
Conversion from RLBWT to LZ77
Takaaki Nishimoto
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
takaaki.nishimoto@riken.jp

Yasuo Tabei
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
yasuo.tabei@riken.jp

Abstract
Converting a compressed format of a string into another compressed format without an explicit
decompression is one of the central research topics in string processing. We discuss the problem
of converting the run-length Burrows-Wheeler Transform (RLBWT) of a string into Lempel-Ziv
77 (LZ77) phrases of the reversed string. The first results with Policriti and Prezza’s conversion
algorithm [Algorithmica 2018] were O(n log r) time and O(r) working space for length of the string
n, number of runs r in the RLBWT, and number of LZ77 phrases z. Recent results with Kempa’s
conversion algorithm [SODA 2019] are O(n/ logn+r log9 n+z log9 n) time and O(n/ logσ n+r log8 n)
working space for the alphabet size σ of the RLBWT. In this paper, we present a new conversion
algorithm by improving Policriti and Prezza’s conversion algorithm where dynamic data structures
for general purpose are used. We argue that these dynamic data structures can be replaced and
present new data structures for faster conversion. The time and working space of our conversion
algorithm with new data structures are O(nmin{log logn,

√
log r

log log r }) and O(r), respectively.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Burrows-Wheeler Transform, Lempel-Ziv Parsing, Lossless Data Compression

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.9

1 Introduction

Converting a compressed format of a string into another compressed format without an
explicit decompression is one of the central research topics in string processing. Examples
are conversions from the Lempel-Ziv 77 (LZ77) Phrases of a string into a grammar-based
encoding [10, 16], from a grammar-based encoding of a string into LZ78 phrases [2, 1]
and from a grammar-based encoding of a string into another grammar-based encoding [17].
Such conversion is beneficial when one intends to process a compressed string in a different
compressed format without decompressing it.

LZ77 parsing, proposed in 1976 [13], is one of the most popular lossless data compression
algorithms and is a greedy partition of a string such that each phrase is a previous occurrence
of a substring or a character not occurring previously in the string. The run-length Burrows-
Wheeler transform (RLBWT) [5] is a recent popular lossless data compression algorithm with
a run-length encoded permutation of a string.

Policriti and Prezza [15] proposed the first conversion algorithm from the RLBWT of an
input string into the LZ77 phrases of the reversed string. The basic idea with this algorithm
is to carry out backward searches on the RLBWT and find a previous occurrence of each
phrase using red-black trees storing a sampled suffix array and dynamic data structure for
solving the searchable partial sums with the indels problem (e.g., [4, 9]). Since these data
structures are updated frequently for scanning the string in the RLBWT format, the running
time and working space are O(n log r) and O(r) words, respectively, for string length n

and number of runs r (i.e., the number of continuous occurrences of the same characters).

© Takaaki Nishimoto and Yasuo Tabei;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:takaaki.nishimoto@riken.jp
mailto:yasuo.tabei@riken.jp
https://doi.org/10.4230/LIPIcs.CPM.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Conversion from RLBWT to LZ77

Table 1 Summary of conversion algorithms from the RLBWT to LZ77.

Algorithm Conversion time Working space (words)

Policriti and Prezza (Thm. 7) [15] O(n
√

log r
log log r) O(r)

or expected O(n log logn)
Kempa (Thm. 7.3) [12] O(n/ logn+ r log9 n+ z log9 n) O(n/ logσ n+ r log8 n)

This study O(nmin{log logn,
√

log r
log log r }) O(r)

Their running time can be improved using a more faster dynamic predecessor instead of the
red-black trees. As a result, we can achieve expected O(n log logn) time and O(n

√
log r

log log r)
time using y-fast trie [18] and Beame and Fich’s dynamic predecessor [3], respectively.

Kempa [12] recently presented a conversion algorithm from the RLBWT to LZ77, which
runs in O(n/ logn+r log9 n+z log9 n) time and O(n/ logσ n+r log8 n) working space for the
number z of LZ77 phrases and the alphabet size σ of the string in the RLBWT format. While
the algorithm runs in o(n) time and working space, especially when r and z are small (e.g.,
r, z = O(n/ log9 n)), the working space of the algorithm is larger than that of Policriti and
Prezza’s algorithm in many cases.

In this paper, we present a new conversion algorithm from the RLBWT to LZ77 by
improving Policriti and Prezza’s algorithm. Their algorithm adopts dynamic data structures
for four queries comprising backward search, LF function, access queries on the RLBWT, and
so-called range more than query (RMTQ). We argue that these dynamic data structures can
be replaced for answering those queries and present new data structures for faster conversion.
Our algorithm runs in O(nmin{log logn,

√
log r

log log r}) deterministic time and O(r) working
space, which improves their algorithm (see Table 1 for a summary of conversion algorithms).

