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Abstract
The Maximal Strip Recovery problem (MSR) and its complementary (CMSR) are well-studied
NP-hard problems in computational genomics. The input of these dual problems are two signed
permutations. The goal is to delete some gene markers from both permutations, such that, in
the remaining permutations, each gene marker has at least one common neighbor. Equivalently,
the resulting permutations could be partitioned into common strips of length at least two. Then
MSR is to maximize the number of remaining genes, while the objective of CMSR is to delete the
minimum number of gene markers. In this paper, we present a new approximation algorithm for
the Complementary Maximal Strip Recovery (CMSR) problem. Our approximation factor is 2,
improving the currently best 7/3-approximation algorithm. Although the improvement on the factor
is not huge, the analysis is greatly simplified by a compensating method, commonly referred to as
the non-oblivious local search technique. In such a method a substitution may not always increase
the value of the current solution (it sometimes may even decrease the solution value), though it
always improves the value of another function seemingly unrelated to the objective function.
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1 Introduction

Maximal Strip Recovery (MSR) is a problem originally proposed to eliminate noise and
ambiguities in genomic maps [4, 15]. In comparative genomics, a genetic map (interchangeably,
a signed permutation) is represented by a sequence of n distinct gene markers (interchangeably,
letters). A gene marker can appear in two different genomic maps, either positively or
negatively. A strip (or, syntenic block) is a sequence of distinct markers that appears as
subsequences in two maps, either directly or in a reversed and negated form.

Given two genetic maps G1 and G2 of length n, the problem Maximal Strip Recovery
(MSR) [4, 15] is to find two subsequences of d strips (each of length at least two), denoted as
G?i , for i = 1, 2, and find two signed permutations πi of 〈1, . . . , d〉, such that each sequence

© Haitao Jiang, Jiong Guo, Daming Zhu, and Binhai Zhu;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:htjiang@sdu.edu.cn
mailto:jguo@sdu.edu.cn
mailto:dmzhu@sdu.edu.cn
mailto:bhz@montana.edu
https://doi.org/10.4230/LIPIcs.CPM.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Approximation Algorithm for the CMSR Problem

G?i = Sπi(1) . . . Sπi(d) (here S−j denotes the reversed and negated sequence of Sj) is a
subsequence of Gi, and the total length of these Sj ’s is maximized. Intuitively, those gene
markers not included in G?1 and G?2 are noisy and ambiguous markers. The complementary
problem of deleting the minimum number of noisy and ambiguous markers to have a feasible
solution (i.e., every remaining marker must be in some strip) is called the Complementary
Maximal Strip Recovery, which will be abbreviated as CMSR. We illustrate an example in
Fig. 1. In this example, each integer in G1 and G2 represents a gene marker.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13〉
G2 = 〈−9,−4,−8,−7,−6, 1, 2, 3,−13,−12,−10,−5,−11〉
S1 = 〈1, 2, 3〉
S2 = 〈6, 7, 8, 9〉
S3 = 〈11, 12, 13〉
π1 = 〈1, 2, 3〉
π2 = 〈−2, 1,−3〉
G?1 = 〈1, 2, 3, 6, 7, 8, 9, 11, 12, 13〉
G?2 = 〈−9,−8,−7,−6, 1, 2, 3,−13,−12,−11〉

Figure 1 An example for the problem MSR and CMSR. MSR has a solution size of ten (with
d = 3 strips in G?

1 and G?
2; i.e., (1,2,3),(6,7,8,9) and (11,12,13)). CMSR has a solution size of three:

the deleted markers are 4,5 and 10.

It was shown in [14] that both (the decision versions of) MSR and CMSR are NP-complete.
(Readers are referred to [5] for the basic concepts in algorithms and NP-completeness.) A bit
later, MSR was shown to be APX-hard [2, 9] and CMSR was also shown to be APX-hard
[10]. For the positive results, in [4, 15], some heuristic approaches based on Max Independent
Set and Max Clique were proposed and shown to be effective. In [3], a factor-4 polynomial-
time approximation algorithm was proposed for MSR. In [7], a factor-3 polynomial-time
approximation algorithm was proposed for CMSR and an O∗(3k) FPT algorithm, where k is
the parameter representing the minimum number of deleted genes, was also presented for
CMSR. Currently, the best approximation factor for CMSR is 2.33 [13] and the best FPT
algorithmic bound is O(2.36kn2) [1]. In 2014, Jiang and Zhu showed that CMSR admits a
kernel of size 78k [8]. This kernel was improved to 58k more recently by Hu et al. [6] and
then to 42k by Li et al. [12]. Combined with these kernel bounds, CMSR can be solved in
O(n2 + 2.36kk2) time.

