD(S)[1..n], which is defined as follows:

PD(S)[i] =
{
i−max1≤j<i{j : S[j] ≤ S[i]} if such j exists
0 otherwise

CPM 2019

16:4 Cartesian Tree Matching and Indexing

For example, the parent-distance representation of string S = (2, 5, 4, 2, 2, 1) is PD(S) =
(0, 1, 2, 3, 1, 0). Note that S[j] in Definition 2 represents the parent of S[i] in Cartesian tree
CT (S[1..i]). Furthermore, if there is no such j, S[i] is the root of Cartesian tree CT (S[1..i]).

Theorem 3 shows that the parent-distance representation has a one-to-one mapping to
the Cartesian tree, so it can substitute the Cartesian tree without any loss of information.

I Theorem 3. Two strings S1 and S2 have the same Cartesian trees if and only if S1 and
S2 have the same parent-distance representations.

Proof. If two strings have different lengths, they have different Cartesian trees and different
parent-distance representations, so the theorem holds. Therefore, we can only consider the
case where S1 and S2 have the same length. Let n be the length of S1 and S2. We prove the
theorem by an induction on n.

If n = 1, S1 and S2 will always have the same Cartesian trees with only one node.
Furthermore, they will have the same parent-distance representation (0). Therefore, the
theorem holds when n = 1.

Let’s assume that the theorem holds when n = k, and show that it holds when n = k + 1.
(=⇒) Assume that S1[1..k + 1] and S2[1..k + 1] have the same Cartesian trees (i.e.,

CT (S1[1..k + 1]) = CT (S2[1..k + 1])). There are two cases.
If S1[k + 1] and S2[k + 1] are not roots of the Cartesian trees, let S1[j] be the parent of
S1[k + 1], and S2[l] the parent of S2[k + 1]. Since CT (S1[1..k + 1]) = CT (S2[1..k + 1]),
we have j = l. If we remove S1[k+ 1] from Cartesian tree CT (S1[1..k+ 1]), we obtain the
tree CT (S1[1..k]), where the left subtree of S1[k+ 1] is attached to its parent S1[j]. If we
remove S2[k + 1] from CT (S2[1..k + 1]), we obtain CT (S2[1..k]) in the same way. Since
CT (S1[1..k + 1]) = CT (S2[1..k + 1]), we get CT (S1[1..k]) = CT (S2[1..k]), and therefore
PD(S1)[1..k] = PD(S2)[1..k] by induction hypothesis. Since PD(S1)[k + 1] = k + 1− j
and PD(S2)[k + 1] = k + 1− l (and j = l), we have PD(S1) = PD(S2).
If S1[k+ 1] and S2[k+ 1] are roots, we remove S1[k+ 1] and S2[k+ 1] to get CT (S1[1..k])
and CT (S2[1..k]). Since CT (S1[1..k + 1]) = CT (S2[1..k + 1]), we have CT (S1[1..k]) =
CT (S2[1..k]), and therefore PD(S1)[1..k] = PD(S2)[1..k] by induction hypothesis. Since
PD(S1)[k + 1] = PD(S2)[k + 1] = 0 in this case, we get PD(S1) = PD(S2).

(⇐=) Assume that S1[1..k + 1] and S2[1..k + 1] have the same parent-distance repres-
entations (i.e., PD(S1)[1..k + 1] = PD(S2)[1..k + 1]). Since PD(S1)[1..k] = PD(S2)[1..k],
we have CT (S1[1..k]) = CT (S2[1..k]) by induction hypothesis. From CT (S1[1..k]), we can
derive CT (S1[1..k + 1]) as follows. If PD(S1)[k + 1] > 0, let x be S1[k + 1− PD(S1)[k + 1]].
We insert S1[k + 1] into CT (S1[1..k]) so that the parent of S1[k + 1] is x and the original
right subtree of x becomes the left subtree of S1[k+ 1]. If PD(S1)[k+ 1] = 0, S1[k+ 1] is the
root of CT (S1[1..k + 1]) and CT (S1[1..k]) becomes the left subtree of S1[k + 1]. We derive
CT (S2[1..k+ 1]) from CT (S2[1..k]) in the same way. Since CT (S1[1..k]) = CT (S2[1..k]) and
PD(S1)[k + 1] = PD(S2)[k + 1], we can conclude that CT (S1[1..k + 1]) = CT (S2[1..k + 1]).

