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Abstract
We study a variant of the median problem for a collection of point sets in high dimensions. This
generalizes the geometric median as well as the (probabilistic) smallest enclosing ball (pSEB)
problems. Our main objective and motivation is to improve the previously best algorithm for the
pSEB problem by reducing its exponential dependence on the dimension to linear. This is achieved
via a novel combination of sampling techniques for clustering problems in metric spaces with the
framework of stochastic subgradient descent. As a result, the algorithm becomes applicable to
shape fitting problems in Hilbert spaces of unbounded dimension via kernel functions. We present
an exemplary application by extending the support vector data description (SVDD) shape fitting
method to the probabilistic case. This is done by simulating the pSEB algorithm implicitly in the
feature space induced by the kernel function.
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1 Introduction

The (probabilistic) smallest enclosing ball (pSEB) problem in Rd is to find a center that
minimizes the (expected) maximum distance to the input points (see Definition 13). It
occurs often as a building block for complex data analysis and machine learning tasks like
estimating the support of high dimensional distributions, outlier detection, novelty detection,
classification and robot gathering [9, 27, 28, 30]. It is thus very important to develop highly
efficient approximation algorithms for the base problem. This involves reducing the number of
points but also keeping the dependence on the dimension as low as possible. Both objectives
will be studied in this paper. We will focus on a small dependence on the dimension. This is
motivated as follows.

Kernel methods are a common technique in machine learning. These methods implicitly
project the d-dimensional input data into much larger dimension D where simple linear
classifiers or spherical data fitting methods can be applied to obtain a non-linear separation
or non-convex shapes in the original d-dimensional space. The efficiency of kernel methods is
usually not harmed. Despite the large dimension D � d, most important kernels, and thus
inner products and distances in the D-dimensional space, can be evaluated in O(d) time [25].
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47:2 Probabilistic Smallest Enclosing Ball in High Dimensions

In some cases, however, a proper approximation relying on sampling and discretizing the
ambient solution space may require a polynomial or even exponential dependence on D. The
algorithm of Munteanu et al. [22] is the only fully polynomial time approximation scheme
(FPTAS) and the fastest algorithm to date for the pSEB problem in fixed dimension. However,
it suffers from the stated problems. In particular, the number of realizations sampled by
their algorithm had a linear dependence on D stemming from a ball-cover decomposition
of the solution space. The actual algorithm made a brute force evaluation (on the sample)
of all centers in a grid of exponential size in D. This is prohibitive in the setting of kernel
methods since the implicit feature space may have infinite dimension. Even if it is possible
to exploit the up to n-dimensional subspace spanned by n points in infinite dimensions, we
would still have D = n� d leading to exponential time algorithms.

To make the probabilistic smallest enclosing ball algorithm viable in the context of kernel
methods and generally in high dimensions, it is highly desirable to reduce the dependence
on the dimension to a small polynomial occurring only in evaluations of inner products and
distances between two (low dimensional) vectors.

1.1 Related work
Probabilistic smallest enclosing ball. The study of probabilistic clustering problems was

initiated by Cormode and McGregor [11]. They developed approximation algorithms
for the probabilistic settings of k-means, k-median as well as k-center clustering. For
the metric 1-center clustering problem their results are bi-criteria O(1)-approximation
algorithms with a blow-up on the number of centers. Guha and Munagala [14] improved
the previous work by giving O(1)-approximations that preserve the number of centers.
Munteanu et al. [22] gave the first fully polynomial time (1 + ε)-approximation scheme
(FPTAS) for the probabilistic Euclidean 1-center, i.e., the probabilistic smallest enclosing
ball problem, in fixed dimensions. The algorithm runs in linear time for sampling a
constant number of realizations. Solving the subsampled problem takes only constant
time, though exponential in the dimension. This yields a total running time of roughly
O(nd/εO(1) + 1/εO(d)). Based on ε-kernels for probabilistic data [16], Huang and Li
[15] generalized the (1 + ε)-approximation of [22] to a polynomial time approximation
scheme (PTAS) for Euclidean k-center in Rd for fixed constants k and d. We note that
the running time of the algorithm in [15] grows as a double exponential function of the
dimension and it is unclear how to reduce this. We thus base our work on the FPTAS of
[22] and reduce its exponential dependence to linear.

Sampling techniques for 1-median. The work of [22] showed a reduction from the proba-
bilistic smallest enclosing ball to 1-median problems on (near)-metric spaces. We thus
review relevant results on sampling techniques for metric 1-median. Bădoiu et al. [7]
showed that with constant probability, the span of a uniform sample of a constant number
of input points contains a (1 + ε)-approximation for the 1-median. This was used to
construct a set of candidate solutions of size O(21/εO(1) logn). A more refined estimation
procedure based again on a small uniform sample was used by Kumar et al. [19] to reduce
this to O(21/εO(1)). Indyk and Thorup [17, 29] showed that a uniform sample of size
O(logn/ε2) is sufficient to approximate the discrete metric 1-median on n points within
a factor of (1 + ε). Ackermann et al. [1] showed how this argument can be adapted to
doubling spaces which include the continuous Euclidean space. We adapt these ideas to
find a (1 + ε)-approximation to the best center in our setting.

