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Abstract
In this paper we describe a fully-dynamic data structure for the planar point location problem in
the external memory model. Our data structure supports queries in O(logB n(log logB n)3)) I/Os
and updates in O(logB n(log logB n)2)) amortized I/Os, where n is the number of segments in the
subdivision and B is the block size. This is the first dynamic data structure with almost-optimal query
cost. For comparison all previously known results for this problem require O(log2

B n) I/Os to answer
queries. Our result almost matches the best known upper bound in the internal-memory model.
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1 Introduction

Planar point location is a classical computational geometry problem with a number of
important applications. In this problem we keep a polygonal subdivision Π of the two-
dimensional plane in a data structure; for an arbitrary query point q, we must be able to find
the face of Π that contains q. In this paper we study the dynamic version of this problem in
the external memory model. We show that a planar subdivision can be maintained under
insertions and deletions of edges, so that the cost of queries and updates is close to O(logB n),
where n is the number of segments in the subdivision and B is the block size.

Planar point location problem was studied extensively in different computational mod-
els. Dynamic internal-memory data structures for general subdivisions were described by
Bentley [11], Cheng and Janardan [16], Baumgarten et al. [9], Arge et al. [3], and Chan
and Nekrich [13]. Table 1 lists previous results. We did not include in this table many
other results for special cases of the point location problem, such as the data structures
for monotone, convex, and orthogonal subdivisions, e.g., [25, 26, 18, 17, 21, 20, 14]. The
currently best data structure [13] achieves1 O(logn) query time and O(log1+ε n) update
time or O(log1+ε n) query time and O(logn) update time; the best query-update trade-off
described in [13] is O(logn log logn) randomized query time and O(logn log logn) update
time. See Table 1.

1 In this paper logn denotes the binary logarithm of n when the logarithm base is not specified.
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52:2 Dynamic Point Location in External Memory

Table 1 Previous results on dynamic planar point location in internal memory. Entries marked †
and ‡ require amortization and (Las Vegas) randomization respectively, ε > 0 is an arbitrarily small
constant. Results marked ∗ are in the RAM model, all other results are in the pointer machine
model. Space usage is measured in words.

Reference Space Query Time Insertion Time Deletion Time
Bentley [11] n logn log2 n log2 n log2 n

Cheng–Janardan [16] n log2 n logn logn
Baumgarten et al. [9] n logn log logn logn log logn log2 n †

Arge et al. [3] n logn log1+ε n log2+ε n †

Arge et al. [3] n logn logn(log logn)1+ε log2 n/ log logn †‡∗

Chan and Nekrich [13] n logn(log logn)2 logn log logn logn log logn
Chan and Nekrich [13] n logn log1+ε n log1+ε n

Chan and Nekrich [13] n logn log1+ε n logn(log logn)1+ε ∗

Chan and Nekrich [13] n log1+ε n logn logn
Chan and Nekrich [13] n logn log logn logn log logn logn log logn ‡∗

In the external memory model [2] the data can be stored in the internal memory of size
M or on the external disk. Arithmetic operations can be performed only on data in the
internal memory. Every input/output operation (I/O) either reads a block of B contiguous
words from the disk into the internal memory or writes B words from the internal memory
into disk. Measures of efficiency in this model are the number of I/Os needed to solve a
problem and the amount of used disk space.

Goodrich et al. [22] presented a linear-space static external data structure for point
location in a monotone subdivision with O(logB n) query cost. Arge et al. [5] designed
a data structure for a general subdivison with the same query cost. Data structures for
answering a batch of point location queries were considered in [22] and [8]. Only three
external-memory results are known for the dynamic case. The data structure of Agarwal,
Arge, Brodal, and Vitter [1] supports queries on monotone subdivisions in O(log2

B n) I/Os
and updates in O(log2

B n) I/Os amortized. Arge and Vahrenhold [7] considered the case of
general subdivisons; they retain the same cost for queries and insertions as [1] and reduce the
deletion cost to O(logB n). Arge, Brodal, and Rao [4] reduced the insertion cost to O(logB n).
Thus all previous dynamic data structures did not break O(log2

B n) query cost barrier. For
comparison the first internal-memory data structure with query time close to logarithmic
was presented by Baumgarten et al [9] in 1994. See Table 2. All previous data structures use
O(n) words of space (or O(n/B) blocks of B words2).

In this paper we show that it is possible to break the O(log2
B n) barrier for the dynamic

point location problem. Our data structure answers queries in O(logB n(log logB n)3) I/Os,
supports updates in O(logB n(log logB n)2) I/Os amortized, and uses linear space. Thus we
achieve close to logarithmic query cost and a query-update trade-off almost matching the
state-of-the-art upper bounds in the internal memory model. Our result is within double-
logarithmic factors from optimal. Additionally we describe a data structure that supports
point location queries in an orthogonal subdivision with O(logB n log logB n) query cost and
O(logB n log logB n) amortized update cost. The computational model used in this paper is
the standard external memory model [2].

2 Space usage of external-memory data structures is frequently measured in disk blocks of B words. In
this paper we measure the space usage in words. But the space usage of O(n) words is equivalent to
O(n/B) blocks of space.
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Table 2 Previous and new results on dynamic planar point location in external memory. G
denotes most general subdivisions, M denotes monotone subdivision, and O denotes orthogonal
subdivision. Space usage is measured in words and update cost is amortized.

