
On the Chromatic Number of Disjointness Graphs
of Curves
János Pach
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Rényi Institute, Budapest, Hungary
janos.pach@epfl.ch

István Tomon
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
istvan.tomon@epfl.ch

Abstract

Let ω(G) and χ(G) denote the clique number and chromatic number of a graph G, respectively.
The disjointness graph of a family of curves (continuous arcs in the plane) is the graph whose
vertices correspond to the curves and in which two vertices are joined by an edge if and only if the
corresponding curves are disjoint. A curve is called x-monotone if every vertical line intersects it in
at most one point. An x-monotone curve is grounded if its left endpoint lies on the y-axis.

We prove that if G is the disjointness graph of a family of grounded x-monotone curves such that
ω(G) = k, then χ(G) ≤

(
k+1

2

)
. If we only require that every curve is x-monotone and intersects the

y-axis, then we have χ(G) ≤ k+1
2

(
k+2

3

)
. Both of these bounds are best possible. The construction

showing the tightness of the last result settles a 25 years old problem: it yields that there exist
Kk-free disjointness graphs of x-monotone curves such that any proper coloring of them uses at least
Ω(k4) colors. This matches the upper bound up to a constant factor.
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1 Introduction

Given a family of sets, C, the intersection graph of C is the graph, whose vertices correspond
to the elements of C, and two vertices are joined by an edge if the corresponding sets have a
nonempty intersection. Also, the disjointness graph of C is the complement of the intersection
graph of C, that is, two vertices are joined by an edge if the corresponding sets are disjoint.
As usual, we denote the clique number, the independence number, and the chromatic number
of a graph G by ω(G), α(G) and χ(G), respectively.
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54:2 On the Chromatic Number of Disjointness Graphs of Curves

1.1 Clique number vs. chromatic number
Computing these parameters for intersection graphs of various classes of geometric objects
(segments, boxes, disks etc.) or for other geometrically defined graphs (such as visibility
graphs) is a computationally hard problem and a classic topic in computational and com-
binatorial geometry [1, 5, 10, 17, 23, 24]. There are many interesting results connecting the
clique number and the chromatic number of geometric intersection graphs, starting with a
beautiful theorem of Asplund and Grünbaum [2], which states that every intersection graph
G of axis-parallel rectangles in the plane satisfies χ(G) ≤ 4(ω(G))2.

A family G of graphs is χ-bounded if there exists a function f : Z+ → Z+ such that
every G ∈ G satisfies χ(G) ≤ f(ω(G)). In this case, say that the function f is χ-bounding
for G. Using this terminology, the result of Asplund and Grünbaum [2] mentioned above
can be rephrased as follows: The family of intersection graphs of axis-parallel rectangles
in the plane is χ-bounded with bounding function f(k) = 4k2. (It is conjectured that the
same is true with bounding function f(k) = O(k).) However, an ingenious construction of
Burling [4] shows that the family of intersection graphs of axis-parallel boxes in R3 is not
χ-bounded. The χ-boundedness of intersection graphs of chords of a circle was established
by Gyárfás [14, 15]; see also Kostochka et al. [22, 19, 20].

Computing the chromatic number of the disjointness graph of a family of objects, C, is
equivalent to determining the clique cover number of the corresponding intersection graph
G, that is, the minimum number of cliques whose vertices together cover the vertex set of
G. This problem can be solved in polynomial time only for some very special families (for
instance, if C consists of intervals along a line or arcs along a circle [13]). On the other
hand, the problem is known to be NP-complete if C is a family of chords of a circle [16, 12]
or a family of unit disks in the plane [38, 6], and in many other cases. There is a vast
literature providing approximation algorithms or inapproximability results for the clique
cover number [8, 9].

1.2 Families of curves
A curve or string in R2 is the image of a continuous function φ : [0, 1]→ Rd. A curve C ⊂ R2

is called x-monotone if every vertical line intersects C in at most one point. Note that any
convex set can be approximated arbitrarily closely by x-monotone curves, so the notion of
x-monotone curve extends the notion of convex sets. We say that C is grounded at the curve
L if one of the endpoints of C is in L, and this is the only intersection point of C and L.
A grounded x-monotone curve is an x-monotone curve that is contained in the half-plane
{x ≥ 0}, and whose left endpoint lies on the vertical line {x = 0}.

It was first suggested by Erdős in the 1970s, and remained the prevailing conjecture for 40
years, that the family of intersection graphs of curves (the family of so-called “string graphs”)
is χ-bounded [3, 21]. There were many promising facts pointing in this direction. Extending
earlier results of McGuinness [28], Suk [37], and Lasoń et al. [27], Rok and Walczak [35, 36]
proved the conjecture for grounded families of curves. Nevertheless, in 2014, Pawlik et
al. [34] disproved Erdős’s conjecture. They managed to modify Burling’s above-mentioned
construction to obtain a sequence of finite families of segments in the plane whose intersection
graphs, Gn, are triangle-free (that is, ω(Gn) = 2), but their chromatic numbers tend to
infinity, as n→∞.

Recently, Pach, Tardos and Tóth [32] proved that the family of disjointness graphs of
curves in the plane is not χ-bounded either; see also [30]. However, the situation is different
if we restrict our attention to x-monotone curves. It was shown in [33, 26] that the family
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of disjointness graphs of x-monotone curves in the plane is χ-bounded with a bounding
function f(k) = k4. For grounded x-monotone curves, the same proof provides a better
bounding function: f(k) = k2. These results proved 25 years ago were not likely to be tight.
However, in spite of many efforts, no-one has managed to improve them or to show that they
are optimal.