Therefore, we have proved that there is a one-to-one mapping between Cartesian trees
and parent-distance representations. J

3.2 Computing parent-distance representation
Given a string S[1..n], we can compute the parent-distance representation in linear time using
a stack, as in [13, 14]. The main idea is that if two characters S[i] and S[j] for i < j satisfy
S[i] > S[j], S[i] cannot be the parent of S[k] for any k > j. Therefore, we will only store S[i]
which does not have such S[j] while scanning from left to right. If we store such S[i] only,

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:5

Algorithm 1 Computing parent-distance representation of a string.
1: procedure PARENT-DIST-REP(S[1..n])
2: ST ← an empty stack
3: for i← 1 to n do
4: while ST is not empty do
5: (value, index)← ST.top

6: if value ≤ S[i] then
7: break
8: ST.pop

9: if ST is empty then
10: PD(S)[i]← 0
11: else
12: PD(S)[i]← i− index
13: ST.push((S[i], i))
14: return PD(S)

they form a non-decreasing subsequence of S. When we consider a new value, therefore, we
can pop values that are larger than the new value, find its parent, and push the new value
and its index into the stack. Algorithm 1 describes the algorithm to compute PD(S).

Furthermore, given the parent-distance representation of string S, we can compute the
parent-distance representation of any substring S[i..j] easily. To compute PD(S[i..j])[k], we
need only check whether the parent of S[i+ k − 1] is within S[i..j] or not (i.e., the parent is
outside if PD(S)[i+ k − 1] ≥ k).

PD(S[i..j])[k] =
{

0 if PD(S)[i+ k − 1] ≥ k
PD(S)[i+ k − 1] otherwise.

(1)

For example, the parent-distance representation of string S = (2, 7, 5, 6, 4, 3, 1) is PD(S) =
(0, 1, 2, 1, 4, 5, 0). For PD(S[2..7]), we can use the above equation and compute the value at
each position in constant time, getting PD(S[2..7]) = (0, 0, 1, 0, 0, 0).

3.3 Failure function

We can define a failure function similar to the one used in the KMP algorithm [21].

I Definition 4 (Failure function). The failure function π of string P is an integer string such
that:

π[q] =
{

max{k : CT (P [1..k]) = CT (P [q − k + 1..q]) for 1 ≤ k < q} if q > 1
0 if q = 1

That is, π[q] is the largest k such that the prefix and the suffix of P [1..q] of length k have the
same Cartesian trees. For example, assuming that P = (5, 7, 4, 6, 1, 3, 2), the corresponding
failure function is π = (0, 1, 1, 2, 3, 4, 1). We can see that CT (P [1..4]) = CT (P [3..6]) from
π[6] = 4. We will present an algorithm to compute the failure function of a given string
in Section 3.5.

CPM 2019

16:6 Cartesian Tree Matching and Indexing

Algorithm 2 Text search of Cartesian tree matching.
1: procedure CARTESIAN-TREE-MATCH(T [1..n], P [1..m])
2: PD(P) ← PARENT-DIST-REP(P)
3: π ← FAILURE-FUNC(P)
4: len← 0
5: DQ← an empty deque
6: for i← 1 to n do
7: Pop elements (value, index) from back of DQ such that value > T [i]
8: while len 6= 0 do
9: if PD(T [i− len..i])[len+ 1] = PD(P)[len+ 1] then

10: break
11: else
12: len← π[len]
13: Delete elements (value, index) from front of DQ such that index < i− len
14: len← len+ 1
15: DQ.push_back((T [i], i))
16: if len = m then
17: print “Match occurred at i−m+ 1”
18: len← π[len]
19: Delete elements (value, index) from front of DQ such that index ≤ i− len

3.4 Text search
As in the original KMP text search algorithm, we can use the failure function in order to
achieve linear time text search: scan the text from left to right, and use the failure function
every time we find a mismatch between the text and the pattern. We apply this idea to
Cartesian tree matching.

