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Abstract
In this article, we focus on the problem of computing Persistent Homology of a flag tower, i.e. a
sequence of flag complexes connected by simplicial maps. We show that if we restrict the class of
simplicial complexes to flag complexes, we can achieve decisive improvement in terms of time and
space complexities with respect to previous work. We show that strong collapses of flag complexes
can be computed in time O(k2v2) where v is the number of vertices of the complex and k is the
maximal degree of its graph. Moreover we can strong collapse a flag complex knowing only its
1-skeleton and the resulting complex is also a flag complex. When we strong collapse the complexes
in a flag tower, we obtain a reduced sequence that is also a flag tower we call the core flag tower.
We then convert the core flag tower to an equivalent filtration to compute its PH. Here again, we
only use the 1-skeletons of the complexes. The resulting method is simple and extremely efficient.
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1 Introduction

This paper is a continuation of the research reported in [8] on the usage of strong collapses
to accelerate the computation of the Persistent Homology (PH) of a sequence of simplicial
complexes. Computing PH efficiently is a very well studied problem in Computational Topo-
logy and Topological Data Analysis. The time complexity to compute persistent homology is
O(nω), where n is the total number of simplices and ω ≤ 2.4 is the matrix multiplication
exponent [38, 31]. In practice, when we encounter massive and high-dimensional datasets,
n may be very large n (of order of billions) and computing PH is then slow and memory
intensive. This especially occurs for flag complexes since the simplices of a flag complex are
the cliques of the 1-skeleton of the complex.

There has been a lot of progress in the recent years along two directions. On one hand,
efficient implementations and optimizations have led to a new generation of software for PH
computation [32, 6, 4, 40]. Another complementary direction has been explored to reduce
the size of the complexes in the sequence while preserving (or approximating in a controlled
way) the persistent homology of the sequence [39, 26, 14, 9, 45, 36, 16, 23]. Most of the
methods are for general simplicial complexes except [4, 45] which focus on the Vietoris-Rips
complex, an example of a flag complex. In this paper, we build on the initial success of
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[8] and show that further decisive progress can be obtained if one restricts the family of
simplicial complexes to flag complexes. Flag complexes are fully characterized by their graph
(or 1-skeleton), the other faces being obtained by computing the cliques of the graph. Hence,
a flag complex can be represented by its 1-skeleton, which is a very compact representation.
Flag complexes are very popular and, in particular, Vietoris-Rips complexes are widely used
in Topological Data Analysis.

It has been shown in [8] that the persistent homology of a sequence of simplicial complexes
can be computed very efficiently using strong collapses. The basic idea is to simplify the
complexes of the input sequence by using strong collapses, as introduced by J. Barmak and E.
Miniam [3], and to compute the PH of an induced sequence of reduced simplicial complexes
that has the same PH as the initial one. This reduced sequence is unique up to isomorphism
and is called the core sequence. A crucial advantage of the method is that it only needs to
store the maximal simplices of the complex, not the full set of the simplices of all dimensions,
which saves space and time by a factor that can be exponential in the dimension of the
complex. Still, in the case of a flag complex and, in particular, in the case of the widely
used Vietoris-Rips complex, the maximal simplices are the maximal cliques of the 1-skeleton
of the complex and their number can be very large (exponential in the dimension of the
complex). As a result, the method of [8] devoted most of the time to compute the maximal
faces of the complexes prior to their strong collapse.

In this paper, we avoid computing maximal cliques and show that we can strong collapse
any flag complex using only the 1-skeleton or graph of the complex. Another crucial
observation is that the reduced complex obtained by strong collapsing a flag complex is itself
a flag complex.

Furthermore, if we consider a sequence of flag complexes connected by simplicial maps
(a flag tower), we can strong collapse all the complexes of the sequence. The obtained core
sequence is also a flag tower with smaller complexes that are connected by simplicial maps
that are induced from the maps of the original sequence and the strong collapses. In the
general case where the core sequence is not a filtration (which usually happens even if the
original sequence is a filtration), we need to convert the flag tower to an equivalent filtration
to compute its PH using known algorithms. To do so, we build on the work of [22, 35] that
we restrict to flag complexes and strong collapses. This allows us to convert a flag tower to
an equivalent flag filtration using again only the 1-skeleton.

The major advantages of our approach are:

We can compute PH for large complexes of high dimensions as we don’t need to compute
the maximal simplices.

The dimension of the original sequence is in fact irrelevant and what matters is the
dimension of the core sequence, which is usually quite small.

Instead of computing the exact PH, we can compute an approximate PH which is
substantially faster at a very minimal cost. We will explain more about the approximation
scheme in Sections 2 and 5.

