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Abstract
Given a text T of length n and a pattern P of length m, the approximate pattern matching problem
asks for computation of a particular distance function between P and every m-substring of T . We
consider a (1± ε) multiplicative approximation variant of this problem, for `p distance function. In
this paper, we describe two (1 + ε)-approximate algorithms with a runtime of Õ( n

ε
) for all (constant)

non-negative values of p. For constant p ≥ 1 we show a deterministic (1+ε)-approximation algorithm.
Previously, such run time was known only for the case of `1 distance, by Gawrychowski and Uznański
[ICALP 2018] and only with a randomized algorithm. For constant 0 ≤ p ≤ 1 we show a randomized
algorithm for the `p, thereby providing a smooth tradeoff between algorithms of Kopelowitz and
Porat [FOCS 2015, SOSA 2018] for Hamming distance (case of p = 0) and of Gawrychowski and
Uznański for `1 distance.
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1 Introduction

Pattern matching is one of the core problems in text processing algorithms. Given a text
T of length n and a pattern P of length m, m ≤ n, both over an alphabet Σ, one searches
for occurrences of P in T as a substring. A generalization of a pattern matching is to find
substrings of T that are similar to P , where we consider a particular string distance and
ask for all m-substrings of T where the distance to P does not exceed a given threshold, or
simply report the distance from P to every m-substring of T . Typical distance functions
considered are Hamming distance, `1 distance, or in general `p distances for some constant p,
assuming input is over a numerical, e.g. integer, alphabet.

For reporting all Hamming distances, Abrahamson [1] described an algorithm with the
complexity of O(n

√
m logm). Using a similar approach, the same complexity was obtained

in [18] and later in conference works [3, 5] for reporting all `1 distances. It is a major
open problem whether near-linear time algorithm, or even O(n3/2−ε) time algorithm, is
possible for such problems. A conditional lower bound [6] was shown, via a reduction from
matrix multiplication. This means that existence of combinatorial algorithm with runtime
O(n3/2−ε) solving the problem for Hamming distances implies combinatorial algorithms for
boolean matrix multiplication with O(n3−δ) runtime, which existence is unlikely. If one
is uncomfortable with poorly defined notion of combinatorial algorithms, one can apply
the reduction to obtain a lowerbound of Ω(nω/2) for Hamming distances pattern matching,

1 Most of the work was done while the author was affiliated with ETH Zürich.
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15:2 Approximating Approximate Pattern Matching

where 2 ≤ ω < 2.373 is a matrix multiplication exponent.2 Later, the complexity of pattern
matching under Hamming distance and under `1 distance was proven to be identical (up to
polylogarithmic terms) [11, 19].

The mentioned hardness results serve as a motivation for considering relaxation of the
problems, with (1 + ε) multiplicative approximation being the obvious candidate. For
Hamming distance, Karloff [14] was the first to propose an efficient approximation algorithm
with a run time of O( nε2 log3m). The 1

ε2 dependency was believed to be inherent, as is the
case for e.g. space complexity of sketching of Hamming distance, cf. [25, 12, 4]. However, for
approximate pattern matching that was refuted by Kopelowitz and Porat [15, 16], by providing
randomized algorithms with complexity O(nε logn logm log 1

ε log |Σ|) and O(nε logn logm)
respectively. Moving to `1 distance, Lipsky and Porat [20] gave a deterministic algorithm
with a run time of O( nε2 logm logU), while later Gawrychowski and Uznański [10] have
improved the complexity to a (randomized) O(nε log2 n logm logU), where U is the maximal
integer value on the input. Additionally, we refer the reader to the line of work on other
relaxations on exact the distance reporting [2, 7, 10, 3].

A folklore result (c.f. [20]) states that the randomized algorithm with a run time of
Õ( nε2 ) is in fact possible for any `p distance, 0 < p ≤ 2, with use of p-stable distributions
and convolution.3 Such distributions exist only when p ≤ 2, which puts a limit on this
approach. See [22] for wider discussion on p-stable distributions. Porat and Efremenko [23]
have shown how to approximate general distance functions between pattern and text in time
O( nε2 log2m log3 |Σ| logBd), where Bd is upperbound on distance between two characters in
Σ. Their solution does not immediately translates to `p distances, since it allows only for
score functions of form

∑
j d(ti+j , pj) where d is arbitrary metric over Σ. Authors state that

their techniques generalize to computation of `2 distances, but the dependency ε−2 in their
approach is unavoidable. [20] observe that `2 pattern matching can be in fact computed
in O(n logm) time, by reducing it to a single convolution computation. This case and
analogously case of p = 4, 6, . . . are the only ones where fast and exact algorithm is known.