In order to perform a text search using O(m) space, we compute the parent-distance
representation of the text online as we read the text, so that we don’t need to store the
parent-distance representation of the whole text, which would cost O(n) space. Furthermore,
among the text characters which are matched with the pattern, we only have to store
elements that form a non-decreasing subsequence by using a deque (instead of a stack in
Section 3.2) in order to delete elements in front. Using this idea, we can keep the size of
the deque to be always smaller than or equal to m. Therefore, we can perform the text
search using O(m) space. Algorithm 2 shows the text search algorithm of Cartesian tree
matching. In line 9 we need to compute x = PD(T [i− len..i])[len+ 1]. If the deque is empty,
then x = 0. Otherwise, let (value, index) be the element at the back of the deque. Then
x = i− index. This computation takes constant time. Just before line 14, we do not compare
PD(T [i]) and PD(P)[1] when len = 0, because they always match. Therefore, we can safely
perform line 14.

3.5 Computing failure function
We compute the failure function π in a way similar to the text search, as in the KMP
algorithm. However, we can compute the parent-distance representation of the pattern
in O(m) time before we compute the failure function. Hence we don’t need a deque and
the computation is slightly simpler than text search. Algorithm 3 shows the procedure to
compute the failure function.

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:7

Algorithm 3 Computing failure function in Cartesian tree matching.
1: procedure FAILURE-FUNC(P [1..m])
2: PD(P) ← PARENT-DIST-REP(P)
3: len← 0
4: π[1]← 0
5: for i← 2 to m do
6: while len 6= 0 do
7: if PD(P [i− len..i])[len+ 1] = PD(P [1..len+ 1])[len+ 1] then
8: break
9: else
10: len← π[len]
11: len← len+ 1
12: π[i]← len

3.6 Correctness and time complexity
Since our algorithm for Cartesian tree matching including text search and the computation of
the failure function follow the KMP algorithm, it is easy to see that our algorithm correctly
finds all occurrences (in the sense of Cartesian tree matching) of the pattern in the text.
Since our algorithm checks one character of the parent-distance representation in constant
time, it takes O(n) time for text search and O(m) time to compute the failure function,
as in KMP algorithm. Therefore, our algorithm requires O(m+ n) time for Cartesian tree
matching using O(m) space.

3.7 Cartesian tree signature
There is an alternative representation of Cartesian trees, called Cartesian tree signature [14].
The Cartesian tree signature of S[1..n] is an array L[1..n] such that L[i] equals the number
of the elements popped from the stack in the i-th iteration of Algorithm 1. Furthermore, the
Cartesian tree signature can be represented as a bit string 1L[1]01L[2]0 · · · 1L[n]0 of length less
than 2n, which is a succinct representation of a Cartesian tree. For example, the Cartesian
tree signature of string S = (2, 7, 5, 6, 4, 3, 1) is L = (0, 0, 1, 0, 2, 1, 2), and its corresponding
bit string is 0010011010110.

We can use this representation to perform Cartesian tree matching. While we compute
the Cartesian tree signature, we store one more array D[1..n], which is defined as follows: If
S[i] is never popped out from the stack, D[i] = 0. Otherwise, let S[j] be the value which
popped S[i] out from the stack, and D[i] = j − i. For string S = (2, 7, 5, 6, 4, 3, 1), we have
D = (6, 1, 2, 1, 1, 1, 0).

Using array D, we can delete one character at the front of string S[1..n] in constant time.
In order to get Cartesian tree signature L′ and its corresponding D′ for S[2..n], we do the
following: If D[1] > 0, we decrease L[D[1] + 1] by one and erase L[1] from L. If D[1] = 0, we
just erase L[1]. After that, we delete D[1] from D to get D′. For example, if we want to
delete one character at the front of S = (2, 7, 5, 6, 4, 3, 1), we decrease L[D[1] + 1] = L[7] by
one, and delete L[1] and D[1]. This results in L′ = (0, 1, 0, 2, 1, 1) and D′ = (1, 2, 1, 1, 1, 0).
These arrays are the correct Cartesian tree signature and its corresponding array D of
S[2..7] = (7, 5, 6, 4, 3, 1). In this way, we can perform Algorithm 2 using the Cartesian tree
signature. Computing the failure function can also be done in a similar way.

