
Chunk Reduction for Multi-Parameter Persistent
Homology
Ulderico Fugacci
Graz University of Technology, Graz, Austria
fugacci@tugraz.at

Michael Kerber
Graz University of Technology, Graz, Austria
kerber@tugraz.at

Abstract
The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since
most computation tasks scale badly with the size of the input complex, an important pre-processing
step consists of simplifying the input while maintaining the homological information. We present
an algorithm that drastically reduces the size of an input. Our approach is an extension of the
chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and
Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain
complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of
previous work in the context of discrete Morse theory. Our algorithm also offers an immediate
parallelization scheme in shared memory. Already its sequential version compares favorably with
existing simplification schemes, as we show by experimental evaluation.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Computing methodologies → Shared memory algorithms

Keywords and phrases Multi-parameter persistent homology, Matrix reduction, Chain complexes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.37

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.08580.

Funding Supported by the Austrian Science Fund (FWF) grant number P 29984-N35.

Acknowledgements We thank Sara Scaramuccia for initial discussions on this project, Wojciech
Chacholski, Michael Lesnick and Francesco Vaccarino for helpful suggestions, and Federico Iuricich
for his help on the experimental comparison with [10]. The datasets used in the experimental
evaluation are courtesy of the AIM@SHAPE data repository [9].

1 Introduction

In the last decades, topology-based tools are gaining a more and more relevant role in the
analysis and in the extraction of the core information of unorganized, high-dimensional
and potentially large datasets. Thanks to its capability of keeping track of the changes in
the homological features of a dataset which evolves with respect to a parameter, persistent
homology has represented a real game-changer in this field. Recently, an extension of persistent
homology called multi-parameter persistent homology is drawing the attention of a growing
number of researchers. In a nutshell, multi-parameter persistence generalizes the classic
persistent homology by studying multivariate datasets which are filtered by two or more
(independent) scale parameters. Multi-parameter persistent homology of a dataset cannot
be captured by complete discrete invariant [5], but this has not prevented the researchers
from defining several descriptors based on multi-parameter persistence [6, 12, 15]. Since

© Ulderico Fugacci and Michael Kerber;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-3062-997X
mailto:fugacci@tugraz.at
https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://doi.org/10.4230/LIPIcs.SoCG.2019.37
https://arxiv.org/abs/1812.08580
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


37:2 Chunk Reduction for Multi-Parameter Persistent Homology

these descriptors tend to have high algorithmic complexity, it is a natural pre-processing step
to pass to a smaller but equivalent representation of the input complex and to invoke any
demanding computation on this smaller representation.

Contribution. Inspired by the chunk algorithm [3] for persistent homology, we present a
reduction algorithm which for a filtered dataset returns a filtered chain complex having the
same multi-parameter persistence but a drastically smaller size. Our approach is based on the
observation that even in the absence of a global persistence diagram, local matrix reductions
yield pairs of simplices which can be eliminated from the boundary matrix without affecting
the homological information. Our approach proceeds in two steps, first identifying such local
pairs of simplices, and in a second step manipulating the non-local columns of the boundary
matrix such that all indices of locally paired simplices disappear. Both steps permit a parallel
implementation with shared memory. We prove that our simplification scheme is optimal
in the sense that any chain complex quasi-isomorphic to the input complex must contain
at least as many generators as our output complex. Our algorithm yields similar time and
space complexity bounds as its one-parameter counterpart. We implemented our algorithm,
making use of various techniques that have proven effective for persistence computation,
such as the twist reduction [8] and efficient data structure for the columns of a boundary
matrix [4]. We experimentally show that our implementation is effective (see next paragraph).
For the sake of clarity, our approach is described for the two-parameter case. No constraint
prevents the generalization of the proposed method to an arbitrary number of parameters.

