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Abstract
A family R of ranges and a set X of points, all in Rd, together define a range space (X,R|X), where
R|X = {X ∩ h | h ∈ R}. We want to find a structure to estimate the quantity |X ∩ h|/|X| for any
range h ∈ R with the (ρ, ε)-guarantee: (i) if |X ∩ h|/|X| > ρ, the estimate must have a relative error
ε; (ii) otherwise, the estimate must have an absolute error ρε. The objective is to minimize the size
of the structure. Currently, the dominant solution is to compute a relative (ρ, ε)-approximation,
which is a subset of X with Õ(λ/(ρε2)) points, where λ is the VC-dimension of (X,R|X), and Õ
hides polylog factors.

This paper shows a more general bound sensitive to the content of X. We give a structure
that stores O(log(1/ρ)) integers plus Õ(θ · (λ/ε2)) points of X, where θ – called the disagreement
coefficient – measures how much the ranges differ from each other in their intersections with X.
The value of θ is between 1 and 1/ρ, such that our space bound is never worse than that of relative
(ρ, ε)-approximations, but we improve the latter’s 1/ρ term whenever θ = o( 1

ρ log(1/ρ) ). We also prove
that, in the worst case, summaries with the (ρ, 1/2)-guarantee must consume Ω(θ) words even for
d = 2 and λ ≤ 3.

We then constrain R to be the set of halfspaces in Rd for a constant d, and prove the existence of
structures with o(1/(ρε2)) size offering (ρ, ε)-guarantees, when X is generated from various stochastic
distributions. This is the first formal justification on why the term 1/ρ is not compulsory for
“realistic” inputs.
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1 Introduction

A (data) summary, in general, refers to a structure that captures certain information up
to a specified precision about a set of objects, but using space significantly smaller than
the size of the set. These summaries have become important tools in algorithm design,
especially in distributed/parallel computing where the main performance goal is to minimize
the communication across different servers.

In this paper, we revisit the problem of finding a small-space summary to perform range
estimation in Rd with relative-error guarantees. Let R be a family of geometric ranges in Rd
(e.g., a “halfspace family” R is the set of all halfspaces in Rd), and X be a set of points in Rd.
R and X together define a range space (X,R|X), where R|X = {X ∩ h | h ∈ R}. Denote by
λ the VC-dimension of (X,R|X).
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Following the notations of [6, 11], define

X(h) = |X ∩ h|/|X|

for each h ∈ R, namely, X(h) is the fraction of points in X that are covered by h. Given
real-valued parameters 0 < ρ, ε < 1, we need to produce a structure – called a (ρ, ε)-summary
henceforth – that allows us to obtain, for every range h ∈ R, a real-valued estimate τ
satisfying the following (ρ, ε)-guarantee:∣∣X(h)− τ

∣∣ ≤ ε ·max{ρ,X(h)}. (1)

Phrased differently, the guarantee says that (i) if X(h) > ρ, τ must have a relative error at
most ε; (ii) otherwise, τ must have an absolute error at most ρε. The main challenge is to
minimize the size of the structure.

1.1 Previous results
Throughout the paper, all logarithms have base 2 by default.

1.1.1 Sample-Based (ρ, ε)-Summaries
We say that a (ρ, ε)-summary of (X,R|X) is sample-based if it meets the requirements below:
it stores a subset Z ⊆ X such that, for any range h ∈ R with Z ∩ h = ∅, it returns an
estimate 0 for X(h).

A relative (ρ, ε)-approximation [11, 17] is a subset Z ⊆ X such that
∣∣X(h)− Z(h)

∣∣ ≤
ε ·max{ρ,X(h)} holds for all ranges h ∈ R. Hence, the (ρ, ε)-guarantee can be fulfilled by
simply setting τ to Z(h), rendering Z a legal (sample-based) (ρ, ε)-summary. Strengthening
earlier results [3, 12, 21], Li et al. [17] proved that a random sample of X with size O( 1

ρ ·
1
ε2 (λ log 1

ρ + log 1
δ )) is a relative (ρ, ε)-approximation with probability at least 1 − δ. This

implies the existence of a (ρ, ε)-summary of size O( 1
ρ ·

λ
ε2 log 1

ρ ).
A range space (X,R|X) of a constant VC-dimension is said to be well-behaved, if R|X

contains at most O(|X|) · kO(1) sets of size not exceeding k, for any integer k from 1 to
|X|. Ezra [6] showed that such a range space admits a sample-based (ρ, ε)-summary of
size O( 1

ρ ·
1
ε2 (log 1

ε + log log 1
ρ )); note that this is smaller than the corresponding result

O( 1
ρ ·

1
ε2 log 1

ρ ) of [17] when ρ � ε. It is worth mentioning that, when d ≤ 3 and R is the
halfspace family, any (X,R|X) is well-behaved; this, however, is not true when d ≥ 4.

As opposed to the above “generic” bounds, Har-Peled and Sharir [11] proved specific
bounds on the halfspace family R. For d = 2, they showed that any (X,R) has a relative
(ρ, ε)-approximation of size O( 1

ρ ·
1
ε4/3 log4/3 1

ρε ); similarly, for d = 3, the bound becomes
O( 1

ρ ·
1
ε3/2 log3/2 1

ρε ). Combining these results and those of [6] gives the currently best bounds
for these range spaces.