2 Preliminaries

Let Σ be an ordered alphabet of size σ, T be a string of length n over Σ and |T | be the
length of T . Let T [i] be the i-th character of T and T [i..j] be the substring of T that begins
at position i and ends at position j. The T [i..] denotes the suffix of T beginning at position
i, i.e., T [i..n]. Let TR be the reversed string of T , i.e., TR = T [n]T [n− 1] · · ·T [1]. For two
integers i and j (i ≤ j), [i, j] represents {i, i+ 1, . . . , j}. For two strings T and P , T ≺ P is
that T is lexicographically smaller than P . Occ(T, P) denotes all the occurrence positions of
string P in string T , i.e., Occ(T, P) = {i | P = T [i..(i+ |P | − 1)], i ∈ [1, n− |P |+ 1]}. Right
occurrence p of substring T [i..j] is a subsequent occurrence position of T [i..j] in T , i.e., any
p ∈ Occ(T [i+ 1..], T [i..j]).

For a string T , character c, and integer i, rank(T, c, i) returns the number of a character
c in T [..i], i.e., rank(T, c, i) = |Occ(T [..i], c)|. access(T, i) returns T [i]. select(T, c, i) returns
the position of the i-th occurrence of a character c in T . If the number of occurrences of c
in T is smaller than i, it returns n+ 1, i.e., select(T, c, i) = min({j | |Occ(T [..j], c)| ≥ i, j ∈
[1, n]} ∪ {n+ 1}) where min{S} returns the minimum value in a given set S.

For an integer x and set S of integers, a predecessor query pred(S, x) returns the number
of elements that are no more than x in S, i.e., pred(S, x) = |{y | y ≤ x, y ∈ S}|. A
predecessor data structure of S supports predecessor queries on S. For an integer array D
and two positions i, j (i ≤ j) on D, a range maximum query (RMQ) RMQ(D, i, j, k) returns
the maximum value in D[i..j], i.e., RMQ(D, i, j) = maxD[i..j], where max{S} returns the
maximum value in a given set S.

T. Nishimoto and Y. Tabei 9:3

i SA Suffix

1 12 $
2 11 i$
3 8 ippi$
4 5 issippi$
5 2 ississippi$
6 1 mississippi$
7 10 pi$
8 9 ppi$
9 7 sippi$
10 4 sissippi$
11 6 ssippi$
12 3 ssissippi$

SA-interval of si

F L
$1 m1i4s4s2i3s3s1i2p2p1 i1
i1 $1m1i4s4s2i3s3s1i2p2 p1
i2 p2p1i1$1m1i4s4s2i3s3 s1
i3 s3s1i2p2p1i1$1m1i4s4 s2
i4 s4s2i3s3s1i2p2p1i1$1 m1
m1 i4s4s2i3s3s1i2p2p1i1 $1
p1 i1$1m1i4s4s2i3s3s1i2 p2
p2 p1i1$1m1i4s4s2i3s3s1 i2
s1 i2p2p1i1$1m1i4s4s2i3 s3
s2 i3s3s1i2p2p1i1$1m1i4 s4
s3 s1i2p2p1i1$1m1i4s4s2 i3
s4 s2i3s3s1i2p2p1i1$1m1 i4

L
i
p
s
s
m
$
p
i
s
s
i
i

F
$
i
i
i
i
m
p
p
s
s
s
s

Figure 1 Example for SA (left), F , L (center), and LF function (right) of T = mississippi$.

Our computation model is a unit-cost word RAM with a machine word size of Ω(log2 n)
bits. We evaluate the space complexity in terms of the number of machine words. A
bitwise evaluation of space complexity can be obtained with a log2 n multiplicative factor.
Throughout this paper, logarithm to base 2 is used if the logarithmic base is not indicated.

2.1 Suffix Array (SA) and SA interval
The suffix array (SA) [14] of string T is an integer array of size n such that SA[i] stores the
starting position of i-th suffix of T in lexicographical order. Formally, SA is the permutation
of [1..n] such that T [SA[1]..] ≺ · · · ≺ T [SA[n]..] holds. For example, T = mississippi$ and
SA = 12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3. The left figure in Figure 1 depicts the sorted suffixes of
T and SA of T .

Since suffixes in the suffix array are sorted in the lexicographical order, suffixes with prefix
Y occur continuously on an interval in the suffix array. We call this interval SA interval of
Y . Formally, the SA interval of string Y is interval [b, e] such that p ∈ SA[b..e] holds for all
p ∈ Occ(T, Y). For the above example, the SA intervals of si and p are [9, 10] and [7, 8],
respectively.

2.2 BWT and backward search
The Burrows Wheeler Transform (BWT) [5] of string T is a permutation of T obtained as
follows. We sort all the n rotations of T in lexicographical order and take the last character
at each rotation in sorted order. L is the permutation of T such that for all i ∈ [1..n],
L[i] = T [SA[i] − 1] holds if SA[i] 6= 1 and L[i] = T [n] holds otherwise. Similarly, let F be
a permutation of T that consists of the first characters in rotations in sorted order, i.e.,
F [i] = T [SA[i]] for all i ∈ [1..n]. The middle table in Figure 1 represents F , L, and sorted
rotations of T = mississippi$.