1.3 Our results
The aim of the present paper is to fill this gap. We proved, much to our surprise, that the
order of magnitude of the last two bounds cannot be improved. In fact, in the case of grounded
x-monotone curves, we determined the exact value of the best bounding function for every
k ≥ 2. To the best of our knowledge, this is the first large family of non-perfect geometric
disjointness graphs, for which one can precisely determine the best bounding function.

I Theorem 1. Let G be the disjointness graph of a family of grounded x-monotone curves.
If ω(G) = k, then χ(G) ≤

(
k+1

2
)
.

I Theorem 2. For every positive integer k ≥ 2, there exists a family C of grounded x-
monotone curves such that if G is the disjointness graph of C, then ω(G) = k and χ(G) =(
k+1

2
)
.

It turns out that disjointness graphs of grounded x-monotone curves can be characterized
by two total orders defined on their vertex sets that satisfy some special properties. This
observation is the key idea behind the proof of the above two theorems.

The disjointness graph of any collection of x-monotone curves, each of which intersects a
given vertical line (the y-axis, say), is the intersection of two disjointness graphs of grounded
x-monotone curves. The methods used for proving Theorems 1 and 2 can be extended to
such disjointness graphs and yield sharp bounds.

I Theorem 3. Let G be the disjointness graph of a family C of x-monotone curves such
that all elements of C have nonempty intersection with a vertical line l. If ω(G) = k, then
χ(G) ≤ k+1

2
(
k+2

3
)
.

I Theorem 4. For every positive integer k ≥ 2, there exists a family C of x-monotone curves
such that all elements of C have nonempty intersection with a vertical line l, the disjointness
graph G of C satisfies ω(G) = k, and χ(G) = k+1

2
(
k+2

3
)
.

As we have mentioned before, according to [33, 26], k4 is a bounding function for
disjointness graphs of any family of x-monotone curves. Theorem 4 implies that the order of
magnitude of this bounding function is best possible. Actually, we can obtain a little more.

I Theorem 5. For any positive integer k, let f(k) denote the smallest m such that any
Kk+1-free disjointness graph of x-monotone curves can be properly colored with m colors.
Then we have

k + 1
2

(
k + 2

3

)
≤ f(k) ≤ k2

(
k + 1

2

)
.

Here the lower and upper bounds differ by a factor of less than 6, and there is some
hope that one can determine the exact value of f(k). The lower bound follows directly from
Theorem 4.

Our paper is organized as follows. In Section 2, we prove Theorem 1 and the upper bound
in Theorem 5. The existence of the graphs satisfying Theorem 2 is proved in Section 3, using
probabilistic techniques. The proofs of Theorems 3 and 4 are presented in Sections 4 and 5,
respectively. The last section contains open problems and concluding remarks.

SoCG 2019
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2 A bounding function for grounded curves – Proofs of Theorems 1
and 5

First, we establish Theorem 1. As usual, we denote the set {1, 2, . . . , n} by [n].
An ordered graph G< is a graph, whose vertex set is endowed with a total ordering <.

Ordered graphs are often more suitable for modelling geometric configurations than unordered
ones; see, e.g., [11, 31]. To model families of grounded x-monotone curves, we introduce a
class of ordered graphs.

I Definition 6. An ordered graph G< is called a semi-comparability graph, if it has
no 4 vertices a, b, c, d ∈ V (G<) such that a < b < c < d and ab, bc, cd ∈ E(G<), but
ac, bd 6∈ E(G<).

An unordered graph G is said to be a semi-comparability graph, if its vertex set has a
total ordering < such that G< is a semi-comparability graph.

Obviously, every comparability graph (that is, every graph whose edge set consists of all
comparable pairs of a partially ordered set) is a semi-comparability graph.

I Lemma 7. The disjointness graph of every family C of grounded x-monotone curves is a
semi-comparability graph.

Proof. Let G be the disjointness graph of C. Identify the vertices of G with the elements
of C. For any γ ∈ C, let (0, yγ) be the left endpoint of γ. Slightly perturbing the curves if
necessary, we can assume without loss of generality that no two yγs coincide. Let < be the
total ordering on V (G), according to which γ < γ′ if and only if yγ < yγ′ .

Suppose for contradiction that there exist 4 curves a, b, c, d such that a < b < c < d and
ab, bc, cd ∈ E(G), but ac, bd 6∈ E(G). Then a and c must intersect, which means that a, c,
and the ground line x = 0 enclose a region A. Since b does not intersect either of a or c, it
must lie in A. In order to intersect b, d has to cross c, which is a contradiction. J

By the dual of Dilworth’s theorem [7], also known as Mirsky’s theorem [29], comparability
graphs are perfect. Thus, any comparability graph G can be properly colored with ω(G)
colors. While not all semi-comparability graphs are perfect, they are χ-bounded.

I Lemma 8. For any semi-comparability graph G with ω(G) = k, we have χ(G) ≤
(
k+1

2
)
.

Proof. Fix an ordering < of V (G) such that G< is a semi-comparability graph. For every
v ∈ V (G), let f(v) denote the size of the largest clique with minimal element v. Then
f(v) ∈ [k]. For i = 1, . . . , k, let Vi = {v ∈ G : f(v) = i}.

The main observation is that G[Vi] is a partial order. Indeed, suppose to the contrary that
there exist 3 vertices a, b, c ∈ Vi such that a < b < c and ab, bc ∈ E(G), but ac 6∈ E(G). Let
C ⊂ V (G) be a clique of size i with minimal element c. If d ∈ C \ {c}, then b and d must be
joined by an edge, otherwise the quadruple a, b, c, d satisfies the conditions ab, bc, cd ∈ E(G)
and ac, bd 6∈ E(G). Thus, b is joined to every vertex in C by an edge, which means that
C ∪ {b} is a clique of size i+ 1 with minimal element b, contradicting our assumption that
b ∈ Vi.