1.1.2 A Lower Bound of Ω(1/ρ)
Notice that all the above bounds contain a term 1/ρ. This is not a coincidence, but instead
is due to a connection to “ε-nets”. Given a range space (X,R|X), an ε-net [13] is a subset
Z ⊆ X such that Z(h) > 0 holds for any range h ∈ R satisfying X(h) ≥ ε. As can be verified
easily, any sample-based (ρ, 1/2)-summary of (X,R|X) must also be a ρ-net. This implies
that the smallest size of sample-based (ρ, 1/2)-summaries must be at least that of ρ-nets.

Regarding the sizes of ε-nets, a lower bound of Ω( 1
ε log 1

ε ) is known for many range families
R (see [14, 15, 20] and the references therein). More precisely, this means that, for each such
family R, one cannot hope to obtain an ε-net of size o( 1

ε log 1
ε ) for every possible X. It thus
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follows that, for these families R, Ω( 1
ρ log 1

ρ ) is a lower bound on the sizes of sample-based
(ρ, 1/2)-summaries. This, in turn, indicates that range spaces (X,R|X) defined by such an
R cannot always be well-behaved.

Coming back to the sizes of ε-nets, a weaker lower bound of Ω(1/ε) holds quite commonly
even on the range families that evade the Ω( 1

ε log 1
ε ) bound. Consider, for example, the

halfspace family R in R2. For any X, the range space (X,R|X) definitely has an ε-net of
size O(1/ε) [10, 19]. This is tight: place a set X of points on the boundary of a circle; and it
is easy to show that any ε-net of (X,R|X) must have a size of at least 1/ε. This means that
the size of any sample-based (ρ, 1/2)-summary of (X,R|X) must be Ω(1/ρ).

1.2 Our results

1.2.1 On One Input: Moving Beyond Ω(1/ρ)

The Ω(1/ρ) lower bound discussed earlier holds only in the worst case, i.e., it is determined
by the “hardest” X. For other X, the range space (X,R|X) may admit much smaller
(ρ, ε)-summaries. For example, let R be again the set of halfplanes in R2. When all the points
of X lie on a line, (X,R) has a sample-based (ρ, ε)-approximation of size only O( 1

ε log 1
ρ );

also, it would be interesting to note that (X,R) has an ε-net that contains only 2 points! In
general, the existing bounds on (ρ, ε)-summaries can be excessively loose on individual inputs
X. This calls for an alternative, distribution-sensitive, analytical framework that is able to
prove tighter bounds using extra complexity parameters that depend on the content of X.

The first contribution of this paper is to establish such a framework by resorting to the
concept of disagreement coefficient [8] from active learning. This notion was originally defined
in a context different from ours; and we will adapt it to range spaces in the next section.
At this moment, it suffices to understand that the disagreement coefficient θ is a real value
satisfying: 1 ≤ θ ≤ 1/ρ. The coefficient quantifies the differences among the sets in R|X
(a larger θ indicates greater differences). Even under the same R, θ may vary considerably
depending on X.

We will show that, for any range space (X,R|X) of VC-dimension λ, there is a (ρ, ε)-
summary that keeps O(log(1/ρ)) integers plus

O

(
min

{1
ρ
, θ log 1

ρ

}
· λ
ε2

log 1
ρ

)
(2)

points of X. The above is never worse than the general bound O( 1
ρ ·

λ
ε2 log 1

ρ ) of relative
(ρ, ε)-approximations.

We will also prove that Ω(θ) is a lower bound on the number of words needed to encode
a (ρ, 1/2)-summary even when d = 2 and λ ≤ 3. This generalizes the Ω(1/ρ) lower bound
in Section 1.1 because θ is at most, but can reach, 1/ρ. Thus, our result in (2) reflects the
hardness of the input, and is tight within polylog factors for constant ε. Our lower bound is
information-theoretic, and does not require the summary to be sample-based.

1.2.2 On a Distribution of Inputs: Small Summaries for Halfspaces
Our framework allows us to explain – for the first time we believe – why Ω(1/ρ) · poly(1/ε)
is too pessimistic a bound on the sizes of (ρ, ε)-summaries for inputs encountered in practice.
For this purpose, we must not allow arbitrary inputs because of the prevalent Ω(1/ρ) lower
bound; instead, we will examine a class of inputs following a certain distribution.

SoCG 2019
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Figure 1 Mixture of 3 truncated Gaussian distributions in 2D space.

In this paper, we demonstrate the above by concentrating on the family R of halfspaces
in Rd where the dimensionality d is a constant; this is arguably the “most-studied” family
in the literature of relative (ρ, ε)-approximations. The core of our solutions concerns two
stochastic distributions that have drastically different behavior:

(Box Uniform) Suppose that X is obtained by drawing n points uniformly at random
from the unit box [0, 1]d. When ρ = Ω( logn

n ), we will prove that θ = O(polylog 1
ρ )

with high probability (i.e., at least 1− 1/n2). Accordingly, (2) becomes O( 1
ε2 polylog 1

ρ ),
improving the general bound of relative (ρ, ε)-approximations by almost a factor of
O(1/ρ).
(Ball Uniform) Consider instead that the n points are drawn uniformly at random from
the unit ball: {x ∈ Rd |

∑d
i=1 x[i]2 ≤ 1}, where x[i] represents the i-th coordinate of point

x. This time, we will prove that θ = O(( 1
ρ )

d−1
d+1 ) with high probability for ρ = Ω( logn

n ).
(2) indicates the existence of a (ρ, ε)-summary with size Õ(( 1

ρ )
d−1
d+1 · 1

ε2 ) for ρ = Ω( logn
n ),

again circumventing the Ω(1/ρ) lower bound.

