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Abstract
We study the problem of supervised learning a metric space under discriminative constraints. Given
a universe X and sets S,D ⊂

(
X
2

)
of similar and dissimilar pairs, we seek to find a mapping

f : X → Y , into some target metric space M = (Y, ρ), such that similar objects are mapped to
points at distance at most u, and dissimilar objects are mapped to points at distance at least `. More
generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified
pairs). We propose approximation algorithms for various versions of this problem, for the cases of
Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time
approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect
information we present approximation algorithms that run in quasi-polynomial time (QPTAS). We
also present an exact algorithm for learning line metric spaces with perfect information in polynomial
time. Our algorithms use a combination of tools from metric embeddings and graph partitioning,
that could be of independent interest.
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1 Introduction

Geometric algorithms have given rise to a plethora of tools for data analysis, such as
clustering, dimensionality reduction, nearest-neighbor search, and so on; we refer the reader
to [20, 19, 25] for an exposition. A common aspect of these methods is that the underlying
data is interpreted as a metric space. That is, each object in the input is treated as a point,
and the pairwise dissimilarity between pairs of objects is encoded by a distance function on
pairs of points. An important element that can critically determine the success of this data
analytic framework, is the choice of the actual metric. Broadly speaking, the area of metric
learning is concerned with methods for recovering an underlying metric space that agrees
with a given set of observations (we refer the reader to [29, 23] for a detailed exposition).
The problem of learning the distance function is cast as an optimization problem, where the
objective function quantifies the extend to which the solution satisfies the input constraints.
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Figure 1 An illustration of the metric learning framework. The input consists of a set of objects
(here, a set of photos), with some pairs labeled as “similar” (depicted in green), and some pairs
labeled “dissimilar” (depicted in red). The output is an embedding into some metric space (here, the
Euclidean plane), such that similar objects are mapped to nearby points, while dissimilar objects
are mapped to points that are far from each other.

Supervised vs. unsupervised metric learning. The problems studied in the context of
metric learning generally fall within two main categories: supervised and unsupervised
learning. In the case of unsupervised metric learning, the goal is to discover the intrinsic
geometry of the data, or to fit the input into some metric space with additional structure. A
prototypical example of an unsupervised metric learning problem is dimensionality reduction,
where one is given a high-dimensional point set and the goal is to find a mapping into some
space of lower dimension, or with a special structure, that approximately preserves the
geometry of the input (see e.g. [15, 26, 12]).

In contrast, the input in a supervised metric learning problem includes label constrains,
which encode some prior knowledge about the ground truth. As an example, consider the
case of a data set where experts have labeled some pairs of points as being “similar” and
some pairs as being “dissimilar”. Then, a metric learning task is to find a transformation
of the input such that similar points end up close together, while dissimilar points end up
far away from each other. As an illustrative example of the above definition, consider the
problem of recognizing a face from a photo. More concretely, a typical input consists of some
universe X, which is a set of photos of faces, together with some S,D ⊆

(
X
2
)
. The set S

consists of pairs of photos that correspond to the same person, while D consists of pairs of
photos from different people. A typical approach for addressing this problem (see e.g. [14]) is
to find a mapping f : X → Rd, for some d ∈ N, such that for all similar pairs {x, y} ∈ S we
have ‖f(x)− f(y)‖2 ≤ u, and for all dissimilar pairs {x, y} ∈ D we have ‖f(x)− f(y)‖2 ≥ `,
for some u, ` > 0. More generally, one seeks to find a mapping f that maximizes the fraction
of correctly classified pairs of photos (see Figure 1).

1.1 Problem formulation
At the high level, an instance of a metric learning problem consists of some universe of objects
X, together with some similarity information on subsets of these objects. Here, we focus on
similarity and dissimilarity constraints. Specifically, an instance is a tuple φ = (X,S,D, u, `),
where X is a finite set, with |X| = n, S,D ⊂

(
X
2
)
, which are sets of pairs of objects that are

labeled as “similar” and “dissimilar” respectively, and u, ` > 0. We refer to the elements
of S ∪ D as constraints. We focus on the case where S ∩ D = ∅, and S ∪ D =

(
X
2
)
. Let
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f : X → Y be a mapping into some target metric space (Y, ρ). As it is typical with geometric
realization problems, we relax the definition to allow for a small multiplicative error c ≥ 1 in
the embedding. We say that f satisfies {x, y} ∈ S, if

ρ(f(x), f(y)) ≤ u · c, (1)

and we say that it satisfies {x, y} ∈ D if

ρ(f(x), f(y)) ≥ `/c. (2)

If f does not satisfy some {x, y} ∈ S ∪ D, then we say that it violates it. We refer to the
parameter c as the contrastive distortion of f . We also refer to f as a constrastive embedding,
or c-embedding.

1.2 Our contribution
We now briefly discuss our main contributions.

We focus on the problem of computing an embedding with low contrastive distortion, and
with maximum accuracy, which is defined to be the fraction of satisfied constraints. Since
we are assuming complete information, that is S ∪ D =

(
X
2
)
, it follows that the accuracy

is equal to k/
(
n
2
)
, where k is the number of satisfied constraints. We remark that the

setting of complete information requires a dense set of constraints. This case is important in
applications when learning a metric space based on a set of objects with fully-labeled pairs.
This is also the setting of other important machine learning primitives, such as Correlation
Clustering (see [7]), which we discuss in Section 1.4.