Reference Space Query Cost Insertion Cost Deletion Cost
Agarwal et al [1] n log2

B n log2
B n log2

B n M
Arge and Vahrenhold [7] n log2

B n log2
B n logB n G

Arge et al [4] n log2
B n logB n logB n G

This paper n logB n(log logB n)3 logB n(log logB n)2 logB n(log logB n)2 G
This paper n logB n log logB n logB n log logB n logB n log logB n O

2 Overview

2.1 Overall Structure
As in the previous works, we concentrate on answering vertical ray shooting queries. The
successor segment of a point q in a set S of non-intersecting segments is the first segment
that is hit by a ray emanating from q in the +y-direction. Symmetrically, the predecessor
segment of q in S is the first segment hit by a ray emanating from q in the −y direction.
A vertical ray shooting query for a point q on a set of segments S asks for the successor
segment of q in S. If we know the successor segment or the predecessor segment of q among
all segments of a subdivision Π, then we can answer a point location query on Π (i.e., identify
the face of Π containing q) in O(logB n) I/Os [7]. In the rest of this paper we will show how
to answer vertical ray shooting queries on a dynamic set of non-intersecting segments.

Our base data structure is a variant of the segment tree. Let S be a set of segments. We
store a tree T on x-coordinates of segment endpoints. Every leaf contains Θ(B) segment
endpoints and every internal node has r = Θ(Bδ) children for δ = 1/8. Thus the height of T
is O(logB n). We associate a vertical slab with every node u of T . The slab of the root node
is [xmin, xmax]× R, where xmin and xmax denote the x-coordinates of the leftmost and the
rightmost segment endpoints. The slab of an internal node u is divided into Θ(Bδ) slabs
that correspond to the children of u. A segment s spans the slab of a node u (or simply
spans u) if it crosses its vertical boundaries.

A segment s is assigned to an internal node u, if s spans at least one child ui of u but
does not span u. We assign s to a leaf node ` if at least one endpoint of s is stored in `. All
segments assigned to a node u are trimmed to slab boundaries of children and stored in a
multi-slab data structure C(u): Suppose that a segment s is assigned to u and it spans the
children uf , . . ., ul of u. Then we store the segment su = [pf , pl] in C(u), where pf is the
point where s intersect the left slab boundary of uf and pl is the point where s intersects
the right boundary of ul. See Fig. 1. Each segment is assigned to O(logB n) nodes of T .

In order to answer a vertical ray shooting query for a point q, we identify the leaf ` such
that the slab of ` contains q. Then we visit all nodes u on the path π` from the root of T to
` and answer vertical ray shooting queries in multi-slab structures C(u).

2.2 Our Approach
Thus our goal is to answer O(logB n) ray shooting queries in multi-slab structures along a
path in the segment tree T with as few I/Os as possible. Segments stored in a multi-slab
are not comparable in the general case; see Fig. 2. It is possible to impose a total order ≺
on all segments in the following sense: let l be a vertical line that intersects segments s1
and s2; if the intersection of l with s1 is above the intersection of l with s2, then s2 ≺ s1.

SoCG 2019
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Figure 1 Segment s is assigned to node u. The trimmed segment [pf , pl] is stored in C(u).
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Figure 2 Left: example of segment order in a multi-slab; s1≺ s2≺ s3≺ s4≺ s5≺ s6≺ s7≺ s8≺ s9.
Right: a deletion and an insertion of one new segment in a multi-slab changes the order of segments
to s7≺s8≺s9≺s0≺s1≺s2≺s3≺s4≺s5.

We can find such a total order in O((K/B) logM/BK) I/Os, where K is the number of
segments [8, Lemma 3]. But this ordering is not stable under updates: even a single deletion
and a single insertion can lead to significant changes in the order of segments. See Fig. 2.
Therefore it is hard to apply standard techniques, such as fractional cascading [15, 23],
in order to speed-up ray shooting queries. Previous external-memory solutions in [1, 4]
essentially perform O(logB n) independent searches in the nodes of a segment tree or an
interval tree in order to answer a query. Each search takes O(logB n) I/Os, hence the total
query cost is O(log2

B n).
Internal memory data structures achieve O(logn) query cost using dynamic fractional

cascading [15, 23]. Essentially the difference with external memory is as follows: since we aim
for O(log2 n) query cost in internal memory, we can afford to use base tree T with small node
degree. In this special case the segments stored in sets C(u), u ∈ T , can be ordered resp.
divided into a small number of ordered sets. When the order of segments in C(u) is known,
we can apply the fractional cascading technique [15, 23] to speed up queries. Unfortunately
dynamic fractional cascading does not work in the case when the total order of segments in
C(u) is not known. Hence we cannot use previous internal memory solutions of the point
location problem [16, 9, 3, 13] to decrease the query cost in external memory.

In this paper we propose a different approach. Searching in a multi-slab structure C(u)
is based on a weighted search among segments of C(u). Weights of segments are chosen
in such way that the total cost of searching in all multi-slab structures along a path π is
logarithmic. We also use fractional cascading, but this technique plays an auxiliary role: we
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apply fractional cascading to compute the weights of segments and to navigate between the
tree nodes. Interestingly, fractional cascading is usually combined with the union-split-find
data structure, which is not used in our construction.