Hence, every G[Vi] is a partial order. Using the fact that G[Vi] does not contain a clique
of size i+ 1, by Mirsky’s theorem [7] we obtain that χ(G[Vi]) ≤ i. Summing up for all i, we
get that χ(G) ≤

∑k
i=1 χ(G[Vi]) ≤

(
k+1

2
)
, as required. J

The combination of Lemmas 7 and 8 immediately implies Theorem 1.
Next, we prove the upper bound in Theorem 5.
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I Theorem 9. Let G be the disjointness graph of a collection of x-monotone curves with
ω(G) = k. Then we have χ(G) ≤ k2(k+1

2
)
.

Proof. Let C be a collection of x-monotone curves satisfying the conditions in the theorem.
For any γ ∈ C, let x(γ) denote the projection of γ to the x-axis. For α, β ∈ C, let α ≺ β if
min x(α) < min x(β) and max x(α) < max x(β).

Suppose that α and β are disjoint. Let α <1 β if α ≺ β and α is below β, that is, if
on every vertical line that intersects both α and β, the intersection point of α lies below
the intersection point of β. Let α <2 β if α ≺ β and β is below α. Clearly, <1 and <2 are
partial orders.

As ω(G) ≤ k, the size of the longest chains with respect to <1 and <2 is at most k.
Therefore, the vertices of G can be colored with k2 colors such that each color class is an
antichain in both <1 and <2.

It remains to show that each of these color classes can be properly colored with
(
k+1

2
)

colors. Let C′ ⊂ C such that no two elements of C′ are comparable by <1 or <2. Then, if
α, β ∈ C′, then either α and β intersect, or one of the intervals x(α) or x(β) contains the
other. In either case, x(α) and x(β) have a nonempty intersection, so any two elements of
{x(γ) : γ ∈ C′} intersect. Hence,

⋂
γ∈C′ x(γ) is nonempty, and there exists a vertical line l

that intersects every element of C′.
Let G′ denote the disjointness graph of C′. Order the elements of C′ with respect to

their intersections with l, from bottom to top. We claim that the resulting ordered graph
G′< is a semi-comparability graph. Indeed, suppose to the contrary that there are four
vertices a, b, c, d ∈ V (G′) such that a < b < c < d and ab, bc, cd ∈ E(G′), but ac, bd 6∈ E(G′).
Without loss of generality, suppose that the length of x(b) is larger than the length of x(c);
the other case can be handled similarly. As bc ∈ E(G′), we have x(c) ⊂ x(b) and b is below c,
so every vertical line intersecting c intersects b as well, and its intersection with b lies below
its intersection with c. Also, as ab ∈ E(G′), we have that a is below b. But then a and c
must be disjoint, contradicting the condition ac 6∈ E(G′).

Thus, we can apply Lemma 8 to conclude that G′ can be properly colored with
(
k+1

2
)

colors. This completes the proof. J

Let g(n) denote the maximal number m such that every collection of n convex sets in the
plane contains m elements that are either pairwise disjoint, or pairwise intersecting. Larman
et al. [26] proved that g(n) ≥ n1/5, while the best known upper bound, due to Kynčl [25] is
g(n) < nlog 8/ log 169 ≈ n0.405. Theorem 9 implies the following modest improvement on the
lower bound.

I Corollary 10. Every collection of n x-monotone curves (or convex sets) in the plane contains
((2 + o(1))n)1/5 ≈ 1.15n1/5 elements that are either pairwise disjoint or pairwise intersecting.

Proof. In every graph G on n vertices, we have α(G)χ(G) ≥ n. In view of Theorem 9, this
implies that if C is a collection of n x-monotone curves and G is the disjointness graph of C,
then we have

α(G)(ω(G))3ω(G) + 1
2 ≥ n.

Therefore, max{α(G), ω(G)} ≥ ((2 + o(1))n)1/5, as claimed. J

Many attempts were made to improve the order of magnitude of the lower bound on
g(n). It appeared to be conceivable to cover the disjointness graph G of any collection
of x-monotone curves with fewer than 4 comparability graphs, which would have yielded
χ(G) ≤ (ω(G))3 and g(n) ≥ n1/4. These hopes are shattered by Theorem 4.

SoCG 2019
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3 Magical graphs – Proof of Theorem 2

The converse of Lemma 7 is not true: not every semi-comparability graph can be realized
as the disjointness graph of a collection of grounded x-monotone curves. See Section 6, for
further discussion. To characterize such disjointness graphs, we need to introduce a new
family of graphs.

A graph G<1,<2 with two total orderings, <1 and <2, on its vertex set is called double-
ordered. If the orderings <1, <2 are clear from the context, we shall write G instead of G<1,<2 .

I Definition 11. A double-ordered graph G<1,<2 is called magical if for any three distinct
vertices a, b, c ∈ V (G) with a <1 b <1 c, if ab, bc ∈ E(G) and ac 6∈ E(G), then b <2 a and
b <2 c.

A graph G is said to be magical, if there exist two total orders <1, <2 on V (G) such that
G<1,<2 is magical. In this case, we say that the pair (<1, <2) witnesses G.

It easily follows from the above definition that if G<1,<2 is magical, then G<1 is a
semi-comparability graph.

I Lemma 12. If C is a collection of grounded x-monotone curves, then the disjointness
graph of C is magical.

Proof. Let G be the disjointness graph of C, and identify the vertices of G with the elements
of C. For any γ ∈ C, let (0, yγ) be the endpoint of γ lying on the vertical axis {x = 0}, and
let (xγ , y′γ) be the other endpoint of γ.

Define the total orderings <1 and <2 on V (G), as follows. Let γ <1 γ
′ if and only if

yγ < yγ′ , and let γ <2 γ
′ if and only if xγ < xγ′ .