A property of BWT is that the i-th occurrence of character c in F corresponds to
the i-th occurrence of c in L. In other words, let x and y be the positions of the i-th
occurrence of c in F and L, respectively. Then F [x] is a character of position p in T when
L[y] is a character of the same position in T . The LF function receives a position y in L
as input and returns such corresponding position x in F . Since F consists of the sorted
characters, LF(y) = C[L[y]] + rank(L,L[y], i) holds for all y ∈ [1, n], where C[c] is the number
of occurrences of characters lexicographically less than c ∈ Σ in L.

Backward search computes the SA interval of cY for a given SA interval of Y and character
c using the BWT of T . Function backward_search(T, b, e, c) takes SA interval [b, e] of Y
and character c ∈ Σ as input and returns SA interval [b′, e′] of cY . We compute backward

CPM 2019

9:4 Conversion from RLBWT to LZ77

search using LF , rank, and select queries on L. The LF function receives the first and last
occurrences of c in L[b..e] and returns the first and last positions of the SA interval of cY
because L[i] represents the character preceding F [i] on T for an integer i ∈ [2..n]. We can
compute the first and last occurrences of c using rank and select queries on L.

Formally, let x = rank(L, c, b − 1) and y = rank(L, c, e); b′ = LF(select(L, c, x + 1)) and
e′ = LF(select(L, c, y)) hold if the length of the SA interval for cY is not zero.

2.2.1 Run-length encoding and RLBWT
For a string T , Run-length encoding RLE(T) is a partition of T into substrings f1, f2, . . . , fr
such that each fi is a maximal repetition of the same character in T . We call each fi a run.

The RLBWT of T is the BWT encoded by the run-length encoding, i.e., RLE(L). The
RLBWT is stored in O(r) space because each run in the RLBWT can be encoded into a pair
of integers c and `, where c is the character and ` is the length of the run. We call such a
representation the compressed form of the RLBWT.

2.3 LZ77
For a string T , LZ77 parsing [13] of the reversed T greedily partitions T into substrings
(phrases) fz, fz−1, . . . , f1 in right-to-left order such that each phrase is either (i) copied from
a subsequent substring in T (target phrase) or (ii) an explicit character (character phrase).
We denote LZ77 phrases of the reversed T as LZ(TR).

Formally, let i′ be the ending position of fi for i ∈ [1, z], i.e., i′ = |fi′−1 · · · f1|+ 1. Then
f1 = T [n], and fi is T [i′] for i ∈ [2, z] if T [i′] is a new character (i.e., Occ(T [i′ + 1..], T [i′]) =
∅); otherwise, fi is the longest suffix P of T [..i′], which has right occurrences in T (i.e.,
|P | = max{` | Occ(T [i′ − `+ 2..], T [i′ − `+ 1..i′]) 6= ∅, ` ∈ [1, i′]}).

We can store LZ77 phrases in O(z) space because we encode a target phrase into the
pair 〈p, `〉 of the right occurrence p and length ` of the phrase. We call such representation
the compressed form of LZ77. For example, let T = cbbbbbabaababa. Then LZ(TR) =
c, bbbb, baba, aba, b, a, and the compressed form of LZ(TR) is c, 〈3, 4〉, 〈11, 4〉, 〈12, 3〉, b, a.

3 Policriti and Prezza’s conversion algorithm

Policriti and Prezza’s conversion algorithm [15] converts a compressed string of T in the
RLBWT format to another compressed string of TR in the LZ77 format while using data
structures in O(r) space. The data structures support four queries: backward search, the
LF function, access queries on the RLBWT L, and RMTQ on the suffix array of T . The
RMTQ(D, i, j, k) takes value k, interval [b, e], and array D as inputs and returns a value
larger than k on interval [b, e] in D.

The algorithm extracts the original string from L in right-to-left order using the LF
function and access queries on L and computes LZ77 phrases sequentially using backward
search and RMTQ. In each step, the algorithm extracts a suffix of the original string (i.e.,
current extracted string) and it outputs the LZ77 phrase called current pattern in the suffix.
In each step, the following two conditions for the current pattern are guaranteed: (i) the
current pattern has at least one right occurrence or is the string of length 0; (ii) the length
of the current pattern is no less than that of the following current pattern (i.e., the next
computed LZ77 phrase).

For computing the current extracted string in each step, the algorithm computes (i)
the next character preceding the current extracted string, (ii) computes the SA interval
corresponding to the current pattern using the backward search, and (iii) finds any right

T. Nishimoto and Y. Tabei 9:5

Algorithm 1: Policriti and Prezza’s conversion algorithm.
Data: RLBWT L of T and position y of T [n] on L
Result: LZ(TR)
(b, e, p, `, x)← (1, n,−1, 1, n); /* Initialization */
while x ≥ 1 do

/* Let P be T[x..x+l-1] */
c← access(L, y); /* Access T[x] */
[b′, e′]← backward_search(T, b, e, c); /* Compute the SA interval of P */
p′ ← RMTQ(SA, b′, e′, x+ 1);
if p′ = −1 then /* Any right occurrence of P was not found */

if ` > 1 then
output 〈p, `− 1〉;

else
output c;
(x, y) = (x− 1, LF(y));

(b, e, p, `)← (1, n, p′, 1);
else

(b, e, p, `, x, y)← (b′, e′, p′, `+ 1, x− 1, LF(y));

occurrence of the current pattern in the SA interval using RMTQ. If such right occurrence
of the extended pattern does not exist, the algorithm outputs the current pattern as the
next LZ77 phrase. When the length of the current pattern is zero, the next phrase is the
next character. The algorithm repeats the above step until it extracts the whole string and
outputs LZ77 phrases of TR. Algorithm 1 shows a pseudo code of the algorithm.