We want to point that for `∞ pattern matching there is an approximation algorithm of
complexity O(nε logm logU) by Lipsky and Porat [20]. Moving past pattern matching, we
want to point that in a closely related problem of computing (min,+)-convolution there exists
O(nε log n

ε logU) time algorithm computing (1 + ε) approximation, cf. Mucha et al. [21].
Two questions follow naturally. First, is there a Õ( n

poly(ε) ) algorithm for `p norms pattern
matching when p > 2? Second, is there anything special to p = 0 and p = 1 cases that
allows for faster algorithms, or can we extend their complexities to other `p norms? To
motivate further those questions, observe that in the regime of maintaining `p sketches in
the turnstile streaming model (sequence of updates to vector coordinates), one needs small
space of Θ(logn) bits when p ≤ 2 (cf. [13]), while when p > 2 one needs large space of
Θ(n1−2/p logn) bits (cf. [9, 17]) meaning there is a sharp transition in problem complexity
at p = 2. Similar phenomenon of transition at p = 2 is observed for p-stable distributions,
and one could expect such transition to happen in the pattern matching regime as well.

In this work we show that for any constant p ≥ 0 there is an algorithm of complexity
Õ(nε ), replicating the phenomenon of linear dependency on ε−1 from Hamming distance and
`1 distance to all `p norms. Additionally this provides evidence that no transition at p = 2
happens, and so far to our understanding cases of p > 2 and p < 2 are of similar hardness.

2 Although the issue is that we do not even know whether ω > 2 or not.
3 We use Õ notation to hide factors polylogarithmic in n,m, |Σ|, U and ε−1.
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1.1 Definitions and preliminaries
Model. In most general setting, our inputs are strings taken from arbitrary alphabet Σ. We
use this notation only when structure of alphabet is irrelevant for the problem (e.g. Hamming
distances). However, when considering `p distances we focus our attention over an integer
alphabet [U ] def= {0, 1, ..., U − 1} for some U . One can usually assume that U = poly(n), and
then logU term can be safely hidden in the Õ notation, however we provide the dependency
explicitly in Theorem statements. Even without such assumption, we can assume standard
word RAM model, in which arithmetic operations on words of size logU take constant time.
Otherwise the complexities have an additional logU factor. We also denote u = logU . While
we restrict input integer values, we allow intermediate computation and output to consist of
floating point numbers having u bits of precision.

Distance between strings. Let X = x1x2 . . . xn and Y = y1y2 . . . yn be two strings. For
any p > 0, we define their `p distance as

`p(X,Y ) =
(∑

i

|xi − yi|p
)1/p

.

Particularly, `1 distance is known as Manhattan distance, and `2 distance is known as
Euclidean distance. Observe that the p-th power of `p distance has particularly simpler form
of `p(X,Y )p =

∑
i |xi − yi|p.

The Hamming distance between two strings is defined as

Ham(X,Y ) = |{i : xi 6= yi}|.

Adopting the convention that 00 = 0 and x0 = 1 for x 6= 0, we observe that (`p)p approaches
Hamming distance as p → 0. Thus Hamming distance is usually denoted as `0 (although
(`0)0 is more precise notation).

Text-to-pattern distance. For text T = t1t2 . . . tn and pattern P = p1p2 . . . pm, the text-
to-pattern distance is defined as an array S such that, for every i, S[i] = d(T [i+1 .. i+m], P )

for particular distance function d. Thus, for `p distance S[i] =
(∑m

j=1 |ti+j − pj |p
)1/p

, while
for Hamming distance S[i] = |{j ∈ {1, . . . ,m} : ti+j 6= pj}|. Then (1 + ε)-approximate
distance is defined as an array Sε such that, for every i, (1− ε) · S[i] ≤ Sε[i] ≤ (1 + ε) · S[i].

Rounding and arithmetic operations. For any value x, we denote by x(i) = bx/2ic · 2i
the value with i y bits rounded. However, with a little stretch of notation, we do not
limit value of i to be positive. We denote by ‖r‖c the norm modulo c, that is ‖r‖c =
min(r mod c, c− (r mod c)).

1.2 Our results
In this paper we answer favorably both questions by providing relevant algorithms. First, we
show how to extend the deterministic `1 distances algorithm into `p distances, when p ≥ 1.