This paper is structured as follows. In Section 3 we show how our new technique, that
will be henceforth called weighted telescoping search, can be used to solve the static vertical
ray shooting problem. Next we turn to the dynamic case. In our exposition we assume, for
simplicity, that the set of segment x-coordinates is fixed, i.e., the tree T does not change. We
also assume that the block size B is sufficiently large, B > log8 n. We show how our static
data structure from Section 3 can be modified to support insertions in Section 4. To maintain
the order of segments in a multi-slab under insertions we pursue the following strategy: when
a new segment is inserted into the multi-slab structure C(u), we split it into a number of
unit segments, such that every unit segment spans exactly one child of u. Unit segments
can be inserted into a multi-slab so that the order of other segments is not affected. The
number of unit segments per inserted segment can be large; however we can use buffering to
reduce the cost of updates.3 We need to make some further changes in our data structure in
order to support deletions; the fully-dynamic solution for large B is described in Section 5.
The main result of Section 5, summed up in Lemma 2, is the data structure that answers
queries in O(logB n log logB n) I/Os; insertions and deletions are supported in O(log2

B n) and
O(logB n) amortized I/Os respectively. We show how to reduce the cost of insertions in
Section 6. We address some missing technical details and consider the case of small block size
B in Section 7. In the full version of this paper [24] we will show how the space usage can be
reduced to linear and address some issues related to updates of bridge segments. The special
case of vertical ray shooting among horizontal segments is also considered in the full version.

3 Ray Shooting: Static Structure

In this section we show how the weighted telescoping search can be used to solve the static
point location problem. Let T be the tree, defined in Section 2.1, with node degree r = Bδ

for δ = 1/8. Let C(u) be the set of segments that span at least one child of u but do not
span u.

Augmented Catalogs. We keep augmented catalogs AC(u) ⊃ C(u) in every node u. Each
AC(u) is divided into subsets ACij(u) for 1 ≤ i ≤ j ≤ r; ACij(u) contains segments that
span children ui, . . ., uj of u and only those children. Augmented catalogs AC(u) satisfy the
following properties:
(i) If a segment s ∈ (AC(u) \ C(u)), then s ∈ C(v) for an ancestor v of u and s spans u.
(ii) Let Ei(u) = AC(u) ∩AC(ui) for a child ui of u. For any f and l, f ≤ i ≤ l, there are

at most d = O(r4) elements of ACfl(u) between any two consecutive elements of Ei(u).
(iii) If i 6= j, then Ei(u) ∩ Ej(u) = ∅.

Elements of Ei(u) for some 1 ≤ i ≤ r will be called down-bridges; elements of the
set UP (u) = AC(u) ∩ AC(par(u)), where par(u) denotes the parent node of u, are called
up-bridges. We will say that a sub-list of a catalog AC(u) bounded by two up-bridges is
a portion of AC(u). We refer to e.g., [3] or [13] for an explanation how we can construct

3 As a side remark, this approach works with weighted telescoping search, but it would not work with
the standard fractional cascading used in internal-memory solutions [16, 9, 3, 13]. The latter technique
relies on a union-split-find data structure (USF) and it is not known how to combine buffering with
USF.

SoCG 2019
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s7

s6

s5

s4
s3 s1

s2

s1

s2

Figure 3 Computation of segment weights. Left: segments s1 and s2 are down-bridges from E2(u).
Segments s3, s4, s5, s6, and s7 are in AC(u)\E2(u). For 3 ≤ j ≤ 7, weight2(sj , u) = W (s1, s2, u2)/d.
Right: portion of AC(u2) for the child u2 of u. W (s1, s2, u2) is equal to the total weight of all
segments between s1 and s2. If u2 is a leaf node, then W (s1, s2, u2) equals the total number of
segments in AC(u2) that are situated between s2 and s1.

and maintain AC(u). We assume in this section that all segments in every catalog AC(u)
are ordered. We can easily order a set ACfl(u) or any set of segments that cross the same
vertical line `: the order of segments is determined by (y-coordinates of) intersection points of
segments and `. Therefore we will speak of e.g., the largest/smallest segments in such a set.

Element weights. We assign the weight to each element of AC(u) in a bottom-to-top
manner: All segments in a set AC(`) for every leaf node ` are assigned weight 1. Consider
a segment s ∈ ACfl(u), i.e., a segment that spans children uf , . . ., ul of some internal
node u. For f ≤ i ≤ l let s1 denote the largest bridge in Ei(u) that is (strictly) smaller
than s and let s2 denote the smallest bridge in Ei(u) that is (strictly) larger than s; we
let W (s1, s2, ui) =

∑
s1<s′<s2

weight(s′, ui), where the sum is over all segments s′ ∈ AC(ui)
and weighti(s, u) = W (s1, s2, ui)/d. See Fig. 3 for an example. We set weight(s, u) =∑l
i=f weighti(s, u). We keep a weighted search tree for every portion P(u) of the list AC(u)

By a slight misuse of notation this tree will also be denoted by P(u). Thus every catalog
AC(u) is stored in a forest of weighted trees Pj(u) where every tree corresponds to a portion
of AC(u) 4. We also store a data structure supporting finger searches on AC(u).