Suppose that for a triple a, b, c ∈ C we have that a <1 b <1 c and ab, bc ∈ E(G), but
ac 6∈ E(G). Then a and c intersect. Hence, a, c, and the ground curve {x = 0} enclose a
region A, and b ⊂ A. This implies that the x-coordinate of the right endpoint of b is smaller
than the x-coordinates of the right endpoints of a and c. Therefore, we have b <2 a and
b <2 c, showing that G is magical. J

I Lemma 13. Let G be a magical graph. Then there exists a family C of grounded x-monotone
curves such that the disjointness graph of C is isomorphic to G.

Proof. Let n be the number of vertices of G. Let <1 and <2 be total orderings on V (G)
witnessing that G is magical. For any vertex v ∈ V (G), let y(v) ∈ [n] denote the position of
v in the ordering <1, and let x(v) denote the position of v in the ordering <2.

For any v ∈ V (G), we define an x-monotone curve Cv, which will be composed of
x(v) smaller x-monotone pieces, Cv(1), . . . , Cv(x(v)), such that Cv(i) starts at the point
(i− 1, y(v)), and ends at the point (i, y(v)). The pieces Cv(i) are defined as follows.

Let ui ∈ V (G) be such that x(ui) = i. If ui = v or there is an edge between ui and v,
then let Cv(i) be the horizontal line segment connecting (i− 1, y(v)) and (i, y(v)). Otherwise,
let Cv(i) be the polygonal curve consisting of two segments whose three vertices are

(i− 1, y(v)) ,
(
i− 2

3 , y(ui)−
1
10 + y(v)

10n

)
, (i, y(v)) if y(ui) < y(v),

or

(i− 1, y(v)) ,
(
i− 1

3 , y(ui) + y(v)
10n

)
, (i, y(v)) if y(ui) > y(v).
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(i− 1, y(v)) (i, y(v))

(i− 1, y(w)) (i, y(w))
Cw(i)

Cv(i)

Cui
(i)

(i− 1, y(ui)) (i, y(ui))

Figure 1 An illustration of the curves Cv(i) in the proof of Lemma 13.

See Figure 1 for an illustration. One can easily check the following property of the curves
{Cv(i)}v∈V (G). If v, w ∈ V (G) are distinct vertices such that Cv(i) and Cw(i) intersect, then
(i) x(v), x(w) ≥ i.
(ii) Exactly one of v and w is joined to ui in G. Without loss of generality, assume that it

is w.
(iii) Then y(ui) ≤ y(w) < y(v) or y(v) < y(w) ≤ y(ui).
Now we show that G is the disjointness graph of C = {Cv : v ∈ V (G)}.

If v and w are not joined by an edge in G, then Cv(min{x(v), x(w)}) and Cw(min{x(v),
x(w)}) intersect by definition, so Cv and Cw have a nonempty intersection.

Our task is reduced to showing that if v and w are joined by an edge, then Cv and Cw
do not intersect. Suppose to the contrary that Cv and Cw intersect. Then there exists
i ∈ [min{x(v), x(w)} − 1] such that Cv(i) and Cw(i) intersect. Then either y(ui) ≤ y(v), y(w)
or y(ui) ≥ y(v), y(w). Without loss of generality, let y(ui) ≤ y(v), y(w), the other case can
be handled in a similar manner. Again, without loss of generality, we can assume that
y(w) < y(v). Then Cv(i) intersects Cui

(i), and Cw(i) is disjoint from Cui
(i), or equivalently,

uiw ∈ E(G), but uiv 6∈ E(G). However, this is impossible, because wv ∈ E(G), so the triple
ui, w, v would contradict the assumption that G is magical. J

By Lemma 13, in order to prove Theorem 2, it is enough to verify the corresponding
statement for magical graphs. In other words, we have to prove the following.

I Theorem 14. For every positive integer k ≥ 2, there exists a magical graph G such that
ω(G) = k and χ(G) =

(
k+1

2
)
.

SoCG 2019
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x1

xr<1

<2

Figure 2 A mountain path. The dotted line shows the minimum of x1 and xr in <2, so all the
other points of the path must be above it.

The rest of this section is devoted to the proof of this theorem. The proof is probabilistic
and is inspired by a construction of Korándi and Tomon [18]. We shall consider a random
double-ordered graph with certain parameters, and show that the smallest magical graph
covering its edges meets the requirements in Theorem 14. To accomplish this plan, we
first examine how the smallest magical graph covering the edges of a given double-ordered
graph looks.

Let G<1,<2 be a double-ordered graph. A sequence of vertices x1, . . . , xr ∈ V (G) is said
to form a mountain-path, if x1 <1 · · · <1 xr, xixi+1 ∈ E(G) for every i, where 1 ≤ i < r,
and either x1 <2 x2, . . . , xr−1 or xr <2 x2, . . . , xr−1. See Figure 2.

I Lemma 15. Let G<1,<2 be a double-ordered graph. There exists a unique minimal graph
G′<1,<2

on V (G) such that E(G) ⊂ E(G′) and G′<1,<2
is magical. Moreover, if u, v ∈ V (G),

then u and v are joined by an edge in G′ if and only if there exists a mountain-path connecting
u and v.

Proof. LetH = H<1,<2 be any magical graph on the vertex set V (G) such that E(G) ⊆ E(H).
Let x1, . . . , xr be a mountain-path in G with x1 <2 xr. Using the definition of magical
graphs, it is easy to prove by induction on i that x1 and xi are joined by an edge in E(H),
for every i > 1. Therefore, we have x1xr ∈ E(H). (We can proceed similarly if xr <2 x1.)