The resulting method is simple and extremely efficient. On the theory side, we show
that strong collapses can be computed in time O(k2v2) where v is the number of vertices of
the complex and k the maximal degree of its graph. The algorithm described in this paper
has been implemented. Numerous experiments show that the computation of the persistent
homology of flag complexes can be obtained much faster than with previous methods, e.g.
Ripser [4]. The code will be soon released in the Gudhi library [32].
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2 Preliminaries

In this section, we provide a brief review of the notions of simplicial complex and strong
collapse as introduced in [3] and recalled in [8]. We use the same notations and conventions
as in [8] and just recall, in addition, some basic facts about Flag complexes. Readers can
refer to [33] for a comprehensive introduction to these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K is
a collection of subsets of a non-empty finite set X, such that for every subset A in K, all the
subsets of A are in K. From now on we will call an abstract simplicial complex simply a
simplicial complex or just a complex. An element of K is called a simplex. An element of
cardinality k + 1 is called a k-simplex and k is called its dimension. A simplex is called
maximal if it is not a proper subset of any other simplex in K. A sub-collection L of K is
called a subcomplex, if it is a simplicial complex itself.

A map ψ : K → L between two simplicial complexes is called a simplicial map, if it
always maps a simplex in K to a simplex in L. Simplicial maps are induced by vertex-
to-vertex maps. In particular, there is a finite number of simplicial maps between two
given finite simplicial complexes. Simplicial maps induce continuous maps between the
underlying geometric realisations of the simplicial complexes. Any general simplicial map
can be decomposed into more elementary simplicial maps, namely elementary inclusions
(i.e., inclusions of a single simplex) and elementary contractions {{u, v} 7→ u} (where a
vertex is mapped onto another vertex). Two simplicial maps φ : K → L and ψ : K → L

are contiguous if, for all σ ∈ K, φ(σ) ∪ ψ(σ) ∈ L. Two contiguous maps are known to be
homotopic [41, Theorem 12.5].

Flag complex. A complex K is a flag or a clique complex if, when a subset of its vertices has
pairwise edges between them, they span a simplex. It follows that the full structure of K is
determined by its 1-skeleton we denote by G. For a vertex v in G, the open neighborhood
NG(v) of v in G is defined as NG(v) := {u ∈ G | [uv] ∈ E}. The closed neighborhood
NG[v] is NG[v] := NG(v)∪ {v}. We further define the relative closed neighborhood of u by v
in G as the set of vertices in NG[u] that are not in NG[v]. We denote it by NG[u \ v].

Dominated vertex. Let σ be a simplex of a simplicial complex K, the closed star of σ in
K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈ K| τ ∪ σ ∈ K}.
The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which do not intersect
with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩ σ = ∅}.

Taking a join with a vertex transforms a simplicial complex into a simplicial cone.
Formally if L is a simplicial complex and a is a vertex not in L then the simplicial cone aL
is defined as aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}. A vertex v in K is called a
dominated vertex if the link of v in K, lkK(v) is a simplicial cone, that is, there exists a
vertex v′ 6= v and a subcomplex L in K, such that lkK(v) = v′L. We say that the vertex v′
is dominating v and v is dominated by v′. The symbol K \ v (deletion of v from K) refers
to the subcomplex of K which has all simplices of K except the ones containing v. Below
is an important remark from [3, Remark 2.2], which proposes an alternative definition of
dominated vertices.

I Remark 1. A vertex v ∈ K is dominated by another vertex v′ ∈ K, if and only if all the
maximal simplices of K that contain v also contain v′ [3].

SoCG 2019
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v′v v′ v′v′

Figure 1 Illustration of an elementary strong collapse. In the complex on the left, v is dominated
by v′. The link of v is highlighted in red. Removing v leads to the complex on the right.

Strong collapse. An elementary strong collapse is the deletion of a dominated vertex
v from K, which we denote with K ↘↘ K \ v. Figure 1 illustrates an easy case of an
elementary strong collapse. There is a strong collapse from a simplicial complex K to its
subcomplex L, if there exists a series of elementary strong collapses from K to L, denoted as
K ↘↘ L. The inverse of a strong collapse is called a strong expansion. If there exists a
combination of strong collapses and/or strong expansions from K to L, then K and L are
said to have the same strong homotopy type.

The notion of strong homotopy type is stronger than the notion of simple homotopy type
in the sense that if K and L have the same strong homotopy type, then they have the same
simple homotopy type, and therefore the same homotopy type [3]. There are examples of
contractible or simply collapsible simplicial complexes that are not strong collapsible.