Weighted Trees. Each weighted search tree is implemented as a biased (a, b)-tree with
parameters a = Bδ/2 and b = Bδ [10, 19]. The depth of a leaf λ in a biased (Bδ/2, Bδ)-tree
is bounded by O(logB(W/wλ)), where wλ is the weight of an element in the leaf λ and W
is the total weight of all elements in the tree. Every internal node ν has Bδ children and
every leaf holds Θ(B) segments5. In each internal node ν we keep B3δ segments ν.maxjk[i].
For every child νi of ν and for all j and k, 1 ≤ j ≤ k ≤ r, ν.maxjk[i] is the highest segment
from ACjk in the subtree of νi ; if there are no segments from ACjk in the subtree of νi,
then ν.maxjk[i] = NULL. Using values of ν.max we can find, for any node ν of the biased
search tree, the child νi of ν that holds the successor segment of the query point q. Hence

4 In most cases we will omit the subindex and will speak of a weighted tree P(u) because it will be clear
from the context what portion of AC(u) is used.

5 In the standard biased (a, b)-tree [10, 19], every leaf holds one element. But we can modify it so that
every leaf holds Θ(B) different elements (segments). The weight of a leaf λ is the total weight of all
segments stored in λ.
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s2

s3

s1

Figure 4 Segments in a group. Segments s1, s2, and s3 are stored in V2: s1 and s2 are the highest
and the lowest segments that span the second child u2; s3 is a bridge segment from E2(u).

we can find the smallest segment n(u) in a portion P(u) that is above a query point q in
O(logB(WP /ωn)) I/Os where WP is the total weight of all segments in P(u) and ωn is the
weight of n(u).

Additional Structures. When the segment n(u) is known, we will need to find the bridges
that are closest to n(u) in order to continue the search. We keep a list Vi(u) ⊆ AC(u) for
each node u and for every i, 1 ≤ i ≤ r. Vi(u) contains all segments of Ei(u) and some
additional segments chosen as follows: AC(u) is divided into groups so that each group
consists of Θ(r6) consecutive segments; the only exception is the last group in AC(u) that
contains O(r6) segments (here we use the fact that segments in AC(u) are ordered). We
choose the constant in such way that every group but the last one contains d · r2 segments.
If a group G contains a segment that spans ui, then we select the highest segment from G

that spans ui and the lowest segment from G that spans ui; we store both segments in Vi.
See Fig. 4. For every segment in Vi we also store a pointer to its group in AC(u). We keep
Vi in a B-tree that supports finger search queries.

Suppose that we know the successor segment n(u) of a query point q in AC(u). We can
find the successor segment bn(u) of q in Ei(u) using Vi: Let G denote the group that contains
n(u). We search in G for the segment bn(u) ≥ n(u) using finger search. If bn(u) is not in
G, we consider the highest segment s1 ∈ G that spans ui. By definition of AC(u), there are
at most dr2 segments between n(u) and bn(u). We can find bn(u) in O(logB(dr2)) = O(1)
I/Os by finger search on Vi using s1 as the finger. Using a similar procedure, we can find the
highest bridge segment bp(u) ≤ n(u) in Ei(u).

Queries. A vertical ray shooting query for a point q = (qx, qy) is answered as follows. Let `
denote the leaf such that the slab of ` contains q. We visit all nodes v0, v1, . . ., vh on the
root-to-leaf path π(`) where v0 is the root node and vh = `. We find the segment n(vi) in
every visited node, where n(vi) is the successor segment of q in AC(vi). Suppose that vi+1 is
the j-th child of vi; n(vi) spans the j-th child of vi. First we search for n(v0) in the weighted
tree of AC(v0). Next, using the list Vj , we identify the smallest bridge bn(v0) ∈ Ej(v0) such
that bn(v0) ≥ n(v0) and the largest bridge segment bp(v0) ∈ Ej(v0) such that bp(v0) ≤ n(v0).
The index j is chosen so that v1 is the j-th child of v0. We execute the same operations
in nodes v1, . . ., vh. When we are in a node vi we consider the portion P(vi) between
bridges bp(vi−1) and bn(vi−1); we search in the weighted tree of P(vi) for the successor
segment n(vi) of q. Then we identify the lowest bridge bn(vi) ≥ n(vi) and the highest bridge
bp(vi) ≤ n(vi). When all n(vi) are computed, we find the lowest segment n∗ among n(vi).
Since ∪hi=0AC(vi) = ∪hi=0C(vi), n∗ is the successor segment of a query point q.

SoCG 2019
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The cost of a ray shooting query can be estimated as follows. Let ωi denote the
weight of n(vi). Let Wi denote the total weight of all segments of P(vi) (we assume that
P(v0) = AC(v0)). Search for n(vi) in the weighted tree P(vi) takes O(logB(Wi/ωi)) I/Os.
By definition of weights, ωi ≥Wi+1/d. Hence

h∑
i=0

logB(Wi/ωi) = logBW0 +
h−1∑
i=0

(logBWi+1 − logB ωi)− logB ωh

≤ logB(W0/ωh) + 2(h+ 1) logB r.