In this paper, we devise a new 2-approximation algorithm for the CMSR problem by
a non-oblivious local search technique, initially proposed by Khanna et al. [11]. During
the non-oblivious local search process, a substitution (or local update) may not always
increase the value of the current solution, it sometimes makes the value unchanged or even
decreased. (But it always improves the value of a function which is seemingly unrelated to
the objective function – that is probably how the algorithm is named “non-oblivious”.) In
other words, some strips with larger priority are preferred even though they cannot lead to a
local minimum solution. While the idea is simple, the analysis is very involved. We hope to
see more applications of this technique for problems in computational biology.
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2 Preliminaries

We first present some formal definitions. Let G = π1π2 · · ·πn be a (signed) permutation
and let Ḡ be the reversed version of G, with all elements negated. A substring of G is a
consecutive segment in G, πiπi+1 · · ·πj , such that 1 ≤ i < j ≤ n and its length is denoted as
|πiπi+1 · · ·πj | = j − i+ 1. A subsequence of G is a sequence of letters πl1πl2 · · ·πlk such that
1 ≤ l1 < l2 · · · < lk ≤ n.

Let G1 and G2 be two input (signed) permutations over the same set of alphabet (letters).
(We assume that G1 is the identity permutation In over [1..n] throughout this paper.) A
(common) strip, πl1πl2 · · ·πlj (2 ≤ j ≤ n), is a common subsequence between G1 and G2 (or
Ḡ2), with at least two letters, and its length is j. An existing common strip is a common
substring between G1 and G2 (or Ḡ2), again with length at least two. Sometimes we also use
S = [a, b] to denote a common strip, with a and b being its ending letters, and |S| = |[a, b]|
to denote its length. An adjacency is a strip of length two. Hence, a pair of common strips
of length l has l − 1 adjacencies. In Figure 1, the strip (1, 2, 3) appears positively in G2 and
the strip (6, 7, 8, 9) appears in reversed and negated form in G2 (or, appears positively in
Ḡ2); moreover, (1, 2, 3) = [1, 3] is an existing common strip with two adjacencies.

The Complementary Maximal Strip Recovery (CMSR) problem is formally defined
as follows: Given two signed permutations G1 and G2 over the same set of alphabet of size n,
delete the minimum number of letters from G1 and G2 to obtain G?1 and G?2 such that the
remaining letters are all in some common strips; moreover, each common strip is a substring
in G?1 and G?2.

Two letters, a and b, form a candidate adjacency (a, b), if ab or −b− a is a subsequence
of G1 and G2. Let IN1(a, b) and IN2(a, b) be the set of (interior) letters that appears in
between a and b in G1 and G2 respectively. If |IN1(a, b)|+|IN2(a, b)| = i, then (a, b) is called
an i-candidate adjacency. Obviously, a 0-candidate adjacency is an adjacency from a pair
of existing common strips of G1 and G2. An i-candidate adjacency, say (a, b), becomes an
adjacency whenever the letters in IN1(a, b) and IN2(a, b) are deleted. In Figure 1, (11, 12) is
initially a 2-candidate adjacency and after the two markers 5 and 10 are deleted it becomes
a strip (or a valid adjacency). The main idea of our algorithm is to identify some candidate
adjacencies and delete the letters in between them.

3 Algorithm Description

In this section, we show the details of our algorithms. Since candidate adjacencies eventually
form the final common strips after deleting the interior letters, the main idea of our algorithm
is to identify some candidate adjacencies.

3.1 Preprocessing
Firstly, the algorithm preprocesses the two input permutations to identify some special
subsequences, which could be put into the common strip components directly.

I Definition 1 (r-candidate subsequence). A subsequence a1a2 · · · ar−1ar of G1 and G2 (or
Ḡ2), r ≥ 3, is an r-candidate subsequence, if (ai, ai+1) is a 1-candidate adjacency, 1 ≤ i ≤ r−1.

A letter c can left-attach (resp. right-attach) to a common strip [a, b], if (c, a) (resp.
(b, c) ) is a candidate adjacency, then a new common strip [c, b] (resp. [a, c]) is generated,
while deleting the letters in In1(c, a) ∪ In2(c, a) (resp. In1(b, c) ∪ In2(b, c)). Throughout
Algorithm 1, let CS0 be the current set of common strips. Initially, CS0 is empty.
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Algorithm 1 Preprocessing.
1: Put all the existing common strips into CS0.
2: Compute a maximal set of non-overlapping r-candidate subsequences for r ≥ 3 and put

them in CS0.
3: for each common strip [a, b] ∈ CS0 do
4: while there exists a letter c, such that (c, a) or (b, c) is a 1-candidate adjacency do
5: Delete the letter in In1(c, a) ∪ In2(c, a) (or In1(b, c) ∪ In2(b, c)) from G1 and G2,

delete [a, b] from CS0, and add [c, b] (or [a, c]) to CS0.
6: end while
7: end for

Note that keeping existing common strips immediately implies that the factor 2 is the
best we could have. For example, G1 = uabv · xy and G2 = −v − u · −yab− x, keeping ab
can only have an approximation factor 2 (as the optimal solution for CMSR is to delete
a and b). The reason why we cannot keep 2-candidate subsequences is that they could
force the approximation factor to be beyond 2. For instance, G1 = uv · xa1ya2z and
G2 = −va1a2 − u · −z − y − x, keeping a1a2 would give us an approximation factor of 2.5
(as we need to delete 5 letters, while the optimal solution is to delete a1 and a2). We now
use CS0 to denote the set of common strips in CS0 found by the preprocessing Algorithm 1
and will not alter CS0 henceforth. We then assign CS ← CS0 and try to improve CS. Next,
we show how to obtain more common strips.