Comparison with related work. Our work is motivated by a line of research on complex
simplification using discrete Morse theory (DMT) [11, 1, 2, 17]. In these works, the idea is
to build a discrete gradient locally and to return the resulting Morse complex on critical
simplices as a simplification. In analogy to the one-parameter case, our chunk algorithm
is an attempt to realize this simplification scheme using persistent homology instead of
DMT. This gives more flexibility, as in DMT, the paired cells are constrained to be incident,
while this restriction is not present for persistence pairs. Consequently, we are able to prove
optimality of our output size in general, while DMT-based approaches only succeeded to
give guarantees for special cases such as multi-filtrations of 3D regular grids and of abstract
simplicial 2-complexes [16]. In practice, the theoretical benefit in terms of output size is
rather marginal, as our experiments show; however, the timings show that our improved
theoretical guarantee comes without performance penalty; on the contrary, our algorithm is
always faster than the DMT-based approach presented in [17] on all tested examples. We
remark, however, that the DMT-based algorithm returns a complex endowed with a Forman
gradient as well as the corresponding discrete Morse complex, which can be of potential use
for other application domains than computing persistent homology.

A related question is the computation of a minimal presentation of a persistence module
induced by a simplicial or general chain complex. Roughly speaking, a presentation consists
of a finite set of (graded) generators and relations, and the minimal presentation is one with
the minimal possible number of generators and relations. Our algorithm does not yield a
minimal presentation, however, since more computations are needed to identify generators
of the chain complex as generators or as relations. An algorithm by Lesnick and Wright1
[13] computes such a minimal presentation through matrix reduction in cubic time, carefully
choosing a column order to reduce the number of reduction instances. Their algorithm is used

1 https://www.ima.umn.edu/2017-2018/SW8.13-15.18/27428

https://www.ima.umn.edu/2017-2018/SW8.13-15.18/27428


U. Fugacci and M. Kerber 37:3

in their software package RIVET [14]. Our contribution can serve as a pre-processing step
for their algorithm, reducing the size of the matrix through efficient and possibly parallelized
computation and invoking their global reduction step on a much smaller chain complex.

2 Background

Homology. Fixed a base field F and a positive integer d, let us consider, for each 0 ≤ k ≤ d, a
finite collection of elements denoted as k-generators (or, equivalently, generators of dimension
k). A finitely generated chain complex C∗ = (Ck, ∂k) over F is a collection of pairs (Ck, ∂k)
where:

Ck is the F-vector space spanned by the generators of dimension k,
∂k : Ck → Ck−1 is called boundary map and it satisfies the property that ∂k−1∂k = 0.

The elements of Ck are called k-chains and, by definition, are F-linear combinations of
the generators of dimension k. The support of a k-chain is the set of k-generators whose
coefficient in the chain is not zero. In the following, we will simply use the term chain
complex in place of finitely generated chain complex. Moreover, we will assume that, given a
chain complex, an explicit set of generators is provided.

Given a chain complex C∗, we denote as Zk := ker ∂k the space of the k-cycles of C∗, and as
Bk := Im ∂k+1 the space of the k-boundaries of C∗. The kth homology space of C∗ is defined
as the vector space Hk(C∗) := Zk/Bk. The rank βk of the kth homology space of a chain
complex C∗ is called the kth Betti number of C∗.

A chain map f∗ : C∗ → D∗ is a collection of linear maps fk : Ck → Dk which commutes
with the boundary operators of C∗ and of D∗. A simple example of a chain map is the
inclusion map, if C∗ is a subcomplex of D∗. In general, a chain map f∗ induces linear maps
Hk(C∗)→ Hk(D∗) for every k.

Chain complexes allow for capturing the combinatorial and the topological structure of a
discretized topological space. Given a finite simplicial complex K, the chain complex C∗
associated to K is defined by setting Ck as the F-vector space generated by the k-simplices
of K and the boundary ∂k(c) of a k-chain c corresponding to a k-simplex σ as the collection
of the (k − 1)-simplices lying on the geometrical boundary of σ. Consequently, homology of
a finite simplicial complex K is defined as the homology of the chain complex C∗ associated
to K. Intuitively, homology spaces of K reveal the presence of “holes” in the simplicial
complex. The non-null elements of each homology space are cycles, which do not represent
the boundary of any collection of simplices of K. Specifically, β0 counts the number of
connected components of K, β1 its tunnels and holes, and β2 the shells surrounding voids
or cavities.