The algorithm uses two dynamic data structures: one for supporting backward search,
the LF function, and access queries on L in O(log r) time and O(r) space; the other for
supporting RMTQ in O(log r) time and O(r) space, which is detailed in the next subsection.

3.1 RMTQ data structure

L
i
p
s
s
m
$
p
i
s
s
i
i

F
$
i
i
i
i
m
p
p
s
s
s
s

SA
12
11
8
5
2
1
10
9
7
4
6
3

PSA

SA
12
11
8
5
2
1
10
9
7
4
6
3
13

[b, e]

The first subinterval

The second subinterval

The third subinterval

Figure 2 Left figure illustrates partitioned suffix array (PSA). Bold horizontal lines on suffix array
represent partitions on PSA; hence, PSA is (12), (11), (8), (5, 2), (1), (10), (9), (7, 4), (6, 3). Right
figure illustrates three subintervals used in Section 4.1.

CPM 2019

9:6 Conversion from RLBWT to LZ77

Policriti and Prezza presented an RMTQ data structure for fixed k, which can be updated
when k is decremented. The construction for RMTQ data structure partitions the suffix
array of T into subarrays for every run in L by the LF function, resulting in r subarrays in
total. Since the i-th occurrence of any character c in F corresponds to the i-th occurrence
of c in L, the characters on every run in L also occur continuously on F . The F can be
partitioned into r substrings such that each substring corresponds to a run in L. We call
such subarrays partitioned suffix arrays (PSAs). The left in Figure 2 shows an example for
the PSA of T in Figure 1.

The data structure does not store the whole PSA. Instead, it stores only the first and last
values larger than k on each subarray of the PSA and their corresponding positions on it.
The red-black tree is used to store those positions. We call such a first position (respectively,
last position) on the i-th subarray for fixed k a k-open position (respectively, k-close position)
on the i-th subarray, which is denoted as open(i, k) (respectively, close(i, k)).

RMTQ(D, b, e, k) using the data structure is divided into two cases according to the
relationship between the query interval [b, e] and PSA: (A) there exists a subarray SA[p..q]
of the PSA completely including interval [b, e] (i.e., p < b ≤ e < q holds); and (B) such a
subarray does not exist. Both cases are detailed as follows.

For case (B), the query interval is partitioned into several subarrays of the PSA and
contains either a prefix or suffix of each subarray. Therefore, the interval contains at least
one of the k-open and k-close positions if and only if the interval contains a value larger than
k. We select an answer of RMTQ from the k-open and k-close positions on subarrays in the
PSA in O(log r) time using the red-black tree storing the set of k-open and k-close positions.

For case (A), RMTQ(D, i, j, k) is computed using its computation result in the previous
iteration of Algorithm 1. The query interval [b, e] represents the SA interval of string P , and
the length of P is at least two because the SA interval of a character does not satisfy case
(A). This means that the query interval in the previous iteration represents the SA interval
of P [2..], and Algorithm 1 computes the answer p (6= −1) in the previous iteration. Thus, in
case (A), (p− 1) is the answer for P because P [1] is the character on L such that p is at the
same position on the suffix array.

Formally, let RLE(L) = L1, L2, . . . , Lr, p(i) be the starting position of Li in L (i.e.,
p(i) = |L1 · · ·Li|−|Li|+1), and X be the permutation of [1..r] such that LF(p(X[1])) < . . . <

LF(p(X[r])) holds. Then the PSA of T is r subarrays s1, . . . , sr such that si = SA[LF(p(X[i]))..
LF(p(X[i])) + |LX[i]| − 1] holds for all i ∈ [1, r]. Let open(i, k) = min({n+ 1} ∪ {j | SA[j] ≥
k, j ∈ [si..si+1 − 1]}) and close(i, k) = max({0} ∪ {j | SA[j] ≥ k, j ∈ [si..si+1 − 1]}) for
k ∈ [1, n] and i ∈ [1, r]. Let Tk be the set of k-open and close positions in the suffix
array of T , i.e, Tk = {open(1, k), close(1, k) . . . , open(r, k), close(r, k)}. Then the following
lemma holds.

I Lemma 1 ([15]). Let P be a substring of T starting at a position k and SA[b..e] be the
SA interval of P . (1) In case (A), the length of P is at least 2 and RMTQ(SA, b, e, k) can
return RMTQ(SA, b′, e′, k + 1)− 1, where SA[b..e] is the SA interval of P [2..]. (2) In case
(B), if Tk ∩ [b..e] 6= ∅ holds, then RMTQ(SA, b, e, k) can return the value at any position in
Tk ∩ [b..e]; otherwise RMTQ(SA, b, e, k) = −1 holds.