We have ωh = 1 and we will show below that W0 ≤ n. Since r = Bδ, h = O(logB n) and
logB r = O(1). Hence the sum above can be bounded by O(logB n). When n(vi) is known,
we can find bp(vi) and bn(vi) in O(1) I/Os, as described above. Hence the total cost of
answering a query is O(logB n). Since every segment is stored in O(logB n) lists AC(u), the
total space usage is O(n logB n).

It remains to prove that W0 ≤ n. We will show by induction that the total weight of all
elements on every level of T is bounded by n: Every element in a leaf node has weight 1;
hence their total weight does not exceed n. Suppose that, for some k ≥ 1, the total weight of
all elements on level k− 1 does not exceed n. Consider an arbitrary node v on level k, let v1,
. . ., vr be the children of v, and let mi denote the total weight of elements in AC(vi). Every
element in AC(vi) contributes 1/d fraction of its weight to at most d different elements in
AC(v). Hence

∑
e∈AL(v) weighti(v) ≤ mi and the total weight of all elements in AC(v) does

not exceed
∑r
i=1 mi. Hence, for any level k ≥ 1, the total weight of AC(v) for all nodes v

on level k does not exceed n. Hence the total weight of AC(u0) for the root node u0 is also
bounded by n.

I Lemma 1. There exists an O(n logB n)-space static data structure that supports point
location queries on n non-intersecting segments in O(logB n) I/Os.

The result of Lemma 1 is not new. However we will show below that the data structure
described in this section can be dynamized.

4 Semi-Dynamic Ray Shooting for B ≥ log8 n: Main Idea

Now we turn to the dynamic problem. In Sections 4 and 5 we will assume6 that B ≥ log8 n.

Overview. The main challenge in dynamizing the static data structure from Section 3 is
the order of segments. Deletions and insertions of segments can lead to significant changes in
the segment order, as explained in Section 2. However segment insertions within a slab are
easy to handle in one special case. We will say that a segment s ∈ AC(u) is a unit segment
if s ∈ ACii(u) for some 1 ≤ i ≤ r. In other words a unit segment spans exactly one child
ui of u. Let Li(u) = ∪f≤i≤lACfl(u) denote the conceptual list of all segments that span ui.
When a unit segment s ∈ ACii(u) is inserted, we find the segments sp and sn that precede
and follow s in Li(u); we insert s at an arbitrary position in AC(u) so that sp < s < sn. It is
easy to see that the correct order of segments is maintained: the correct order is maintained
for the segments that span ui and other segments are not affected.

6 Probably a smaller power of log can be used, but we consider B ≥ log8 n to simplify the analysis.
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Figure 5 Example from Fig. 2 revisited. Left: original segment order s1≺s2≺s3≺s4≺s5≺s6≺
s7≺s8≺s9. Right: segment s6 is deleted, the new inserted segment s0 is split into unit segments.
The new segment order is e.g., s0,3≺s1≺s2≺s4≺s5≺s0,2≺s7≺s8≺s9≺s0,1. Thus new unit segments
are inserted, but the relative order of other segments does not change.

An arbitrary segment s that is to be inserted into AC(u) can be represented as Bδ unit
segments. See Fig. 5 for an example. However we cannot afford to spend Bδ operations for
an insertion. To solve this problem, we use bufferization: when a segment is inserted, we
split it into Bδ unit segments and insert them into a buffer B. A complete description of the
update procedure is given below.

Buffered Insertions. We distinguish between two categories of segments, old segments and
new segments. We know the total order in the set of old segments in the portion P(u) (and
in the list AC(u)). New segments are represented as a union of up to r unit segments. When
the number of new segments in a portion P(u) exceeds the threshold that will be specified
below, we re-build P(u): we compute the order of old and new segments and declare all
segments in P(u) to be old.

As explained in Section 3 every portion P(u) of AC(u) is stored in a biased search tree
data structure. Each node of P(u) has a buffer B(ν) that can store up to B3δ segments.
When a new segment is inserted into P(u), we split it into unit segments and add them to
the insertion buffer of νr, where νr is the root node of P(u). When the buffer of an internal
node ν is full, we flush it, i.e., we move all segments from B(ν) to buffers in the children of ν.
We keep values ν.maxkj [i], defined in Section 3, for all internal nodes ν. All ν.maxkl[·] and
all segments in B(ν) fit into one block of memory; hence we can flush the buffer of an internal
node in O(Bδ) I/Os. When the buffer of an internal node is flushed, we do not change the
shape of the tree. When the buffer B(λ) of a leaf node λ is full, we insert segments from
B(λ) into the set of segments stored in λ. If necessary we create a new leaf λ′ and update
the weights of λ and λ′. We can update the biased search tree P(u) in O(logn) time. We
also update data structures Vi for i = 1, . . ., r. Since a leaf node contains the segments from
at most two different groups, we can update all Vi in O(r) I/Os. The biased tree is updated
in O(logn) I/Os. The total amortized cost of a segment insertion into a portion P(u) is
O(1 + logn+r

B3δ + logB n
B2δ ) = O(1) because Bδ > logn.