Stochastic subgradient descent. One quite popular and often only implicitly used technique
in the coreset literature is derived from convex optimization, see [21]. One of the first
results of that kind is given in the uniform sampling algorithm of Bădoiu et al. [7] for
1-median stated above. In each iteration a single point is sampled uniformly. With high
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probability moving the current center towards that point for a carefully chosen step size
improves the solution. Each step can be seen as taking a descent towards a uniformly
random direction from the subgradient which equals roughly the sum of directions to
all points. Another example is the coreset construction for the smallest enclosing ball
problem by Bădoiu and Clarkson [5], where the next point included in the coreset is the
one maximizing the distance to the current best center. The direction taken towards that
point is again related to the subgradient of the objective function at the current center
position. The authors also gave a more explicit application of subgradient descent to
the problem with a slightly larger number of iterations. More recently, Cohen et al. [10]
developed one of the fastest (1 + ε)-approximation algorithms to date for the geometric
median problem via stochastic subgradient methods.

Kernel methods in machine learning. Kernel functions simulate an inner product space in
large or even unbounded dimensions but can be evaluated via simple low dimensional
vector operations in the original dimension of input points [26]. This enables simple
spherical shape fitting via a smallest enclosing ball algorithm in the high dimensional
feature space, which implicitly defines a more complex and even non-convex shape in the
original space. The smallest enclosing ball problem in kernel spaces is well-known as the
support vector data description (SVDD) by Tax and Duin [28]. A more subtle connection
between (the dual formulations of) several kernel based methods in machine learning and
the smallest enclosing ball problem was established by Tsang et al. [30].

1.2 Our contributions and outline
We extend in Section 2 the geometric median in Euclidean space to the more general
set median problem. It consists of finding a center c ∈ Rd that minimizes the sum of
maximum distances to sets of points in a given collection of N point sets. We show how
to solve this problem via estimation and sampling techniques combined with a stochastic
subgradient descent algorithm.
The elements in the collection are sets of up to n points in Rd. We discuss in Section 2.1 the
possibility of further reducing their size. In the previous work [22] they were summarized
via strong coresets of size 1/εΘ(d) for constant dimension d. This is not an option in high
dimensions where, e.g. d ≈ n. Reviewing the techniques of Agarwal and Sharathkumar
[2] we can show that no reduction below min{n, exp(d1/3)} is possible unless one is willing
to sacrifice an additional approximation factor of roughly

√
2. However, we discuss

the possibility to achieve roughly a factor (
√

2 + ε)-approximation in streaming via the
blurred-ball-cover [2] of size O(1/ε3 · log 1/ε), and in an off-line setting via weak coresets
[5, 6] of size O(1/ε).
We show in Section 3.1 how this improves the previously best FPTAS for the probabilistic
smallest enclosing ball problem from O(dn/ε3 · log 1/ε+ 1/εO(d)) to O(dn/ε4 · log2 1/ε).
In particular the dependence on the dimension d is reduced from exponential to linear
and more notably occurs only in distance evaluations between points in d-dimensional
Euclidean space, but not in the number of sampled points nor in the number of candidate
centers to evaluate.
This enables in Section 3.2 working in very high D-dimensional Hilbert spaces whose
inner products and distances are given implicitly via positive semidefinite kernel functions.
These functions can be evaluated in O(d) time although D is large or even unbounded
depending on the kernel function. As an example we extend the well-known support
vector data description (SVDD) method to the probabilistic case. SVDD is equivalent to
the smallest enclosing ball problem in the implicit high-dimensional feature space.

Please find the missing proofs in the full version of this paper.
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47:4 Probabilistic Smallest Enclosing Ball in High Dimensions

1.3 General notation
We denote the set of positive integers up to n ∈ N by [n] = {1, . . . , n}. For any vec-
tors x, y ∈ Rd we denote their inner product by 〈x, y〉 = xT y =

∑d
i=1 xiyi and the

Euclidean norm by ‖x‖ =
√
〈x, x〉 = (

∑d
i=1 x

2
i )1/2. The Cauchy-Schwarz inequality

(CSI) states that 〈x, y〉 ≤ ‖x‖ ‖y‖. For any convex function f : Rd → R we denote by
∂f(x) =

{
g ∈ Rd | ∀y ∈ Rd : f(x)− f(y) ≤ 〈g, x− y〉

}
the subdifferential, i.e., the set of sub-

gradients of f at x. For any event E let the indicator function be 1E = 1 if E happens and 0
otherwise. We denote by B(c, r) = {x | ‖c− x‖ ≤ r} the Euclidean ball centered at c ∈ Rd

with radius r ≥ 0. We assume the error parameter satisfies 0 < ε < 1/9. All our results hold
with constant probability, say 1/8, which can be amplified to arbitrary 1− η, 0 < η < 1, by
running O(log 1/η) independent repetitions and returning the minimum found.