3.2 How to generate a common strip
A letter is matched if it belongs to a common strip in CS, otherwise it is unmatched. A
matched letter could have either one or two adjacent letters in a common strip. For a
matched letter b, which has exactly one adjacent letter, say a, such that (a, b) is a p-candidate
adjacency, then b is of type-p. For a matched letter b, which has exactly two adjacent letters,
say a and c, such that (a, b) is a p-candidate adjacency and (b, c) is a q-candidate adjacency,
then b is of type-min{p, q}.

The letters in In1(a, b) ∪ In2(a, b) of a candidate adjacency (a, b) are caught in both G1
and G2, if a and b do form an adjacency; otherwise they are released. There are three ways
to generate a common strip in our algorithm.
(I) Join: generate a common strip [a, b] from a p-candidate adjacency (a, b), where p ≤ 3.
(II) Attach: generate a common strip [a, c] of length 3 by right-attaching a letter c to

a common strip [a, b] of length 2, such that (b, c) is a p-candidate adjacency, where
p ≤ 2. Moreover, if (a, b) is a 3-candidate adjacency, then delete a from [a, c] to obtain
the strip [b, c], to release the 3 letters in IN1(a, b) ∪ IN2(a, b). The case that (c, a) is
a p-candidate adjacency, where p ≤ 3, is similar.

(III) Split: generate two common strips [a, b] and [c, d], both of length 2, by right-attaching
a letter d to a common strip [a, b, c] of length 3, such that (c, d) is a p-candidate
adjacency, where p ≤ 3. The case that (d, a) is a p-candidate adjacency, where p ≤ 3,
is similar.

I Property 1. Each common strip generated by Join, Attach, and Split operations is of
length 2 or 3. Moreover, if [a, b] is a common strip of length 2, then (a, b) is a p-candidate
adjacency with p ≤ 3; if [a, b, c] is a common strip of length 3, then (a, b) is a p-candidate
adjacency and (b, c) is q-candidate adjacency with p, q ≤ 2.



H. Jiang, J. Guo, D. Zhu, and B. Zhu 5:5

3.3 The Non-oblivious Local Search Algorithm
The main idea of our algorithm is a non-oblivious local search, which is outlined as Algorithm 2.
The algorithm improves CS iteratively according to the objective function F . Let bp be the
number of type-p letters in the current solution, where p ∈ {1, 2, 3}, Define

F = 15b1 + 5b2 + b3.

Generally, the algorithm adopts local substitutions, which means substituting exactly one
current strip, say S, in CS with some other strips, provided that the value of F could be
increased.

Let CS = {S1, S2, · · · , Sm} be the current set of common strips, and G′1 and G′2 be
the current common strip components. For a common strip, say Sj , let Si and Sk be
its proceeding and following common strips in G′1, and Si′ and Sk′ be its proceeding and
following common strips in G′2 respectively. Define four letters to be L1

Sj
, L2

Sj
, R1

Sj
, R2

Sj
as

follows. If the number of letters appear in between Si and Sj is less than 4 in G1, then L1
Sj

is the letter to the immediate right of Si; otherwise, L1
Sj

is the fourth letter to the left of Sj .
The other three letters can be defined similarly.

CS could be improved by performing the following three operations iteratively.
1. 0-substitution: Generate new common strips according to (I), (II) and (III), provided

that the value of F can be increased.
2. 1-substitution: Substitute a common strip S by some other strip, which can be searched

from L1
S to R1

S in G1 and from L2
S to R2

S in G2 and according to (I), (II) and (III),
provided that the value of F can be increased.

3. 2-substitution: Substitute two consecutive common strips Su and Sv in G′1 (resp. G′2) by
two other strips, which can be searched from L1

Su
to R1

Sv
in G1 and from L2

Su
to R2

Su
as

well as L2
Sv

to R2
Sv

in G2 according to (I), (II) and (III), provided that the value of F
can be increased.

The pseudo-code of our algorithm is shown in Algorithm 2.

Algorithm 2 CMSR by Non-oblivious-Local-Search.
1: Call Algorithm 1: Preprocessing.
2: while (0-substitution, 1-substitution, or 2-substitution can be applied) do
3: Apply a 0-substitution, 1-substitution, or 2-substitution to improve CS.
4: end while

I Theorem 2. The algorithm CMSR by Non-oblivious-Local-Search runs in O(n2) time.