4 Data structures for faster conversion

We improve the query time in the data structure for backward search, the LF function, access
query on L, and RMTQ for case (B) by presenting two novel data structures: one supports
the RMTQ for case (B); and the other supports backward search, the LF function, and access

T. Nishimoto and Y. Tabei 9:7

Algorithm 2: Our RMTQ(SA, b, e, x) algorithm for case (B).
Result: RMTQ(SA, b, e, x)
b̂← pred(Z, b); /* Get the index b̂ of the subarray on the position b */
ê← pred(Z, e); /* Get the index ê of the subarray on the position e */
(xclose, vclose)←M close

k [b̂];
(xopen, vopen)←Mopen

k [ê];
v◦ ← RMQ(M, b̂+ 1, ê− 1);
if xclose ∈ [b, e] then

return vclose;
else if xopen ∈ [b, e] then

return vopen;

else if v◦ > k and b̂+ 1 ≤ ê− 1 then
return v◦;

else
return −1;

query on L. Our data structures use static predecessor data structures internally and improve
four query times by choosing the predecessor data structure with the fastest (estimated)
query time. Finally, we show the results of our data structures, which are summarized
in Table 1.

4.1 RMTQ data structure in case (B)
Our RMTQ data structure for fixed k consists of four arrays of length r: k-open array Mopen

k ,
k-close array M close

k , max value array M , and starting position array Z. Data structures for
the RMQ and predecessor query are built on M and Z, respectively.

The i-th element of the k-open array (respectively, k-close array) stores the pair of k-open
position (respectively, k-close position) and its corresponding value on the i-th subarray of
the PSA. The k-open and k-close arrays can be updated when k is decremented. The i-th
element of the max value array M stores the maximum value on the i-th subarray of the
PSA. The i-th element of the starting position array stores the starting position of the i-th
subarray on the PSA (i.e., Z[i] = p(X[i])).

Our algorithm for RMTQ (RMTQ(SA, b, e, x) algorithm) consists of three parts: (i) it
divides a given query interval into at most three subintervals; (ii) computes the RMTQ for
each subinterval; and (iii) returns the final answer of the RMTQ for a given interval using
answers for subintervals. Those three subintervals are defined as follows: the first subinterval
is on the first subarray of the PSA in the query interval, the second subinterval is on the
last subarray of the PSA in the query interval, and the third subinterval is on the remaining
subarrays. The right figure in Figure 2 illustrates those three subintervals. We compute the
three subintervals using predecessor queries on Z for a given query interval.

The first subinterval is on a suffix of the first subarray; hence, the first subinterval has
a value larger than k if and only if the subinterval contains the k-close position of the first
subarray. Similarly, the second subinterval has a value larger than k if and only if the
subinterval contains the k-open position of the last subarray. The third subinterval is on
middle subarrays; hence, the third subinterval has a value larger than k if and only if the

CPM 2019

9:8 Conversion from RLBWT to LZ77

maximal value is larger than k on the subarrays. Therefore, we compute the RMTQ for the
first subinterval (respectively, the second subinterval) by accessing the element of the first
subarray on the k-close array (respectively, the element of the last subarray on the k-open
array). We also compute the RMTQ for the third subinterval using the RMQ whose query
interval covers the third subinterval on M .

Algorithm 2 shows a pseudo code of our RMTQ algorithm. Since we can compute the
RMQ in constant time (e.g., [7]), the query time of our RMTQ algorithm depends on the
performance of predecessor queries on Z. We can also convert k-open and close arrays into
(k − 1)-open and close arrays by changing at most two elements because the conversion can
change the only element of the subarray containing k.

Formally, let b̂ and ê be the ranks of the subarray of the PSA of T which contains the
positions b and e, respectively, i.e., b̂ = pred(Z, b) and ê = pred(Z, e). For k ∈ [1, n], let
Mopen
k be the array of size r such that for i ∈ [1, r], Mopen

k [i] = (SA[open(i, k)], open(i, k))
if open(i, k) 6= n + 1 holds; otherwise Mopen

k [i] = (−1, open(i, k)). Similarly, let M close
k

be the array of size r such that for i ∈ [1, r], M close
k [i] = (SA[close(i, k)], close(i, k)) if

close(i, k) 6= 0; otherwise M close
k [i] = (−1, close(i, k)). Let M be the integer array of length

r such that M [i] stores the maximal value in the i-th subarray of the PSA of T , i.e.,
M [i] = RMQ(SA, p(i), p(i + 1) − 1) for all i ∈ [1, r]. Let Q(m,u) be the query time of the
predecessor query on a set S of size m from a universe [1, u] by a predecessor data structure
of O(m) space. Then the following lemmas hold.

I Lemma 2. In case (B), RMTQ(SA, b, e, k) 6= −1 holds if and only if there exists an answer
of RMTQ(SA, b, e, k) in Mopen

k [b̂],M close
k [ê], or RMQ(M, b̂+ 1, ê− 1, k).