With a slight abuse of notation, from now on let H = H<1,<2 denote the double-
ordered graph on V (G), in which u and v are joined by an edge if and only if there exists
a mountain-path connecting u to v. We will show that H is magical, that is, for every
triple u, v, w ∈ V (G), the following holds: if u <1 v <1 w such that uv, vw ∈ E(H), and
u <2 v or w <2 v, then uw ∈ E(H). As uv, vw ∈ E(H), there exist two mountain-paths
u = x1, x2, . . . , xr = v and v = xr, xr+1, . . . , xs = w. By the assumption that u <2 v or
w <2 v, the path u = x1, . . . , xs = w is a mountain-path as well, so uw ∈ E(H). J

For the rest of the discussion, we need to introduce a few parameters that depend on k.
Set λ = 1/k2, t = 100k2 log k, h = 3tk2

k2k2+8, n = 9h and p = t/n.
Let S = {(a, b) ∈ [k]2 : a+ b ≥ k+ 1}. For each (a, b) ∈ S, let Aa,b be a set of n arbitrary

points in the interior of the unit square [ak+ b, ak+ b+ 1]× [bk+ a, bk+ a+ 1] with distinct
x and y coordinates, see Figure 3. Let V =

⋃
(a,b)∈S Aa,b, and let <1 and <2 be the total

orderings on V induced by the x and y coordinates of the elements of V , respectively. A pair
of vertices {u, v} in V is called available if u ∈ Aa,b, v ∈ Aa′,b′ with (a, b) 6= (a′, b′).

Let G0 denote the random graph on V in which every available pair of vertices is connected
by an edge with probability p, independently from each other. G0 does not have any edge
whose endpoints belong to the same set Aa,b. Let G′<1,<2

be the minimal magical graph on
V containing all edges of G0.
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<1

<2

A1,4

A2,3

A2,4

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

u

v

w

Puv

Puw

Pvw

Figure 3 An illustration of the sets Aa,b for k = 4, and a hole (u, v, w) which induces a triangle
in G′.

B Claim 16. With probability at least 2/3, G′ has no independent set larger than (1 + λ)n.

Proof. As G0 is a subgraph of G′, it is enough to show that G0 has no independent set of
size greater than (1 + λ)n, with probability at least 2/3.

Let I ⊂ V such that |I| > (1 + λ)n. Then there are at least λn2/2 available pairs of
vertices, whose both endpoints belong to I. Indeed, if u ∈ Aa,b, then {u, v} is available for
every v ∈ (I \Aa,b), so there are at least |I \Aa,b| ≥ λn available pairs containing u. Hence,
the total number of available pairs in I is at least |I|λn/2 > λn2/2.

Thus, the probability that I is an independent set in G0 is at most

(1− p)λn
2/2 < e−pλn

2/2 = e−tλn/2.

As the number of (1 + λ)n-sized subsets of V is(
|V |

(1 + λ)n

)
<

(
e|V |

(1 + λ)n

)(1+λ)n
< (ek2)(1+λ)n,

the probability that there is a (1 + λ)n-sized independent set is less than

(ek2)(1+λ)ne−tλn/2 = e(1+2 log k)(1+λ)n−tλn/2 < 1/3. C

A triple (u, v, w) ∈ V 3 is said to form a hole, if u <1 v <1 w and v <2 u,w. Recall that
h = 3tk2

k2k2+8.

B Claim 17. Let N be the number of holes in V that induce a triangle in G′. Then E(N) < h.

Proof. Let (u, v, w) be a hole, and let us bound the probability that u, v, w induce a triangle
in G′. Suppose that u ∈ Aa1,b1 , v ∈ Aa2,b2 and w ∈ Aa3,b3 . We can assume that the pairs
(a1, b1), (a2, b2), (a3, b3) are distinct, otherwise u, v, w cannot induce a triangle.

If uv, vw, uw ∈ E(G′), then there exist three mountain-paths, Pu,v, Pv,w and Pu,w, with
endpoints {u, v}, {v, w} and {u,w}, respectively. See Figure 3. Note that each of these
paths intersects every Aa,b in at most one vertex. As u <1 v <1 w, the only vertex in the
intersection of Puv and Pvw is v. Moreover, Puw cannot contain v as v <2 u and v <2 w.
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Consider the graph P = Puv ∪ Pvw ∪ Puw. It is a connected graph, but not a tree,
because there are two distinct paths between u and w: Puv ∪ Pvw and Puw. Hence, we have
|E(P )| ≥ |V (P )|. Let P denote the set of all such graphs P that appear in G0 with positive
probability. Then

P({u, v, w} induces a triangle in G′) = P(P is a subgraph of G0 for some P ∈ P)

≤
∑
P∈P

P(P is a subgraph of G0).

For a fixed P ∈ P, every edge of P is present in G0 independently with probability p.
Hence, the probability that P is a subgraph of G0 is p|E(P )|, which is at most p|V (P )|. The
number of graphs in P with exactly m vertices is at most

( |V |
m−3

)
< (k2n)m−3, as each member

of P contains the vertices u, v, w. Finally, every member of P has at most 3|S| ≤ 3k2 vertices,
so we can write

∑
P∈P

P(P is a subgraph of G0) ≤
3k2∑
m=3

pm(k2n)m−3 < 3tk
2
k2k2+2n−3.

Since the number of holes in V is at most
(|V |

3
)
< |V |3 < k6n3, we obtain

E(N) < 3tk
2
k2k2+8 = h. C

Applying Markov’s inequality, the probability that V contains more than 3h holes that
induce a triangle in G′ is at most 1/3. Hence, there exists a magical graph G′ on V such
that G′ has no independent set of size (1 + λ)n, and G′ contains at most 3h triangles whose
vertices form a hole. By deleting a vertex of each such hole in G′, we obtain a magical graph
G with at least |S|n− 3h vertices, which has no triangle whose vertices form a hole, and no
independent set of size (1 + λ)n.