Multi-parameter persistent homology. In the following, we will focus for simplicity on
datasets filtered by two independent scale parameters. All definitions and results in this paper
can be generalized to more parameters without problems. Let p = (px, py), q = (qx, qy) ∈ R2,
we will write throughout p ≤ q if px ≤ qx and py ≤ qy. Given a chain complex C∗ = (Ck, ∂k),
let us assume to have an assignment which, for each generator g ∈ Ck, returns a value
v(g) ∈ R2 such that, for any generator g′ ∈ Ck−1, if 〈∂kg, g′〉 6= 0, then v(g′) ≤ v(g). The
assignment v can be extended to a function v : C∗ → R2 assigning to each chain c the least
common upper bound v(c) of the values v(g) of the generators in the support of c. In the
following, v(c) will be called the value of c.

SoCG 2019



37:4 Chunk Reduction for Multi-Parameter Persistent Homology

Given a chain complex C∗ = (Ck, ∂k) endowed with a value function v : C∗ → R2 and fixed
a value p ∈ R2 we define Cp∗ = (Cpk , ∂

p
k) as the chain complex for which:

Cpk is the space of the k-chains of Ck having value lower than or equal to p,
∂pk is the restriction of ∂k to Cpk .

By the definition of v, for any chain c of dimension k, we have that v(∂k(c)) ≤ v(c). So, Cp∗ is
well-defined. For p, q ∈ R2 with p ≤ q, Cp∗ is a chain subcomplex of Cq∗ . For this reason, we
denote the collection C of the chain complexes Cp∗ with p ∈ R2 as bifiltered chain complex.

Given p, q ∈ R2 with p ≤ q, the inclusion map from Cp∗ to Cq∗ induces a linear map between
the corresponding homology spaces Hk(Cp∗ ) and Hk(Cp∗ ). The multi-parameter persistence
kth module Hk(C) of a bifiltered chain complex C is the collection of the homology spaces
Hk(Cp∗ ) with p varying in R2 along with all the linear maps induced by the inclusion maps.

Let C,D be two bifiltered chain complexes. We call C and D homology-equivalent if, for any
fixed k ∈ N, Hk(Cp∗ ) and Hk(Dp

∗) are isomorphic via a map ψpk and, for any p, q ∈ R2 with
p ≤ q, the diagram

Hk(Cp∗ ) > Hk(Cq∗)

Hk(Dp
∗)

ψp
k∨

> Hk(Dq
∗)

ψq
k∨

commutes where horizontal maps are induced by inclusion maps. Moreover, we call C and D
quasi-isomorphic if the isomorphisms of the above diagram are induced by a collection of
chain maps fp∗ : Cp∗ → Dp

∗ satisfying, for any p ≤ q and any k, the commutative diagram

Cpk > Cqk

Dp
k

fp
k∨

> Dq
k

fq
k∨

in which horizontal maps are the inclusion maps. By definition, quasi-isomorphic bifiltered
chain complexes are homology-equivalent. The converse, as depicted in Figure 1, does not
hold in general. Two chain maps α∗, β∗ : C∗ → D∗ are called chain-homotopic if there exists

Figure 1 The two depicted bifiltered chain complexes are homology-equivalent but not quasi-
isomorphic.

a collection of maps φk : Ck → Dk+1 such that, for any k, ∂Dk+1φk + φk−1∂
C
k = αk − βk.

Two bifiltered chain complexes C and D are called homotopy-equivalent if, there exist two
collections of chain maps fp∗ : Cp∗ → Dp

∗ and gp∗ : Dp
∗ → Cp∗ such that, for any p ∈ R2,



U. Fugacci and M. Kerber 37:5

fp∗ and gp∗ are homotopy-inverse one with respect to the other (i.e., gp∗fp∗ and fp∗ g
p
∗ are

chain-homotopic to idCp
∗
and idDp

∗
, respectively) and they satisfy, for any p ≤ q, the following

commutative diagram

Cpk > Cqk

Dp
k

fp
k ∨

gp
k

∧

> Dq
k

fq
k ∨

gq
k

∧

in which horizontal maps are the inclusion maps. Homotopy-equivalent bifiltered chain
complexes are necessarily quasi-isomorphic.