I Lemma 3. Our data structure for case (B) can compute RMTQ(SA, b, e, k) in O(1+Q(r, n))
time. The space usage is O(r) space.

Proof. We construct the predecessor data structure for Z, which supports predecessor queries
in Q(r, n) time, and the RMQ data structure for M which supports the RMQ in O(1) time
using [7]. Then Lemma 3 holds by Algorithm 2. J

I Lemma 4. For a given position x of k on the suffix array of T (i.e., k = SA[x]), we
can convert Mopen

k and M close
k into Mopen

k−1 and M close
k−1 in O(1 + Q(r, n)) time using the

predecessor data structure for Z.

Proof. Mopen
k [i] = Mopen

k−1 [i] and M close
k [i] = M close

k−1 [i] hold for all i ∈ ([1, r] \ {p}), where
p = pred(Z, x). Therefore, we appropriately update Mopen

k [p] and Mopen
k [p] for k − 1. J

4.2 Data structure for backward search, LF, and access queries
We leverage the static data structures presented by Gagie et al. [8] for backward search, the
LF function, and access queries on L instead of Policriti and Prezza’s dynamic data structure.
The static data structures compute three queries by executing only a constant number of
predecessor queries, and the three queries using the static data structures can be faster than
those using Policriti and Prezza’s dynamic data structure.

Since the time for the predecessor query on the static data structures is proportional to
the alphabet size of the input RLBWT, the alphabet size slightly increases the query times.
For faster queries, we replace one of the static data structures for the predecessor queries
depending on the alphabet size with an array of size σ. We obtain the following lemma.

T. Nishimoto and Y. Tabei 9:9

I Lemma 5. Let C(m,u) be the construction time for the predecessor data structure of
O(m) space, which supports predecessor queries in Q(m,u) time. We can construct the data
structure of O(r+σ) space, which supports backward_search, LF, and access queries for L in
O(1 +Q(r, n)) time, by processing the RLBWT of T in O(C(r, n) +σ+ r) time and O(r+σ)
working space.

Proof. See Appendix. J

4.3 Improved Policriti and Prezza’s algorithm
Algorithm 1 using our data structures requires O(r + σ) space, which can be ω(r) when
σ ≥ r, e.g., σ = n2. To bound the space usage to O(r), we reduce the alphabet size of the
RLBWT L to at most r by renumbering characters in L.

We modify Algorithm 1 as follows: (i) We replace each character c in L with the rank of
c in L (i.e., |{L[i] | L[i] ≤ c, i ∈ [1, n]}|) and construct the new RLBWT L′ over the alphabet
of at most r. We call the converted string the shrunk string of L. (ii) We convert L′ into
LZ77 phrases of the string T ′R recovered from L′ using Algorithm 1. (iii) We recover the
LZ77 phrases of TR from that of T ′R using the inverse array W , where the i-th element of
the array stores the original character of rank i (i.e., W [L′[i]] = L[i] holds for any i ∈ [1, n]).
The modified algorithm works correctly because (1) our backward search queries receive
only characters that appear in the RLBWT, (2) L′ is the RLBWT of the shrunk string of
T , and (3) the form of LZ77 phrases is independent of the alphabet, i.e., we obtain the i-th
LZ77 phrase of TR by mapping characters in the i-th LZ77 phrase of T ′R into the original
characters.

Finally, we obtain a conversion algorithm from RLBWT into LZ77 in O(n(1 +Q(r, n)) +
C(r, n)) time and O(r) space, and the algorithm depends on the performance of the static
predecessor data structure. There exist two predecessor data structures such that (1)
Q(r, n) = O(

√
log r/ log log r) and C(r, n) = O(r

√
log r/ log log r) hold [3] and (2) Q(r, n) =

O(log logn) and C(r, n) = O(r) hold [6]. Since we can compute r and n by processing
the RLBWT in O(r) time, we choose the faster predecessor data structure between those
predecessor data structures. Therefore, we obtain the result of our data structures, is listed
in Table 1.

Formally, the following lemmas and theorem hold.

I Lemma 6. The following statements hold. (1) We can compute the shrunk string L′ of L
and the inverse array W in O(r) time and working space. (2) The L′ is the RLBWT of the
shrunk string T ′ of T . (3) The |LZ(T ′R)| = |LZ(TR)| and LZ(TR)[i][j] = W [LZ(T ′R)[i][j]]
hold for i ∈ [1, z] and j ∈ [1, |LZ(TR)[i]|], where z is the number of LZ77 phrase of TR. (4)
We can convert the compressed form of LZ(T ′R)[i] into that of LZ(TR)[i] in constant time
using W for all i ∈ [1, z].