Proof. First of all, it is easy to see that Algorithm 1 runs in O(n2) time. It takes at most
O(n) time to perform a 0-substitution. A 1-substitution on a common strip S tries to identify
all possible 1, 2, 3-candidate adjacencies formed by letters from L1

S to R1
S in G1 and from L2

S

to R2
S in G2. There are at most 21 distinct letters in this range if S is of length 2, and at

most 23 distinct letters if S is of length 3. Hence the number of possible 1, 2, 3-candidate
adjacencies is bounded by a constant, and the number of its combination is also bounded
by a constant. In this case, a candidate adjacency can be found in constant time. Similar
argument holds for a 2-substitution.

The number of common strips in CS is obviously bounded by n. It remains to count the
time spent on the While-Loop. Note that the While-Loop runs while CS is updated/refreshed,
in other words, each round of the While-Loop implies a feasible substitution, and F must be
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5:6 Approximation Algorithm for the CMSR Problem

increased. Since the value of F increases by at least one each time, and the maximum value
of F is bounded by 15n, the While-Loop runs at most 15n times.

Consequently, it takes O(n) time to find/perform a feasible substitution. And this
procedure loops O(n) times. Therefore the time complexity of Algorithm 2 is O(n2). J

4 Performance Analysis

In this section, we show that Algorithm 2 returns a 2-approximation for the complementary
maximum strip recovery problem. To analyze the performance of Algorithm 2, we should
compare it with the optimal solution. Here, we adopt the amortized analysis method.

Let G1 = [π1π2 · · ·πn] = In and G2 = [π̃1π̃2 · · · π̃n] be two (signed) permutations over
[1..n]. Let G∗1 and G∗2 be the optimal common strip components, each of which is composed
of the set CS∗ of common strips. Let OPT be the set of letters which are deleted from both
G1 and G2 to obtain G∗1 and G∗2 respectively. As aforementioned, CS is the set of common
strips computed by Algorithm 2, which constitute two feasible common strip components
G′1 and G′2. Let ALG be the set of letters which are deleted to obtain G′1 and G′2. Without
causing confusion, CS and CS∗ can also be viewed as the sets of adjacencies, as well as the
sets of preserved letters. Then we have, |OPT |+ |CS∗| = |ALG|+ |CS| = n.

Next, we review a property of the optimal solution presented in [7].

I Lemma 3. There exists an optimal solution OPT , such that, for every existing common
strip S of length 2 or greater, (1) S is either totally contained in OPT , or totally disjoint
with OPT ; (2) if S is of length 4 or greater, then it is totally disjoint with OPT .

This lemma and its proof also appear in [7], so we omit the proof here. The idea, following
the example right after Algorithm 1, is that while existing length-2 or length-3 common strips
could be deleted in any optimal solution, when the existing common strips are of length at
least 4 then there is some optimal solution which keeps them. For example, G1 = xabcdy · uv
and G2 = −y − x · −vabcd− u, then the optimal solution for MSR could either be abcd (by
keeping the existing length-4 common strip abcd, the corresponding CMSR solution is to
delete u, v, x and y), or with two strips xy and uv (the corresponding CMSR solution is to
delete a, b, c and d).

Now, consider the imaginary permutations whenever we reinsert the letters of OPT ∩CS
back into G∗1 and G∗2. Some common strips could be broken into either shorter blocks or
isolates (e.g., a single letter in either G1 or G2 which does not form adjacencies with its
neighbors). For instance, the letters 9 and 11 in Fig. 1 are both isolates.

Without of loss of generality, we only focus on the case when the adjacency (a, b) (and
(x, y)) appears positively in G1 and G2. The other case when it appears in reversed and
negated form in G2 is similar. But we omit the details.

I Definition 4. Let (a, b) be an adjacency of a common strip in CS, where a = πi1 = π̃i2
and b = πj1 = π̃j2 . Let (x, y) be an adjacency of a common strip in CS∗, where x = πi∗1 = π̃i∗2
and y = πj∗1 = π̃j∗2 .

When (a, b) = (x, y), we say that (a, b) fully occupies (x, y).
Let u be the operation for computing the intersection of two intervals, which could be closed

(i.e., in the form [i, j]) or open (i.e., in the form (i, j)). If [i1, j1] u [i∗1, j∗1 ] = [i∗1, i∗1] = [j1, j1]
or [i2, j2] u [i∗2, j∗2 ] = [i∗2, i∗2] = [j2, j2], we say that (a, b) half-occupies (x, y) via the letter
b, then y belongs to the occupying set of (a, b), denoted as O[(a, b)]. (The case (a, b)
half-occupies (x, y) via a can be defined symmetrically, in which x belongs to O[(a, b)].)
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Otherwise, if (i1, j1) u (i∗1, j∗1) 6= ∅ or (i2, j2) u (i∗2, j∗2) 6= ∅, we say that (a, b) breaks
(x, y), then both x and y belong to the breaking set of (a, b), denoted as B[(a, b)].

I Lemma 5. Let (x, y) be an adjacency in CS∗, but not in CS. Then (x, y) is either broken
or half-occupied by some adjacencies in CS, or (x, y) is a p-candidate adjacency with p ≥ 4.