Our results are concerned with two main cases: perfect and imperfect information. Here,
the case of perfect information corresponds to the promise problem where there exists
an embedding that satisfies all constraints. On the other hand, in the case of imperfect
information, no such promise is given. As we shall see, the latter scenario appears to be
significantly more challenging. Our results are concerned with two different families of target
spaces: d-dimensional Euclidean space, and trees.

Learning Euclidean metric spaces. We begin our investigation by observing that the
problem of computing a contrastive embedding into d-dimensional Euclidean space with
perfect information is polynomial-time solvable for d = 1, and it becomes NP-hard even for
d = 2. The result for d = 1 is obtained via a simple greedy algorithm, while the NP-hardness
proof uses a standard reduction from the problem of recognizing unit disk graphs (see [11]).

I Theorem 1 (Learning the line with perfect information). Let γ = (X,S,D, u, `) be an
instance of the metric learning problem. Then there exists a polynomial-time algorithm which
given γ, either computes an 1-embedding f̂ : X → R, with accuracy 1, or correctly decides
that no such embedding exists.

I Theorem 2 (Hardness of learning the plane with perfect information). Given an instance
γ = (X,S,D, u, `) of the metric learning problem, it is NP-hard to decide whether there exists
an 1-embedding f̂ : X → R2, with accuracy 1.

The above two results indicate that, except for what is essentially its simplest possible case,
the problem is generally intractable. This motivates the study of approximation algorithms.
Our first main result in this direction is a FPTAS for the case of perfect information,
summarized in the following.

SoCG 2019
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I Theorem 3 (Learning Euclidean metric spaces with perfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a d-dimensional
Euclidean metric space with perfect information, with |X| = n, for some d ≥ 2. Suppose that
γ admits an 1-embedding f∗ : X → Rd with accuracy 1. Then for any ε, ε′ > 0, there exists
a randomized algorithm which given γ, ε, and ε′, computes a (1 + ε′)-embedding f̂ : X → Rd,
with accuracy at least 1− ε, in time nO(1)g(ε, ε′, d) = nO(1)2( d

εε′ )
O(d2)

, with high probability.
In particular, for any fixed d, ε, and ε′, the running time is polynomial.

We also obtain the following QPTAS for the case of imperfect information.

I Theorem 4 (Learning Euclidean metric spaces with imperfect information). Let d ≥ 1. Let
u, ` > 0 be fixed constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a
d-dimensional Euclidean metric space, with |X| = n, for some d ≥ 1. Suppose that γ admits
an 1-embedding f∗ : X → Rd with accuracy 1−ζ, for some ζ > 0. Then for any ε, ε′ > 0, there
exists an algorithm which given γ, ε, ε′, and ζ, computes a (1 + ε′)-embedding f̂ : X → Rd,
with accuracy at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε, in time nO(1)2ε

−2( d logn
ζε′ )O(d)

. In
particular, for any fixed d, ε, ε′, and ζ, the running time is quasi-polynomial.

Learning tree metric spaces. We next consider the case of embedding into tree metric
spaces. More precisely, we are given an instance (X,S,D, u, `) of the metric learning problem,
and we wish to find a tree T̂ , and an embedding f̂ : X → T̂ , with maximum accuracy. Note
that the tree T̂ is not part of the input. Our results closely resemble the ones from the
case of learning Euclidean metric spaces. Specifically, for the case of perfect information we
obtain a PTAS, summarized in the following.

I Theorem 5 (Learning tree metric spaces with perfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a tree metric
space with perfect information, with |X| = n. Suppose that γ admits an 1-embedding
f∗ : X → V (T ∗), for some tree T ∗, with accuracy 1. Then for any ε, ε′ > 0, there exists a
randomized algorithm which given γ, ε, and ε′, computes some tree T̂ , and a (1+ε′)-embedding
f̂ : X → V (T̂ ), with accuracy at least 1− ε, in time nO(1)g(ε, ε′) = nO(1)21/(εε′)O(1/ε) , with
high probability. In particular, for any fixed ε and ε′, the running time is polynomial.

As in the case of learning Euclidean metric spaces, we also obtain a QPTAS for learning
tree metric spaces in the presence of imperfect information, summarized in the following.

I Theorem 6 (Learning tree metric spaces with imperfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a tree metric
space with imperfect information, with |X| = n. Suppose that γ admits an 1-embedding
f∗ : X → V (T ∗), for some tree T ∗, with accuracy 1−ζ, for some ζ > 0. Then for any ε, ε′ > 0,
there exists a randomized algorithm which given γ, ε, ε′, and ζ, computes some tree T̂ , and a
(1 + ε′)-embedding f̂ : X → V (T̂ ), with accuracy at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε,
in time 2((logn)/(ζ1/2εε′))O(1/ε) . In particular, for any fixed ε, ε′, and ζ, the running time is
quasi-polynomial.