First, we show that χ(G) ≥ |S| =
(
k+1

2
)
. Indeed, if χ(G) ≤ |S| − 1, then G contains an

independent set of size

|V (G)|
|S| − 1 ≥

|S|n− 3h
|S| − 1 =

(
1 + 1
|S| − 1

)
n− 3h
|S| − 1 > (1 + λ)n,

contradiction.
It remains to prove that ω(G) = k. Clearly, ω(G) ≥ k, otherwise, by Lemma 8, we would

have χ(G) ≤
(
k
2
)
, contradicting the last paragraph. Thus, we have to show that G has no

clique of size k + 1. For this, we need the following observation.

B Claim 18. LetK be a subset of S that does not contain three points (a1, b1), (a2, b2), (a3, b3)
such that a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3. Then we have |K| ≤ k.

Proof. We call (a1, b1), (a2, b2), (a3, b3) a bad triple, if a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3.
Let S = Sk. We prove the claim by induction on k. For k = 1, the claim is trivial.

Suppose that k ≥ 2 and that the statement has already been verified for k−1. We distinguish
two cases.

Case 1: K contains at most 1 element from the column {(k, b) : b ∈ [k]}. Let

K ′ = {(a, b) : (a, b+ 1) ∈ K and a < k}.

Then |K ′| ≥ |K|−1 and K ′ ⊂ Sk−1 does not contain a bad triple. Thus, by the induction
hypothesis, we have |K ′| ≤ k − 1, which implies that |K| ≤ k.
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Case 2: K contains 2 distinct elements of the form (k, b) and (k, b′), where b < b′. Then K
cannot contain (a, k) for any a ∈ [k − 1], otherwise (a, k), (k, b), (k, b′) would be a bad
triple. Thus, K contains at most one element from the row {(a, k) : a ∈ [k]} (it might
contain (k, k)). Let

K ′ = {(a, b) : (a+ 1, b) ∈ K and b ≤ k − 1}.

Again, |K ′| ≥ |K| − 1 and K ′ ⊂ Sk−1 does not contain a bad triple. By the induction
hypothesis, we have |K ′| ≤ k − 1 and, hence, |K| ≤ k. C

Now we are in a position to finish the proof of Theorem 14. Let G denote the magical
graph obtained from G′ by deleting a vertex from each of its holes that form a triangle (see
right before Claim 18). Suppose that C ⊂ V is a clique in G. Then C does not contain a
hole and it intersects each Aa,b in at most one vertex. Let K = {(a, b) ⊂ S : Aa,b ∩ C 6= ∅}.
The condition that C does not contain a hole implies that K does not contain three points
(a1, b1), (a2, b2), (a3, b3) such that a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3. Hence, by Claim
18, we have |C| = |K| ≤ k. This completes the proof of Theorem 14 and, hence, the proof of
Theorem 2.

4 Bounding function for curves that intersect a vertical line–Proof of
Theorem 3

A triple-ordered graph is a graph G<1,<2,<3 with three total orders <1, <2, <3 on its vertex set.

I Definition 19. A triple-ordered graph G<1,<2,<3 is called double-magical, if there exist
two magical graphs G1

<1,<2
and G2

<1,<3
on V (G) such that E(G<1,<2,<3) = E(G1

<1,<2
) ∩

E(G2
<1,<3

). An unordered graph G is said to be double-magical, if there exist three total
orders <1, <2, <3 on V (G) such that the triple-ordered graph G<1,<2,<3 is double-magical.
We say that G is witnessed by (<1, <2, <3).

By Lemmas 12 and 13, it is not hard to characterize disjointness graphs of x-monotone
curves intersected by a vertical line.

I Lemma 20. Let C be a collection of x-monotone curves such that each member of C
intersects the vertical line l. Then the disjointness graph of C is double-magical.

Proof. Without loss of generality, let l = {x = 0}. For each γ ∈ C, let (−x−γ , y−γ ) be the left
endpoint of γ, let (0, yγ) be the intersection point of γ and l, and let (x+

γ , y
+
γ ) be the right

endpoint of γ. Also, let γ− = γ ∩ {x ≤ 0} and γ+ = γ ∩ {x ≥ 0}, and let C− = {γ− : γ ∈ C}
and C+ = {γ+ : γ ∈ C}. Then C+ is a collection of grounded curves, and C− is the reflection
of a collection of grounded curves to the line l.

Let G, G− and G+ be the disjointness graphs of C, C− and C+, respectively, such
that we identify γ, γ− and γ+ as the vertices of these graphs for every γ ∈ C. Then
E(G) = E(G−) ∩E(G+). Let <1 be the total ordering on C defined by γ <1 γ

′ if yγ < yγ′ ,
let <2 be the ordering defined by γ <2 γ

′ if x−γ < x−γ′ , and let <3 be the ordering defined
by γ <3 γ

′ if x+
γ < x+

γ′ . By Lemma 12, G−<1,<2 and G+
<1,<3 are magical, so G<1,<2,<3 is

double-magical. J

We can just as easily prove the converse of Lemma 20, using Lemma 13.

I Lemma 21. Let G be a double-magical graph. Then there exists a collection of curves C
such that each member of C has a nonempty intersection with the vertical line {x = 0}, and
the disjointness graph of C is isomorphic to G.
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Proof. Let (<1, <2, <3) be total orders on V (G) witnessing that G is double-magical, and
let G1

<1,<2
, G2

<1,<3
be two magical graphs on V (G) such that E(G) = E(G1) ∩ E(G2).