Proof. Since otherwise, Algorithm 2 would keep running as the current solution can
be improved. J

The occupying set of a common strip S = [a, . . . , b] in CS, denoted as O[S], is the set
of all letters from the adjacencies in CS∗ which are half-occupied by (a, •) via a or by (•, b)
via b, i.e., O[S] = O[(a, •)] ∪O[(•, b)].

The breaking set of a common strip S in CS, denoted by B[S], is the set of all letters
from adjacencies in CS∗, which are broken by adjacencies of S, i.e., B[S] = ∪(a,b)⊆SB[(a, b)].
It follows from the definition that, for each common strip S in CS, O[S] ∩B[S] = ∅.

The auxiliary set of a common strip S in CS, denoted by U [S], is the set of all letters
such that (1) not in CS, (2) appearing in between adjacencies of CS∗, which are broken or
half-occupied by adjacencies of S.

Let CS∗≥4 be the set of letters from p-adjacencies of CS∗ with p ≥ 4, which are not broken
or half-occupied by any common strip of CS. Let U∗≥4 be the set of letters which appear in
between adjacencies formed by letters in CS∗≥4. Viewing CS and CS∗ as set of letters, we
have ALG ∪ CS = OPT ∪ CS∗. Consequently

ALG−OPT = CS∗ − CS = ∪S∈CS(B[S] ∪O[S])
⋃
CS∗≥4.

From the definition, we know that the union of the auxiliary sets are letters in OPT ∩ALG
which appear in between adjacencies of CS∗ − CS∗≥4, i.e.,

OPT ∩ALG ⊇ (∪S∈CSU [S])
⋃
U∗≥4.

We also have,

OPT −ALG = CS − CS∗ = ∪S∈CS(S − CS∗).

The approximation factor can be described as
|ALG|
|OPT |

= |ALG−OPT |+ |OPT ∩ALG|
|OPT −ALG|+ |OPT ∩ALG| ≤ 2

which is equivalent to,
|ALG|
|OPT |

≤ |ALG−OPT | − |OPT ∩ALG|
|OPT −ALG|

≤
| ∪S∈CS (B[S] ∪O[S])

⋃
CS∗≥4| − |(∪S∈CSU [S])

⋃
U∗≥4|

| ∪S∈CS (S − CS∗)|

=
| ∪S∈CS (B[S] ∪O[S])|+ |

⋃
CS∗≥4| − |(∪S∈CSU [S])

⋃
U∗≥4|

| ∪S∈CS (S − CS∗)| ≤ 2 (1)

Since each letter in OPT ∩ALG appears in G1 and G2 exactly once respectively, we have,

|(∪S∈CSU [S])
⋃
U∗≥4| =

∑
S∈CS |U [S]|+ |U∗≥4|

2 .

Then, it is sufficient to show that

(1) =
| ∪S∈CS (B[S] ∪O[S])| −

∑
S∈CS

|U [S]|
2 + |

⋃
CS∗≥4| −

|U∗≥4|
2

| ∪S∈CS (S − CS∗)| ≤ 2 (2)
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5:8 Approximation Algorithm for the CMSR Problem

Note that a letter may belong to more than one breaking and half-occupying sets. If we
assign a weight ω(−) to each letter of each set, then (2) can be rewritten as

(2) =
∑
S∈CS(ω(B[S]) + ω(O[S])− |U [S]|

2 ) + |
⋃
CS∗≥4| −

|U∗≥4|
2∑

S∈CS |S − CS∗|
≤ 2 (3)

I Theorem 6. The approximation factor will not be greater than two, if the following two
conditions hold:
1. |

⋃
CS∗≥4| − |U∗≥4|/2 ≤ 0, and

2. for each S ∈ CS, (ω(B[S]) + ω(O[S])− |U [S]|/2)/|S − CS∗| ≤ 2.

The former condition holds from the following lemma straightforwardly.

I Lemma 7. Let (x, y) be a p-adjacency of CS∗ with p ≥ 4, which is not broken or half-
occupied by any adjacency of CS, being not able to return (x, y) as an adjacency will not
result in an approximation factor greater than 2.

Proof. Since the optimal solution includes the p letters appearing in between x and y, besides
these p letters, the approximated solution also includes x and y. Then we have 2− p/2 ≤ 0,
in light of p ≥ 4. J

It remains to assign weights to the letter of the breaking and half-occupying sets. Note
that a letter cannot appear in two half-occupying sets.

Weight Assignment.
(I) For each S ∈ CS0, each letter of B[S] bears a weight of 1; each letter of O[S] bears a

weight of 1 if it does not appear in any other set, and bears a weight of 0 if it also
appears in some other breaking sets.

(II) If a letter appears in exactly one breaking set, then this appearance bears a weight of
1; if it appears in two or more breaking sets, each of its appearance bears a weight of
1
2 .

(III) If a letter appears in exactly one half-occupying set, then this appearance bears a
weight of 1.