A complex without any dominated vertex will be called a minimal complex. A core
of a complex K is a minimal subcomplex Kc ⊆ K, such that K ↘↘ Kc. Every simplicial
complex has a unique core up to isomorphism. The core decides the strong homotopy type
of the complex, and two simplicial complexes have the same strong homotopy type if and
only if they have isomorphic cores [3, Theorem 2.11].

Retraction map. If a vertex v ∈ K is dominated by another vertex v′ ∈ K, the vertex map
r : K → K \ v defined as: r(w) = w if w 6= v and r(v) = v′, induces a simplical map that is a
retraction map. The homotopy between r and the identity iK\v over K \ v is in fact a strong
deformation retract. Furthermore, the composition (iK\v)r is contiguous to the identity iK
over K [3, Proposition 2.9].

Sequences of complexes. A sequence of simplicial complexes T : {K1
f1−→ K2

f2−→ K3
f3−→

· · ·
f(m−1)−−−−→ Km}, connected through simplicial maps fi is called a simplicial tower or simply

a tower. We call a tower a flag tower if all the simplicial complexes Ki are flag complexes.
When all the simplicial maps fis are inclusions, then the tower is called a filtration and a
flag tower is called a flag filtration.

Persistent homology. If we compute the homology classes of all the Ki, we get the sequence

P(T ) : {Hp(K1) f∗1−→ Hp(K2) f∗2−→ Hp(K3) f∗3−→ · · ·
f∗(m−1)−−−−→ Hp(Km)}. Here Hp() denotes the

homology class of dimension p with coefficients from a field F and ∗ denotes an induced
homomorphism. P(T ) is a sequence of vector spaces connected through homomorphisms,
called a persistence module. More formally, a persistence module V is a sequence of vector
spaces {V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→} between them.
A persistence module arising from a sequence of simplicial complexes captures the evolution
of the topology of the sequence.
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Any persistence module can be decomposed into a collection of intervals of the form [i, j)
[10]. The multiset of all the intervals [i, j) in this decomposition is called the persistence
diagram of the persistence module. An interval of the form [i, j) in the persistence diagram
of P(T ) corresponds to a homological feature (a ‘cycle’) which appeared at i and disappeared
at j. The persistence diagram (PD) completely characterizes the persistence module, that
is, there is a bijective correspondence between the PD and the equivalence class of the
persistence module [10, 51].

Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm} and W : {W1 −→ W2 −→
· · · −→Wm}, connected through a set of homomorphisms φi : Vi →Wi are equivalent if the
φi are isomorphisms and the following diagram commutes [10, 20].

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm

The equivalent persistence modules will have the same interval decomposition, therefore the
same diagram.

Overview of the algorithm and approximation scheme. The algorithm presented in this
paper adopts the same strategy as the algorithm reported in [8]. However we just focus on
flag towers instead of general sequences.

Let T : {K1
f1−→ K2

f2−→ · · ·
f(m−1)−−−−→ Km} be a flag tower of which we want to compute

the persistence diagram. We first strong collapse the various complexes Ki, i = 1, ...,m
as suggested in [8]. Since each Ki is a flag complex, the computation of its core can be
computed much more efficiently using only its 1-skeleton. The new algorithm is discussed in
detail in Section 3.

We then compute a core tower that connects the Kis through induced simplicial maps.
This is again an adaptation of what has been done in [8] for general simplicial complexes to
the case of flag complexes. Lastly, we compute a flag filtration with the same PH as the core
tower. This is similar to what has been done in [22, 35], and is detailed in Section 4. This
filtration can then be sent to any algorithm that computes the persistence homology of a
flag filtration [40, 4, 6, 32].

It is important to note that the algorithm computes the exact PH of the input flag tower
T . However, instead of considering all the Kis and the associated simplicial maps, we can
select some of the Kis we rename K ′1, ...,K ′q, and compose the original maps f1, ..., fm−1
to obtain simplicial maps f ′1, ..., f ′q−1 connecting the selected complexes. We thus obtain a
sub-tower T ′ and the algorithm will then compute the exact PH of T ′. An application of
this idea will be presented for Vietoris-Rips filtrations in Section 5. By rounding the values
of the threshold parameter to a given number of snapshots of the threshold value, we will be
able to approximate in a controlled way the PH of the initial filtration T .

3 Strong Collapse of a Flag complex

In this section, we show that the core of a flag complex K is itself a flag complex whose graph
is called the core graph of K. The core graph of K can be computed from the 1-skeleton G
of K in time O(v2k2), where v is the number of vertices in K and k is an upper bound on
the degree of G (i.e. the number of edges that are incident on a vertex in K).