2 A generalized median problem

The probabilistic smallest enclosing ball (pSEB) problem is to find a center that minimizes
the expected maximum distance to points drawn from the input distributions (see Section 3.1
and Definition 13), and it can be reduced to two different types of 1-median problems [22].
One of them is defined on the set of all non-empty locations in Rd where probabilistic points
may appear, equipped with the Euclidean distance. The other is defined on the collection
of all possible realizations of probabilistic point sets, and the distance measure between a
center c ∈ Rd and a realization Pi ⊂ Rd is the maximum distance between the center and
any of the realized points, i.e., maxp∈Pi

‖c− p‖.
We begin our studies with a generalized median problem that we call the set median

problem and covers both of these cases.

I Definition 1 (set median problem). Let P = {P1, . . . , PN} be a family of finite non-empty
sets where ∀i ∈ [N ] : Pi ⊂ Rd and n = max{|Pi| | i ∈ [N ]}. The set median problem on P
consists in finding a center c ∈ Rd that minimizes the cost function

f(c) =
N∑

i=1
m(c, Pi),

where m(c, Pi) = maxp∈Pi
‖c− p‖.

It was noted in [22] that the distance measure m between any two sets A,B ⊂ Rd defined
by the maximum distance m(A,B) = maxa∈A,b∈B ‖a− b‖ is not a metric since for any
non-singleton set C ⊂ Rd it holds that m(C,C) > 0. We stress here that we consider only
cases where, as in Definition 1, one of the sets A = {c} is a singleton, and B = P is an
arbitrary non-empty set of points from Rd. In order to directly apply results from the theory
of metric spaces we thus simply define m(A,B) = 0 whenever A = B.

I Lemma 2. Let X be the set of all finite non-empty subsets of Rd. We define

m(A,B) =
{

maxa∈A,b∈B ‖a− b‖ if A 6= B

0 if A = B

for any A,B ∈ X . Then (X ,m) is a metric space.

Note that in case of singleton sets, the set median problem in Definition 1 is equivalent to
the well-known Fermat-Weber problem also known as 1-median or geometric median. Also,
for N = 1 it coincides with the smallest enclosing ball or 1-center problem.
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For both of these problems there are known algorithms based on the subgradient method
from convex optimization. Bădoiu and Clarkson [5] gave a simple algorithm for approximating
the 1-center within (1 + ε)-error. Starting from an initial center, it is iteratively moved a
little towards the input point that is furthest away. Note that a suitable subgradient at the
current center points exactly into the opposite direction. More precisely if q ∈ P is a point
that is furthest away from the current center c then (c − q)/ ‖c− q‖ ∈ ∂maxp∈P ‖c− p‖.
The algorithm can thus be interpreted as a subgradient descent minimizing maxp∈P ‖c− p‖.
Weiszfeld’s algorithm [31, 32] was the first that solved the 1-median problem within additive
O(ε)-error in O(1/ε) subgradient iterations. And indeed one of the fastest algorithms to
approximate the geometric median problem to date relies on a stochastic subgradient descent
[10]. The crucial ingredients to turn the additive error to a relative error are finding a suitable
starting point that achieves a constant approximation and estimating its initial distance
to the optimal solution. Another important step is a bound on the Lipschitz constant of
the cost function, see also [3]. We will generalize these approaches to minimizing the cost
function f of the set median problem from Definition 1.

First note that f is a convex function which implies that we can apply the theory of
convex analysis and optimization. In particular, it implies that the subdifferential ∂f(c) is
non-empty for any center c ∈ Rd and c is locally optimal if and only if 0 ∈ ∂f(c). Moreover,
any local optimum is also globally optimal by convexity [4, 23]. This implies that if we find
a (1 + ε)-approximation to a local minimum of the convex function, the convexity implies
that it is a (1 + ε)-approximation to the global minimum as well.

To see that f is convex, note that the Euclidean norm is a convex function. Therefore
the Euclidean distance to some fixed point is a convex function since every translation of
a convex function is convex. The maximum of convex functions is a convex function and
finally the sum of convex functions is again convex. We prove this claim for completeness.

I Lemma 3. The objective function f of the set median problem (see Definition 1) is convex.

Next we bound the Lipschitz constant of the function f by N . We may get a better
bound if we limit the domain of f to a ball of small radius centered at the optimal solution,
but the Lipschitz constant cannot be bounded by o(N) in general. We will see later how we
can remove the dependence on N .