(IV) If a letter appears in the half-occupying set O[S](S /∈ CS0), as well as in the breaking
set B[S′], then O[S] bears a weight of − 1

2 , and B[S′] bears a weight of 3/2.
(V) If a letter appears in the half-occupying set O[S](S /∈ CS0), as well as two breaking

sets B[S′] and B[S′′], then O[S] bears a weight of − 1
2 , and B[S′] bears a weight of 1

and B[S′′] bears a weight of 1
2 .

I Lemma 8.
∑
S∈CS(ω(B[S]) + ω(O[S])) ≥ | ∪S∈CS (B[S] ∪O[S])|.

Proof. It can be verified that, under the above weight assignment, each letter of ∪S∈CS(B[S]∪
O[S]) has a total weight of at least 1. J

Next, we show that condition (2) is satisfied. We say that a common strip S ∈ CS is
safe, if |B[S]|

|S−CS∗| ≤ 2. An algorithm is safe if all the common strips generated at the end of
the algorithm are safe.
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4.1 Algorithm 1 is Safe
We first try to show that all the common strips founded by Algorithm 1 are safe.

I Lemma 9. The existing common strips are safe.

Proof. Assume that S is an existing common strip of G1 and G2. If S ⊆ CS∗, we are done.
If not, according to Lemma 3, it satisfies that |S − CS∗| = |S| ≥ 2. In this case, reinserting
S back into G∗1 and G∗2, would break at most 2 adjacencies in CS∗, thus |B(S)| ≤ 4. then
we have |B[S]|/|S − CS∗| ≤ 4/2 = 2. J

The following example shows that (keeping) the existing common strips would be safe even for
the worst case. Let G1 = 1ab2 · 34 and G2 = −2− 1 · −4ab− 3. Keeping S = ab would imply
deleting the four letters {1, 2, 3, 4}, while the optimal solution is to delete {a, b}. Note that
in this example, B[S] = {1, 2, 3, 4}, S − CS∗ = {a, b}, hence |B[S]| = 4 and |S − CS∗| = 2;
moreover,

|B[S]|/|S − CS∗| = 2.

I Lemma 10. Every 3-candidate subsequence is safe.

Proof. Let T = abc be a 3-candidate subsequence. From Definition 1, both (a, b) and (b, c)
are 1-candidate adjacencies. Assume that the letter x appears in between a and b in G1 or
G2, and the letter y appears in between b and c in G1 or G2. There are 8 cases according to
whether or not a, b, c belong to OPT .
1. a, b, c /∈ OPT . [a, b, c] becomes a common strip after deleting x and y from both G1 and

G2, according to Lemma 9, [a, b, c] is safe.
2. {a, b, c} ⊆ OPT . Reinserting {a, b, c]} back into G∗1 and G∗2 would break at most 4

adjacencies, thus |B([a, b, c])| ≤ 6, and |B([a, b, c])|/|({a, b, c} − CS∗)| ≤6/3=2.
3. {a, b} ⊆ OPT . Reinserting [a, b] back into G∗1 and G∗2 would break at most 2 adjacencies,

thus |B([a, b, c])| ≤ 4, and |B([a, b, c])|/|({a, b, c} − CS∗)| ≤4/2=2.
4. The case when {b, c} ⊆ OPT is symmetric to the case {a, b} ⊆ OPT .
5. a ∈ OPT , then y ∈ OPT . Reinserting a back into G∗1 and G∗2 would break at most one

adjacency, thus |B([a, b, c])| ≤ 2, and |B([a, b, c])|/|({a, b, c} − CS∗)| ≤2/1=2.
6. The case when c ∈ OPT is symmetric to the case a ∈ OPT .
7. b ∈ OPT . Reinserting b back into G∗1 and G∗2 would break at most one adjacency (x, y),

thus |B([a, b, c])| ≤ 2, and |B([a, b, c])|/|({a, b, c} − CS∗)| ≤ 2/1=2.
8. {a, c} ⊆ OPT but not b, then there exists a p-adjacency (b, d) ∈ CS∗. Since In1(b, d) ∪

In2(b, d) ⊇ In1(b, c) ∪ In2(b, c)| = {y}, we could obtain another optimal solution by
replacing c by d in CS∗. J

I Lemma 11. Generate a common strip S′ = [a, . . . , b, c] by attaching a letter c to a safe
common strip S = [a, . . . , b] via a 1-candidate adjacency (b, c), then S′ is safe.

Proof. Since S = [a, . . . , b] is safe, we have |B(S)|
|S−CS∗| ≤ 2. Assume that the letter x appears

in between b and c in G1 or G2. There are 2 cases according to whether or not c ∈ OPT :
(1) c ∈ OPT . Reinserting c back into G∗1 and G∗2 would break at most one adjacency (x, y),

which is not broken by a, b. Thus, |B(S′)−B(S)| ≤2. Note that |S′−CS∗| = |S−CS∗|+ 1,
then |B(S′)|

|S′−CS∗| ≤
|B(S)|+2
|S−CS∗|+1 ≤ 2.