SoCG 2019



55:6 Computing Persistent Homology of Flag Complexes via Strong Collapses

Although this change wrt the algorithm in [8] might look minor, it is crucial in practice as
the time to compute all the maximal simplices of a flag complex from its graph is exponential
in the number of its vertices. We thus reduce immensely the time and space complexity of
the general algorithm of [8] whose complexity is O(v2Γ0d+m2Γ0d), where Γ0 is an upper
bound on the number of maximal simplices incident to a vertex.

In the following lemma, we describe a condition in terms of the closed neighborhood
NG[v] of a vertex v of a flag complex K under which v will be dominated by another vertex
v′ of K. This result has been studied in another context in [30, Lemma 4.1].

I Lemma 2. Let K be a flag complex. A vertex v ∈ K is dominated by v′ iff NG[v] ⊆ NG[v′].

Proof. If v is dominated by v′, then, according to Remark 1, the set of maximal simplices
that contain v is a subset of the set of maximal simplices that contain v′. It follows that
NG[v] ⊆ NG[v′].

Now we prove the other direction. Let σ be a maximal simplex of K containing v. Any
other vertex x of σ is joined to v by an edge [x, v] ∈ σ. Moreover, since NG[v] ⊆ NG[v′],
[v, v′] and [x, v′] are in K. It follows that every vertex in σ has an edge with both v and v′
and, since K is a flag complex and σ is maximal, v′ must be in σ. This implies that all the
maximal simplices that contain v also contain v′. Hence v is dominated by v′. J

As mentioned before, an elementary strong collapse consists in removing a dominated
vertex, and it can be easily observed that removing a vertex does not affect the ‘flagness’
of the residual complex K \ v. In other words, if σ is a maximal clique with vertex v, the
resultant clique σ \ v is still a maximal clique in K \ v. Moreover, all the other cliques that
do not contain v still span the complete simplices. This implies that the core Kc of a flag
complex K with graph G is a flag complex of a sub-graph Gc of G.

In what follows next, we describe an algorithm to compute the core graph Gc ⊆ G whose
flag complex is the core Kc of K.

Data structure. We represent G with its adjacency matrix M , where the rows and the
columns of M represent the vertices of G. An entry M [vi][vj ] associated with vertices vi and
vj is set to 1 if either the edge [vi, vj ] ∈ G or i = j, and to 0 otherwise. Note that we set
M [vi][vj ] = 1 for i = j to be able to consider closed neighborhood. We will say that a row
v is contained in another row v′ if the set of column indices of the non-zero entries of v is
a subset of the indices of the non-zero entries of v′. It is clear that if a row v is contained
in another row v′, we have NG[v] ⊆ NG[v′] and therefore the vertex v is dominated by the
vertex v′.

Core graph algorithm. Given the adjacency matrix M of G, we compute the adjacency
matrix C of the core graph Gc. In view of Lemma 2, we can easily compute C from M

using basic row removal operations. Loosely speaking, we remove the rows of M that are
contained in another row. After removing the row associated to v, we simultaneously update
the matrix by removing the column associated to v. The process is iterated as long as the
matrix can be reduced. Upon termination, we output the reduced matrix C, which is the
adjacency matrix of the core graph Gc of K. Since the core of a complex is always unique,
the order in which vertices are removed does not matter [3].

Retraction map computation. We can easily compute the retraction map r defined in
Section 2 using the above core graph algorithm. A row v being removed in M corresponds to
a dominated vertex in K and the row which contains v corresponds to a dominating vertex.
Therefore we map the dominated vertex to the dominating vertex.
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Domination tests optimization. Let us observe that, to check if a row v is dominated by
some other row v′, it is sufficient to compare v with its neighbors, which are at most k in
number, if k denotes the maximum degree of the vertices in G.

We define a row v to be a candidate row for the next iteration if at least one of its
neighbors has been removed in a previous row removal iteration. We observe that the
candidate rows are the only rows that need to be considered in the domination tests of
the algorithm. Indeed, a row w of M whose set of neighbors has not been modified at the
previous iteration cannot be dominated by another row v′ of M , as w was not dominated in
the previous iteration and all other vertices can only loose neighbors. This ensures that w
will still remain un-dominated.

We maintain a queue, for the candidate rows (rowQueue) which is implemented as a First
in First out (FIFO) queue. At each iteration, we pop out a candidate row from rowQueue
for domination test. After each successful domination test, we push the new candidate rows
in the queue in preparation for the subsequent iteration. In the first iteration, we push all
the rows in rowQueue. Algorithm 1 gives the pseudo code of our algorithm.