CPM 2019

16:8 Cartesian Tree Matching and Indexing

0
0

0

1

1

1

1 1 2

2

q0 q1

q3 q5 q8 q10

q2 q4

q7

q6 q9

q0 q1
q2 q3 q4 q5 q6 q7 q8 q9 q10

𝑖𝑑𝑥 1 1 1 3 1 3 1 2 3 1 3

𝑙𝑒𝑛 0 1 2 2 3 3 4 4 4 5 5

Figure 2 Aho-Corasick automaton for P1 = (4, 2, 3, 1, 5), P2 = (3, 1, 4, 2), P3 = (1, 2, 3, 5, 4).

Note that the Cartesian tree signature can represent a Cartesian tree using less space
than the parent-distance representation, but it needs an auxiliary array D to perform string
matching, which uses the same space as the parent-distance representation. For Cartesian
tree matching, therefore, it uses more space than Algorithm 2.

4 Multiple Pattern Matching in O((n + m) log k) Time

In this section we extend Cartesian tree matching to the case of multiple patterns. Definition
5 gives the formal definition of multiple pattern matching.

I Definition 5 (Multiple pattern Cartesian tree matching). Given a text T [1..n] and patterns
P1[1..m1], P2[1..m2], ..., Pk[1..mk], where m = m1 +m2 + · · ·+mk, multiple pattern Cartesian
tree matching is to find every position in the text which matches at least one pattern, i.e., it
has the same Cartesian tree as that of at least one pattern.

We modify the Aho-Corasick algorithm [1] using the parent-distance representation defined
in Section 3.1 to do multiple pattern matching in O((n+m) log k) time.

4.1 Constructing the Aho-Corasick automaton
Instead of using the patterns themselves in the Aho-Corasick automaton, we use their parent-
distance representations to make an automaton. Each node in the automaton corresponds to
the prefix of the parent-distance representation of some pattern. We maintain two integers idx
and len for every node such that the node corresponds to the parent-distance representation
of the pattern prefix Pidx[1..len]. If there are more than one possible indexes, we store the
smallest one. Each node also has a state transition function trans(x), which gets an integer x
as an input and returns the next node, or report that there is no such node. We can construct
the trie and the state transition function for every node in O(m log k) time, assuming that
we use a balanced binary search tree to implement the transition function. Figure 2 shows
an Aho-Corasick automaton for three patterns P1 = (4, 2, 3, 1, 5), P2 = (3, 1, 4, 2), P3 =
(1, 2, 3, 5, 4), where we use the parent-distance representations of the patterns, PD(P1) =
(0, 0, 1, 0, 1), PD(P2) = (0, 0, 1, 2), PD(P3) = (0, 1, 1, 1, 2) to construct the automaton.

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:9

Algorithm 4 Computing failure function in multiple pattern matching.
1: procedure MULTIPLE-FAILURE-FUNC(P1, P2, ..., Pk)
2: for i← 1 to k do
3: PD(Pi)← PARENT-DIST-REP(Pi)
4: TR← Build trie with PD(Pi)’s
5: for node← breadth-first traversal of the trie do
6: len← len[node]
7: idx← idx[node]
8: π[node]← TR.root

9: ptr ← parent of node in the trie
10: while ptr 6= TR.root do
11: ptr ← π[ptr]
12: plen← len[ptr]
13: x← PD(Pidx[len− plen..len])[plen+ 1]
14: if ptr.trans(x) exists then
15: π[node]← ptr.trans(x)
16: break