The very same bounds can also be obtained in non-uniform settings. Suppose that X
is obtained by drawing n points in an iid manner, according to a distribution that can be
described by a probabilistic density function (pdf) π(x) over Rd where d = O(1). Define the
support region of π as supp(π) = {x ∈ Rd | π(x) > 0}. When π satisfies:

C1: supp(π) is the unit box (or unit ball, resp.);
C2: for every point x ∈ supp(π), it holds that π(x) = Ω(1);

we will show that (X,R|X) has a (ρ, ε)-summary whose size is asymptotically the same as
the aforementioned bound for box uniform (or ball uniform, resp.). Conditions C1 and C2
are satisfied by many distributions encountered in practice (e.g., the truncated versions of
the Gaussian, Elliptical, and Laplace distributions, etc.), suggesting that real-world datasets
may have much smaller (ρ, ε)-summaries than previously thought.

Even better, the linearity of halfspaces implies that, the same bounds still hold even
when the shape of supp(π) in Condition C1 is obtained from the unit box/ball by an
affine transformation. Call a distribution atomic if it satisfies C1 (perhaps after an affine
transformation) and C2. Our results hold also on “composite distributions” synthesized
from a constant z number of atomic distributions whose support regions may overlap
arbitrarily. Specifically, let π1, π2, ..., πz be the pdfs of atomic distributions; and define
π(x) =

∑z
i=1 γi · π(x), for arbitrary positive constants γ1, γ2, ..., γz that sum up to 1; see

Figure 1 for an example. Then, the (ρ, ε)-summary bound on π is asymptotically determined
by the highest of the (ρ, ε)-summary bounds on π1, ..., πc.
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2 Disagreement coefficients

2.1 Existing Definitions on Distributions
Disagreement coefficient was introduced by Hanneke [8] to analyze active learning algorithms
(although a similar concept had been coined earlier [1] in statistics).

Let D be a distribution over Rd. For any region A ⊆ Rd, we denote by PrD[A] the
probability of x ∈ A when x is drawn from D. Let R be a family of geometric ranges. Given
a subset R′ ⊆ R, define the disagreement region DIS(R′) of R′ as

DIS(R′) = {x ∈ Rd | ∃h1, h2 ∈ R′ s.t. x ∈ h1 and x /∈ h2}.

That is, DIS(R′) includes every such point x ∈ Rd that does not fall in all the ranges in R′,
and in the meantime, does not fall outside all the ranges in R′, either. Given a range h ∈ R
and a real value r > 0, define its r-ball BD(h, r) as the set of all ranges h′ ∈ R satisfying
PrD[DIS({h, h′})] ≤ r. It is worth mentioning that DIS({h, h′}) is simply the symmetric
difference between h and h′.

Now, fix a range h, and consider increasing r continuously; this can only expand the set
BD(h, r), and hence, also DIS(BD(h, r)). Interestingly, even though PrD[DIS(BD(h, r))] is
monotonically increasing, the ratio PrD[DIS(BD(h, r))]/r may remain bounded by a certain
quantity. Given a real value σ ≥ 0, the disagreement coefficient θhD(σ) of h measures this
quantity with respect to all r > σ:

θhD(σ) = max
{

1, sup
r>σ

PrD[DIS(BD(h, r))]
r

}
. (3)

The function θhD(σ) has several useful properties:

1. By definition, θhD(σ) is between 1 and 1/σ, regardless of D and h.
2. The supremum in (3) ensures that θhD(σ) is monotonically decreasing.
3. For any c ≥ 1, it holds that θhD(σ) ≤ c · θhD(cσ) (see Corollary 7.2 of [9]).

2.2 New Definitions on Range Spaces
The above definitions rely on D, and are not suitable for our problem settings where the
input X is a finite set. Next, we present a way to adapt the definitions to a range space
(X,R|X) for analyzing geometric algorithms.

We impose a uniform distribution over X: let U(X) be the distribution of a random
point drawn uniformly from X. By replacing D with U(X) in (3), we rewrite (3) into the
following for any σ ≥ 0:

θhU(X)(σ) = max
{

1, sup
r>σ

PrU(X)[DIS(BU(X)(h, r))]
r

}
. (4)

Set

σmin = minh∈R |X ∩ h|
n

(5)

We define the disagreement coefficient of the range space (X,R|X) as a function θX(σ) :
[σmin,∞)→ R where

θX(σ) = min
h∈R s.t. X(h)≤σ

{
θhU(X)(σ)

}
. (6)

SoCG 2019



57:6 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

It is clear from the above discussion that 1 ≤ θX(σ) ≤ 1/σ and θX(σ) is monotonically
decreasing.