Algorithm 1 Core graph algorithm.
1: procedure Core(M)
2: input : the adjacency matrix M of the graph of a flag complex K
3: rowQueue← push all rows of M (all vertices of K)
4: while rowQueue is not empty do
5: v ← pop(rowQueue)
6: NG[v]← the non-zero columns of v
7: for w in NG[v] do
8: if NG[v] ⊆ NG[w] then
9: Remove from M the column and the row associated to v
10: push all the entries of NG(v) to rowQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: return M . M is now the adjacency matrix of the core of K
16: end procedure

Time Complexity. Let us start by analyzing the most basic operation in our algorithm
which is to determine if a row is dominated by another row. We store the rows of the matrix
as sorted lists. Deciding if a sorted list is included in another sorted list (Line 8) can be done
in time O(l), where l is the size of the longer list. In our case, the length of a row list is at
most k + 1 where k denotes as before the maximal degree of any vertex. Hence lines 8-12
takes O(k) time.

As explained in the paragraph Domination tests optimization, each row is checked against
at most k other rows. Hence the for loop (Lines 7-13) is executed at most k times. Moreover,
since at each iteration we ought to remove at least one row, the total number of iterations
on the rows, i.e. the number of times the while loop is executed, is at most O(v2), where v is
the total number of vertices of the complex K. It follows that the worst-case time complexity
of our algorithm is O(v2k2).

SoCG 2019
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4 From a Flag Tower to a Flag Filtration

In this section, we show that, thanks to the notion of strong collapses, we can efficiently
turn a flag tower into a flag filtration using only edge inclusions over the 1-skeletons of
the complexes.

4.1 Previous work

It is known that any general simplicial map can be decomposed into elementary inclusions and
elementary contractions. Hence if we can replace an elementary contraction {{u, v} 7→ u} by
an equivalent (not necessarily elementary) inclusion, we transform a tower into an equivalent
filtration. This was the philosophy introduced by Dey et al. [22]. This idea has been further
refined by Kerber and Schreiber [35] who introduced a slightly different approach based
on coning. They provided theoretical bounds on the size and time to construct the final
equivalent filtration. Specifically, they proved that the size of the equivalent filtration is
O(d ∗ n ∗ logn0), where d is the maximal dimension of the complexes in the input tower and
n (resp. n0) the total number of elementary inclusions (resp. vertex inclusions) in the input
tower [35, Theorem 2].

4.2 A new construction

We now present an algorithm that turns a flag tower into a flag filtration with the same
PH. Our work builds upon the above mentioned previous works [22, 35]. The difference
is that we use strong expansion which is the inverse operation of a strong collapse. The
main advantage of strong expansions is that, when the input is a flag tower, we can use the
domination criterion of Lemma 2. This leads to a simple algorithm that only deals with
edges. The output filtration is a flag filtration, which can be represented very compactly.
Moreover, since a strong expansion is a coning, we will be able to use the theoretical results
of [35]. Now we describe our construction.

Let Ki be a flag complex and Gi be its 1-skeleton. We associate to Ki an augmented
complex Ki ⊇ Ki. As will be seen below, Ki is also a flag complex whose 1-skeleton will be
denoted by Gi. Following the terminology of [35], we call a vertex v ∈ Ki to be active if it is
currently not dominated. The active closed neighborhood ActNGi [v] is then defined as the set
of all active vertices in NGi

[v]. Similarly, ActNGi
[v \ u] denotes the set of active vertices in

the closed neighborhood NGi
[v] of v that are not in NGi

[u]. Finally, let {[u,ActNGi
[v \ u]]}

denote the set of edges between u and ActNGi
[v \ u].

Using the notions defined above, we now explain how to inductively construct a filtration
associated to a given flag tower. The construction operates in a streaming fashion on the
1-skeleton. We distinguish two kinds of inputs: elementary inclusions (of a vertex or an edge)
and elementary contractions. For i = 0, we set G0 = ∅. We then define Gi as follows.

1. if Gi
∪σ−−→ Gi+1 is an elementary inclusion where σ is either a vertex or an edge, we set

Gi+1 := Gi ∪ σ.

2. if Gi
{u,v}7→u−−−−−−→ Gi+1 is an elementary contraction

2.1. if |ActNGi [v \ u]| ≤ |ActNGi [u \ v]|, we set Gi+1 := Gi ∪ {[u,ActNGi [v \ u]} and v as
contracted

2.2. otherwise, we set Gi+1 := Gi ∪ {[v,ActNGi
[u \ v]} and u as contracted.
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v

u

IGi IGi+1

Note that Gi ⊆ Gi+1 and thus Ki ⊆ Ki+1. We continue the construction until the end of
our input tower.