Proof. (1) We construct the string E that consists of r first characters in the run-length
encoding of L (i.e., E = RLE(L)[1][1],RLE(L)[2][1], . . . ,RLE(L)[r][1]) and construct the suffix
array of E in O(r) time and working space [11]. We construct the shrunk string E′ of E and
W using the suffix array and construct L′ using E′. (2) Let SA and SA′ be the suffix arrays of
T and T ′. Then SA[i] = SA′[i] holds for all i ∈ [1, n]. Therefore, the RLBWT of T ′ is L′. (3)
This holds because Occ(T, T [x..y]) = Occ(T ′, T ′[x..y]) holds for two integers 1 ≤ x ≤ y ≤ n.
(4) If LZ(T ′R)[i] is a target phrase, we return the phrase as LZ(TR)[i]. Otherwise, we return
W [LZ(T ′R)[i]] as LZ(TR)[i]. J

CPM 2019

9:10 Conversion from RLBWT to LZ77

I Lemma 7. We can construct the data structure of Lemma 3 in O(n(1+Q(r, n))+C(r, n)+σ)
time and O(r + σ) working space using the RLBWT data structure of Lemma 5.

Proof. See Appendix. J

I Theorem 8. There exists a conversion algorithm from RLBWT to LZ77 in O(n(1 +
Q(r, n)) + C(r, n)) time and O(r) space.

Proof. We already have described our algorithm in Section 4.3. Each step of Algorithm 1
additionally needs to update Mopen

k , M close
k and determine either case (A) or (B) for a given

query interval. The total time is O(1 +Q(r, n)) using predecessor queries on L and Lemma 4.
Therefore, Theorem 8 holds by Lemmas 3, 5, 6, and 7. J

5 Conclusion

We presented a new conversion algorithm from RLBWT into LZ77 in O(n(1 + Q(r, n)) +
C(r, n)) time and O(r) space. By leveraging the fastest static predecessor data structure using
O(r) space, we obtain the conversion algorithm that runs in O(nmin{log logn,

√
log r

log log r})
time. This result improves the previous result in O(n log r) time and O(r) space.

We have the following open problem: can we achieve the conversion from RLBWT into
LZ77 in O(n) time and O(r) space? It is difficult to achieve the O(n) time complexity
with our approach because any predecessor data structure for a set using mO(1) words of
(log |U |)O(1) bits requires Ω(

√
logm/ log logm) query time in the worst case [3], where m is

the number of elements in the set and U is the universe of elements. Kempa’s conversion
algorithm can run faster than our algorithm, but it requires ω(r) working space in the worst
case. Thus, a new approach is required to solve this open problem.

References
1 Hideo Bannai, Pawel Gawrychowski, Shunsuke Inenaga, and Masayuki Takeda. Converting

SLP to LZ78 in almost Linear Time. In Proceedings of CPM, pages 38–49, 2013.
2 Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Efficient LZ78 Factorization of

Grammar Compressed Text. In Proceedings of SPIRE, pages 86–98, 2012.
3 Paul Beame and Faith E. Fich. Optimal Bounds for the Predecessor Problem and Related

Problems. J. Comput. Syst. Sci., 65(1):38–72, 2002.
4 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye

Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. Dynamic Relative Compression, Dynamic
Partial Sums, and Substring Concatenation. Algorithmica, 80(11):3207–3224, 2018.

5 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical report, 1994.

6 Johannes Fischer and Pawel Gawrychowski. Alphabet-Dependent String Searching with
Wexponential Search Trees. In Proceedings of CPM, pages 160–171, 2015.

7 Johannes Fischer and Volker Heun. Space-Efficient Preprocessing Schemes for Range Minimum
Queries on Static Arrays. SIAM J. Comput., 40(2):465–492, 2011.

8 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-Time Text Indexing in BWT-runs
Bounded Space. In Proceedings of SODA, pages 1459–1477, 2018.

9 Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data structures for Search-
able Partial Sums with optimal worst-case performance. Theor. Comput. Sci., 412(39):5176–
5186, 2011.

10 Artur Jez. A really simple approximation of smallest grammar. Theor. Comput. Sci., 616:141–
150, 2016.

T. Nishimoto and Y. Tabei 9:11

11 Juha Kärkkäinen and Peter Sanders. Simple Linear Work Suffix Array Construction. In
Proceedings of ICALP, pages 943–955, 2003.

12 Dominik Kempa. Optimal Construction of Compressed Indexes for Highly Repetitive Texts.
In Proceedings of SODA, pages 1344–1357, 2019.

13 Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Transactions
on information theory, 22(1):75–81, 1976.

14 Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM J. Comput., 22(5):935–948, 1993.

15 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.
Algorithmica, 80(7):1986–2011, 2018.

16 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

17 Kensuke Sakai, Tatsuya Ohno, Keisuke Goto, Yoshimasa Takabatake, Tomohiro I, and Hiroshi
Sakamoto. RePair in Compressed Space and Time. CoRR, abs/1811.01472, 2018.

18 Dan E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N).
Inf. Process. Lett., 17(2):81–84, 1983.

A The proof of Lemma 5

We can compute LF and backward_search queries using C, rank, select, access queries for
L and construct C by processing the RLBWT of T in O(r + σ) time and working space.
Therefore, we give the data structures for rank, select, and access queries for L by the
following lemmas.

I Lemma 9. We can construct the data structure of O(r+σ) space that supports rank queries
for L in O(1 +Q(r, n)) time by processing the RLBWT of T in O(C(r, n) + σ + r) time and
O(r + σ) working space.