I Theorem 1. For any p ≥ 1 there is a deterministic algorithm computing (1 + ε) ap-
proximation to pattern matching under `p distances in time O(nε logm logU) (assuming
ε ≤ 1/p).

We then move to the case of `p distances when p < 1. We show that it is possible to
construct a randomized algorithm with the desired complexity.

CPM 2019
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I Theorem 2. For 0 < p < 1, there is a randomized algorithm computing (1 + ε) approx-
imation to pattern matching under `p distances in time O(p−1ε−1n logm log2 U logn). The
algorithm is correct with high probability.4

Finally, combining with existing `0 algorithm from [16] we obtain as a corollary that for
constant p ≥ 0 approximation of pattern matching under `p distances can be computed in
Õ(nε ) time.

2 Approximation of `p distances

We start by showing how convolution finds its use in counting versions of pattern matching,
either exact or approximation algorithms. Consider the case of pattern matching under
`2 distances. Observe that we are looking for S such that S[i]2 =

∑
j−k=i(tj − pk)2 =∑

j t
2
j +

∑
k p

2
k − 2

∑
j−k=i tjpk. The last term is just a convolution of vectors in disguise

and is equivalent to computing convolution of T and reverse ordered P . Such approach can
be applied to solving exact pattern matching via convolution (observing that `2 distance is 0
iff there is an exact match).

We follow with a technique for computing exact text-to-pattern distance, for arbitrary
distance functions, introduced by [20], which is a generalization of a technique used in [8].
We provide a short proof for completeness.

I Theorem 3 ([20]). Text-to-pattern distance where strings are over arbitrary alphabet Σ
can be computed exactly in time O(|Σ| · n logm).

Proof. For every letter c ∈ Σ, construct a new text T c by setting T c[i] = 1 if ti = c and
T c[i] = 0 otherwise. A new pattern P c is constructed by setting P c[i] = d(c, pi). Since
d(ti+j , pj) =

∑
c∈Σ T

c[i+ j] · P c[j], it is enough to invoke |Σ| times convolution. J

Theorem 3 allows us to compute text-to-pattern distance exactly, but the time complexity
O(|Σ|n logm) is prohibitive for large alphabets (when |Σ| = poly(n)). However, it is enough
to reduce the size of alphabet used in the problem (at the cost of reduced precision) to reach
desired time complexity. While this might be hard, we proceed as follows: we decompose our
weight function into a sum of components, each of which is approximated by a corresponding
function on a reduced alphabet.

We say that a function d is effectively over smaller alphabet Σ′ if it is represented as
d(x, y) = d′(ι1(x), ι2(y)) for some ι1, ι2 : Σ → Σ′ and d′. It follows from Theorem 3 that
text-to-pattern under distance d can be computed in time Õ(|Σ′|n) (ignoring the cost of
computing ι1 and ι2).

Decomposition. Let D(x, y) = |x− y|p be a function corresponding to (`p)p distance, that
is `p(X,Y )p =

∑
iD(xi, yi). Our goal is to decompose D(x, y) =

∑
i αi(x, y) into small

(polylogarithmic) number of functions, such that each αi(x, y) is approximated by βi(x, y)
that is effectively over alphabet of O( 1

ε ) size (up to polylogarithmic factors). Now we can
use Theorem 3 to compute contribution of each βi. We then have that G(x, y) =

∑
i βi(x, y)

approximates F , and text-to-pattern distance under G can be computed in the desired Õ(nε )
time. We present such decomposition, useful immediately in case of p ≥ 1 and as we see in
section 2.2 with a little bit of effort as well in case when 0 < p ≤ 1.

4 Probability at least 1− 1/nc for arbitrarily large constant c.



J. Studený and P. Uznański 15:5

Useful estimations. We use following estimations in our proofs. For p ≥ 1

(1− ε)p ≥ 1− pε, for 0 ≤ ε ≤ 1, (1)
(1 + ε)p ≥ 1 + pε, for 0 ≤ ε, (2)
(1− ε)p ≤ 1− pε(1− 1/e), for 0 ≤ ε ≤ 1/p, (3)
ap − (a− b)p ≤ pap−1b, for a ≥ b ≥ 0. (follows from 2) (4)

For 0 ≤ p ≤ 1

(1− ε)p ≤ 1− pε, for 0 ≤ ε ≤ 1, (5)
(1− ε)p ≥ 1− 2pε ln 2, for 0 ≤ ε ≤ 1/2, (6)
(1 + ε)p ≥ 1 + pε ln 2, for 0 ≤ ε ≤ 1, (7)
ap − (a− b)p ≤ 2pap−1b ln 2, for a ≥ 2b ≥ 0. (follows from 6) (8)

2.1 Algorithm for p ≥ 1
In this section we prove Theorem 1. We start by constructing a family of functions Fi, which
are better refinements of F as i decreases.