Representation of bifiltered chain complexes. We assume that the bifiltered chain complex
in input is provided as a finite sequence of triples of the form

(p, k,∆)

where p ∈ R2, k is a positive integer, and ∆ is a finite list of pairs (l, λ) with λ ∈ F and
l ∈ N. In order to retrieve the bifiltered chain complex C represented by this list, each triple
(p, k,∆) has to be interpreted as a k-generator c with value v(c) = p and whose boundary
is encoded through ∆. Specifically, by defining as cl the generator stored in position l of
the sequence of triples, the pair (l, λ) in ∆ represents that cl appears in the boundary of c
with coefficient λ. In order to ensure that the above-described interpretation of the input
sequence actually returns a valid bifiltered chain complex, we require that, if c′ is a generator
appearing in the boundary of c, then the value v associated to c′ is lower than or equal to
the one taken by c.

Given a chain complex C∗ endowed with a value function v, let us consider an injective
function i providing the set of generators of C∗ with a total order which is consistent with
the partial order induced by the value funtion v. More precisely, given two generators c1, c2
of C∗, the index function i has to satisfy that v(c1) ≤ v(c2) implies i(c1) ≤ i(c2).

We uniquely represent the bifiltered chain complex C as follows. Each generator c of C∗
is stored in a data structure that we call the column of the generator. A column stores:

the index i(c),
the value v(c),
the dimension k of g,
the boundary of c.

The boundary is stored as a (possibly empty) container of entries of the form (i(c′), λ), where
c′ is a generator of dimension k− 1 such that λ := 〈∂k(c), c′〉 6= 0. In such a case, we say that
c′ is in the boundary of c. The boundary of c is then the linear combination induced by this
container. The name “column” comes from the idea that the collection of all columns can
be visualized as a matrix. If we decorate the columns of the matrix with extra information
(index, value, and dimension), we obtain the data structure from above. We will also write
k-column if the column represents a generator of dimension k. Due to the fact that a column
is nothing but an encoding of a generator, in the following, with a small abuse of notation
we will often use interchangeably the two terms. Given a k-column c, we define the local
pivot of c as the generator in the boundary of c with maximal index such that v(c′) = v(c).
If no such generator exists, we simply say that c has no local pivot.

Arguably, the most common case of input data is simplicial complexes. Let K denote a
finite simplicial complex. A bifiltration is a collection (Kp)p∈R2 of subcomplexes of K such
that Kp ⊆ Kq whenever p ≤ q. Fixing a simplex σ ∈ K, we say that p ∈ R2 is critical for σ,

SoCG 2019



37:6 Chunk Reduction for Multi-Parameter Persistent Homology

if σ ∈ Kp, but σ /∈ Kp−(ε,0) ∪Kp−(0,ε) for every ε > 0. The bifiltration is called h-critical
with h ≥ 1, if for every σ ∈ K, there are at most h critical positions in R2. For instance,
1-critical means that every simplex in K enters the filtration at a unique minimal value.
Such 1-critical bifiltrations can easily be described by a sequence of the form (p, k,∆) as
above by adding one line per simplex which defines its critical position, its dimensions, and
its boundary. The case of h-critical bifiltrations can be handled with the following trick (see
also [7]). Letting p1, . . . , ph denote the critical positions of σ, sorted by x-coordinate, we
introduce h distinct k-generators c1, . . . , ch of the form (pi, k,∆), that is, h copies of the
same simplex. For two consecutive positions pi = (xi, yi) and pi+1 = (xi+1, yi+1), we add an
additional (k + 1)-generator at (xi+1, yi) (which is the smallest point q such that pi ≤ q and
pi+1 ≤ q), whose boundary is equal to ci − ci+1.

3 Algorithm

Given a bifiltered chain complex C encoded as a collection of columns, we define the chunk
algorithm that returns as output a bifiltered chain complex as a collection of columns that is
homotopy-equivalent to C and has fewer generators. The algorithm works in three phases:

local reduction;
compression;
removal of local columns.

Phase I: Local reduction. The goal of this phase is to label columns as global, local positive
or local negative columns. Initially, all columns are unlabeled. We proceed in decreasing
dimensions, from the top-dimensions of C down to 0. For dimension k, the algorithm traverses
the k-columns in increasing order with respect to i and performs the following operations on
a k-column c. If c is already labeled, do nothing. Otherwise, as long as c has a local pivot
and there is a k-column c′ with i(c′) < i(c) and the same local pivot as c, perform the column
addition c← c+ λc′, where λ is chosen such that the local pivot of c disappears. If at the
end of this loop, the column c does not have a local pivot, we label the column as global and
proceed. Otherwise, we label c as local negative and its local pivot c′ as local positive. We
call (c′, c) a local pair in this case. This ends the description of Phase I of the algorithm.