1.3 Overview of our techniques
We now give a brief overview of the techniques used in obtaining our approximation algorithms
for the metric learning problem. Interestingly, our algorithms for the Euclidean case closely
resemble our algorithms for tree metric spaces.
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Learning Euclidean metric spaces. At the high level, our algorithms for learning Euclidean
metric spaces consist of the following steps:
Step 1: Partitioning. We partition the instance into sub-instances, each admitting an em-

bedding into a ball of small diameter. For the case of perfect information, it is easy to
show that such a partition exists, using a Lipschitz partition of Rd (see [13]). Such a
partition can be chosen so that only a small fraction of similarity constraints are “cut”
(that is, their endpoints fall in different clusters of the partition). However, computing
such a partition is a difficult task, since we do not have an optimal embedding (which is
what we seek to compute). We overcome this obstacle by using a result of Krauthgamer
and Roughgarden [22], which allows us to compute such a partition, without access to an
optimal embedding.
For the case of imperfect information, the situation is somewhat harder since there might
be no embedding that satisfies all the constraints. This implies that the partition that
we use in the case of perfect information, is not guaranteed to exist anymore. Therefore,
instead of using a geometric partitioning procedure, we resort to graph-theoretic methods.
We consider the graph GS , with V (G) = X, and with E(G) = S. Roughly speaking, we
partition GS into expanding subgraphs. This can be done by deleting only a relatively
small fraction of edges. For each expanding subgraph, we can show that the corresponding
sub-instance admits an embedding into a subspace of small diameter.

Step 2: Embedding each sub-instance. Once we have partitioned the instance into sub-
instances, with each one admitting an embedding into a ball of small diameter, it remains
to find such an embedding. This is done by first discretizing the target ball, and then
using the theory of pseudoregular partitions (see e.g. [17]) to exhaustively find a good
embedding. The discretization step introduces contrastive distortion 1 + ε′, for some
ε′ > 0 that can be made arbitrarily small in expense of the running time.

Step 3: Combining the embeddings. Finally, we need to combine the embeddings of the
sub-instances to an embedding of the original instance. This can easily be done by
ensuring that the images of different clusters are sufficiently far from each other. Since
only a small fraction of similarity constraints are cut by the original partition, it follows
that the resulting accuracy is high.

Learning tree metric spaces. Surprisingly, the above template is also used, almost verbatim,
for the case of learning tree metric spaces. The only difference is that the partitioning step
now resembles the random partitioning scheme of Klein, Plotkin and Rao [21] for minor-free
graphs. The embedding step requires some modification, since the space of trees of bounded
diameter is infinite, and thus exhaustive enumeration is not directly possible. We resolve
this issue by first showing that if there exists an embedding into a tree of small diameter,
then there also exists an embedding into a single tree, which we refer to as canonical, and
with only slightly worse accuracy.

1.4 Related work
Metric embeddings. The theory of metric embeddings is the source of several successful
methods for processing metrical data sets, which have found applications in metric learning
(see, e.g. [29, 23]). Despite the common aspects of the use of metric embeddings in metric
learning and in algorithm design, there are some key differences. Perhaps the most important
difference is that the metric embedding methods being used in algorithm design often
correspond to unsupervised metric learning tasks. Consequently, problems and methods that
are studied in the context of metric learning, have not received much attention from the

SoCG 2019
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theoretical computer science community. Many of the existing methods used in supervised
metric learning tasks are based on convex optimization, and are thus limited to specific kinds
of objective functions and constraints (see e.g. [30, 16]).

The problems considered in this paper are closely related to questions studied in the
context of computing low-distortion embeddings. For example, the problem of learning a tree
metric space is closely related to the problem of embedding into a tree, which has been studied
under various classical notions of distortion (see e.g. [12, 9, 28, 2, 1]). Similarly, several
algorithms have been proposed for the problem of computing low-distortion embeddings
into Euclidean space (see e.g. [24, 3, 26, 27, 5]). Various extensions and generalizations have
also been considered for maps that approximately preserve the relative ordering of distances
(see e.g. [10, 2, 6]). However, we remark that all of the above results correspond to the
unsupervised version of the metric learning problem, and are thus not directly applicable in
the supervised setting considered here.

Other types of supervision and embeddings. We note that other notions of supervision
have also been considered in the metric learning literature. For example, instead of pairs of
objects that are labeled either “similar” or “dissimilar”, another possibility is to have triple
constraints of the form (x, y, z) ∈

(
X
3
)
, encoding the fact that “x is more similar to y than z”. In

this case, one seeks to find a mapping f : X → Y , such that ρ(f(x), f(y)) < ρ(f(x), f(z))−m,
for some margin parameter m > 0 (see e.g. [30]). However, the form of supervision that we
consider is one of the most popular ones in practice. Furthermore, it is often desirable that
the mapping f has a special form, such as linearity (when X is a subset of some linear space),
or being specified implicitly via a set of parameters, as is the case of mappings computed by
neural networks. We believe that our work can lead to further theoretical understanding
of the metric learning problem under different types of supervision, and for specific classes
of embeddings.

Correlation Clustering. The supervised metric learning problem considered here can be
thought of as a generalization of the classical Correlation Clustering problem [7]. More
specifically, the Correlation Clustering problem is precisely the metric learning problem with
finite contrastive distortion, for the special case when the host is the uniform metric space,
with u = 0 and ` = 1.