First step. Let us denote

Fi(x, y) =
(

max(0, |x− y| − 2i)
)p

and fi = Fi − Fi+1.

Observe that Fu = 0 (for 0 ≤ x, y ≤ U). Moreover, there is a telescoping sum Fi =
u∑
j=i

fj .

To better see the the telescopic sum, consider case p = 1. We then represent F−u(x, y) =∑u
i=−u fi(x, y) = (−2−u + 2−u+1) + (−2−u+1 + 2−u+2) + . . .+ (−2t−1 + 2t) + (|x− y| − 2t) +

0 + . . .+ 0. Such decomposition (for p = 1) was first considered, to our knowledge, in [20].

Second step. Instead of using x and y for evaluation of Fi, we evaluate Fi using x and y with
all bits younger than i-th one set to zero. Formally, define x(i) = bx/2ic · 2i, y(i) = by/2ic · 2i.
Now we denote

Gi(x, y) = Fi(x(i), y(i))

Similarly as for fi, define gi = Gi−Gi+1. Using the same reasoning, we have Gu = 0. For
integers i ≤ 0 the functions Fi and Gi are the same (as we are not rounding) and therefore
F−u = G−u =

u∑
i=−u

gi. Intuitively, gi captures contribution of i-th bit of input to the output

value (assuming all older bits are set and known, and all younger bits are unknown).

Third step. Let η be a value to be fixed later, depending on ε and p. Assume w.l.o.g. that η
is such that 1/η is an integer. We now define ĝi as a refinement of gi, by replacing |x(i)−y(i)|
with ‖x(i) − y(i)‖Bi

and |x(i+1) − y(i+1)| with ‖x(i+1) − y(i+1)‖Bi
, where Bi = 2i/η, that is

doing all the computation modulo Bi. To be precise, define
−→
G i(x, y) =

(
max(0, ‖x(i) − y(i)‖Bi − 2i)

)p
←−
G i+1(x, y) =

(
max(0, ‖x(i+1) − y(i+1)‖Bi

− (2i+1)
)p

and then ĝi = −→G i −
←−
G i+1. Additionally, we denote for short Ĝi =

u∑
j=i

ĝj .

CPM 2019



15:6 Approximating Approximate Pattern Matching

Intuitively, ĝi approximates gi in the scenario of limited knowledge – it estimates contri-
bution of i-th bit of input to the output, assuming knowledge of bits i+ 1 to i+ log η−1 of
input. We are now ready to provide an approximation algorithm to (`p)p text-to-pattern
distances.

I Algorithm 4.
Input:

T is the text,
P is the pattern,
η controls the precision of the approximation.

Steps:
1. For each i ∈ {−u, . . . , u} compute array Si being the text-to-pattern distance between T

and P using ĝi distance function (parametrized by η) using Theorem 3.

2. Output array Sε[i] =
(

u∑
j=−u

Sj [i]
)1/p

.

To get the (1 + ε) approximation we run the Algorithm 4 with η = ε
128 .

Now, we need to show the running time and correctness of the result. Firstly, to prove
the correctness, we divide summands ĝi into three groups and reason about them separately.
As computing F−u, G−u(by summing fi’s and gi’s respectively) yields (1 + ε) multiplicative
error, we will show that the difference between computing gi and ĝi brings only an additional
(1 + ε) multiplicative error.

I Lemma 5. For i such that |x− y| ≤ 2i both gi(x, y) = 0 and ĝi(x, y) = 0.

Proof. As both gi, ĝi are symmetric functions, we can w.l.o.g. assume x ≥ y. ∀j ≥ i:

∣∣∣x(j) − y(j)
∣∣∣ = 2j

(⌊ x
2j
⌋
−
⌊ y

2j
⌋)
≤ 2j

(⌊ x
2j
⌋
−
⌊
x− 2i

2j

⌋)
≤ 2j .

Therefore Gj = 0 from which gi(x, y) = 0 follows. And because ‖x(j) − y(j)‖Bj ≤
|x(j) − y(j)| we have ĝi(x, y) = 0 as well. J

I Lemma 6. For i such that |x− y| > 2i ≥ 4η|x− y| we have gi(x, y) = ĝi(x, y).