Note that within the local reduction, any column addition of the form c← c+λc′ implies
that v(c) = v(c′). Hence, the local reduction operates independently on columns of the
same value. We call blocks of columns with the same value chunks; hence the name of the
algorithm. Operations on one chunk do not affect columns on any other chunk, hence the
local reduction phase can be readily invoked in parallel on the chunks of the chain complex.

Finally, note that by proceeding in decreasing dimension, we avoid performing any column
additions on local positive columns. That is reminiscent of the clearing optimization in the
one-parameter version [3, 8].

Phase II: Compression. In the second phase, the algorithm removes local (positive or
negative) generators from the boundary of all global columns in the matrix:

For each global k-column c, while the boundary of the column contains a generator that
is local positive or local negative, the algorithm picks the local (k − 1)-generator c′ with
maximal index.

if c′ is negative, remove c′ from the boundary of c;
if c′ is positive, denote c′′ as the (unique) local negative k-column with c′ as local pivot
and perform the column addition c← c+ λc′′, where λ is chosen such that c′ disappears
in the boundary of c.



U. Fugacci and M. Kerber 37:7

This ends the description of the compression phase. On termination, all columns in the
boundary of a global k-column are global (k − 1)-columns.

The above process terminates for a column c because the index of the maximal local
generator in the boundary of c is strictly decreasing in each step. That is clear for the case
that c′ is local negative. If c′ is local positive, then c′ is the generator in the boundary of c′′
with the maximal index, so the column addition does not introduce in the boundary of c any
generators with a larger index.

Note that the compression of a global column does not affect the result on any other
global column. Thus, the phase can be parallelized as well.

Phase III: Removal of local pairs. In this step, the chain complex becomes smaller. The
procedure is simple: traverse all columns, and remove all columns labeled as local (positive or
negative). Return the remaining (global) columns as resulting chain complex. This finishes
the description of the phase and the entire chunk algorithm.

4 Correctness

In this section, we prove that the presented algorithm returns a bifiltered chain complex that
is homotopy-equivalent to the input. For that, we define two elementary operations on chain
complexes:

Order-preserving column addition. An operation of the form c ← c + λc′ is called order-
preserving if v(c′) ≤ v(c). Note that such an operation maintains the property that any
generator c′′ in the boundary of c satisfies v(c′′) ≤ v(c), by transitivity of v. We remark
that order-preserving column additions are the generalization of left-to-right column
additions in the one-parameter case.

Removal of a local pair. Fix a local pair (c1, c2), that means, c1 is a k-column, c2 is a
(k + 1)-column, v(c1) = v(c2) and c1 is the local pivot of c2. We call removal of the local
pair (c1, c2) the operation Del(c1, c2) which acts on the columns as follows.

For every (k+ 1)-column c, replace its boundary ∂k+1(c) with ∂k+1(c)−λ−1µ∂k+1(c2),
where λ and µ are the coefficients of c1 in ∂k+1(c2) and in ∂k+1(c), respectively. In
particular, after this operation, c1 disappeared from the boundary of any (k + 1)-
columns.
For every (k + 2)-column c, update its boundary by setting the coefficient of c2 in
∂k+2(c) to 0. Visualizing the chain complex as a matrix, this corresponds to removing
the row corresponding to c2.
Delete the columns c1 and c2.

Note that all column additions performed in the first step are order-preserving because
the pair (c1, c2) is local, that is, v(c1) = v(c2).

We will show at the end of this section that both elementary operations leave the homotopy
type the bifiltered chain complex unchanged.

I Theorem 1. Let C̄ denote the bifiltered chain complex computed by the chunk algorithm
from the previous section on an input bifiltered chain complex C. Then, C̄ and C are
homotopy-equivalent.

Proof. The idea is to express the chunk algorithm by a sequence of order-preserving column
additions and removals of local pairs. Because every column addition in Phase I is between
columns of the same value, all column additions are order-preserving. Hence, after Phase I,
the chain complex is equivalent to the input.