1.5 Organization

The rest of the paper is organized as follows. Section 2 introduces some notation and
definitions. Section 3 shows how pseudoregular partitions can be used to compute near-
optimal embeddings into spaces of bounded cardinality. Section 4 presents the algorithm for
learning Euclidean spaces with perfect information. The algorithm for learning Euclidean
spaces with imperfect information is given in Section 5.

The algorithms for learning tree metric spaces under perfect and imperfect information,
the exact algorithm for learning line metric spaces with perfect information, and the NP-
hardness proof of learning the plane with perfect information can be found in the full version
of this paper.
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2 Preliminaries

For any non-negative integer n, we use the notation [n] = {1, . . . , n}, with the convention
[0] = ∅. Let M = (X, ρ) be some metric space. We say that M is a line metric space if it
can be realized as a submetric of R, endowed with the standard distance. For a graph G and
some v ∈ V (G), we write

NG(v) = {u ∈ V (G) : {v, u} ∈ E(G)}.

For some U ⊂ V (G), we denote by E(U) the set of edges in G that have both endpoints
in U ; that is E(U) = {{u, v} ∈ E(G) : {u, v} ⊆ U}. For some U,U ′ ⊂ V (G), we also write
E(U,U ′) = {{u, v} ∈ E(G) : u ∈ U, v ∈ U ′}.

3 Pseudoregular partitions and spaces of bounded cardinality

In this Section we present an algorithm for computing a nearly-optimal embedding, provided
that there exists a solution contained inside a ball of small cardinality.

Let G be a n-vertex graph. For any disjoint A,B ⊆ V (G), let e(A,B) = |E(A,B)|,
where E(A,B) denotes the set of edged with one endpoint in A and one in B, and let
d(A,B) = e(A,B)

|A|·|B| . Let V = V1, . . . , Vk be a partition of V (G). For any i, j ∈ [k], let
di,j = d(Vi, Vj). For any U ⊆ V (G), let Ui = U∩Vi. The partition V is called ε-pseudoregular
if for all disjoint S, T ⊆ V (G), we have

∣∣∣e(S, T )−
∑
i∈[k]

∑
j∈[k] di,j |S ∩ Vi||T ∩ Vj |

∣∣∣ ≤ εn2.
It is also called equitable if for all i, j ∈ [k], we have ||Vi| − |Vj || ≤ 1. We recall the following
result due to Frieze and Kannan [18] on computing pseudoregular partitions (see also [17, 8]).

I Theorem 7 ([18]). There exists a randomized algorithm which given an n-vertex graph G,
and ε, δ > 0, computes an equitable ε-pseudoregular partition of G with at most k = 2O(ε−2)

parts, in time 2O(ε−2)n2/(ε2δ3), with probability at least 1− δ.

The following is the main result of this Section.

I Lemma 8 (Pseudoregular partitions and embeddings into spaces of small cardinality). Let
ε, ε′ > 0. Let γC = (C,S,D, u, `) be an instance of the metric learning problem, with
|C| = n. Let M = (N, ρ) be some metric space. Suppose that γC admits a (1 + ε′)-embedding
g∗ : C → N with accuracy r∗. Then, there exists an algorithm which given γC and M ,
computes a (1 + ε′)-embedding ĝ : C → N , with accuracy at least r∗ − ε. The running time
is nO(1)2O(|N |5/ε2).

Due to lack of space, the proof of Lemma 8 is available in the full version of this paper.

4 Learning Euclidean metric spaces with perfect information

It this section we describe our algorithm for learning d-dimensional Euclidean metric spaces
with perfect information. First, we present some tools from the theory of random metric
partitions, and show how they can be used to partition an instance to smaller ones, each corre-
sponding to a subspace of bounded diameter. The final algorithm combines this decomposition
with the algorithm from Section 3 for learning metric spaces of bounded diameter.

SoCG 2019
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4.1 Euclidean spaces and Lipschitz partitions
We introduce the necessary tools for randomly partitioning a metric space, and use them to
obtain a decomposition of the input into pieces, each admitting an embedding into a ball in
Rd of small diameter.

Let M = (X, ρ) be a metric space. A partition P of X is called ∆-bounded, for some
∆ > 0, if every cluster in P has diameter at most ∆. Let P be a probability distribution
over partitions of X. We say that P is (β,∆)-Lipschitz, for some β,∆ > 0, if the following
conditions are satisfied:

Any partition in the support of P, is ∆-bounded.
For all p, q ∈ X, PrP∼P [P (x) 6= P (y)] ≤ β · ρ(x, y).

I Lemma 9 ([13]). For any d ≥ 1, and any ∆ > 0, we have that d-dimensional Euclidean
space admits a (O(

√
d/∆),∆)-Lipschitz distribution.

Let GS be the graph with vertex set V (GS) = X, and edge set E(GS) = S. We use ρS
to denote the shortest-path distance of GS , where the length of each edge is set to u.