Proof. For gi(x, y) = ĝi(x, y) to hold, it is enough to show that both norms | · | and ‖ · ‖Bi

are the same for x(i) − y(i) and x(i+1) − y(i+1). This happens if the absolute values of the
respective inputs are smaller than Bi/2. Let us bound both |x(i) − y(i)| and |x(i+1) − y(i+1)|:

max(|x(i) − y(i)|, |x(i+1) − y(i+1)|) ≤ |x− y|+ 2i+1 ≤ 2i+1(1 + 1
8η ).

We can w.l.o.g. assume η ≤ 1/8 in order to make 1
8η a dominant term in the parentheses

and reach:

max(|x(i) − y(i)|, |x(i+1) − y(i+1)|) ≤ 2i+1(1 + 1
8η ) ≤ 2i

2η = Bi
2 .

Therefore ‖x(i) − y(i)‖Bi = |x(i) − y(i)| as well as ‖x(i+1) − y(i+1)‖Bi = |x(i+1) − y(i+1)|
which completes the proof. J

I Lemma 7. If p ≥ 1 then for i such that 4η|x−y| > 2i we have |gi(x, y)| ≤ 2p2i · |x−y|p−1.
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Proof. For the sake of the proof, we will w.l.o.g. assume η ≤ 1/8. Denote A = |x(i) − y(i)|,
B = |x(i+1) − y(i+1)|, A′ = max(0, A − 2i) and B′ = max(0, B − 2i+1). Observe that
|x−y|−2i ≤ A ≤ |x−y|+2i thus |x−y|−2 ·2i ≤ A′ ≤ |x−y|, and similarly |x−y|−2 ·2i+1 ≤
B′ ≤ |x− y| so |A′ −B′| ≤ 2 · 2i. Assume w.l.o.g. that A′ ≥ B′. We bound

|gi(x, y)| = (A′)p − (A′ − (A′ −B′))p

≤ p(A′ −B′)(A′)p−1 (by (4))
≤ 2p2i · |x− y|p−1 J

I Lemma 8. If p ≥ 1 then for i such that 4η|x−y| > 2i we have |ĝi(x, y)| ≤ 2p2i · |x−y|p−1.

Proof. Follows by the same proof strategy as in proof of Lemma 7, replacing | · | with
‖ · ‖Bi

. J

I Theorem 9. Ĝ−u =
∑
i≥−u

ĝi approximates F−u up to an additive 32 · p · η · |x− y|p term.

Proof. We bound the difference between two terms:

|F−u(x, y)−
u∑

i=−u
ĝi(x, y)| ≤

log2(4η|x−y|)∑
i=−u

(|ĝi(x, y)|+ |gi(x, y)|)

≤ 2 ·

log2(4η|x−y|)∑
i=−∞

2i
 · 2 · p · |x− y|p−1

≤ 32 · η|x− y| · p · |x− y|p−1

where the bound follows from Lemma 5, 6, 7 and 8. J

We now show that F−u is a close approximation of D (recall D(x, y) = |x− y|p).

I Lemma 10. For integers x, y there is D(x, y) · (1− (2 ln 2)p/U) ≤ F−u(x, y) ≤ D(x, y).

Proof. For x = y the lemma trivially holds, so for the rest of the proof we will assume
x 6= y. As x, y are integers only, their smallest non-zero distance is 1. As −u < 0 the
|x− y| − 2−u > 0 and we bound |x− y| · (1− 1/U) ≤ max(0, |x− y| − 2−u) ≤ |x− y|. By (1)
(when p ≥ 1) or (6) (when p ≤ 1) the claim follows. J

By combining Theorem 9 with the Lemma 10 above we conclude that additive error of
Algorithm 4 at each position is (32p · η + p

U ) · |x− y|p = p(ε/4 + 1/U) · |x− y|p ≤ pε|x− y|p
(since w.l.o.g. ε ≥ 4/U), thus the relative error is (1 + pε/2).

Observe that each ĝi is effectively a function over the alphabet of size Bi/2i = 1/η. Thus,
the complexity of computing text-to-pattern distance using ĝi distance is O(η−1n logm), and
iterating over at most 2u summands makes the total time O(ε−1n logm logU).

Finally, since p ≥ 1 and w.l.o.g. ε ≤ 1/p, by (2) and (3) (1 + pε/2) approximation of `pp
distances is enough to guarantee (1 + ε) approximation of `p distances.