When the number of new segments in P(u) is equal to nold/r, where nold is the number of
old segments in P(u), we rebuild P(u). Using the method from [8], we order all segments in
P(u) and update the biased tree. Sorting of segments takesO((nold/B) logM/B nold) = o(nold)
I/Os. We can re-build the weighted tree P(u) in O((nold/B

3δ) lognold) = o(nold) I/Os by
computing the weights of leaves and inserting the leaves into the new tree one-by-one.
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When a new segment s is inserted, we identify all nodes ui where s must be stored. For
every corresponding list AC(ui), we find the portion P(ui) where s must be stored. This
takes O(log2

B n) I/Os in total. Then we insert the trimmed segment s into each portion as
described above. The total insertion cost is O(log2

B n). Queries are supported in the same
way as in the static data structure described in Section 3. The only difference is that biased
tree nodes have associated buffers. Many technical aspects are not addressed in this section.
We fill in the missing details and provide the description of the data structure that also
supports deletions in Section 5.

5 Ray Shooting for B ≥ log8 n: Fully-Dynamic Structure

Now we give a complete description of the fully-dynamic data structure for vertical ray
shooting queries. Deletions are also implemented using bufferization: deleted segments are
inserted into deletion buffers D(ν) that are kept in the nodes of trees P(u). Deletion buffers
are processed similarly to the insertion buffers. There are, however, a number of details
that were not addressed in the previous section. When a new bridge Ei is inserted we need
to change weights for a number of segments. When the segment n(u) is found, we need to
find the bridges bp(u) and bn(u). The complete solution that addresses all these issues is
more involved. First, we apply weighted search only to segments from E(u) = ∪ri=1Ei(u).
We complete the search and find the successor segment in AC(u) using some auxiliary sets
stored in the nodes of P(u). Second, we use a special data structure to find the bridges bp(u)
and bn(u). We start by describing the changed structure of weighted trees P(u).

Segments stored in the leaves of P(u) are divided into weighted and unweighted segments.
Weighted segments are segments from E(u), i.e., weighted segments are used as down-bridges.
All other segments are unweighted. Every leaf contains Θ(r2) weighted segments. There are
at Ω(r2) and O(r4) unweighted segments between any two weighted segments. Hence the
total number of segments in a leaf is between Ω(r4) and O(r6). Only weighted segments in a
leaf have non-zero weights. Weights of weighted segments are computed in the same way
as explained in Section 3. Hence the weight of a leaf λ is the total weight of all weighted
segments in λ. The search for a successor of q in P(u) is organized in such way that it ends
in the leaf holding the successor of q in E(u). Then we can find the successor of q in AC(u)
using auxiliary data stored in the nodes of P(u).

We keep the following auxiliary sets and buffers in nodes ν of every weighted tree P(u).
Let ACfl(u, ν) denote the set of segments from ACfl(u) that are stored in leaf descendants
of a node ν.
(i) Sets Maxfl(ν) and Minfl(ν) for all f, l such that 1 ≤ f ≤ l ≤ r and for all nodes

ν. Maxfl(ν) (Minfl(ν)) contains min(r4, |ACfl(u, ν)|) highest (lowest) segments from
ACfl(u, ν). For every segment s in sets Maxfl(ν) and Minfl(ν) we record the index i
such that s ∈ Ei(u) (or NULL if s is not a bridge segment).

(ii) The set Nav(ν) for an internal node ν is the union of all sets Maxfl(νi) and Minfl(νi)
for all children νi of ν.

(iii) The set Max′fl(ν), 1 ≤ f ≤ l ≤ r contains highest segments from ACfl(u, ν) that are
not stored in any set Max′(u, µ) for an ancestor µ of ν. Either Max′fl(ν) holds at least
r4 and at most 2r4 segments or Max′fl(ν) holds less than r4 segments and Max′fl(ρ) for
all descendants ρ of ν are empty. In other words, Max′fl(·) are organized as external
priority search trees [6]. The set Min′fl(ν) is defined in the same way with respect to
the lowest segments. We use Max′ and Min′ to maintain sets Max and Min.

(iv) Finally we keep an insertion buffer B(ν) and a deletion buffer D(ν) in every node ν.
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Deletions. If an old segment s is deleted, we insert it into the deletion buffer D(νR) of the
root node νR. If a new segment s is deleted, we split s into O(r) unit segments and insert
them into D(νR). When one or more segments are inserted into D(νr), we also update sets
Maxfl(νR) and Minfl(νR). For any node ν ∈ P(u), when the number of segments in D(ν)
exceeds r3, we flush both D(ν) and B(ν) using the following procedure. First we identify
segments s ∈ B(ν) ∩ D(ν) and remove such s from both B(ν) and D(ν). Next we move
segments from B(ν) and D(ν) to buffers B(νi) and D(νi) in the children νi of ν. For every
child νi of ν, first we update setsMax′fl(νi) by removing segments from D(νi) (resp. inserting
segments from B(νi)) if necessary. Then we take care that the size of Max′fl(νi) is not too
small. If some Max′fl(νi) contains less than r4 segments and more than 0 segments, we move
up segments from the children of νi into νi, so that the total size of Max′fl(νi) becomes equal
to 2r4 or all segments are moved from the corresponding sets Max′fl(·) in the children of νi
into Max′fl(νi). We recursively update Max′fl(·) in each child of νi using the same procedure.