(2) c /∈ OPT . In this case, either x ∈ OPT or x ∈ B(S). In either case, B(S′) = B(S)
and S − CS∗ = S′ − CS∗. J

From Lemma 9,10,11, we know that all the common strips of CS0 are safe.
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I Lemma 12. For each S ∈ CS0, ω(B[S])+ω(O[S])−|U [S]|/2
|S−CS∗| ≤ 2.

Proof. It suffices to show that ω(O[S])− |U [S]|/2 ≤ 0. Assume that S = [a, · · · , b], (b, c) is
an adjacency in CS∗, which means c ∈ O[S]. By the Weight Assignment scheme, if (b, c)
is broken by some other adjacencies in CS, then c bears a weight of 0 in O[S]. If (b, c) is
not broken by any other adjacency of CS, then c bears a weight of 1 in O[S]. According
Algorithm 1, (b, c) is a p-candidate adjacency with p ≥ 2, and these p letters are all in
U [S]. Thus, 1− p/2 ≤ 0. J

4.2 Algorithm 2 is Safe
Aside from the common strips in CS0, we now focus on the other common strips in CS

which are of length either 2 or 3. If it is of length 2 and it is also an i-adjacency, we say
that it is an i-common strip; if its length is 3 and it has two consecutive adjacencies: an
i-adjacency and a j-adjacency, we say that it is an i ./ j-common strip. From Property 1,
there are five types of common strips: 1-common strip, 2-common strip, 3-common strip,
1 ./ 2-common strip, 2 ./ 2-common strip.

Before showing that the common strips found by Algorithm 2 fulfills condition 2, we
first show some properties. The key idea is that, when Algorithm 2 terminates, the value
of F will not be increased by applying more 0,1,2-substitutions.

I Lemma 13. At the termination of Algorithm 2, a 1-candidate adjacency will either
become an adjacency in CS or be broken by some 1-adjacency in CS.

Proof. Firstly, a 1-adjacency cannot be half-occupied by a 1-adjacency in CS. The reason is
that, in this case, the two 1-adjacencies form a 3-candidate subsequence, which would have
been handled by Algorithm 1.

Then we show that a 1-adjacency cannot only be half-occupied by adjacencies in CS.
Assume that S = [a, · · · , b] ∈ CS and (b, c) is a 1-adjacency. Obviously, S /∈ CS0, thus
|S| = 2 or |S| = 3, and (•, b) is a p-adjacency with p ≥ 2. If |S|=2, then left-attaching c to S
will increase the value of F definitely, if |S| = 3, then substituting S with [a, · · · ] and [b, c]
will also increase the value of F . In case that S′ = [c, · · · , d] ∈ CS, then |S′| = 2 or |S′| = 3,
and (c, •) is a q-adjacency with q ≥ 2. keeping the common strip [b, c] will increase the value
of F .

If a 1-adjacency (b, c) is half-occupied by some adjacency A in CS and is also broken by
another t-adjacencies A′ of CS, then for t ≥ 2, keeping the common strips [b, c] will increase
the value of F by at least 15− 2× 5 = 5. J

From Lemma 13 and the Weight Assignment scheme, if an adjacency is multiply
broken, then each common strip breaking it bears a weight of 1 from it. If an adjacency
is singly broken by S ∈ CS and is also half-occupied by S′ ∈ CS, then the common strip
breaking it bears a weight of 3/2 from it, and the common strip half-occupying it bears a
weight of −1/2 from it; moreover, this adjacency must be a p-adjacency with p ≥ 2, which
means that there could be a letter in U [S].

I Lemma 14. At the termination of Algorithm 2, a 2-adjacency will (1) either become an
adjacency of CS, (2) or be broken by some adjacencies of CS, (3) or be half-occupied by
two adjacencies of CS, (4) or be half-occupied by only one 1-adjacency of CS, which is in a
common strip of CS0 or a 1 ./ 2-common strip.

Proof. From Lemma 5, a 2-adjacency will either become an adjacency of CS or be broken
or be half-occupied. Note that an adjacency can be half-occupied at most twice, then it is
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sufficient to show that (4) holds. The reason is that if a 2-adjacency is only half-occupied by a
1-common strip, 2-common strip, 3-common strip, or a 2-adjacency in either a 1 ./ 2-common
strip or a 2 ./ 2-common strip, then value of F will be increased by keeping it. J

I Lemma 15. At the termination of Algorithm 2, if a p-adjacency in CS∗ is broken by a
q-adjacency in CS, where q ≤ 3, then either p ≥ q or it is also broken or half-occupied by
some other adjacencies in CS.

Proof. Since otherwise, Algorithm 2 will keep running as the current solution can be
improved. J

I Lemma 16. A p-common strip S = [a, b], where p = 1, 2, 3, guarantees that
ω(B[S])+ω(O[S])−|U [S]|/2

|S−CS∗| ≤ 2.

Proof. There are three cases: |S − CS∗| = 2, |S − CS∗| = 1, |S − CS∗| = 0.
(1) |S − CS∗| = 2. |B[S]| ≤ p+ 4 and |O[S]| = 0.