As a remark, the finiteness of X gives a simpler interpretation of the r-ball BU(X)(h, r):
it is the set of ranges h′ ∈ R such that DIS({h, h′}) covers no more than r|X| points in X.
Also, PrU(X)[A] for any region A ⊆ Rd is simply |X ∩A|/|X|.

3 Small (ρ, ε)-summaries based on disagreement coefficients

Given a range space (X,R) with VC-dimension λ, we will show how to find a (ρ, ε)-summary
whose size can be bounded using disagreement coefficients. Our algorithm is randomized,
and succeeds with probability at least 1 − δ for a real-valued parameter 0 < δ < 1. Set
n = |X|. We require that ρ ≥ σmin; otherwise, manually increasing ρ to σmin achieves the
same approximation guarantee.

3.1 Algorithms

3.1.1 Computing a (ρ, ε)-Summary
We will shrink R progressively by removing a range h from R once we are sure we can
provide an accurate estimate for X(h). Define R0 = R. We perform at most dlog(1/ρ)e
rounds. Given Ri−1, Round i ≥ 1 is executed as follows:

1. mi ← the number of points x ∈ X such that x falls in all the ranges in Ri−1
2. Xi ← X ∩DIS(Ri−1)
3. draw a set Si of points uniformly at random from Xi with

|Si| = O

(
|Xi|
n
· 2i

ε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))
(7)

4. Ri = {h ∈ Ri−1 | Si(h) · |Xi|+mi < n/2i}

The algorithm terminates when either i = dlog(1/ρ)e or Ri = ∅. Suppose that in total
t rounds are performed. The final (ρ, ε)-summary consists of sets S1, S2, ..., St, and 2t + 1
integers n,m1,m2, ...,mt, |X1|, |X2|, ..., |Xt|.

3.1.2 Performing Estimation
Given a range h ∈ R, we deploy the summary to estimate X(h) in two steps:

1. j ← the largest i ∈ [1, t] such that h ∈ Ri
2. return Sj(h) · |Xj |

n + mj

n as the estimate

Regarding Step 1, whether h ∈ Ri can be detected as follows. First, if h /∈ Ri′ for any
i′ < i, then immediately h /∈ Ri. Otherwise, compute Si(h), and declare h ∈ Ri if and only
if Si(h) · |Xi|+mi < n/2i.

3.2 Analysis
We now proceed to prove the correctness of our algorithms, and bound the size of the
produced summary. It suffices to consider ε ≤ 1/3 (otherwise, lower ε to 1/3 and then apply
the argument below).
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The subsequent discussion is carried out under the event that, for every i ∈ [1, t], Si is a
relative (ρi, ε/4)-approximation of Xi with respect to the ranges in R where

ρi = n(1 + ε)
2i · |Xi|

.

By the result of [17] (reviewed in Section 1.1), with |Si| shown in (7), the event happens
with a probability at least 1− δ · t

dlog(1/ρ)e ≥ 1− δ.

3.2.1 Correctness

To show that our algorithm indeed outputs a (ρ, ε)-summary, we prove in the full version:

I Lemma 1. The following are true for all i ∈ [1, t]: (i) for every range h ∈ Ri, X(h) <
(1 + ε)/2i; (ii) for every range h /∈ Ri, X(h) ≥ (1− ε)/2i.

Now consider the estimation algorithm in Section 3.1.2. Given the value j obtained at
Step 1 for the input range h ∈ R, the above lemma suggests that

(1− ε)/2j+1 ≤ X(h) < (1 + ε)/2j .

This, together with Sj being a (ρj , ε/4)-approximation of Xj , ensures that our estimate
satisfies the (ρ, ε)-guarantee for h. The details can be found in the full version.

3.2.2 Bounding the Size

To bound the size of our (ρ, ε)-summary, we will focus on bounding
∑t
i=1 |Si|, because the

rest of the summary clearly needs O(t) = O(log(1/ρ)) extra integers. Let us start with a
trivial bound that follows directly from |Xi| ≤ n:

t∑
i=1
|Si| = O

(
t∑
i=1

2i

ε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))

= O

(
1
ρε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))
. (8)

Next, we use disagreement coefficients to prove a tighter bound. Fix h ∈ R to be an
arbitrary range such that X(h) ≤ ρ (h definitely exists because ρ ≥ σmin).

I Lemma 2. Ri ⊆ B(h, ρ+ (1 + ε)/2i).

Proof. It suffices to prove that, for any h′ ∈ Ri, PrU(X)[DIS({h, h′})] ≤ ρ+ (1 + ε)/2i, or
equivalently, |X ∩DIS({h, h′})| ≤ n(ρ+ (1 + ε)/2i).

This holds because |X ∩ DIS({h, h′})| ≤ |(X ∩ h) ∪ (X ∩ h′)|. By definition of h, we
know |X ∩ h| ≤ nρ, while By Lemma 1, we know |X ∩ h′| ≤ n(1 + ε)/2i. Therefore,
|X ∩DIS({h, h′})| ≤ n(ρ+ (1 + ε)/2i). J

I Lemma 3. |Xi|/n ≤ θhU(X)(2ρ) · (ρ+ 1+ε
2i−1 ).