I Lemma 4. The objective function f of the set median problem (see Definition 1) is
N -Lipschitz continuous, i.e., |f(x)− f(y)| ≤ N · ‖x− y‖ for all x, y ∈ Rd.

We want to minimize f via the subgradient method, see [23]. For that sake we need to
compute a subgradient g(ci) ∈ ∂f(ci) at the current center ci. To this end we prove the
following lemma.

I Lemma 5. Let ci ∈ Rd be any center. For each set Pj ∈ P, let pj ∈ Pj be a point with
‖ci − pj‖ = m(ci, Pj). We have

g(ci) =
N∑

j=1

ci − pj

‖ci − pj‖
· 1ci 6=pj

∈ ∂f(ci),

i.e., g(ci) is a valid subgradient of f at ci.

For brevity of presentation we omit the indicator function in any use of the above Lemma
in the remainder of this paper and simply define (ci − pj) / ‖ci − pj‖ = 0 whenever ci = pj .

The subgradient computation takes O(dnN) time to calculate, since in each of the N
terms of the sum we maximize over |Pi| ≤ n distances in d dimensions to find a point in Pi

that is furthest away from c. We are going to discuss the possibility of reducing n later. For

SoCG 2019



47:6 Probabilistic Smallest Enclosing Ball in High Dimensions

now we focus on removing the dependence on N . To this end we would like to replace the
exact subgradient g(ci) by a uniform sample of only one nonzero term which points into the
right direction in expectation. We formalize this in the following lemma.

I Lemma 6. Let ci ∈ Rd be any fixed center. For each set Pj ∈ P, let pj ∈ Pj be
a point with ‖ci − pj‖ = m(ci, Pj). Let g̃(ci) be a random vector that takes the value
g̃(ci) = (ci − pj) / ‖ci − pj‖ for j ∈ [N ] with probability 1/N each. Then E

[
‖g̃(ci)‖2

]
≤ 1

and E [g̃(ci)] = g(ci)/N , where g(ci) ∈ ∂f(ci) is the subgradient given in Lemma 5.

We can now adapt the deterministic subgradient method from [23] using the random
unbiased subgradient of Lemma 6 in such a way that the result is in expectation a (1 + ε)-
approximation to the optimal solution. This method is presented in Algorithm 1. Given an
initial center c0, a fixed step size s, and a number of iterations `, the Algorithm iteratively
picks a set Pj ∈ P uniformly at random and chooses a point pj ∈ Pj that attains the maximum
distance to the current center. This point is used to compute an approximate subgradient
via Lemma 6. The Algorithm finally outputs the best center found in all iterations.

Algorithm 1: Stochastic subgradient method.
Data: A family of non-empty sets P = {P1, . . . , PN}, where Pi ⊂ Rd

Result: A center c̃ ∈ Rd

1 Determine an initial center c0
2 Fix a step size s
3 Fix the number of iterations `
4 for i← 1 to ` do
5 Choose an index j ∈ [N ] uniformly at random and compute g̃(ci−1), cf. Lemma 6
6 ci = ci−1 − s · g̃(ci−1)
7 return c̃ ∈ argminc∈{ci|i=0,...,`} f(c)

The following theorem bounds in expectation the quality of the output that our subgradient
algorithm returns. It is a probabilistic adaptation of a result in convex optimization [23].

I Theorem 7. Consider Algorithm 1 on input P = {P1, . . . , PN} for the set median problem
with objective function f , see Definition 1. Let c∗ ∈ argminc∈Rd f(c). Let R = ‖c0 − c∗‖.
Then

Ec̃ [f(c̃)− f (c∗)] ≤ N · R
2 + (`+ 1)s2

2(`+ 1)s ,

where the expectation is taken over the random variable c̃ ∈ argminc∈{ci|i=0,...,`} f (c), i.e.,
the output of Algorithm 1.

Our aim now is to choose the parameters `, s, and c0 of Algorithm 1 in such a way that
the bound given in Theorem 7 becomes at most εf(c∗). To this end we can choose the
initial center c0 and bound its initial distance R = ‖c0 − c∗‖ proportional to the average cost
O(f(c∗)/N) with constant probability using a simple Markov argument.

I Lemma 8. Choose a set P from P = {P1, . . . , PN} uniformly at random and let c0 be
an arbitrary point of P . Then for any constant 0 < δ1 < 1 it holds that R = ‖c0 − c∗‖ ≤
f(c∗)/(δ1N) with probability at least 1− δ1.
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Assume that we know the value of R, and set the step size to s = R/
√
`+ 1, then

Theorem 7 and Lemma 8 imply that for some constant C

Ec̃ [f(c̃)− f (c∗)] ≤ NR√
`+ 1

≤ Cf(c∗)√
`+ 1

holds with constant probability. We thus only need to run the algorithm for ` ∈ O(1/ε2)
iterations to get within εf(c∗) error. But choosing this particular step size requires to know
the optimal center in advance. To get around this, we attempt to estimate the average cost.
More formally, we are interested in a constant factor approximation of f(c∗)/N . It turns
out that we can do this based on a small sample of the input sets unless our initial center is
already a good approximation. But in the latter case we do not care about all the subsequent
steps or step sizes, since we are already done after the initialization. The proof technique is
originally from [19] and is adapted here to work in our setting with sets of points.