2.2 Algorithm for 0 < p ≤ 1
In this section we prove Theorem 2. We note that the algorithm presented in the previous
section does not work, since in the proof of Lemma 7 and 8 we used the convexity of function
|t|p, which is no longer the case when p < 1.

However, we observe that Lemma 5 and 6 hold even when 0 < p ≤ 1. To combat the
situation where adversarial input makes the estimates in Lemma 7 and 8 to grow too large,
we use a very weak version of hashing. Specifically, we pick at random a linear function

CPM 2019



15:8 Approximating Approximate Pattern Matching

σ(t) = r · t, where r ∈ [1, 9) is a random independent variable. Such function applied to the
input makes its bit sequences appear more ”random” while preserving the inner structure
of the problem.

Consider a following approach:

I Algorithm 11.
1. Fix η = ε·p

15555 logU ln 2 .
2. Pick r ∈ [1, 9) uniformly at random.
3. Compute T ′ = r · T and P ′ = r · P .
4. Use Algorithm 4 to compute S′, text-to-pattern distance between T ′ and P ′ using Ĝ−u

distance function.
5. Output S′′ = S′ · r−1.

Now we analyze the expected error made by estimation from Algorithm 11. We denote
the expected additive error of estimation of (`p)p distances as

err(x, y) def= Er∈[1,9)

[
[
(

1
r

)p ∣∣∣Ĝ−u(rx, ry)− |rx− ry|p
∣∣∣ ].

I Theorem 12. The procedure of Algorithm 11 has the expected additive error err(x, y) ≤
εp

3 ln 2 |x− y|
p.

Proof. Assume that x 6= y, as otherwise the bound trivially follows. We bound the absolute
error as follow, denoting k = log(8η|x− y|)).

err(x, y) ≤ Er∈[1,9)

[(1
r

)p ∣∣∣Ĝ−u(rx, ry)− F−u(rx, ry)
∣∣∣ ]

+ Er∈[1,9)

[
|F−u(rx, ry)−D(rx, ry)|

]
≤ Er∈[1,9)

[ ∣∣∣∣∣
u∑

i=−u
(ĝi(rx, ry)− gi(rx, ry))

∣∣∣∣∣ ]
+ Er∈[1,9)

[(1
r

)p
2(ln 2) p

U
D(rx, ry)

]
((1/r)p ≤ 1)

≤
k∑

i=−u
Er∈[1,9)

[
|ĝi(rx, ry)|

]
+ Er∈[1,9)

[ ∣∣∣∣∣
k∑

i=−u
gi(rx, ry)

∣∣∣∣∣ ]
+ 2(ln 2) p

U
|x− y|p (Lemma 5, 6)

Now, we bound the first two summands separately in following lemmas.

I Lemma 13. |
∑k
i=−u gi(rx, ry)| is upper bounded by 32(ln 2)η|x− y|p.

Proof. Since w.l.o.g. η ≤ 1/32 thus 2k+1 ≤ 1/2 · r|x− y|):∣∣∣∣∣
k∑

i=−u
gi(rx, ry)

∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
i=−∞

gi(rx, ry)

∣∣∣∣∣
≤ |Gk+1(rx, ry)−D(rx, ry)|
≤ ((r|x− y|)p − (r|x− y| − 2k+1)p)

≤ rp|x− y|p · 2p(ln 2) 2k+1

r|x− y|
(by (8))

≤ 32(ln 2)η|x− y|p. ( rp−1 ≤ 1) J
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I Lemma 14. For i ≤ k = log(8η|x − y|) we have Er∈[1,9)

[
|ĝi(rx, ry)|

]
≤ (1152 +

192(ln 2)))η|x− y|p.

(Due to the space constraints, the proof of this Lemma is deferred to the appendix.)

By combining bounds from Lemma 13, and Lemma 14 we get:

err(x, y) ≤
k∑

i=−u
Er∈[1,9)

[
|ĝi(rx, ry)|

]
+ Er∈[1,9)

[ ∣∣∣∣∣
k∑

i=−u
gi(rx, ry)

∣∣∣∣∣ ]+ 2(ln 2) p
U
|x− y|p

≤ 2(ln 2) p
U
|x− y|p + (32(ln 2)η|x− y|p +

u∑
i=−u

(1152 + 192(ln 2)))η|x− y|p

≤ 2(ln 2) p
U
|x− y|p + (32(ln 2)η|x− y|p + 2 logU(1152 + 192(ln 2)))η|x− y|p

≤ 2(ln 2) p
U
|x− y|p + (32(ln 2) + 2 logU(1152 + 192(ln 2))))η|x− y|p

≤ 2(ln 2) p
U
|x− y|p + 2593 logUη|x− y|p

≤ εp

6 ln 2 |x− y|
p + εp

6 ln 2 |x− y|
p w.l.o.g. ε ≥ 12(ln 2)2

U

≤ εp

3 ln 2 |x− y|
p J

To finish the proof of Theorem 2 we observe, that for any position i of output, Algorithm 11
outputs S′′[i] such that Er[|(S′′[i])p − (S[i])p|] ≤ pε