Complexity Analysis. The vertices marked contracted during our construction are exactly
the same as the inactive vertices defined in [35]. By construction, any contracted vertex will
be dominated permanently in the filtration. Since such a vertex stops existing in the tower
later on, its neighborhood stays the same and the vertex remains dominated. Therefore, at
any point in our construction, the number of active vertices is less than the number of active
vertices that are used in [35]. Moreover, since a strong expansion is a coning, the size of the
final filtration in our construction is at most that obtained by the construction prescribed in
[35]. Moreover, since we are working with 1-skeletons only, the space and time complexity of
our method is much lower than that of [35].

Let us now analyze the time complexity of the algorithm. Notice that there are two
basic operations on the 1-skeleton, elementary inclusions in Line 1, and the computation and
comparison of ActNGi [v \ u] and ActNGi [u \ v] in Lines 2.1 and 2.2. Elementary inclusions
can be performed in constant time O(1). To compute ActNGi

[v \ u] we need to compute
NGi

[v], NGi
[u] and the subset of vertices that are dominated (inactive) in NGi

[v \ u]. We can
access NGi [v] and NGi [u] in constant time O(1) and compute the set-difference NGi [v \ u]
in O(k log k) time, where k is the maximum degree of a vertex. Finally computing the
dominated vertices in NGi [v \ u] can be done in O(k3) time as |NGi [v \ u]| ≤ k. Therefore
computing ActNGi

[v \u] and ActNGi
[u \ v] takes O(k3) time. Since the size of active relative

closed neighborhoods are bounded by k, for each elementary contraction, we include at most
k edges in O(k) time. It follows that the worst-case time complexity for each elementary
contraction is O(k3).

We conclude that the time complexity of the algorithm is O(|Gm|+ nc ∗ k3) where nc
is the number of elementary contractions in the input tower and |Gm| is the size of the
1-skeleton of the output flag filtration. The space complexity of our construction is O(n0 ∗ k)
which is the size of a sparse adjacency matrix of a flag complex with n0 vertices.

Correctness. Finally we prove few lemmas and state our main result Theorem 7 to certify
the correctness of the output of our construction.

I Lemma 3. Let fi : Ki
{u,v}7→u−−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. Then the complex Ki+1 is a subcomplex of Ki+1 and

Ki+1 ↘↘ Ki+1.

Proof. We prove the second part Ki+1 ↘↘ Ki+1 of the statement which then implies
the first part Ki+1 ⊂ Ki+1. Since fi is the first contraction Ki = Ki and Gi = Gi. Let
Gi+1 := Gi ∪ {[u,ActNGi

[v \ u]} be the graph defined in the construction Line 2.1. By
construction, contracting v to u in both graphs Gi and Gi+1 yields the same graph Gi+1.
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Let x′ ∈ ActNGi [v \ u]. We observe that adding the edge [ux′] to Gi does not change the
fact that all x ∈ {NGi

[v \ u] \ActNGi
[v \ u]} are dominated since the addition of [ux′] only

adds neighbors to NGi
[x′] and NGi

[u]. Removing all the dominated vertices in NGi
[v \ u]

thus provides a sequence of elementary strong collapses. By performing all such elementary
strong collapses, Ki+1 is eventually transformed into a complex K0

i+1. By doing so, we have
removed all the dominated vertices from NGi [v \ u] and added edges between u and the
non dominated vertices that are in NGi

[v \ u]. This implies that v is dominated by u in
K0
i+1. The elementary strong collapse of v onto u, implies K0

i+1 ↘↘ Ki+1 and therefore
Ki+1 ↘↘ Ki+1. J

I Lemma 4. Let fi : Ki
{u,v}7→u−−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. Then the following diagram commutes

Hp(Ki) Hp(Ki+1)

Hp(Ki+1)

f∗i

i∗ (i′)∗

Here i′ : Ki+1 ↪→ Ki+1 is the inclusion induced by the strong collapse. i∗ and (i′)∗ are
homomorphisms induced by the inclusion maps.

Proof. Using the fact that fi is the first contraction, we have the inclusion Ki = Ki ⊆ Ki+1.
Let K0

i+1 be the complex as defined in the proof of Lemma 3. Consider the following diagram
of simplicial complexes, and note that i′ = i1 ◦ i0 where i0 and i1 are both inclusions induced
by the respective strong collapses.