SoCG 2019
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Proof. Lemma 2 tells us that DIS(Ri−1) ⊆ DIS(BU(X)(h, ρ+ 1+ε
2i−1 )). Thus:

|Xi|/n = PrU(X)(DIS(Ri−1))

≤ PrU(X)

(
DIS

(
BU(X)

(
h, ρ+ 1 + ε

2i−1

)))
(by (4)) ≤ θhU(X)

(
ρ+ 1 + ε

2i−1

)
·
(
ρ+ 1 + ε

2i−1

)
By 1/2i−1 > ρ, and the fact that θhU(X) is monotonically decreasing, the above leads to

θhU(X)

(
ρ+ 1 + ε

2i−1

)
·
(
ρ+ 1 + ε

2i−1

)
≤ θhU(X)(ρ+ ρ) ·

(
ρ+ 1 + ε

2i−1

)
= θhU(X)(2ρ) ·

(
ρ+ 1 + ε

2i−1

)
. J

Therefore:
t∑
i=1

|Xi| · 2i

n
≤ θhU(X)(2ρ) ·

t∑
i=1

2i ·
(
ρ+ 1 + ε

2i−1

)

= θhU(X)(2ρ) ·
t∑
i=1

(
2i · ρ+O(1)

)
(by 1/2i = Ω(ρ)) = θhU(X)(2ρ) ·O(t)

= θhU(X)(2ρ) ·O(log(1/ρ))

= θhU(X)(ρ) ·O(log(1/ρ)) (9)

where the last equality used the fact that θhU(X)(2ρ) ≤ 2 · θhU(X)(ρ).
Remember that the above holds for all h ∈ R satisfying X(h) ≤ ρ. By the definition in

(6), we can improve the bound of (9) to

t∑
i=1

|Xi| · 2i

n
= θX(ρ) ·O(log(1/ρ)). (10)

Combining the above with (7) gives
∑t
i=1|Si|=O( 1

ε2 ·θX(ρ) log(1/ρ)·(λ log(1/ρ)+log log(1/ρ)
δ )).

Putting this together with (8) and setting δ to a constant gives:

I Theorem 4. For any ρ ≥ σmin and any 0 < ε < 1, a range space (X,R|X) of VC-dimension
λ has a (ρ, ε)-summary which keeps O(log(1/ρ)) integers and O(min

{ 1
ρ , θX(ρ)·log 1

ρ

}
· λε2 log 1

ρ )
points of X. Here, σmin is defined in (5), and θX is the disagreement coefficient function
defined in (6).

3.2.3 A Remark
Our (ρ, ε)-summary is currently not sample-based, but this can be fixed by keeping – at Step
1 of the computation algorithm in Section 3.1 – an arbitrary point counted by mi.

The (ρ, ε)-summary after the fix also serves as a ρ-net. Thus, by setting ε to a constant
in Theorem 4, we know that for any ρ ≥ σmin, the range space (X,R|X) in Theorem 4 has
an ρ-net of size O(min

{ 1
ρ , θX(ρ) · log 1

ρ

}
· λ log 1

ρ ). However, it should be pointed out that
this bound on ρ-nets can be slightly improved, as is implied by Theorem 5.1 of [9] and made
explicit in [16].



Y. Tao and Y. Wang 57:9

4 Bridging distribution and finite-set disagreement coefficients

This section will establish another theorem which will be used together with Theorem 4
to explain why we are able to obtain (ρ, ε)-summarizes of o(1/ρ) size on practical datasets.
Suppose that the input X has been generated by taking n points independently following
the same distribution D over Rd. The learning literature (see, e.g., [9]) has developed a solid
understanding on when the quantity θhD(σ) is small. Unfortunately, those findings can rarely
be applied to θhU(X)(σ) because they are conditioned on requirements that must be met by
D, e.g., one common requirement is continuity. U(X), due to its discrete nature, seldom
meets the requirements.

On the other hand, clearly U(X) approximates D increasingly better as n grows. Thus,
we ask the question:

How large n needs to be for θhU(X)(σ) to be asymptotically the same as θhD(σ)?

We partially answer the question in the next theorem:

I Theorem 5 (The Bridging Theorem). Let D be a distribution over Rd, and R be a family
of ranges. Denote by λ the VC-dimension of the range space (Rd,R).

Fix an arbitrary range h ∈ R, an arbitrary integer n, a real value 0 < δ < 1, a real value σ
satisfying n ≥ c

σ (log n
δ +λ log 1

σ ) for some universal constant c. If we draw a set X of n points
independently from D, then with probability at least 1− δ, it holds that θhU(X)(σ) ≤ 8 · θhD(2σ).

The rest of the section serves as a proof of the theorem. Let us first get rid of two
easy cases:

If σ ≥ 1, θhU(X)(σ) = θhD(2σ) = 1 by definition of (4); and the theorem obviously holds.
If σ < 1/n, observe that every range h′ ∈ BU(X)(h, σ) covers exactly the same set of points
in X as h. Hence, PrU(X)[DIS(BU(X)(h, r))] = 0. It follows from (4) that θhU(X)(σ) = 1.
The theorem again obviously holds because θhD(2σ) ≥ 1, by definition.