I Lemma 9. There exists an algorithm that based on a sample S ⊆ P of size |S| = 1/ε
returns an estimate R̃ and an initial center c0 in time O(dn/ε) such that with constant
probability one of the following holds:
a) εf(c∗)/N ≤ R̃ ≤

(
2/ε3) · f(c∗)/N and ‖c0 − c∗‖ ≤ 8f(c∗)/N ;

b) ‖c0 − c∗‖ ≤ 4εf(c∗)/N .

Lemma 9 has the following consequence. Either the initial center c0 is already a (1 + 4ε)-
approximation, in which case we are done. Or we are close enough to an optimal solution
and have a good estimate on the step size to find a (1 + 4ε)-approximation in a constant
number of iterations.

Another issue that we need to take care of, is finding the best center in the last line of
Algorithm 1 efficiently. We cannot do this exactly since evaluating the cost even for one single
center takes time O(dnN). However, we can find a point that is a (1 + ε)-approximation of
the best center in a finite set of candidate centers using a result from the theory of discrete
metric spaces.

To this end we can apply our next theorem which is originally due to Indyk and Thorup
in [17, 29] and adapted here to work in our setting. The main difference is that in the original
work the set of input points and the set of candidate solutions are identical. In our setting,
however, we have that the collection of input sets and the set of candidate solutions may be
completely distinct and the distance measure is the maximum distance (see Lemma 2).

I Theorem 10. Let Q be a set of uniform samples with repetition from P. Let C be a set of
candidate solutions. Let a ∈ C minimize

∑
Q∈Qm(a,Q) and let ĉ = argminc∈C f(c). Then

Pr
[∑

P∈P
m (a, P )> (1 + ε)

∑
P∈P

m (ĉ, P )
]
≤ |C| · e−ε2|Q|/64.

Putting all pieces together we have the following Theorem.

I Theorem 11. Consider an input P = {P1, . . . , PN}, where for every i ∈ [N ] we have
Pi ⊂ Rd and n = max{|Pi| | i ∈ [N ]}. There exists an algorithm that computes a center c̃
that is with constant probability a (1 + ε)-approximation to the optimal solution c∗ of the set
median problem (see Definition 1). Its running time is O(dn/ε4 · log2 1/ε).

2.1 On reducing the size of the input sets
We would like to remove additionally the linear dependence on n for the maximum distance
computations. This is motivated from the streaming extension of [22] where one aims at
reading the input once in linear time and all subsequent computations should be sublinear,

SoCG 2019
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or preferably independent of n. To this end a grid based strong coreset of size 1/εΘ(d) was
used. However, here we focus on reducing the dependence on d, and exponential is not
an option if we want to work in high dimensions. It turns out that without introducing
an exponential dependence on d, we would have to lose a constant approximation factor.
Pagh et al. [24] showed that if the coreset is a subset of the input and approximates
furthest neighbor queries to within less than a factor of roughly

√
2, then it must consist of

Ω
(
min{n, exp(d1/3)}

)
points. This was shown via a carefully constructed input point set of

Agarwal and Sharathkumar [2] who used it to prove lower bounds on streaming algorithms
for several extent problems.

In the next theorem, we review the techniques of the latter reference to show a slightly
stronger result, namely no small data structure can exist for answering maximum distance
queries to within a factor of less than roughly

√
2. In comparison to the previous results

[2, 24], it is not limited to the streaming setting, and it is not restricted to subsets of the input.

I Theorem 12. Any data structure that, with probability at least 2/3, α-approximates
maximum distance queries on a set S ⊂ Rd of size |S| = n, for α <

√
2
(
1− 2/d1/3), requires

Ω
(
min{n, exp

(
d1/3)}) bits of storage.

On the positive side it was shown by Goel et al. [13] that a
√

2-approximate furthest
neighbor to the point c ∈ Rd can always be found on the surface of the smallest enclosing ball
of the sets Pi, using linear preprocessing time Õ (dn) and Õ

(
d2) query time. Thus, if we plug

in the coresets of Bădoiu and Clarkson [5, 6] of size O(1/ε) instead of the entire sets Pi ∈ P
to evaluate m(c, Pi), we would have a sublinear time algorithm (in n) after reading the input
via a

√
2 (1 + ε)-approximation to any query m(c, Pi). In a streaming setting the same bound

can be achieved via the blurred-ball-cover of Agarwal and Sharathkumar [2] of slightly larger
size O(1/ε3 · log 1/ε). Otherwise, Goel et al. [13] have shown that using O(dn1+1/(1+ε))
preprocessing time and Õ

(
dn1/(1+ε)) query time, one can obtain a (1 + ε)-approximation

for the furthest neighbor problem. Note that in this case the preprocessing time is already
superlinear in n, and in particular the exponent is already larger than 1.7 for 1 + ε <

√
2.