Let |V (G)| = n. By Lemma 13, there exist n grounded x-monotone curves γ+
1 , . . . , γ

+
n

such that γ+
i is contained in the nonnegative plane {x ≥ 0} with one endpoint at (0, i), the

disjointness graph of {γ+
1 , . . . , γ

+
n } is G1, and γ+

i corresponds to the i-th vertex of G1 in the
order <1. Also, there exist n x-monotone curves γ−1 , . . . , γ−n such that γ−i is contained in the
nonpositive plane {x ≤ 0} with one endpoint at (0, i), the disjointness graph of {γ−1 , . . . , γ−n }
is G2, and γ−i corresponds to the i-th vertex of G2 in the order <1. For i = 1, . . . , n, set
γi = γ−i ∪ γ

+
i , then the disjointness graph of C = {γi : i ∈ [n]} is isomorphic to G, and every

curve in G has a nonempty intersection with the vertical line {x = 0}. J

For any double-magical graph G = G<1,<2,<3 , define four partial orders ≺1,≺2,≺3,≺4
on V (G), as follows. For a, b ∈ V (G), let
(i) a ≺1 b if a <1 b, a <2 b, a <3 b, and ab ∈ E(G);
(ii) a ≺2 b if a <1 b, b <2 a, b <3 a, and ab ∈ E(G);
(iii) a ≺3 b if a <1 b, a <2 b, b <3 a, and ab ∈ E(G);
(iv) a ≺4 b if a <1 b, b <2 a, a <3 b, and ab ∈ E(G).

It follows easily from the definition of double-magical graphs that these are indeed partial
orders. Moreover, they satisfy the following conditions.
(1) If ab ∈ E(G), then a and b are comparable by precisely one of these 4 partial orders.
(2) For any a, b, c ∈ V (G) and i ∈ [4], if a ≺1 b and b ≺i c, then ac ∈ E(G).
(3) For any a, b, c ∈ V (G) and i ∈ [4], if a ≺i b and b ≺2 c, then ac ∈ E(G).

I Theorem 22. Let G be a double-magical graph. If ω(G) = k, then χ(G) ≤ k+1
2
(
k+2

3
)
.

Proof. Let <1, <2, <3 be total orders on V (G) witnessing G, and let ≺1,≺2,≺3,≺4 denote
the partial orders defined above. Clearly, there is no chain of length k + 1 with respect to
any of the partial orders ≺i, because that would contradict the assumption ω(G) = k.

For h = 1, . . . , k, let Sh denote the set of vertices v ∈ V (G) for which the size of a longest
≺1-chain with maximal element v is k − h + 1. Then the sets S1, . . . , Sk form a partition
of V (G), where each Sh is a ≺1-antichain that contains no clique of size h + 1. Indeed,
suppose that C ⊂ Sh induces a clique of size h+ 1 in G, and consider the smallest vertex
v ∈ C with respect to the order <1. There exists a ≺1-chain D of size k − h + 1 ending
at v. This implies that for every a ∈ D and b ∈ C, we have a ≺1 v and v ≺i b for some
i ∈ {2, 3, 4}. Then, by (2), we would have ab ∈ E(G). Hence, D ∪ C would induce a clique
of size k + 1, contradiction.

For h = 1, . . . , k and m = 1, . . . , h, let Sh,m denote the set of vertices in Sh for which
the largest ≺2-chain in Sh with smallest element v has size h −m + 1. As ω(G[Sh]) ≤ h,
the sets Sh,1, . . . , Sh,h are ≺1- and ≺2-antichains partitioning Sl. Further, Sh,m contains no
clique of size m+ 1. Otherwise, if C ⊂ Sh,m forms a clique of size m+ 1 in G, then consider
the largest vertex v ∈ C with respect to the order <1. There exists a ≺2-chain D of size
h−m+ 1 whose smallest element is v. Hence, for every a ∈ C and b ∈ D, we have a ≺i v
and v ≺2 b for some i ∈ {3, 4}, which implies, by (3), that ab ∈ E(G). Hence, C ∪D would
induce a clique of size h+ 1 in Sh, contradiction.

Thus, we obtained that Sh,m is a ≺1- and ≺2-antichain, which does not contain a clique
of size m+ 1. In particular, the size of the longest ≺3- and ≺4-chains in Sl,m is at most m.
This means that G[Sh,m] can be properly colored with m2 colors. Indeed, set the color of
v ∈ Sh,m to be φ(v) = (r, q), where r is the size of the largest ≺3-chain with smallest element
v, and q is the size of the largest ≺4-chain with smallest element v. Then φ : Sh,m → [m]2 is
a proper coloring of G[Sh,m].
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As Sh =
⋃h
m=1 Sh,m, we have

χ(G[Sh]) ≤
h∑

m=1
χ(G[Sh,m]) ≤

h∑
m=1

m2 = h(h+ 1)(2h+ 1)
6 .

Finally, since V (G) =
⋃k
h=1 Sh, we obtain

χ(G) ≤
k∑
h=1

χ(G[Sh]) ≤
k∑
h=1

h(h+ 1)(2h+ 1)
6 = k + 1

2

(
k + 2

3

)
. J

5 Construction of double-magical graphs–Proof of Theorem 4

In view of 21, to prove Theorem 4, it is enough to construct a double-magical graph with
the desired clique and chromatic numbers.

I Theorem 23. For every positive integer k ≥ 2, there exists a double-magical graph G
satisfying ω(G) = k and χ(G) = k+1

2
(
k+2

3
)
.

In the rest of this section, we prove this theorem. The proof of Lemma 22 reveals a lot
about the structure of double-magical graphs satisfying the properties of Theorem 23, if they
exist. To construct them, we use reverse engineering.

For any vector v ∈ Rd and any j ∈ [d], let v(j) denote the jth coordinate of v. The sign
vector of v ∈ Rd is the d-dimensional vector sg(v) with

sg(v)(i) =


1 if v(i) > 0,
−1 if v(i) < 0,
0 if v(i) = 0.