Hence, it suffices to consider 1/n ≤ σ < 1. Define S = {i/n | i is an integer in [σn, n]}.
For σ ≥ 1/n, (4) implies

θhU(X)(σ) ≤ max
{

1, 2 ·max
r∈S

PrU(X)[DIS(BU(X)(h, r))]
r

}
. (11)

Consider an arbitrary r ∈ S. We will show that, when n satisfies the condition in the theorem,
with probability at least 1− δ/n, it holds that

PrU(X)[DIS(BU(X)(h, r))]
r

≤ 4 · θhD(2σ). (12)

Once this is done, applying the union bound on all the r ∈ S will prove that (11) is at most
8 · θhD(2σ) with probability at least 1− δ, as claimed in the theorem.

We aim to establish the following equivalent form of (12):

|X ∩DIS(BU(X)(h, r))|
nr

≤ 4 · θhD(2σ). (13)

For the above purpose, the most crucial step is to prove:

I Lemma 6. When n ≥ c1
r (λ log 1

r + log n
δ ) for some universal constant c1, it holds with

probability at least 1− δ/(2n) that BU(X)(h, r) ⊆ BD(h, 2r).
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Proof. The rationale of our proof is that any h′ /∈ BD(h, 2r) is unlikely to appear in
BU(X)(h, r) when n is large. Indeed, h′ /∈ BD(h, 2r) indicates that a point x drawn from D

has probability over 2r to fall in DIS({h, h′}). Hence, |X ∩DIS({h, h′})| should be sharply
concentrated around 2r · n, rendering h′ /∈ BU(X)(h, r). The challenge, however, is that there
can be an infinite number of ranges h′ to consider. To tackle the challenge, we need to bring
down the number of ranges somehow to nO(λ). We achieve the purpose by observing that we
can define another range space with VC-dimension O(λ) to capture the disagreement regions
of range pairs from R, as shown below.

Define Rdis = {DIS({h, h′}) | h, h′ ∈ R}. We observe that the range space (Rd,Rdis) has
VC-dimension O(λ). To explain why, for any h ∈ R, define h = Rd \ h. Accordingly, define
R = {h | h ∈ R}. The two range spaces (Rd,R) and (Rd,R) have the same VC-dimension
λ. Therefore, the range space (Rd,R∪R) has VC-dimension at most 2λ+ 1. Now apply a
2-fold intersection on (Rd,R ∪R) to create (Rd,R1) where R1 = {h ∩ h′ | h, h′ ∈ R ∪R}.
By a result of [2], the VC dimension of (Rd,R1) is bounded by O(λ). Finally, apply a 2-fold
union on (Rd,R1) to create (Rd,R2) where R2 = {h ∪ h′ | h, h′ ∈ R1}. By another result
of [2], the VC dimension of (Rd,R2) is bounded by O(λ). Notice that Rdis is a subset of R2.
It thus follows that the VC-dimension of (Rd,Rdis) must be O(λ).

Essentially, now the task is to draw a sufficiently large set X of points from D to guarantee
with probability at least 1− δ/(2n): for every range h ∈ Rdis with PrD(h) > 2r, we ensure
|X ∩ h|/|X| > r. By applying a result of [17] on general range spaces, we know that |X|
only needs to be c1

r (λ log 1
r + log n

δ ) for some constant c1 which does not depend on r, δ,
and n. J

Set r′ = PrD(DIS(BD(h, 2r)); notice that, by definition of θhD(2r), r′ ≤ 2r · θhD(2r). We
want to draw a sufficiently large set X of points from D to guarantee, with probability at
least 1− δ/(2n), |X ∩DIS(BD(h, 2r))| ≤ 2n ·max{r, r′}. By Chernoff bounds, n only needs
to be at least c2

r log n
δ for some universal constant c2.

Now, set c = max{c1, c2} and n = c
r (λ log 1

r + log n
δ ). With probability at least 1− δ/n,

we can derive (13) from the above discussion as follows:

|X ∩DIS(BU(X)(h, r))|
nr

≤ |X ∩DIS(BD(h, 2r))|
nr

(by Lemma 6)

≤ 2n ·max{r, r′}
nr

= 2 ·max{1, r′/r}

≤ 2 ·max{1, 2 · θhD(2r)} = 4 · θhD(2r) ≤ 4 · θhD(2σ)

where the last inequality used r ≥ σ and the fact that θhD is monotonically decreasing. This
establishes (13) and hence completes the proof of Theorem 5.

5 o(1/ρ)-size summaries for halfspace ranges

We are ready to explain why a set of points generated from a stochastic distribution often
admits (ρ, ε)-summaries of o(1/ρ) size for fixed ε. This requires specializing R into a concrete
range family. We will do so by constraining R to be the set of halfspaces in Rd, because this
family has received considerable attention (as reviewed in Section 1.1).

We prove in the full version the next two technical lemmas regarding the disagreement
coefficients on box-uniform and ball-uniform distributions:

I Lemma 7. Let U be the distribution where a point is drawn uniformly at random from
the unit box [0, 1]d with d = O(1). For any halfspace h disjoint with the box, it holds that
θhU (σ) = O(logd−1 1

σ ) for all σ > 0.
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I Lemma 8. Let U be the distribution where a point is drawn uniformly at random from the
unit ball {x ∈ Rd |

∑d
i=1 x[i]2 ≤ 1} with d = O(1). For any halfspace h disjoint with the ball,

it holds that θhU (σ) = O(( 1
σ )

d−1
d+1 ) for all σ > 0.