I Lemma 10. Let X ′ ⊂ X, such that the subgraph of GS induced on X ′ (i.e. GS [X ′]) is
connected. Suppose further that diam(f∗(X ′)) ≤ ∆, for some ∆ > 0. Then, for any p, q ∈ X ′,
we have ρS(p, q) ≤ 2u(1 + 4∆/u)d.

Proof. Let G′ = GS [X ′]. Let Q = x1, . . . , xL be the shortest path between p and q in G′,
with x1 = p, xL = q. We first claim that for all i, j ∈ {1, . . . , L}, with i < j− 1, we have that

‖f∗(xi), f∗(xj)‖2 > u. (3)

Indeed, note that if ‖f∗(xi), f∗(xj)‖2 ≤ u, then since γ has full information, i.e. S ∪D =
(
X
2
)
,

it must be that {xi, xj} ∈ S, and thus the edge {xi, xj} is present in the graph G′. This
implies that ρG′(xi, xj) = u, which contradicts the fact that Q is a shortest path. We have
thus established (3).

For each i ∈ {1, . . . , L}, let Bi be the ball in Rd centered at f∗(xi) and of radius u/2. By
(3) we get that the balls B2, B4, . . . , B2bL/2c are pairwise disjoint. Since diam(f∗(X ′)) ≤ ∆,
it follows that there exists some x∗ ∈ Rd, such that f∗(X ′) ⊂ ball(x∗, 2∆). Therefore

bL/2c⋃
i=1

B2i ⊆
bL/2c⋃
i=1

ball(x2i, u/2) ⊆ ball(x∗, 2∆ + u/2). (4)

Recall that the volume of the ball of radius r in Rd is equal to Vd(r) = πd/2

Γ(1+d/2)r
d. From

(4) we get bL/2c · Vd(u/2) ≤ Vd(2∆ + u/2), and thus ρS(p, q) ≤ ρG′(p, q) = u · (L − 1) ≤
2uVd(2∆+u/2)

Vd(u/2) = 2u(1 + 4∆/u)d, which concludes the proof. J

We now show that the shortest-path metric of the similarity constraint graph admits a
Lipschitz distribution.

I Lemma 11. For any ∆ > 0, the metric space (X, ρS) admits a (O(
√
d/∆), u(1 + 4∆/u)d)-

Lipschitz distribution.

Proof. Let f∗ : X → Rd be some mapping with accuracy 1. By Lemma 9 there exist some
(O(
√
d/∆),∆)-Lipschitz distribution, P , of (Rd, ‖ · ‖2). Let P be a random partition sampled

from P. We define a partition P ′ of X as follows. Let G′S be the graph obtained from
GS by deleting all edges whose endpoints under f∗ are in different clusters of P . That is,
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V (G′S) = X, and E(G′S) = {{p, q} ∈ S : P (f∗(p)) = P (f∗(q))}, where P (p) denotes the
cluster of P containing p. We define P ′ to be the set of connected components of G′S . Let
P ′ be the induced distribution over partitions of (X, ρS). It remains to show that P ′ is
(O(
√
d/∆), u(1 + 4∆/u)d)-Lipschitz.

Let us first bound the probability of separation. Let p, q ∈ X. Let x1, . . . , xt, with
x1 = p, xt = q, be a shortest-path in GS between p and q. Since P is (O(

√
d/∆),∆)-

Lipschitz, it follows that Pr[f∗(p) 6= f∗(q)] ≤ O(
√
d)

∆ ‖f∗(p)−f∗(q)‖2 ≤ O(
√
d)

∆
∑t−1
i=1 ‖f∗(xi)−

f∗(xi+1)‖2 ≤ O(
√
d)

∆
∑t−1
i=1 ρS(xi, xi+1) = O(

√
d)

∆ ρS(p, q).
Finally, let us bound the diameter of the clusters in P ′. Let C be a cluster in P ′. By

construction, diam(f∗(C)) ≤ ∆, and GS [C] is a connected subgraph, thus by Lemma 10 we
obtain that the diameter of C in the metric space (X, ρ) is at most u(1 + 4∆/u)d. Thus P ′
is (O(

√
d/∆), u(1 + 4∆/u)d)-Lipschitz, concluding the proof. J

The following result allows us to sample from a Lipschitz distribution, without additional
information about the geometry of the underlying space.

I Lemma 12 ([22]). Let M = (X, ρ) be a metric space, and let ∆ > 0. Suppose that M
admits a (β,∆)-Lipschitz distribution, for some β > 0. Then there exists a randomized
polynomial-time algorithm, which given M and ∆, outputs a random partition P of X, such
that P is sampled from a (2β,∆)-Lipschitz distribution P.

4.2 The algorithm: Combining Lipschitz and pseudoregular partitions
We now present our final algorithm for learning Euclidean metric spaces with perfect infor-
mation. First, we show that, using the algorithm from Section 3, we can learn d-dimensional
Euclidean metric spaces of bounded diameter. The final algorithm combines this result with
an efficient procedure for decomposing the instance using a random Lipschitz partition.