The failure function π of the Aho-Corasick automaton is defined as follows: Let qi be a
node in the automaton, and si be the substring that node qi represents in the trie. Let sj

be the longest proper suffix of si which matches (in the sense of Cartesian tree matching)
prefix sk of some pattern Pk. The failure function of qi is defined as node qk (i.e., π[qi] = qk).
The dotted lines in Figure 2 shows the failure function of each node. For example, node q7
represents P2[1..4], and its failure function q2 represents P2[1..2]. We can see that P2[1..2]
matches P2[3..4] (i.e., PD(P2[1..2]) = PD(P2[3..4]) = (0, 0)), which is the longest proper
suffix of P2[1..4] that matches a prefix of some pattern. Note that the parent-distance
representation of sk may not be the suffix of the parent-distance representation of si. For
example, q7 has the parent-distance representation (0, 0, 1, 2), but its failure function q2 has
the parent-distance representation (0, 0) which is not a suffix of (0, 0, 1, 2).

Algorithm 4 computes the failure function of the trie. As in the original Aho-Corasick
algorithm, we traverse the trie with breadth-first order (except the root) and compute the
failure function. The main difference between Algorithm 4 and the Aho-Corasick algorithm
is at line 13, where we decide the next character to match. According to the definition of the
trie, node corresponds to the parent-distance representation of Pidx[1..len], and so the parent
of node corresponds to the parent-distance representation of Pidx[1..len− 1]. In the while
loop from line 10 to 16, ptr corresponds to the parent-distance representation of some suffix of
Pidx[1..len− 1], because ptr is a node that can be reached from the parent of node following
the failure links. Since ptr corresponds to some string of length plen, we can conclude that
ptr represents Pidx[len − plen..len − 1]. We want to check whether Pidx[len − plen..len]
matches some node in the trie, so we should check whether ptr has the transition using
x = PD(Pidx[len−plen..len])[plen+1]. If ptr has the transition ptr.trans(x), it corresponds
to Pidx[len − plen..len], and we can conclude that π[node] = ptr.trans(x). If ptr doesn’t
have such a transition, there is no node that represents Pidx[len− plen..len], and thus we
have to continue the loop.

For example, suppose that we compute the failure function of q7 in Figure 2. From
idx[q7] = 2 and len[q7] = 4, we know that q7 represents P2[1..4], and so q4, which is the
parent of q7, represents P2[1..3]. We begin the while loop starting from ptr = π[q4] = q3.

CPM 2019

16:10 Cartesian Tree Matching and Indexing

Since len[q3] = 2, we know that q3, which represents P3[1..2], matches P2[2..3]. In order to
check whether P2[2..4] matches some node in the trie, we compute x = PD(P2[2..4])[3] = 2
and check whether q3.trans(x) exists. Since there is no such transition, we continue the
while loop with ptr = π[q3] = q1. We know that q1, which represents P1[1..1], matches
P2[3..3] from len[q1] = 1. In order to check whether P2[3..4] matches some node, we compute
x = PD(P2[3..4])[2] = 0 and check whether q1.trans(x) exists. Since there is such a transition,
we conclude that π[q7] = q1.trans(0) = q2. Note that x may change during the while loop,
which is not the case in the Aho-Corasick algorithm.

While computing the failure function, we can also compute the output function in the
same way as the Aho-Corasick algorithm. The output function of node qi is the set of
patterns which match some suffix of si. This function is used to output all possible matches
at the node.

4.2 Multiple pattern matching
Using the automaton defined above, we can solve multiple pattern Cartesian tree matching in
O(n log k) time. The text search algorithm is essentially the same as that of the Aho-Corasick
algorithm, following the trie and using the failure links in case of any mismatches. As in the
single pattern case, we compute the parent-distance representation of the text online in the
same way as Algorithm 2 (using a deque) to ensure O(m) space. The time complexity of our
multiple pattern Cartesian tree matching is O((n+m) log k) using O(m) space, where the
log k factor is included due to the binary search tree in each node. Since there can be at most
k outgoing edges from each node, we can perform an operation in the binary search tree in
O(log k) time. Combined with the time-complexity analysis of the Aho-Corasick algorithm,
this shows that our algorithm has the time complexity of O((n+m) log k). We can reduce
the time complexity further to randomized O(n+m) time by using a hash instead of a binary
search tree [12].