Proof. We compute rank queries for a character c by the constant number of accessing
elements on two arrays Bc and Vc and the constant number of predecessor queries on Bc.
Array Bc is the array storing sorted starting positions of runs of c in L, and Vc is the integer
array such that Vc[i] stores the rank of the first character of the i-th run of character c. We
can construct B1, . . . , Bσ and V1, . . . , Vσ in O(r + σ) time and working space by processing
the RLBWT of T and predecessor data structures for rank queries in O(1 + C(r, n)) time.
Therefore Lemma 9 holds.

Formally, let run(c) be the number of runs of character c in L (i.e., run(c) = |{i | Li[1] =
c, i ∈ [1, r]}|). Array Bc[i] stores the starting position of the i-th run of character c for
all c ∈ Σ and i ∈ [1, run(c)], Vc[i] = rank(L, c,Bc[i]) for c ∈ Σ and i ∈ [1, run(c)] and
Vc[run(c) + 1] = rank(L, c, n) + 1. If L[x] = c holds, then rank(L, c, x) = Vc[t] + x − Bc[t]
holds; otherwise, rank(L, c, x) = Vc[t + 1] − 1 holds, where t = pred(Bc, x). Since Vc[i +
1] − Vc[i] represents the length of the i-th run of character c, we can compute L[x] = c

using predecessor queries, i.e., x− Bc[t] + 1 ≤ ` holds if and only if L[x] = c holds, where
` = Vc[pred(Bc, x) + 1]− Vc[pred(Bc, x)]. J

I Lemma 10. We can construct the data structure of O(r + σ) space that supports select
queries for L in O(1 +Q(r, n)) time by processing the RLBWT of T in O(C(r, n) + σ + r)
time and O(r + σ) working space.

Proof. We compute select queries for a character c using three arrays C, Vc, and Bc and the
predecessor on Vc. When select(L, c, x) 6= n+ 1 holds, select(L, c, x) = Bc[pred(Vc, x)] + x−
Vc[pred(Vc, x)] holds. Since C[c+ 1]−C[c] represents the number of cs in L, we can compute

CPM 2019

9:12 Conversion from RLBWT to LZ77

select(L, c, x) 6= n+ 1 using C. We can construct B1, . . . , Bσ and V1, . . . , Vσ in O(r+σ) time
and working space by processing the RLBWT of T and predecessor data structures for select
queries in O(1 + C(r, n)) time. Therefore Lemma 10 holds. J

I Lemma 11. We can construct the data structure of O(r) space that supports access queries
for L in O(1 +Q(r, n)) time by processing the RLBWT of T in O(C(r, n) + r) time and O(r)
working space.

Proof. We compute access queries using two arrays B and E and the predecessor on B.
Array B is the sorted starting positions of runs in L (i.e., B = p(1), p(2), . . . , p(r)), and E is
the first characters of runs in L (i.e., E = RLE(L)[1][1],RLE(L)[2][1], . . . ,RLE(L)[r][1]). We
can construct B and E in O(r) time by processing the RLBWT. Since we can compute L[i]
by E[pred(B, i)] for a given integer i, Lemma 11 holds. J

Therefore Lemma 5 holds by Lemmas 9, 10, and 11.

B The proof of Lemma 7

Proof. Our data structure for RMTQ consists of M,Mopen
n ,M close

n , Z, the RMQ data
structure for M , and the predecessor data structure for Z. We construct Z using c-
integer sequence. The c-integer sequence is the subarray of Z such that subarray Z[b..e]
is on the run of a character c in F , i.e., b = min{X[u] | L[p(u)] = c, u ∈ [1, r]} and
e = max{X[u] | L[p(u)] = c, u ∈ [1, r]}. We construct 1-integer sequence, . . ., σ-integer
sequence in O(r(1 +Q(r, n)) + σ) using the LF function since LF(p(i)) < LF(p(j)) holds for
two positions i and j such that L[i] = L[j] and i < j hold. We obtain Z by concatenating
the sequences. The total time is O(r(1 +Q(r, n)) + σ) and the working space is O(r + σ).

We construct M using the LF function and predecessor on Z in O(1 + Q(r, n)) time
since LF(i) represents a position on the suffix array of T for i ∈ [1, n]. We construct
Mopen
n and M close

n in O(r) time since Mopen
n = (−1, n + 1), . . . , (−1, n + 1) and M close

n =
(−1, 0), . . . , (−1, 0). We construct the RMQ data structure for M in O(r) time and working
space using [7]. Therefore Lemma 7 holds since r ≤ n. J

	Introduction
	Preliminaries
	Suffix Array (SA) and SA interval
	BWT and backward search
	Run-length encoding and RLBWT

	LZ77

	Policriti and Prezza's conversion algorithm
	RMTQ data structure

	Data structures for faster conversion
	RMTQ data structure in case (B)
	Data structure for backward search, LF, and access queries
	Improved Policriti and Prezza's algorithm

	Conclusion
	The proof of Lemma ??
	The proof of Lemma ??