Next, we establish our main result for non-uniform distributions:

I Theorem 9. Let R be the family of halfspaces in Rd with a constant dimensionality d.
Let D be a distribution over Rd such that the pdf π of D satisfies Conditions C1 and C2 as
prescribed in Section 1.2. Suppose that we draw a set X of n points independently from D.
Both of the following hold with probability at least 1− 1/n2:

When supp(π) is the unit box, for any 0 < ε < 1 and any ρ ≥ c logn
n where c > 0 is

a constant, X has a (ρ, ε)-summary that keeps O(log(1/ρ)) integers and O( 1
ε2 logd+1 1

ρ )
points of X.
When supp(π) is the unit ball, for any 0 < ε < 1 and any ρ ≥ c logn

n where c > 0 is a
constant, X has a (ρ, ε)-summary that keeps O(log(1/ρ)) integers and O( 1

ε2 ·( 1
ρ )

d−1
d+2 ·log2 1

ρ )
points of X.

The constant c in the above does not depend on D, n, ρ, and ε.

Proof. We will prove only the case where supp(π) is the unit box because the unit-ball case
is similar. Set σ∗ = c·logn

n where c is some constant to be determined later. Thanks to
Theorem 4, it suffices to prove that with probability at least 1− 1/n2, θX(ρ) = O(logd−1 1

ρ )
at every ρ ≥ σ∗. We will argue that, with probability at least 1 − 1/n2, there exists a
halfspace h ∈ R such that X(h) ≤ ρ and θhU(X)(ρ) = O(logd−1 1

ρ ). Once this is done, we
know θX(ρ) = O(logd−1 1

ρ ) from (6).
Condition C2 says that the pdf π satisfies π(x) ≥ γ for any point x in supp(π) (i.e., the

unit box), where γ is a positive constant. Remember that, by definition of supp(π), π(x) = 0
for any x outside supp(π).

Simply set h to a halfspace as stated in Lemma 7, i.e., θhU (σ) = O(logd−1 1
σ ). Let πU be

the pdf of U : πU (x) equals 1 if x ∈ [0, 1]d, or 0 otherwise. Define α as any constant such
that α ≤ γ. We have α · πU (x) ≤ π(x) ≤ 1 ≤ 1

α · πU (x) for all x ∈ Rd. Given this, Theorem
7.6 of [9] tells us that θhD(σ) = O(θhU (σ/α)). It thus follows that θhD(σ) = O(logd−1 1

σ )
for all σ > 0.

Now, apply Theorem 5 on h by setting δ = 1/n2 and λ = O(1). The theorem shows that,
when n ≥ β·logn

ρ for some constant β, θhU(X)(ρ) ≤ 8 · θhD(ρ) = O(logd−1 1
ρ ) with probability at

least 1− 1/n2. We set c ≥ β to ensure n ≥ α·logn
ρ . Note also that the choice of h guarantees

X(h) = 0 < ρ. This makes h a halfspace we are looking for, and concludes the proof. J

Some remarks are in order:

(Composite Distributions) Let D1 and D2 be two distributions over Rd with pdfs π1 and
π2, respectively (the support regions of π1 and π2 may overlap). Define a distribution D
with pdf π(x) = γ · π1(x) + (1 − γ) · π2(x), for some constant 0 < γ < 1. Theorem 7.7
of [9] tells us that, for any halfspace h ∈ R and any σ > 0, θhD(σ) ≤ θhD1

(σγ ) + θhD2
( σ

1−γ ).
It thus follows from Lemma 7 that, when D1 and D2 are atomic distributions with support
regions obtainable from the unit box through affine transformations, θhD(σ) = O(logd−2 1

σ )
for any h disjoint with supp(D1) ∪ supp(D2). The unit-box result of Theorem 9 can
be easily shown to hold on this D as well, by adapting the proof in a straightforward
manner. The same is true for the unit-ball result of Theorem 9. All these results can now
be extended to a composite distribution synthesized from a constant number of atomic
distributions (see Section 1.2).
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(More Distributions with Near-Constant θ) What is given in Lemma 7 is only one
scenario where θhD(σ) is nearly a constant. There are other combinations of D and R
where θhD(σ) = Õ(1) for all h ∈ R; see [5, 7, 8, 9, 22] (in some of those combinations,
R may not contain all the halfspaces in Rd; e.g., a result of [8] concerns only the
halfspaces whose boundary planes pass the origin). The proof of Theorem 9 can be
adapted to show that X has a (ρ, ε)-summary of size Õ(1/ε2) with high probability when
ρ = Ω(max{ logn

n ,minh∈RPrD(h)}).
(Time Complexity) In general, for any X, a (ρ, ε)-summary (for the halfspace family R
in constant-dimensional space) can be found in polynomial time even by implementing
the algorithm of Section 3.1 naively. The time can be improved to O(n polylogn) +
n1−Ω(1) · sO(1), where s is the size of the returned summary, by utilizing specialized data
structures [4, 18].