I Lemma 13 (Computing Euclidean embeddings of small diameter). Let ε, ε′ > 0. Let
γC = (C,S,D, u, `), with |C| = n, be an instance of the metric learning problem. Suppose
that γC admits an embedding g∗ : C → Rd with accuracy r∗, such that diam(g∗(C)) ≤ ∆, for
some ∆ > 0. Then, there exists an algorithm which given γC and ∆, computes a (1 + ε′)-
embedding ĝ : C → Rd, with accuracy at least r∗ − ε. Furthermore for any fixed u and `, the
running time is T (n, d,∆, ε, ε′) = 2ε−2(∆

√
d/ε′)O(d) .

Proof. Let c1 = ε′

2
√
d

min{`, u}. Since diam(g∗(C)) ≤ ∆, it follows that there exists some
ball B ⊂ Rd of radius 2∆ such that g∗(C) ⊂ B. Let c1Zd denote the integer lattice scaled
by a factor of c1. Let N = B ∩ (c1Zd). Note that |N | ≤ (2∆/c1)d. Let g′ : C → Rd
be defined such that for each p ∈ C, we have that g′(p) is a nearest neighbor of g∗(p)
in N , breaking ties arbitrarily. For any {p, q} ∈ S ∩

(
C
2
)
, we have ‖g′(p) − g′(q)‖2 ≤

‖g′(p)− g∗(p)‖2 + ‖g∗(p)− g∗(q)‖2 + ‖g∗(q)− g′(q)‖2
≤ u +

√
dc1 ≤ u(1 + ε′). Similarly, for any {p, q} ∈ D ∩

(
C
2
)
, we have ‖g′(p) − g′(q)‖2 ≥

−‖g′(p)− g∗(p)‖2 + ‖g∗(p)− g∗(q)‖2 − ‖g∗(q)− g′(q)‖2
≥ `−

√
dc1 ≤ `/(1 + ε′), and thus g′ is a (1 + ε′)-embedding, with accuracy r∗.

Let M = (N, ‖ · ‖2); that is, the metric space on N endowed with the Euclidean distance.
By Lemma 8 we can therefore compute a (1 + ε′)-embedding ĝ : C → N , with accuracy
r∗ − ε, in time nO(1)2O(|N |5/ε2) = 2ε−2(∆

√
d/ε′)O(d) . J

We are now ready to prove the main result in this Section.
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Proof of Theorem 3. We first construct the graph GS as above. Let ∆ = c
√
du/ε, for some

universal constant c > 0. By Lemma 11 the metric space (X, ρS) admits some (O(
√
d/∆),∆′)-

Lipschitz distribution, for some ∆′ = u(1 + 4∆/u)d. By Lemma 12 we can compute, in
polynomial time, some random partition P of X, such that P is distributed according to
some (O(

√
d/∆),∆′)-Lipschitz distribution P.

Let S ′ = {{p, q} ∈ S : P (p) 6= P (q)}. Since P is (O(
√
d/∆),∆′)-Lipschitz, it follows by

the linearity of expectation that

E[|S ′|] =
∑
{p,q}∈S

Pr[P (p) 6= P (q)] ≤
∑
{p,q}∈S

O(
√
d)ρS(p, q)

∆ = O(
√
d) u∆ |S| ≤ ε|S|/4, (5)

where the last inequality holds for some large enough constant c > 0.
Fix some optimal embedding f∗ : X → Rd, that satisfies all the constraints in γ. Let C

be a cluster in P . Since P is ∆′-bounded, it follows that the diameter of C in (X, ρS) is at
most ∆′. Thus, for any p, q ∈ C, there exists in GS some path Q = x0, . . . , xL between p and
q, with L ≤ ∆′/u edges. Thus ‖f∗(p)− f∗(q)‖2 ≤

∑L−1
i=0 ‖f∗(xi)− f∗(xi+1)‖2 ≤ L · u ≤ ∆′,

which implies that diam(f∗(C)) ≤ ∆′. Furthermore f∗ has accuracy 1.
Let SC = S∩

(
C
2
)
, DC = D∩

(
C
2
)
. Then γC = (C,SC ,DC , u, u) is an instance of non-linear

metric learning in d-dimensional Euclidean space that admits a solution f∗ : C → Rd with
accuracy 1, with diam(f∗(C)) ≤ ∆′. Therefore, for each C ∈ P , using Lemma 13 we can
compute some (1 + ε′)-embedding fC : C → Rd, with accuracy at least 1 − ε/2, in time
T (n, d,∆′, ε/2, ε′) = nO(1)2( d

εε′ )
O(d2)

. We can now combine all these maps fC into a single
map f̂ : X → Rd, by translating each image fC(C) such that for any distinct C,C ′ ∈ P , for
any p ∈ C, p′ ∈ C ′, we have ‖fC(p) − fC′(p′)‖2 ≥ u. For any p ∈ C, we set f(p) = fC(p),
where C is the unique cluster in P containing p. It is immediate that any constraint {p, q} ∈ S,
with p and q in different clusters is violated by f . The total number of such violations is
|S ′|. By Markov’s inequality and (5), these violations are at most ε|S|/2, with probability at
least 1/2. Similarly, any {p, q} ∈ D, with p and q in different clusters is satisfied by f . All
remaining violations are on constraints with both endpoints in the same cluster of P . Since
the accuracy of each fC is at least 1− ε, it follows that the total number of these violations
is at most ε(|S|+ |D|)/2. Therefore, the total number of violations among all constraints is
at most ε(|S|+ |D|)/2 + ε|S|/2 ≤ ε(|S|+ |D|), with probability at least 1/2. In other words,
the accuracy of f is at least 1 − ε, with probability at least 1/2. The success probability
can be increased to 1− 1/nc, for any constant c > 0, by repeating the algorithm O(logn)
times and returning the best embedding found. Finally, the running time is dominated by
the computation of the maps fC , for all clusters C in P . Since there are at most n such
clusters, the total running time is nO(1)2( d