3 ln 2 · (S[i])p. By Markov’s inequality it
means that with probability 2/3 the relative error of (`p)p approximation is at most p

ln 2 · ε.
Thus, by (5) and (7) relative error of `p approximation is ε with probability at least 2/3. Now
a standard amplification procedure follows: invoke Algorithm 11 independently t times and
take the median value from S′′(1)[i], . . . S′′(t)[i] as the final estimate Sε[i]. Taking t = Θ(logn)
to be large enough makes the final estimate good with high probability, and by the union
bound whole Sε is a good estimate of S. The complexity of the whole procedure is thus
O(logn · logU · η−1 · n logm) = O(p−1ε−1n logm log2 U logn).

3 Hamming distances

As a final note we comment on a particularly simple form that Algorithm 11 takes for
Hamming distances (limit case of p = 0).

ĝi(x, y) =
{

1 if ‖x(i) − y(i)‖Bi = 1
0 otherwise,

with Algorithm being simply: pick at random r ∈ [1, 9], apply it multiplicatively to the input,
compute text-to-pattern distance using

∑
i ĝi function.

Taking a limit of p → 0 in proof of Theorem 2, we reach that bound from Lemma 14
becomes

Er∈[1,9)

[
|ĝi(rx, ry)|

]
≤ 24η

and since all other terms in error estimate have multiplicative term p in front, we reach

err(x, y) ≤ 2 logU · Er∈[1,9)

[
|ĝi(rx, ry)|

]
≤ 48η logU.

CPM 2019
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We thus observe that expected relative error in estimation of Hamming distance is: E[S′′[i]−
S[i]] ≤ 48η logU · S[i]. With probability at least 2/3 the relative error is at most 144η logU .
Setting η = ε

144 logU and repeating the randomized procedure Θ(logn) with taking median for
concentration completes the algorithm. The total runtime is, by a standard trick of reducing
alphabet size to 2m, O(nε log2m logn), and while it compares unfavorably to algorithm from
[16] (in terms of runtime), it gives another insight on why Õ(n/ε) time algorithm is possible
for Hamming distance version of pattern matching.
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A Omitted proofs

I Lemma 14. For i ≤ k = log(8η|x − y|) we have Er∈[1,9)

[
|ĝi(rx, ry)|

]
≤ (1152 +

192(ln 2)))η|x− y|p.

Proof. First, we define symbols A,B,A′, B′ to be parts of the ĝi.

A = ‖(rx)(i) − (ry)(i)‖Bi

B = ‖(rx)(i+1) − (ry)(i+1)‖Bi

A′ = max(0, A− 2i)
B′ = max(0, B − 2i+1)

Repeating reasoning from proof of Lemma 7, we get

|A′ −B′| ≤ 2 · 2i (9)
‖rx− ry‖Bi − 2 · 2i ≤ A′ ≤ ‖rx− ry‖Bi (10)

‖rx− ry‖Bi
− 2 · 2i+1 ≤ B′ ≤ ‖rx− ry‖Bi

(11)

We also bound Bi = 2i/η ≤ 2k/η = 8|x − y|. Now let’s bound the |ĝi(rx, ry)|. A simple
bound that comes from the definition of ĝi gives us:

|ĝi(rx, ry)| = |A′p −B′p| ≤ max(A′p, B′p) ≤ ‖rx− ry‖pBi
. (Use of 10,11) (12)

Unfortunately, this bound is not tight enough for larger values of ‖rx − ry‖Bi , so for
‖rx− ry‖Bi

≥ 6 · 2i, we prove stronger bound:

|ĝi(rx, ry)| = |(A′)p − (B′)p|
= max(A′, B′)p −min(A′, B′)p

= max(A′, B′)p − (max(A′, B′)− |A′ −B′|)p

= max(A′, B′)p
(

1−
(

1− |A′ −B′|
max(A′, B′)

)p)
≤ ‖rx− ry‖pBi

· (1− (1− 2 · 2i

‖rx− ry‖Bi
− 2 · 2i )

p)