Next, we update sets Maxfl(νi). We compute Mfl = ∪Max′fl(µ) where the union is
taken over all proper ancestors µ of ν. Every segment in Maxfl(ν) is either from Max′fl(ν)
or from Max′fl(µ) for a proper ancestor µ of ν. Hence we can compute all Maxfl(νi) when
Mfl and Max′fl(νi) are known. Sets Min′fl(νi) and Minfl(νi) are updated in the same way.
Finally we update the set Nav(ν) by collecting segments from Maxfl(νi) and Minfl(νi).

All segments needed to re-compute sets after flushing buffers D(ν) and B(ν) fit into one
block of space. Hence we can compute the setM in O(logB n) = O(r) I/Os and all sets in
each node νi in O(1) I/Os. The set Nav(ν) is updated in O(r) I/Os. Since each node has
O(r) children, the total number of I/Os needed to flush a buffer is O(r). Every segment
can be divided into up to r unit segments and each unit segment can contribute to logB n
buffer flushes. Hence the total amortized cost per segment is O( r

2 logB n
r3 ) = O(1). We did

not yet take into account the cost of refilling the buffers Max′; using the analysis similar to
the analysis in [12, Section 4], we can estimate the cost of re-filling Max′ as O( logB n

r3 ) = o(1).
We do not store buffers in the leaf nodes. Let S(λ) be the set of segments kept in a leaf

λ and let SW (λ) be the set of weighted segments stored in λ. When we move segments from
B(ν) or D(ν) to its leaf child λ, we update S(λ) accordingly. This operation changes the
weight of λ. Hence we need to update the weighted tree P(u) in O(logn) I/Os. Sets Maxfl(·)
and Minfl(·) are also updated.

After an insertion of new segments into a leaf node, we may have to insert or remove
some bridges in Ei(u) for 1 ≤ i ≤ r. When we insert a new bridge b into Ei(u), we must
split some portion P(ui) into two new portions, P1(ui) and P2(ui). Additionally we must
change the weights of the bridge segments in Ei(u) that precede and follow b. The cost of
splitting P(ui) is O(logn). We also need O(logn) I/Os to change the weights of two neighbor
bridges. Hence the total cost of inserting a new bridge is O(logn). We insert a bridge at
most once per O(r) insertions into AC(u) because every new segment is divided into up to
r unit segments. We remove a bridge at most once after O(r) deletions. See [13] for the
description of the method to maintain bridges in catalogs AC(u). Thus the total amortized
cost incurred by a bridge insertion or deletion is O( logn

r ) = O(1).

Insertions. Insertions are executed in a similar way. A new inserted segment is split into
O(r) unit segments that are inserted into the buffer B(νR) for the root node νR. The buffers
and auxiliary sets are updated and flushed in the same way as in the case of deletions. When
the number of new segments in some portion P(u) is equal to nold/r, where nold is the
number of old segments in P(u), we rebuild P(u). As explained in Section 4, rebuilding of
P(u) incurs an amortized cost of o(1).
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Queries. The search for the successor segment n(u) in the weighted tree P(u) consists of
two stages. Suppose that the query point q is in the slab of the i-th child ui of u. First we
find the successor bn(u) of q in Ei(u) by searching in P(u). We traverse the path from the
root to the leaf λn holding bn(u). In every node ν we select its leftmost child νj , such that
Maxfl(νj) for some f ≤ i ≤ l contains a segment s that is above q and s is not deleted (i.e.,
s 6∈ D(µ) for all ancestors µ of ν). The size of each set Maxfl(νk) is larger than the total
size of all D(µ) in all ancestors µ of ν. Hence every Maxfl(νi) contains some elements that
are not deleted unless the set Cfl(u, νi) is empty. Therefore we select the correct child νj in
every node. Since P(u) is a biased search tree [10, 19], the total cost of finding the leaf λn is
bounded by O(log(WP /ωλ)) = O(log(WP /ωn)) where ωλ is the total weight of all segments
in λn and ωn ≤ ωλ is the weight of the bridge segment bn(u).

During the second stage we need to find the successor segment n(u) of q in AC(u).
The distance between n(u) and bn(u) in AC(u) can be arbitrarily large. Nevertheless n(u)
is stored in one of the sets Nav(µ) for some ancestor µ of λn. Suppose that n(u) is an
unweighted segment stored in a leaf λ′ of P(u) and let µ denote the lowest common ancestor
of λ and λ′. Let µk be the child of µ that is an ancestor of λ′. There are at most r4 segments
in ACfl(u) between n(u) and bn(u). Hence, n(u) is stored in the set Maxfl(µk). Hence, n(u)
is also stored in Nav(µ). We visit all ancestors µ of λn and compute D = ∪µD(µ). Then we
visit all ancestors one more time and find the successor of q in Nav(µ) \ D. The asymptotic
query cost remains the same because we only visit the nodes between λn and the root and
each node is visited a constant number of times.

We need to consider one additional special case. It is possible that there are no bridge
segments s ∈ Ei(u) stored in the leaves of P(u). In this case there are at most r2 segments
in ACfl(u) for every pair f, l, satisfying f ≤ i ≤ l, stored in the leaves of P(u). For each
portion P(u), if there are at most r2 segments in ACfl(u)∩P(u), we keep the list of all such
segments. All such lists fit into one block of memory. We also keep the list of indexes i, such
that Ei(u)∩P(u) is empty.Suppose that we need to find the successor of q and P(u)∩Ei(u)
is empty. Then we simply examine all segments in ACfl(u) ∩ P(u) for all f ≤ i ≤ l and find
the successor of q in O(1) I/Os.