5 Cartesian Suffix Tree in Randomized O(n) Time

In this section we apply the notion of Cartesian tree matching to the suffix tree as in the
cases of parameterized matching and order-preserving matching [8, 13]. We first define the
Cartesian suffix tree, and show that it can be built in randomized O(n) time or worst-case
O(n logn) time using the result from Cole and Hariharan [12].

5.1 Defining Cartesian suffix tree
The Cartesian suffix tree is an index data structure that allows us to find an occurrence of
a given pattern P [1..m] in randomized O(m) time or worst-case O(m logn) time, where n
is the length of the text string. In order to store the information of Cartesian suffix trees
efficiently, we again use the parent-distance representation from Section 3.1. Definition 6
gives the formal definition of the Cartesian suffix tree.

I Definition 6 (Cartesian suffix tree). Given a string T [1..n], the Cartesian suffix tree of
T is a compacted trie built with PD(T [i..n]) · (−1) for every 1 ≤ i ≤ n (where the special
character −1 is concatenated to the end of PD(T [i..n])) and string (−1).

Note that we append a special character −1 to the end of each parent-distance represent-
ation to ensure that no string is a prefix of another string.

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:11

-1 0

-1
0

1

-1
0 1

-1 1

2

1

4

0

-1

2

1

4

0

-1

0

0

-1 1

2

1

4

0

-1

2

1

4

-1

0
5

1

2

1

4

0

-1

0
0

-1 1

2

1

4

0

-1

A

Figure 3 Cartesian suffix tree of S = (2, 7, 5, 6, 4, 3, 11, 9, 10, 8, 1).

Figure 3 shows an example Cartesian suffix tree of T = (2, 7, 5, 6, 4, 3, 11, 9, 10, 8, 1).
Each edge actually stores the suffix number, start position, and end position instead of the
parent-distance representation itself. For example, node A corresponds to substring T [1..5] or
T [6..10], whose parent-distance representation is PD(T [1..5]) = PD(T [6..10]) = (0, 1, 2, 1, 4).
Hence, the edge that goes into node A stores the suffix number 1 or 6, start and end
positions 3 and 5.

5.2 Constructing Cartesian suffix tree
There are several algorithms efficiently constructing the suffix tree, such as McCreight’s
algorithm [24] and Ukkonen’s algorithm [26]. However, the distinct right context property
[16, 8] should hold in order to apply these algorithms, which means that the suffix link of
every internal node should point to an explicit node. The Cartesian suffix tree does not have
the distinct right context property. In Figure 3, the internal node marked with A does not
satisfy this property because PD(T [2..6]) = PD(T [7..11]) = (0, 0, 1, 0, 0) and thus there is
no explicit node corresponding to parent-distance representation (0, 0, 1, 0).

In order to handle this issue, we use an algorithm due to Cole and Hariharan [12]. This
algorithm can construct a compacted trie for a quasi-suffix collection, which satisfies the
following properties:
1. A quasi-suffix collection is a set of n strings s1, s2, ..., sn, where the length of si is n+1− i.
2. For any two different strings si and sj , si should not be a prefix of sj .
3. For any i and j, if si and sj have a common prefix of length l, si+1 and sj+1 should have

a common prefix of length at least l − 1.

A collection of parent-distance representations for the Cartesian suffix tree satisfies
all of the above properties. The first two properties are trivial. Furthermore, if si =
PD(T [i..n]) · (−1) and sj = PD(T [j..n]) · (−1) have a common prefix of length l, i.e.,
PD(T [i..i + l − 1]) = PD(T [j..j + l − 1]), we can show that PD(T [i + 1..i + l − 1]) =

CPM 2019

16:12 Cartesian Tree Matching and Indexing

PD(T [j + 1..j + l − 1]) by Equation 1. Therefore, si+1 = PD(T [i + 1..n]) · (−1) and
sj+1 = PD(T [j + 1..n]) · (−1) have a common prefix of length l − 1 or more, showing the
third property holds.