Ki Ki+1

Ki+1 K0
i+1

fi

i i0

i1

We claim that the maps i′ ◦ fi and i are contiguous, which we denote i′ ◦ fi ∼ i. Indeed, let
σ be any simplex in Ki. Since i is an inclusion, i(σ) = σ.

Case 1. If v /∈ σ, then i′ ◦ fi(σ) = σ = i(σ).
Case 2. If v ∈ σ, fi(σ) is a simplex γ ∈ Ki+1 that contains u and, since i0 is an inclusion,

i0 ◦ fi(σ) = γ. Observe that, in the retraction map associated to the strong collapse
r1 : Ki+1 ↘↘ K0

i+1, v is not contracted (by construction of K0
i+1). Therefore r1 ◦ i(σ) is

a simplex γ′ ∈ K0
i+1 that contains v.

Now, as mentioned in the proof of Lemma 3, u dominates v in K0
i+1. Therefore all the

maximal simplices in K0
i+1 that contain v also contain u (Remark 1). Therefore, γ′ is a

face of a maximal simplex τ ∈ K0
i+1 that contains u (in addition to v).

Since γ is obtained by contracting v to u, γ must be a face of τ that contains both u
and v. This implies that γ′ ∪ γ ⊆ τ , which in turn implies that r1 ◦ i(σ) is contiguous
to i0 ◦ fi(σ). After composing both sides with i1, we get i1 ◦ r1 ◦ i(σ) ∼ i1 ◦ i0 ◦ fi(σ).
Now since Ki+1 ↘↘ K0

i+1, i1 ◦ r1 ∼ 1Ki+1 [3], where 1Ki+1 is the identity over Ki+1. As
i1 ◦ i0 = i′, we have i′ ◦ fi(σ) ∼ i(σ).

Combining both the cases we conclude i′ ◦ fi ∼ i.
Since contiguous maps are homotopic at the level of geometric realizations, the diagram

in the lemma commutes. J
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Proceeding by induction, Lemma 3 then immediately implies the following result.

I Lemma 5. Given a tower T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. For each 0 ≤ i ≤ m,

Ki ↘↘ Ki.

Again, using an inductive argument along with Lemmas 4 and 5, we can deduce the
following result.

I Theorem 6. The following diagram commutes and all the vertical maps φ∗i are isomorph-
isms. As a consequence, the tower T : K0

f0−→ K1
f1−→ ...

fm−1−−−→ Km and the constructed
filtration F : K0 ↪→ K1 ↪→ ... ↪→ Km have the same persistence diagram.

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

∗

φ∗1

∗

φ∗2

∗

φ∗m−1 φ∗m

f∗1 f∗2 f∗m−1

Here φi is a strong collapse for each i ∈ {0, · · · ,m} and ∗ indicates the induced homo-
morphisms.

We summarize our result in the following theorem. We write T : K0
f0−→ K1

f1−→ ...
fm−1−−−→

Km for the given flag tower where, w.l.o.g., K0 = ∅. and each fi is either an inclusion or an
elementary contraction. The inclusions are not necessarily elementary but corresponds to an
elementary inclusion on the graphs Gi. We denote by d the maximal dimension of the Kis
in T , and by n the total number of elementary inclusions of simplices in T , by nc the total
number of elementary contractions and by n0 the number of vertex inclusions in T .

I Theorem 7. There exists a filtration F : K0 ↪→ K1 ↪→ ... ↪→ Km, where the inclusions are
not necessarily elementary, such that T and F have the same persistence diagram and the
size of the filtration |Km| is at most O(d ∗ n ∗ logn0). Moreover, F is a flag filtration which
can be computed from T using only the 1-skeletons Gis of the Kis. The time complexity
of the algorithm is O(|Gm| + nc ∗ k3) time and its space complexity O(n0 ∗ k), where Gm
denotes the 1-skeleton of Km and k is an upper bound on the degree of the vertices in Gm.

5 Computational experiments

Our algorithm has been implemented for Vietoris-Rips (VR) filtrations as a C++ module
named RipsCollapser. Recall that, for VR-filtrations, the filtration value of a simplex is the
length of the longest edge of the simplex. RipsCollapser takes as input a VR filtration and
returns the reduced flag filtration as shown above. RipsCollapser can be used in two modes:
in the exact mode, the output filtration has the same PD as the input filtration while, in the
approximate mode to be described below, a certified approximation is returned. The output
filtration can then be sent to any software that computes the PD of a VR-filtration such
as the Gudhi library (the one we chose for our experiments) [32] or Ripser [4]. Therefore
RipsCollapser is to be considered as an ad-on to software computing PD. RipsCollapser will
be available as an open-source package of a next release of the Gudhi library.