3 Applications

3.1 Probabilistic smallest enclosing ball

We apply our result to the probabilistic smallest enclosing ball problem, as given in [22].
In such a setting, the input is a set D = {D1, . . . , Dn} of n discrete and independent
probability distributions. The i-th distribution Di is defined over a set of z possible locations
qi,j ∈ Rd ∪ {⊥}, for j ∈ [z], where ⊥ indicates that the i-th point is not present in a sampled
set, i.e., qi,j = ⊥ ⇔ {qi,j} = ∅. We call these points probabilistic points. Each location qi,j

is associated with the probability pi,j , such that
∑z

j=1 pi,j = 1, for every i ∈ [n]. Thus the
probabilistic points can be considered as independent random variables Xi.

A probabilistic set X consisting of probabilistic points is also a random variable, where
for each random choice of indices (j1, . . . , jn) ∈ [z]n there is a realization P(j1,...,jn) =
X (j1, . . . , jn) = (q1,j1 , . . . , qn,jn

). By independence of the distributions Di, i ∈ [n], it holds
that Pr

[
X = P(j1,...,jn)

]
=
∏n

i=1 pi,ji .
The probabilistic smallest enclosing ball problem is defined as follows. Here we may

assume that the distance of any point c ∈ Rd to the empty set is 0.
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I Definition 13 ([22]). Let D be a set of n discrete distributions, where each distribution is
defined over z locations in Rd ∪ {⊥}. The probabilistic smallest enclosing ball problem is to
find a center c∗ ∈ Rd that minimizes the expected smallest enclosing ball cost, i.e.,

c∗ ∈ argminc∈Rd EX [m(c,X)] ,

where the expectation is taken over the randomness of X ∼ D.

The authors of [22] showed a reduction of the probabilistic smallest enclosing ball problem
to computing a solution for the set median problem of Definition 1. Their algorithm
distinguishes between two cases. In the first case the probability of obtaining a nonempty
realization P 6= ∅ is small, more formally

∑
qi,j∈Q pi,j ≤ ε, where Q = {qi,j | qi,j 6= ⊥, i ∈

[n], j ∈ [z]}, and thus we have little chance of gaining information by sampling realizations.
However, it was shown that

(1− ε) · EX

∑
p∈X

‖c− p‖

 ≤ EX [m(c,X)] ≤ EX

∑
p∈X

‖c− p‖

 ,
where EX

[∑
p∈X ‖c− p‖

]
=
∑

i,j pi,j · ‖c− qi,j‖ is a weighted version of the deterministic
1-median problem, cf. [11], and thus also a weighted instance of the set median problem. In
the second case, the probability that a realization contains at least one point is reasonably
large. Therefore by definition of the expected value and m(c, ∅) = 0 we have

EX [m(c,X)] =
∑

P 6=∅
Pr [X = P ] ·m(c, P ),

which is a weighted version of the set median problem. Depending on these two cases, we
sample a number of elements, non-empty locations or non-empty realizations, and solve the
resulting set median problem using the samples in Theorem 11 for computing the approximate
subgradients.

Algorithm 2 adapts this framework. It differs mainly in three points from the previous
algorithm of [22]. First, the number of samples had a dependence on d hidden in the
O-notation. This is not the case any more. Second, the sampled realizations are not sketched
via coresets of size 1/εΘ(d) any more, as discussed in Section 2.1. Third, the running time of
the actual optimization task is reduced via Theorem 11 instead of an exhaustive grid search.

I Theorem 14. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd denote the output of Algorithm 2 on input D, and
let the approximation parameter be ε < 1/9. Then with constant probability the output is a
(1 + ε)-approximation for the probabilistic smallest enclosing ball problem. I.e., it holds that

EX [m(c̃, X)] ≤ (1 + ε) minc∈Rd EX [m(c,X)] .

The running time of Algorithm 2 is O(dn · (z/ε3 · log 1/ε+ 1/ε4 · log2 1/ε)).