When n(u) is known, we need to find bp(u) and bn(u), if bn(u) was not computed at
the previous step. It is not always possible to find these bridges using P(u) because bp(u)
and bn(u) can be outside of P(u). To this end, we use the data structure for colored
union-split-find problem on a list (list-CUSF) that will be described in the full version of
this paper [24]. We keep the list V (u) containing all down-bridges from Ei(u), for 1 ≤ i ≤ r,
and all up-bridges from UP (u). Each segment in e ∈ V (u) is associated to an interval; a
segment e ∈ Vi(u) is associated to an interval [i, i] and a segment from UP (u) is associated
to a dummy interval [−1,−1]. For any segment e ∈ V (u) we can find the preceding/following
segment associated to an interval [i, i] for any i, 1 ≤ i ≤ r, in O(log logB n) I/Os. Updates of
V (u) are supported in O(log logB n) I/Os. Since we insert or remove bridge segments once
per r2 updates, the amortized cost of maintaining the list-CUSF structure is O(1).

Summing up. By the same argument as in Section 3, weighted searches in all nodes take
O(logB n) I/Os in total. Additionally we spend (log logB n) I/Os in every node with a query
to list-CUSF. Thus the total query cost is O(logB n log logB n). When a segment is deleted,
we remove it from O(logB n) lists AC(u) and from secondary structures (weighted trees etc.)
in these nodes. The deletions take O(1) I/Os per node or O(logB n) I/Os in total. When a
segment is inserted, it must be inserted into O(logB n) lists AC(u). We first have to spend
O(logB n) I/Os to find the portion P(u) of each AC(u) where it must be stored. When P(u)
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is known, an insertion takes O(1) amortized I/Os as described above. The total cost of an
insertion is O(log2

B n) I/Os. Since every segment is stored in O(logB n) lists, the total space
is O(n logB n).

I Lemma 2. If B > log8 n, then there exists an O(n logB n) space data structure that
supports vertical ray shooting queries on a dynamic set of n non-intersecting segments in
O(logB n log logB n) I/Os. Insertions and deletions of segments are supported in O(log2

B n)
and O(logB n) amortized I/Os respectively.

6 Faster Insertions

When a new segment s is inserted into our data structure, we need to find the position
of s in O(logB n) lists AC(u) (to be precise, we need to know the portion P(u) of AC(u)
that contains s). When positions of s in AC(u) are known, we can finish the insertion in
O(logB n) I/Os. In order to speed-up insertions, we use the multi-colored segment tree
of Chan and Nekrich [13]. Segments in lists C(u) are assigned colors χ, so that the total
number of different colors is O(logH) where H = O(logB n) is the height of the segment
tree. Let Cχ(u) denote the set of segments of color χ in C(u). We apply the technique
of Sections 3- 5 to each color separately. That is, we create augmented lists ACχ(u) and
construct weighted search trees Pχ(u) for each color separately. The query cost is increased
by factor O(logH), the number of colors. The deletion cost is also increased by O(logH)
factor because we update the data structure for each color separately. When a new segment
s is inserted, we insert it into some lists ACχi(ui) where ui is the node such that s spans
ui but does not span its parent and χi is some color (the same segment can be assigned
different colors χi in different nodes ui). We can find the position of s in all ACχi(ui) with
O(logB n logH + H · tusf) = O(logB n log logB n) I/Os where tusf = O(log logB n) is the
query cost in a union-split-find data structure in the external memory model. See [13] for a
detailed description.

I Lemma 3. If B > log8 n, then there exists an O(n logB n) space data structure that
supports vertical ray shooting queries on a dynamic set of non-intersecting segments in
O(logB n(log logB n)2) I/Os. Insertions and deletions of segments can be supported in
O(logB n log logB n) amortized I/Os.

7 Missing Details

Using the method from [13] we can reduce the space usage of our data structure to linear
at the cost of increasing the query and update complexity by O(log logB n) factor.The
resulting data structure supports queries in O(logB n(log logB n)2) I/Os and updates in
O(logB n(log logB n)3) amortized I/Os. Details will be provided in the full version [24].

In our exposition we assumed for simplicity that the tree T does not change, i.e., the set
of x-coordinates of segment endpoints is fixed and known in advance. To support insertions
of new x-coordinate, we can replace the static tree T with a weight-balanced tree with node
degree Θ(r) = Θ(Bδ). We also assumed that the block size B is large, B > log8 n. If B ≤
log8 n, the linear-space internal memory data structure [13] achieves O(logn(log logn)2) =
O(logB n(log logB n)3) query cost and O(logn log logn) = O(logB n(log logB n)2) update
cost because logn = O(logB n log logB n) and log logn = O(log logB n) for B ≤ log8 n. Thus
we obtain our main result.
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I Theorem 4. There exists an O(n) space data structure that supports vertical ray shooting
queries on a dynamic set of n non-intersecting segments in O(logB n(log logB n)3) I/Os.
Insertions and deletions of segments are supported in O(logB n(log logB n)2) amortized I/Os.
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