Approximate persistence diagram. Given a VR filtration, one can choose to collapse the
original complexes after each edge inclusion. However, as mentioned in Section 2, we can also
choose to strong collapse the complexes less often, i.e. after several edge inclusions rather
than just one. This will result in a faster algorithm but comes with a cost: the computed PD
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is then only approximate. We call snapshots the values of the scale parameter at which we
choose to strong collapse the complex. The difference between two consecutive snapshots is
called a step. We approximate the filtration value of a simplex as the value of the snapshot
at which it first appears. We can observe that our algorithm will report all persistence pairs
that are separated by at least one snapshot. Hence if all steps are equal to some ε > 0,
we will compute all the persistence pairs whose lengths are at least ε. It follows that the
l∞-bottleneck distance between the computed PD and the exact one is at most ε. If instead
the ratio between any two consecutive steps is taken to a constant ρ > 1, the l∞-bottleneck
distance will be at most log ρ after reparameterizing the filtrations on a log-log-scale [45].

Experimental setup. We present results on five datasets netw-sc, senate, eleg, HIV and
drag 1 that are publicly available [18]. Each dataset is given as the interpoint distance
matrix. The reported time includes the time of RipsCollapser and the time to compute
the persistent diagram (PD). The time of RipsCollapser includes: 1. The time taken to
compute the largest 1-skeleton associated to the maximum threshold value, 2. The time
taken to collapse all the sub-skeletons and assemble their cores. 3. To transform them into
an equivalent flag-filtration.

The code has been compiled using the compiler ‘clang-900.0.38’ and all computations
were performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of available RAM. We
took all steps to be equal. Parameter Step controls the quality of the approximation : if
Step = 0, we obtain the exact PD, otherwise Step is an upper bound on the l∞-bottleneck
distance between the output diagram and the exact one. RipsCollapser works irrespective of
the dimension of the input complexes. However, the size of the complexes in the reduced
filtration, even if much smaller than in the original filtration, might exceed the capacities of
the PD computation algorithm. For this reason, we introduced a parameter dim and restricts
PD computation to dimension at most dim.

Some experimental results are reported in Table 1. We first observe that the reduction
done by RipsCollapser is enormous. The reduced complexes are small and of low dimension
(column Size/Dim) compared to the input VR-complexes which are of dimensions respectively
57, 54 and 105 for the first three datasets netw-sc, senate and eleg. We also observe that,
while the time taken by RipsCollapser is large for exact persistence computation, very good
approximations can be obtained fast. Moreover the computing time mildly increases with
the number of snapshots. This suggests that implementing the collapses in parallel would
lead to further substantial improvement.

Comparison with Ripser. Ripser [4] is the state of the art software to compute persistent
diagrams of VR filtrations. It computes the exact PD associated to the input filtration
up to dimension dim. Although RipsCollapser is more complementary to Ripser than a
competitor, we run Ripser1 on the same datasets as in Table 1 to demonstrate the benefit of
using RipsCollapser.

Results are presented in Table 2. The main observation is that Ripser performs quite
well in low dimensions but its ability to handle higher dimensions is limited.

1 We used the command
<./ripser inputData –format distances –threshold inputTh –dim inputDim >.
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Table 1 The columns are, from left to right: dataset (Data), number of points (Pnt), maximum
value of the scale parameter (Thrsld), number of simplices (Size) and dimension of the final filtration
(Dim), parameter (dim), time (in seconds) taken by RipsCollapser, total time (in seconds) including
PD computation (Tot-Time), parameter Step and the number of snapshots used (Snaps).

Data Pnt Thrsld RipsCollapser +PD
Size/Dim dim Pre-Time Tot-Time Step Snaps

netw-sc 379 5.5 155/3 ∞ 7.28 7.38 0.02 263
” ” ” 155/3 ∞ 13.93 14.03 0.01 531
” ” ” 175/3 ∞ 366.46 366.56 0 8420

senate 103 0.415 405/4 ∞ 2.53 2.54 0.001 403
” ” ” 417/4 ∞ 15.96 15.98 0 2728

eleg 297 0.3 577K/15 ∞ 11.65 26.02 0.001 284
” ” ” 835K/16 ∞ 518.36 540.40 0 9850

HIV 1088 1050 127.3M/? 4 660 3,955 4 184
drag1 1000 0.05 478.3M/? 4 687 14,170 0.0002 249

Table 2 Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran
longer than 12 hours or crashed due to memory overload.

Data Pnt Threshold Val Val Val
dim Time dim Time dim Time

netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
drag1 1000 0.05 3 249 4 ∞
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