Comparing to the result of [22], the running time is reduced from O(dnz/εO(1) + 1/εO(d))
to O(dnz/εO(1)), i.e., our dependence on the dimension d is no longer exponential but only
linear. Note, in particular, that the factor of d plays a role only in computations of distances
between two points in Rd. Further the sample size and the number of centers that need
to be evaluated do not depend on the dimension d any more. This will be crucial in the
next application.
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Algorithm 2: Probabilistic smallest enclosing ball.
Data: A set D of n point distributions over z locations in Rd, a parameter ε < 1/9
Result: A center ĉ ∈ Rd

1 Q← {qi,j | qi,j 6= ⊥, i ∈ [n], j ∈ [z]} /* the set of non-empty locations */
2 Set a sample size k ∈ O(1/ε2 log(1/ε))
3 if

∑
qi,j∈Q pi,j ≤ ε then

4 - Pick a random sample R of k locations from P = Q, where for every r ∈ R we
have r = qij with probability proportional to pij

5 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled points R
one-by-one for computing the approximate subgradients in the algorithm of
Theorem 11

6 else
7 - Sample a set R of k non-empty realizations from the input distributions D
8 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled realizations

R one-by-one for computing the approximate subgradients in the algorithm of
Theorem 11

9 return ĉ

3.2 Probabilistic support vector data description
Now we turn our attention to the support vector data description (SVDD) problem [28] and
show how to extend it to its probabilistic version. To this end, let K : Rd × Rd → R be a
positive semidefinite kernel function. It is well known by Mercer’s theorem, cf. [26], that such
a function implicitly defines the inner product of a high dimensional Hilbert space H, say
RD where D � d. This means we have K(x, y) = 〈ϕ(x), ϕ(y)〉, where ϕ : Rd → H is the so
called feature mapping associated with the kernel. Examples for such kernel functions include
polynomial transformations of the standard inner product in Rd such as the constant, linear
or higher order polynomial kernels. In these cases D remains bounded but grows as a function
of d raised to the power of the polynomials’ degree. Other examples are the exponential,
squared exponential, Matérn, or rational quadratic kernels, which are transformations of
the Euclidean distance between the two low dimensional vectors. The dimension D of their
implicit feature space is in principle unbounded. Despite the large dimension D � d, all
these kernels can be evaluated in time O(d) [25].

It is known that the SVDD problem is equivalent to the smallest enclosing ball problem
in the feature space induced by the kernel function [30], i.e., given the kernel K with implicit
feature mapping ϕ : Rd → H, and an input set P ⊆ Rd, the task is to find

c∗ ∈ argminc∈Hmaxp∈P ‖c− ϕ(p)‖ = argminc∈Hm(c, ϕ(P )), (1)

where ϕ(P ) = {ϕ(p) | p ∈ P}.
Now we extend this to the probabilistic setting as we did in Section 3.1. The input is

again a set D of n discrete and independent probability distributions, where Di ∈ D is defined
over a set of z locations qi,j ∈ Rd ∪ {⊥}. Note that the mapping ϕ maps the locations qi,j

from Rd to ϕ(qi,j) in H, and we assume ϕ(⊥) = ⊥. Then the probabilistic SVDD problem is
given by the following adaptation of Definition 13.
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I Definition 15. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let K : Rd × Rd → R be a kernel function with associated
feature map ϕ : Rd → H. The probabilistic support vector data description (pSVDD) problem
is to find a center c∗ ∈ H that minimizes the expected SVDD cost, i.e.,

c∗ ∈ argminc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D.

Note that the deterministic problem, see Equation (1), is often stated with squared distances
[28, 30]. It does not matter whether we minimize the maximum distance or any of its powers
or any other monotone transformation. In the probabilistic case this is not true. Consider
for instance squared distances. The resulting problem would be similar to a 1-means rather
than a 1-median problem. Huang et al. [16] have observed that minimizing the expected
maximum squared distance corresponds to minimizing the expected area of an enclosing ball
in R2. This observation can be generalized to the expected volume of an enclosing ball in
Rp when the p-th powers of distances are considered. Considering p = 2 might also have
advantages when dealing with Gaussian input distributions due to their strong connection to
squared Euclidean distances. In a general setting of the probabilistic smallest enclosing ball
problem however, it is natural to minimize in expectation the maximum Euclidean distance,
as in Definitions 13 and 15, since its radius is the primal variable to minimize.

Next we want to show how to find a (1 + ε)-approximation for the pSVDD problem.
Explicitly computing any center c ∈ H takes Ω(D) time and space which is prohibitive not
only when D =∞. Note that for the SEB and SVDD problems, any reasonable center lies
in the convex hull of the input points. Since taking the expectation is simply another linear
combination over such centers, we can express any center c ∈ H as a linear combination of
the set of non-empty locations, i.e.,

c =
∑

qu,v∈Q
γu,vϕ(qu,v)

The idea is to exploit this characterization to simulate Algorithm 1 and thereby Algorithm 2
to work in the feature space H by computing the centers and distances only implicitly.