One more property we need to perform Cole and Hariharan’s algorithm is a character
oracle, which returns the i-th character of sj in constant time. We can do this in constant
time using Equation 1, once the parent-distance representation of T is computed.

Since we have all properties needed to perform Cole and Hariharan’s algorithm, we can
construct a Cartesian suffix tree in randomized O(n) time using O(n) space [12]. In the
worst case, it can be built in O(n logn) time by using a binary search tree instead of a hash
table to store the children of each node in the suffix tree, because the alphabet size |Σ| is
O(n). We can also modify our algorithm to construct a Cartesian suffix tree online, using
the idea in [23, 25].

6 Conclusion

We have defined Cartesian tree matching and the parent-distance representation of a Cartesian
tree. We developed a linear time algorithm for single pattern matching and an O((n+m) log k)
deterministic time or O(n+m) randomized time algorithm for multiple pattern matching.
Finally, we defined an index data structure called Cartesian suffix tree, and showed that it
can be constructed in O(n) randomized time. We believe that the notion of Cartesian tree
matching, which is a new metric on string matching and indexing over numeric strings, can
be used in many applications.

There have been many works on approximate generalized matching. For example, there
are results for approximate order-preserving matching [11], approximate jumble matching
[10], approximate swapped matching [5], and approximate parameterized matching [6, 18].
There are also results on computing the period of a generalized string, such as computing the
period in the order-preserving model [17]. Since Cartesian tree matching is first introduced
in this paper, many problems including approximate matching and computing the period in
the Cartesian tree matching model are future research topics.

References

1 Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to Bibliographic
Search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

2 Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein, and Noa Lewenstein.
Pattern Matching with Swaps. J. Algorithms, 37(2):247–266, 2000. doi:10.1006/jagm.2000.
1120.

3 Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. Overlap
matching. Inf. Comput., 181(1):57–74, 2003. doi:10.1016/S0890-5401(02)00035-4.

4 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet Dependence in Parameterized
Matching. Inf. Process. Lett., 49(3):111–115, 1994. doi:10.1016/0020-0190(94)90086-8.

5 Amihood Amir, Moshe Lewenstein, and Ely Porat. Approximate swapped matching. Inf.
Process. Lett., 83(1):33–39, 2002. doi:10.1016/S0020-0190(01)00302-7.

6 Alberto Apostolico, Péter L. Erdös, and Moshe Lewenstein. Parameterized matching with
mismatches. J. Discrete Algorithms, 5(1):135–140, 2007. doi:10.1016/j.jda.2006.03.014.

7 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71–80, 1993. doi:10.1145/167088.167115.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1016/S0890-5401(02)00035-4
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/S0020-0190(01)00302-7
http://dx.doi.org/10.1016/j.jda.2006.03.014
http://dx.doi.org/10.1145/167088.167115

S. G. Park, A. Amir, G.M. Landau, and K. Park 16:13

8 Brenda S. Baker. Parameterized Duplication in Strings: Algorithms and an Applica-
tion to Software Maintenance. SIAM J. Comput., 26(5):1343–1362, 1997. doi:10.1137/
S0097539793246707.

9 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. Algorithms for
Jumbled Pattern Matching in Strings. Int. J. Found. Comput. Sci., 23(2):357–374, 2012.
doi:10.1142/S0129054112400175.

10 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On Approximate
Jumbled Pattern Matching in Strings. Theory Comput. Syst., 50(1):35–51, 2012. doi:
10.1007/s00224-011-9344-5.

11 Tamanna Chhabra, Emanuele Giaquinta, and Jorma Tarhio. Filtration Algorithms for
Approximate Order-Preserving Matching. In String Processing and Information Retrieval -
22nd International Symposium, SPIRE 2015, London, UK, September 1-4, 2015, Proceedings,
pages 177–187, 2015. doi:10.1007/978-3-319-23826-5_18.

12 Richard Cole and Ramesh Hariharan. Faster suffix tree construction with missing suffix links.
In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May
21-23, 2000, Portland, OR, USA, pages 407–415, 2000. doi:10.1145/335305.335352.