εε′ )
O(d2)

, concluding the proof. J

5 Learning Euclidean metric spaces with imperfect information

In this Section we describe our algorithm for learning d-dimensional Euclidean metric spaces
with imperfect information. We first obtain some preliminary results on graph partitioning
via sparse cuts. We next show that for any instance whose similarity constraints induce an
expander graph, the optimal solution must be contained inside a ball of small diameter. Our
final algorithm combines these results with the algorithm from Section 3 for embedding into
host metric spaces of bounded cardinality.

Fix some instance γ = (X,S,D, u, `). For the remainder of this Section we define the
graphs GS = (X,ES), GD = (X,ED), and GS∪D = (X,ES∪D), where ES = S, ED = D,
and ES∪D = S ∪ D.
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5.1 Well-linked decompositions
We recall some results on partitioning graphs into well-connected components. An instance to
the Sparsest-Cut problem consists of a graph G, with each edge {x, y} ∈ E(G) having capacity
cap(x, y) ≥ 0, and each pair x, y ∈ V (G) having demand dem(x, y) ≥ 0. The goal is to find a
cut (U,U) of minimum sparsity, denoted by φ(U), which is defined as φ(U) = cap(U,U)

dem(U,U)
, where

cap(U,U) =
∑
{x,y}∈E(U,U) cap(x, y), dem(U,U) =

∑
{x,y}∈E(U,U) dem(x, y), and E(U,U)

denotes the set of edges between U and U . We recall the following result of Arora, Lee and
Naor [3] on approximating the Sparsest-Cut problem (see also [4]).

I Theorem 14 ([3]). There exists a polynomial-time O(
√

logn log logn)-approximation for
the Sparsest-Cut problem on n-vertex graphs.

I Lemma 15. Let α > 0. There exists a polynomial-time algorithm which computes some
E′ ⊂ S ∪ D, with |E′| ≤ α|S ∪ D|, such that for every connected component C of GS \ E′,
and any U ⊂ C, we have |ES(U,C \ U)| = Ω

(
α

log3/2 n log logn

)
|U | · |C \ U |.

Proof. We compute E′ inductively starting with E′ = ∅. We construct an instance of the
Sparsest-Cut problem on graph GS , where for any {x, y} ∈ S we have cap(x, y) = 1, and for
any x, y ∈ X, we have dem(x, y) = 1. Let χ = α

c log3/2 n log logn , for some universal constant
c > 0 to be specified. If there exists a cut of sparsity at most χ, then by Theorem 14 we can
compute a cut (U,U) of sparsity O(χ

√
logn log logn). We add to E′ all the edges in ES(U,U),

and we recurse on the subgraphs GS [U ] and GS [U ]. If no cut with the desired sparsity
exists, then we terminate the recursion. For each cut (U,U) found, the edges in ES(U,U)
that were added to E′ are charged to the edges in ES∪D(U,U). In total, we charge only
O(χ
√

logn log logn)-fraction of all edges, and thus |E′| = O(χn log3/2 n log logn) ≤ α|S ∪D|,
where the last inequality follows for some sufficiently large constant c > 0, concluding
the proof. J

5.2 Isoperimetry and the diameter of embeddings
Here we show that if the graph GS of similarity constraints is “expanding” relative to GS∪D,
then there exists an embedding with near-optimal accuracy, that has an image of small
diameter. Technically, we require that in any cut in GS∪D, a significant fraction of its edges
are in S. Intuitively, this condition forces almost all points to be mapped within a small ball.
The next Lemma formalizes this statement.

I Lemma 16. Let F ⊂ S, with |F | ≤ ζ
(|X|

2
)
, for some ζ > 0. Suppose that for all U ⊂ X,

we have

|ES(U,X \ U)| ≥ α′ · |U | · |X \ U |, (6)

for some α′ > 0. Then there exists J ⊆ X, satisfying the following conditions:
(1) No edge in F has both endpoints in J ; that is, F ∩ ES(J) = ∅.
(2) |ES∪D(J)| ≥ (1− ζ/α′)

(|X|
2
)
.