For now, assume that any distance computation can be determined. Note that sampling a
set Pi ⊂ Rd is the same as sampling the set ϕ(Pi) of corresponding points in H from the same
distribution. We assume that we have a set of locations or realizations P = {P1, . . . , PN},
with Pi ⊂ Rd. The remaining steps are passed to Theorem 11 which is based on Algorithm 1.
First, we show the invariant that each center ci reached during its calls to Algorithm 1 can
be updated such that we maintain a linear combination ci =

∑
u,v γu,vϕ(qu,v), where at most

i+ 1 terms have γu,v 6= 0.
The initial center c0 ∈ H is chosen by sampling uniformly at random a set P ∈ P via
Lemma 8. We take any point q ∈ P , q 6= ⊥, which maps to c0 = ϕ(q). Thus the invariant
is satisfied at the beginning, where the corresponding coefficient is γ = 1 and all other
coefficients are zero.
In each iteration we randomly sample a set P ∈ P to simulate the approximate subgradient
g̃ (ci) at the current point ci. The vector g̃ (ci) is a vector between ci and some point
pj,k = ϕ(qj,k) ∈ H, such that qj,k maximizes ‖ci − ϕ(q′)‖ over all q′ ∈ P (cf. Lemma 6).
To implicitly update to the next center ci+1 note that (cf. Algorithm 1)

ci+1 = ci − s ·
ci − ϕ(qj,k)
‖ci − ϕ(qj,k)‖ =

(
1− s

‖ci − ϕ(qj,k)‖

)
· ci + s

‖ci − ϕ(qj,k)‖ · ϕ(qj,k).
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Assume the invariant was valid that ci was represented as ci =
∑

u,v γu,vϕ(qu,v) with at
most i+ 1 non-zero coefficients. Then it also holds for the point ci+1 since the previous
non-zero coefficients of ϕ(qu,v) are multiplied by 1 − s/ ‖ci − ϕ(qj,k)‖ and the newly
added ϕ(qj,k) is assigned the coefficient s/ ‖ci − ϕ(qj,k)‖. So there are at most i + 2
non-zero coefficients.

Therefore, we do not have to store the points ci explicitly while performing Algorithm 1.
The implicit representation can be maintained via a list storing points that appear in the
approximate subgradients and their corresponding non-zero coefficients.

To actually compute the coefficients, we need to be able to compute Euclidean distances
as well as determine s. Using Lemma 9 we determined the step size s via an estimator
R̃ =

∑
P∈S m(c0, P ) based on a small sample S. In particular this requires distance

computations again. To this end, we show how to compute ‖ci − ϕ(q)‖ for any location
q ∈ Rd. Recall that the kernel function implicitly defines the inner product in H. It thus
holds that

‖ci − ϕ(q)‖2 =
∥∥∥∑

u,v
γu,vϕ(qu,v)− ϕ(q)

∥∥∥2
=
∥∥∥∥∑i

w=0
γwϕ(qw)− ϕ(q)

∥∥∥∥2

=
∥∥∥∥∑i

w=0
γwϕ(qw)

∥∥∥∥2
+ ‖ϕ(q)‖2 − 2

∑i

w=0
γw 〈ϕ(qw), ϕ(q)〉

=
∑i

w=0

∑i

w′=0
γwγw′K(qw, qw′) +K(q, q)− 2

∑i

w=0
γwK(qw, q), (2)

where w,w′ ∈ {0, . . . , i} index the locations qw, qw′ with corresponding γw, γw′ 6= 0 in
iteration i. Therefore, we have the following Theorem.

I Theorem 16. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. There exists an algorithm that implicitly computes c̃ ∈ H that
with constant probability is a (1 + ε)-approximation for the probabilistic support vector data
description problem. I.e., it holds that

EX [m(c̃, ϕ(X))] ≤ (1 + ε) minc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D. The running time of the
algorithm is O(dn ·

(
z/ε3 · log 1/ε+ 1/ε8 · log2 1/ε

)
).

4 Conclusion and open problems

We studied the set median problem in high dimensions that minimizes the sum of maximum
distances to the furthest point in each input set. We presented a (1 + ε)-approximation
algorithm whose running time is linear in d and independent of the number of input sets.
We further discussed that in high dimensions the size of the input sets cannot be reduced
sublinearly without losing a factor of roughly

√
2. Our work resolves an open problem of

[22] and improves the previously best algorithm for the probabilistic smallest enclosing ball
problem in high dimensions by reducing the dependence on d from exponential to linear.
This enables running the algorithm in high dimensional Hilbert spaces induced by kernel
functions which makes it more flexible and viable as a building block in machine learning
and data analysis. As an example we transferred the kernel based SVDD problem of [28]
to the probabilistic data setting. Our algorithms assume discrete input distributions. It
would be interesting to extend them to various continuous distributions. The pSEB problem
minimizes the expected maximum distance. When it comes to minimizing volumes of balls or
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in the context of Gaussian distributions it might be interesting to study higher moments of
this variable. This corresponds to a generalization of the set median problem to minimizing
the sum of higher powers of maximum distances. Finally we hope that our methods may
help to extend more shape fitting and machine learning problems to the probabilistic setting.
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