6 A lower bound with disagreement coefficients

In this section, we will prove a lower bound on the sizes of (ρ, 1/2)-summaries in relation to
disagreement coefficients. Our core result is:

I Theorem 10. Let R be the family of all halfplanes in R2. Fix any integer w as the number
of bits in a word. Choose arbitrary integers η, q, and k such that η ≥ 4, q is a multiple of η,
and 1 ≤ k ≤ q/(4η). There must exist a set C of range spaces (X,R|X), each satisfying the
following conditions:

X is a set of q + k points in R2.
The disagreement coefficient of (X,R|X) satisfies θX( k

q+k ) = k+q
k+q/η .

Any encoding, which encodes a ( k
q+k , 1/2)-summary for each range space in C, must use

at least η · w bits on at least one range space in C.

Therefore, for ρ = k
q+k , if one wishes to store a (ρ, 1/2)-summary for each range space

in C, at least η · w bits (namely, η words) are needed on at least one range space. Since
θX(ρ) = k+q

k+q/η ≤ η, this establishes θX(ρ) as a space lower bound for (ρ, 1/2)-summaries. In
the theorem, any X has dimensionality d = 2 and any (X,R) has VC-dimension at most 3;
hence, Theorem 4 is tight up to polylog factors on constant λ and ε.

The flexibility of η, q, and k allows the lower bound to hold in a variety of more concrete
settings. For example, by adjusting k and q, one sees that θX(ρ) is a lower bound for the
whole range of ρ ∈ (0, O(1)]. On the other hand, by focusing on any specific ρ ∈ (0, O(1)]
but adjusting η, one sees that θX(ρ) remains as a lower bound when θX(ρ) goes from O(1)
to Ω(1/ρ).1

Proving Theorem 10. Fix integers η, q, and k as stated in Theorem 10. Define n = q + k.
Next, we construct a class X of point sets, each consisting of n points in R2. First, place k
points at coordinates (0,∞). Call them the outer points; they belong to all the sets in X .

For each set X ∈ X , we generate q extra inner points. For this purpose, place an arbitrary
polygon Ψ with η vertices, making sure that all the vertices fall on the upper arc of the unit
circle (i.e., the arc is {(x[1], x[2]) | x[1]2 + x[2]2 = 1 and x[2] ≥ 0}). Then, given each vertex

1 This rules out, for example, a claim of the form: “when θX(ρ) ≥
√

1/ρ, there is a (ρ, 1/2)-summary of
size O(

√
θX(ρ))”.
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k far away outer points at the same location

q/η points at each vertex

Ψ

Figure 2 A set of points in X (η = 4).

of Ψ, we add q/η inner points to X, all of which are located at that vertex. See Figure 2
for an example with η = 4. This finishes the construction of X. It is important to note
that a different Ψ is used for each X. Thus, X includes an infinite number of inputs, each
corresponding to a possible Ψ. Our construction ensures a nice property:

I Lemma 11. Fix any X ∈ X . Given any (k/n, 1/2)-summary of X, we are able to infer
all the vertices of Ψ used to construct X.

Proof. We say that a halfplane in R is upward if it covers the point (0,∞). Our aim is
to prove that, the summary allows us to determine whether an arbitrary upward halfplane
covers any inner point of X. This implies that we can reconstruct all the vertices of Ψ using
the summary.2

Given an upward halfplane h, we use the summary to obtain an estimate – denoted as τ –
of X(h). If τ ≥ 2k/n, we return “yes” (i.e., h covers at least one inner point); otherwise, we
return “no”. To see that this is correct, first note that X(h) must be at least k/n, and hence
0.5X(h) ≤ τ ≤ 1.5X(h). Therefore, if h covers no inner points, X(h) = k/n, indicating
τ < 1.5k/n. Otherwise, X(h) ≥ k+q/η

n ≥ 5k/n, indicating τ ≥ 2.5k/n. J

We prove in the full version:

I Lemma 12. For each X ∈ X , the disagreement coefficient of (X,R|X) satisfies θX(k/n) =
n

k+q/η .

The set C is simply the set {(X,R) | X ∈ X}. Recall that each X ∈ X corresponds to
a distinct η-vertex polygon Ψ. Hence, by Lemma 11, the (k/n, 1/2)-summaries associated
with the range spaces in C serve as an encoding of all such Ψ’s.

So far the number of Ψ’s is infinite, which does not fit the purpose of arguing for a space
lower bound in RAM with a finite word length w. This can be easily fixed by creating
2w choices for each vertex of Ψ, such that each of the η vertices can independently take
a choice of its own. This generates 2ηw polygons for Ψ, and hence, the same number of
inputs in C. Lemmas 11 and 12 are still valid. Therefore, any encoding, which encodes
a (k/n, 1/2)-summary for each range space in C, can be used to distinguish all those 2ηw
choices of Ψ. The encoding, therefore, must use η · w bits for at least one range space. This
completes the proof of Theorem 10. J

2 To see this, consider any vertex v of Ψ, and use the summary to distinguish the line ` tangent to the
arc at v and a line that is parallel to `, but moves slightly away from the arc.
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