13 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-preserving
indexing. Theor. Comput. Sci., 638:122–135, 2016. doi:10.1016/j.tcs.2015.06.050.

14 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On Cartesian Trees and Range
Minimum Queries. Algorithmica, 68(3):610–625, 2014. doi:10.1007/s00453-012-9683-x.

15 Tak-Chung Fu, Korris Fu-Lai Chung, Robert Wing Pong Luk, and Chak-man Ng. Stock
time series pattern matching: Template-based vs. rule-based approaches. Eng. Appl. of AI,
20(3):347–364, 2007. doi:10.1016/j.engappai.2006.07.003.

16 Raffaele Giancarlo. A Generalization of the Suffix Tree to Square Matrices, with Applications.
SIAM J. Comput., 24(3):520–562, 1995. doi:10.1137/S0097539792231982.

17 Garance Gourdel, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Arseny M. Shur,
and Tomasz Walen. String Periods in the Order-Preserving Model. In 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 38:1–38:16, 2018. doi:10.4230/LIPIcs.STACS.2018.38.

18 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate Parameterized Matching.
In Algorithms - ESA 2004, 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, Proceedings, pages 414–425, 2004. doi:10.1007/978-3-540-30140-0_38.

19 Jinil Kim, Amihood Amir, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. On Repres-
entations of Ternary Order Relations in Numeric Strings. Mathematics in Computer Science,
11(2):127–136, 2017. doi:10.1007/s11786-016-0282-0.

20 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo Park,
Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput. Sci.,
525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

21 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

22 Marcin Kubica, Tomasz Kulczynski, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen.
A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.,
113(12):430–433, 2013. doi:10.1016/j.ipl.2013.03.015.

23 Taehyung Lee, Joong Chae Na, and Kunsoo Park. On-line construction of parameterized
suffix trees for large alphabets. Inf. Process. Lett., 111(5):201–207, 2011. doi:10.1016/j.ipl.
2010.11.017.

24 Edward M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

25 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park. On-Line Construction of Two-
Dimensional Suffix Trees in O(n2 log n) Time. Algorithmica, 48(2):173–186, 2007. doi:
10.1007/s00453-007-0063-x.

CPM 2019

http://dx.doi.org/10.1137/S0097539793246707
http://dx.doi.org/10.1137/S0097539793246707
http://dx.doi.org/10.1142/S0129054112400175
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1007/978-3-319-23826-5_18
http://dx.doi.org/10.1145/335305.335352
http://dx.doi.org/10.1016/j.tcs.2015.06.050
http://dx.doi.org/10.1007/s00453-012-9683-x
http://dx.doi.org/10.1016/j.engappai.2006.07.003
http://dx.doi.org/10.1137/S0097539792231982
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.38
http://dx.doi.org/10.1007/978-3-540-30140-0_38
http://dx.doi.org/10.1007/s11786-016-0282-0
http://dx.doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1016/j.ipl.2013.03.015
http://dx.doi.org/10.1016/j.ipl.2010.11.017
http://dx.doi.org/10.1016/j.ipl.2010.11.017
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1007/s00453-007-0063-x
http://dx.doi.org/10.1007/s00453-007-0063-x

16:14 Cartesian Tree Matching and Indexing

26 Esko Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

27 Jean Vuillemin. A Unifying Look at Data Structures. Commun. ACM, 23(4):229–239, 1980.
doi:10.1145/358841.358852.

http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1145/358841.358852

	Introduction
	Problem Definition
	Basic notations
	Cartesian tree matching

	Single Pattern Matching in Lg Time
	Parent-distance representation
	Computing parent-distance representation
	Failure function
	Text search
	Computing failure function
	Correctness and time complexity
	Cartesian tree signature

	Multiple Pattern Matching in Lg Time
	Constructing the Aho-Corasick automaton
	Multiple pattern matching

	Cartesian Suffix Tree in Randomized Lg Time
	Defining Cartesian suffix tree
	Constructing Cartesian suffix tree

	Conclusion