(1.1) p = 1, there are p + 2 = 3 adjacencies broken by S. Since S is a common strip
at the termination of Algorithm 2 (i.e., no more local improvement is possible),
at most one of these three adjacencies is a 1-candidate adjacency, which is singly
broken by S. The other adjacencies must either be broken or half-occupied by some
other adjacency in CS, or be p-candidate adjacencies with p ≥ 4. For each of them,
if it is half-occupied, |B[S]|+ |O[S]| ≤ 4. According to the Weight Assignment
scheme, B[S] bears a weight of 3/2, which means some other adjacency in CS

bears a weight of −1/2. Moreover, if it is broken, B[S] bears a weight of 1; if it is
a p-candidate adjacency with p ≥ 4, then three letters are added to U [S]. In the
worst case, we have ω(B[S])+ω(O[S])−|U [S]|/2

2 ≤ p+4−p
2 = 2.

(1.2) p = 2, there are at least p+ 1 = 3 candidate adjacencies broken by S. As no local
improvement is available, at most one of them could be a 2-candidate adjacency,
which is singly broken by S. The others must either be broken or half-occupied by
other adjacencies in CS, or be p-candidate adjacencies with p ≥ 4. By an argument
similar to (1.1), in the worst case, we have ω(B[S])+ω(O[S])−|U [S]|/2

2 ≤ p+4−p
2 = 2.

(1.3) p = 3, there are at least p+ 2 = 5 candidate adjacencies broken by S. Similar to
the above argument, as no local improvement is available, at least p+ 1 candidate
adjacencies must either be broken or half-occupied by other adjacencies in CS, or
be p-candidate adjacencies with p ≥ 4. Similar to the previous arguments, we have
ω(B[S])+ω(O[S])−|U [S]|/2

2 ≤ p+4−(p+1)
2 ≤ 2.

(2) |S − CS∗| = 1. |B[S]| ≤ p + 2 and |O[S]| = 1. In this case, according to the Weight
Assignment scheme, O[S] bears a weight of −1/2.
(2.1) p = 1, then we are done, since |B[S]| ≤ 2.
(2.2) p = 2, there are two candidate adjacencies broken by S. As local improvement

is not possible, at most one of them could be a 2-candidate adjacency. The
2-candidate adjacency bears a weight 2, while the other one bears a weight 1;
moreover, the 2-candidate adjacency also implies that a letter is in U [S]. So we
have, ω(B[S])+ω(O[S])−|U [S]|/2

2 ≤ p+2−1/2−1−1/2
1 = 2.

(2.3) p = 3, there are three candidate adjacencies broken by S. As local improvement
cannot be performed further, at most one of them could be a 3-candidate adjacency.
The 3-candidate adjacency bears a weight 2, while the other one bears a weight 1;
moreover, the 3-candidate adjacency also implies that two letters are in U [S]. So
we have, ω(B[S])+ω(O[S])−|U [S]|/2

2 ≤ p+2−1/2−1−1−1/2
1 = 2.
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(3) |S − CS∗| = 0. |B[S]| ≤ p and |O[S]| = 2. In this case, according to the Weight
Assignment procedure, O[S] bears a weight of −1.
(3.1) p = 1, then we are done, since ω(B[S]) + ω(O[S]) ≤ 0.
(3.2) p = 2, there is one candidate adjacency broken by S, which could be multiply

broken or be a p-candidate adjacency with p ≥ 2. The former means that B[S]
bears a weight of 1, the latter means that there are two letters in U [S]. So we
have, ω(B[S]) + ω(O[S])− |U [S]|/2 ≤ 0.

(3.3) p = 3, if there is one candidate adjacency broken by S, then it becomes the case
(3.2). If there are two candidate adjacencies composed of three letters broken by S,
then they could be multiply broken or be a p-candidate adjacency with p ≥ 3. For
each of them, if it is also broken by some common strips of CS0, then B[S] bears
a weight of 0, and we are done; if it is a p-candidate adjacency with p ≥ 3, then
there are three letters in U [S]. If both of them are also broken by common strips
not in CS0, both adjacencies are not 1-candidate adjacencies (since otherwise, they
become a 3-candidate subsequence). Thus, a new letter appears in U [S]. So we
have, ω(B[S]) + ω(O[S])− |U [S]|/2 ≤ 0. J

I Lemma 17. A p ./ q-common strip S = [a, b, c], where p = 1, 2 and q = 2, guarantees that
ω(B[S])+ω(O[S])−|U [S]|/2

|S−CS∗| ≤ 2.

Proof. Similar to Lemma 16, hence the details are omitted. J

We summarize the main result of this paper as follows.

I Theorem 18. The algorithm CMSR by Nonoblivious-Local-Search approximates CMSR
with a factor of 2, and it runs in O(n2) time.

5 Concluding Remarks

We show a non-trivial application of non-oblivious local search for the CMSR problem. The
local update step does not always increase the objective function. The difficulty has been
assigning different weights for some potential common strips. We hope that this technique
might be useful to other optimization problems in computational biology.
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