≤ ‖rx− ry‖pBi
· (1− (1− 3 · 2i

‖rx− ry‖Bi

)p)

≤ 6p(ln 2)‖rx− ry‖p−1
Bi
· 2i (‖rx− ry‖Bi ≥ 6 · 2i,

by (6))
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The norm function ‖x‖Bi = min(x mod Bi, Bi − (x mod Bi)) is in fact a triangle wave
function varying between 0 and Bi/2 with periodicity of Bi. So if the input is a random
variable that follows uniform distribution at interval that is larger than its period (in our
case Bi), the output has piece-wise uniform distribution, and its probability density function
can be bounded by two times the probability density function of the uniform distribution
for the whole domain. Formally, if X = U(a, b) with b − a ≥ Bi then for Y = ‖X‖Bi its
probability density function fY (y) is:

fY (y) ≤ 2
Bi/2

for 0 ≤ y ≤ Bi/2 (13)

As the input in the expression ‖rx− ry‖Bi
to the norm function is uniformly distributed

between a = |x−y| and b = 9|x−y| and Bi ≤ 8|x−y|, we can use 13 to bound the probability
density function of the Z = ‖rx− ry‖Bi

by fZ(y) ≤ 2
Bi/2 .

Now when we have the approximate probability density function (namely its upper bound)
we can condition on the value of ‖rx − ry‖Bi

to be able to use the bounds for small and
large values of ‖rx− ry‖Bi .

Er∈[1,9)

[
|ĝi(rx, ry)|

]
=

= Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣ ‖rx− ry‖Bi ≤ 6ηBi
]

Pr
r∈[1,9)

[
‖rx− ry‖Bi ≤ 6ηBi

]
+

+ Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣ ‖rx− ry‖Bi
> 6ηBi

]
Pr

r∈[1,9)

[
‖rx− ry‖Bi

> 6ηBi
]

We bound those two summands separately. Now, bound on the first part:

Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣ ‖rx− ry‖Bi ≤ 6ηBi
]

Pr
r∈[1,9)

[
‖rx− ry‖Bi ≤ 6ηBi

]
≤

≤ Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣ ‖rx− ry‖Bi
≤ 6ηBi

]
24η

≤ Er∈[1,9)

[
‖rx− ry‖pBi

∣∣∣ ‖rx− ry‖Bi
≤ 6ηBi

]
24η (by 12)

≤ (6ηBi)p24η
≤ 24η(6 · 2i)p

≤ 24 · 6η(8η|x− y|)p

≤ 1152η|x− y|p

And on the second part:

Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣‖rx− ry‖Bi > 6ηBi
]

Pr
r∈[1,9)

[
‖rx− ry‖Bi > 6ηBi

]
≤

≤ Er∈[1,9)

[
6p(ln 2)‖rx− ry‖p−1

Bi
· 2i
∣∣∣‖rx− ry‖Bi

> 6ηBi
]
·

· Pr
r∈[1,9)

[
‖rx− ry‖Bi

> 6ηBi
]
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. . . ≤
∫ 9

1
6p(ln 2)‖rx− ry‖p−1

Bi
· 2i 18 · 1[‖rx− ry‖Bi

> 6ηBi] dr (1/8 is the
density of r.v. r,
1[·] is the indicator
function)

≤ 6p(ln 2) · 2i
∫ Bi/2

0
zp−1 2

Bi/2
1[z > 6ηBi] dz (changed to r.v.

z = ‖rx− ry‖Bi)

≤ p(ln 2) 24
Bi
· 2i
∫ Bi/2

0
zp−1dz

≤ (ln 2) 24
Bi
· 2i
(
Bi
2

)p
≤ 24(ln 2)Bp−1

i · 2i

≤ 24(ln 2)2ipη−p+1

≤ 24(ln 2)(8η|x− y|)pη−p+1

≤ 192(ln 2)η|x− y|p

So finally, we reach:

Er∈[1,9)

[
|ĝi(rx, ry)|

]
=

= Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣‖rx− ry‖Bi
≤ 6ηBi

]
Pr

r∈[1,9)

[
‖rx− ry‖Bi

≤ 6ηBi
]
+

+ Er∈[1,9)

[
|ĝi(rx, ry)|

∣∣∣‖rx− ry‖Bi
> 6ηBi

]
Pr

r∈[1,9)

[
‖rx− ry‖Bi

> 6ηBi
]

≤ 1152η|x− y|p + 192(ln 2)η|x− y|p

≤ (1152 + 192(ln 2)))η|x− y|p J
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