Let v1 = (1, 1, 1), v2 = (1,−1,−1), v3 = (1, 1,−1) and v4 = (1,−1, 1). For any
i ∈ [k]4, let

P (i) = k3i(1)v1 + k2i(2)v2 + ki(3)v3 + i(4)v4.

These k4 points have the useful property that if i 6= i′, then the relative position of P (i)
and P (i′) depends only on the smallest coordinate in which i and i′ differ. We refer to this
property as the LEX property (short for “lexicographic”), which is formally defined as follows.

LEX property. Let i, i′ ∈ [k]4 be such that i 6= i′, and let r be the smallest index such that
i(r) 6= i′(r). If i(r) > i′(r), then

sg(P (i)− P (i′)) = vr.

Let

S = {i ∈ [k]4 : i(1) + i(2) ≤ k + 1, i(2) ≥ i(3), and i(2) ≥ i(4)},

so that we have

|S| =
k∑
i=1

(k + 1− i)i2 = k + 1
2

(
k + 2

3

)
.

An ordered triple of points (u, v, w) ∈ R3×R3×R3 is called a hole if u(1) < v(1) < w(1),
and either v(2) < min{u(2), w(2)}, or v(3) < min{u(3), w(3)}.
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v1

v2

v3

v4

T1

T2

P (3, 1, 1, 1)

P (1, 1, 1, 1)

P (1, 2, 1, 1) P (1, 2, 2, 2)

P (2, 1, 1, 1)

P (2, 2, 1, 1)

Figure 4 An illustration of the points P (i) for i ∈ S, k = 3.

B Claim 24. Let H ⊂ S. If the set {P (i) : i ∈ H} does not contain a hole, then |H| ≤ k.

Proof. Let S = Sk. We prove this claim by induction on k. If k = 1, S contains one element,
so there is nothing to prove.

Suppose that k ≥ 2. Let T1 = {i ∈ S : i(1) = 1} and H1 = H ∩ T1. (See Figure 4 for an
illustration.) We distinguish two cases.

Case 1: |H1| ≤ 1. Define

H ′ = {(i1 − 1, i2, i3, i4) : (i1, i2, i3, i4) ∈ H \H1}.

Then H ′ ⊂ Sk−1 and H ′ does not contain a hole. Hence, we obtain |H ′| ≤ k − 1, by the
induction hypothesis. On the other hand, |H ′| ≥ |H| − 1, which yields that |H| ≤ k.

Case 2: |H1| ≥ 2. In this case, we must have H = H1. Otherwise, choose i, i′ ∈ H1,
j ∈ H \ H1, and let u = P (i), v = P (i′), and w = P (j). Assume without loss of
generality that u(1) < v(1). Then u(1) < v(1) < w(1), and by the LEX property we have
w(2) > max{u(2), v(2)} and w(3) > max{u(3), v(3)}. Therefore, if (u, v, w) is not a hole,
then we must have u(2) < v(2) < w(2) and u(3) < v(3) < w(3). However, this means
that sg(v − u) = (1, 1, 1) = v1, which contradicts the LEX property, as i(1) = i′(1).
Hence, we can assume that H = H1 ⊂ T1. Let T2 = {i ∈ S : i(1) = 1, i(2) = k} ⊂ T1 and
H2 = H ∩ T2. Again, we distinguish two subcases.
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Subcase 1: |H2| ≤ 1. Define H ′ = H \H2. Then H ′ ⊂ Sk−1 and H ′ does not contain a
hole, which yields, by the induction hypothesis, that |H ′| ≤ k − 1. On the other hand,
|H ′| ≥ |H| − 1, so |H| ≤ k.

Subcase 2: |H2| ≥ 2. In this case, we show that H = H2. Otherwise, let i, i′ ∈ H2,
j ∈ H \ H2, and u = P (j), v = P (i) and w = P (i′). Assume without loss of
generality that v(1) < w(1). Then u(1) < v(1) < w(1), u(2) > max{v(2), w(2)},
and u(3) > max{v(3), w(3)}, by the LEX property. Thus, (u, v, w) is a hole, unless
u(2) > v(2) > w(2) and u(3) > v(3) > w(3), which would mean that the sg(w − v) =
(1,−1,−1) = v2. However, this contradicts the LEX property, because i(2) = i′(2).
Hence, we can suppose that H = H2 ⊂ T2. Here, T2 is partitioned into k sets
U1, . . . , Uk, where Ul = {(1, k, l,m) : m = 1, . . . , k} for l = 1, . . . , k. Note that |Ul| = k.
We show that H is either completely contained in one of the sets Ul, or H intersects
each of U1, . . . , Uk in at most one element. In either case, we get |H| ≤ k. Suppose
to the contrary that there exists l 6= l′ and three elements i, i′ ∈ Ul ∩H, j ∈ Ul′ ∩H.
Let u = P (i), v = P (i′), and w = P (j). Without loss of generality, assume that
u(1) < v(1). Now there are two cases depending on the order of l and l′. If l < l′, then
by the LEX property u(1) < v(1) < w(1), v(2) < u(2) < w(2), and w(3) < u(3) < v(3),
so (u, v, w) is a hole. If l′ < l, then w(1) < u(1) < v(1), w(2) < v(2) < u(2), and
u(3) < v(3) < w(3), so (w, u, v) is a hole. C

The rest of the proof of Theorem 23 is very similar to that of the proof of Theorem 14.
We omit its proof here.

6 Concluding remarks

We proved that the best χ-bounding function for the family of disjointness graphs of x-
monotone curves satisfies f(k) = Θ(k4). What can we say about the chromatic number
of Kk-free families of disjointness graphs of segments or convex sets? For both of these
families, the best known upper bound on the chromatic number is also O(k4), but there are
no matching lower bounds.
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