(3) For all U ⊂ J , we have

|ES(U, J \ U)| = Ω(α′)|U | · |J \ U |. (7)

Proof. Let C be the largest connected component of GS \ F , and let C ′ = X \ C. By (6)
we get

|ES∪D(C,C ′)| = |C| · |C ′| = O (1/α′) |ES(C,C ′)| = O (1/α′) |F | = O (ζ/α′) |X|2. (8)
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Since GS∪D is a complete graph, it follows from (8) that the number of edges not in GS∪D[C]
is at most O(ζ/α′)|X|2, and therefore

|ES∪D(C)| ≥ (1−O(ζ/α′))
(
|X|
2

)
. (9)

Next, we compute some J ⊆ C such that for all U ⊂ C,

ES(U, J \ U) ≥ c′α′ · |U | · |J \ U |, (10)

for some universal constant c′ to be determined. This is done as follows. If there is no U ⊂ C
violating (10), then we set J = C. Otherwise, pick some U ⊂ C, such that

ES(U,C \ U) < c′α′ · |U | · |C \ U |. (11)

Assume w.l.o.g. that |U | ≤ |C \ U |. We delete U and we recurse on C \ U . All deleted
edges are charged to the edges in F that are incident to U . It follows by (11) and (6) that,
for some sufficiently small constant c′ > 0, at least a 2/3-fraction of the edges incident to
U are in F . Thus |F ∩ ES(U,X \ U)| = Ω(α′)|U | · |X \ U |. We charge the deleted edges
(that is, the edges inside the deleted component U and in ES(U,X \ U)) to the edges in
F ∩ ES(U,X \ U), with each edge thus receiving O(1/α′) units of charge. When we recurse
on C \ U , the part of F that was incident to U is replaced by ES(U,C \ U), and thus it
decreases in size by at least a factor of 2. Therefore, the total charge that we pay throughout
the construction is at most O(1/α′)|F | = O(ζ/α′)|X|2, which is an upper bound on the
number of all deleted edges. This completes the construction of J . Combining with (9) we get
|ES∪D(J)| ≥ |ES∪D(C)|−O(ζ/α′)|X|2 ≥ (1−O(ζ/α′))

(|X|
2
)
, which concludes the proof. J

I Lemma 17. Let M = (Y, ρ) be any metric space. Suppose that γ admits an embedding
f∗ : X → Y with accuracy 1 − ζ, for some ζ > 0. Suppose further that for all U ⊂ X,
we have

ES(U,X \ U) ≥ α′ · |U | · |X \ U |, (12)

for some α′ > 0. Then there exists an embedding f ′ : X → Y , with accuracy at least
1−O(ζ/α′), such that diamM (f ′(X)) = O

(
u logn
α′

)
.

Proof. Let J ⊆ X be given by Lemma 16, where we set F to be the set of constraints in
S that are violated by f∗. We define f ′ : X → Y by mapping each x ∈ J to f∗(x), and
each x ∈ X \ J to some arbitrary point in f∗(J). All constraints in ES(J) are satisfied by
f∗, and thus also by f ′. It follows that f ′ can only violate constraints that are violated
by f∗, and constraints that are not in ES∪D(J). Therefore the accuracy of f ′ is at least
1− ζ −O(ζ/α′) = 1−O(ζ/α′).

By Lemma 16 we have that for all U ⊂ J , |ES(U, J \U)| = Ω(α′)|U |·|J \U |. Therefore, the
combinatorial diameter (that is, the maximum number of edges in any shortest path) of GS [J ]
is at mostO((logn)/α′). For all {x, y} ∈ ES(J) we have ρ(f ′(x), f ′(y)) = ρ(f∗(x), f∗(y)) ≤ u,
it follows that diamM (f ′(X)) = diamM (f ′(J)) = O(u logn

α′ ). J
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5.3 The algorithm
We are now ready to prove the main result of this Section.

Proof of Theorem 4. Fix some optimal embedding f∗ : X → Rd, with accuracy 1− ζ. Let
E′ ⊂ S ∪ D be the set of constraints computed by the algorithm in Lemma 15. We have
|E′| ≤ α|S ∪ D|, for some α > 0 to be determined.

For each connected component C of GS \E′, let γC = (C,SC ,DC , u, `) be the restriction
of γ on C; that is, SC = S ∩

(
C
2
)
, and SD = D ∩

(
C
2
)
. Let f∗C be the restriction of f∗ on C,

and let the accuracy of f∗C be 1− ζC , for some ζC ∈ [0, 1]. Let FC be the set of constraints
in ES(C) that are violated by f∗C . By Lemma 17 it follows that there exists an embedding
f ′C : X → Rd, with accuracy 1−O(ζC/α′), and such that diam(f ′C(C)) = O(u logn

α′ ), for some
α′ = Ω( α

log3/2 n log logn ).
Using Lemma 13 we can compute a (1+ε′)-embedding f̂C : C → Rd with accuracy at least

1−O(ζC/α)− ε, in time nO(1)2ε
−2( ∆

√
d

ε′ )O(d)
. We can combine all the embeddings f̂C into a

single embedding f̂ : X → Rd by translating the images of f̂C(C) and f̂C′(C ′) in Rd to that
their distance is at least `, for all distinct components C, C ′. It is immediate that the resulting
embedding f̂ can only violate the constraints in E′, and the constraints violated by all the f̂C .
Thus, the accuracy of f̂ is at least 1−α−O(ζ/α′)−ε. Setting α = ζ1/2 log3/4 n(log logn)1/2,
we get that the accuracy of f̂ is at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε. The running
time is dominated by the at most n executions of the algorithm from Lemma 13, and thus it
is at most nO(1)2ε

−2( d logn
ζε′ )O(d)

, for any fixed u > 0, concluding the proof. J
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