SoCG 2019



37:8 Chunk Reduction for Multi-Parameter Persistent Homology

In Phase II, note that all column additions performed are order-preserving. Indeed, if
c′ is in the boundary of column c, then v(c′) ≤ v(c) holds. If c′ is local positive, it triggers
a column addition of the form c ← c + λc′′ with its local negative counterpart c′′. Since
v(c′) = v(c′′), v(c′′) ≤ v(c) as well.

A further manipulation in Phase II is the removal of local negative columns from the
boundary of global columns. These removals cannot be directly expressed in terms of the
two elementary operations from above. Instead, we define a slight variation of our algorithm:
in Phase II, when we encounter a local negative c′, we do nothing. In other words, the
compression only removes the local positive generators from the boundary c, and keeps local
negative and global generators. In Phase III, instead of removing local columns, we perform
a removal of a local pair (c1, c2) whenever we encounter a local negative column c2 with
local pivot c1. We call that algorithm the modified chunk algorithm. Note that this modified
algorithm is a sequence of order-preserving column additions, followed by a sequence of local
pair removals, and thus produces a chain complex that is equivalent to the input C.

We argue next that the chunk algorithm and the modified chunk algorithm yield the same
output. Since both versions eventually remove all local columns, it suffices to show that they
yield the same global columns. Fix an index of a global column, and let c denote the column
of that index returned by the original chunk algorithm. Let c∗ denote the column of the
same index produced by the modified algorithm after the modified Phase II. The difference
of c∗ and c lies in the presence of local negative generators in the boundary of c∗ which have
been removed in c. The modified Phase III affects c∗ in the following way: when a local pair
(c1, c2) is removed, the local negative c2 is, if it is present, removed from the boundary of
c∗. There is no column addition during the modified Phase III involving c∗ because all local
positive columns have been eliminated. Hence, the effect of the modified Phase III on c∗ is
that all local negative columns are removed from its boundary which turns c∗ to be equal to
c at the end of the algorithm. Hence, the output of both algorithms is the same, proving
the theorem. J

We proceed with the proofs that both elementary operations yield homotopy-equivalent
bifiltered chain complexes.

Order-preserving column addition. Given two k-columns c1, c2 such that v(c1) ≤ v(c2)
and a scalar value λ ∈ F, the algorithm we propose allows for adding λ copies of the boundary
of column c1 to the boundary of column c2. In this section, we formalize that in terms of
modifications of chain complexes and we prove that this operation does not affect multi-
parameter persistent homology.

Given a chain complex C∗ = (Cl, ∂l) endowed with a value function v : C∗ → R2, let us
consider two generators c1, c2 among the ones of the space of the k-chains Ck such that
〈c1, c2〉 = 0 and v(c1) ≤ v(c2). Chosen a scalar value λ ∈ F, let us define C̄∗ = (C̄l, ∂̄l)
by setting:

C̄l = Cl,
for any c ∈ C̄l,

∂̄l(c) =


∂k(c) + λ〈c, c2〉∂k(c1) if l = k,

∂k+1(c)− λ〈∂k+1(c), c2〉c1 if l = k + 1,
∂l(c) otherwise.

As formally proven in the full version of the paper, C̄∗ is a chain complex.



U. Fugacci and M. Kerber 37:9

Let us define the maps f∗ : C∗ → C̄∗, g∗ : C̄∗ → C∗ as follows:
for any c ∈ Cl,

fl(c) =
{
c− λ〈c, c2〉c1 if l = k,

c otherwise;

for any c ∈ C̄l,

gl(c) =
{
c+ λ〈c, c2〉c1 if l = k,

c otherwise.

The just defined maps enable to prove the following result (see the full version of the
paper for detailed proofs).

I Proposition 2. C∗ and C̄∗ are isomorphic via the chain map f∗ and its inverse g∗.

Since the function v is a valid value function for C̄∗ inducing a bifiltered chain complex
C̄ and, for any p ∈ R2, the restrictions fpl : Cpl → C̄pl and gpl : C̄pl → Cpl of the maps fl and
gl, respectively, are well-defined (see the full version of the paper), we are ready to prove the
equivalence between the two bifiltered chain complexes C and C̄.

I Theorem 3. C and C̄ are homotopy-equivalent.

Proof. The previous results enables us to claim that, for any p, q ∈ R2 with p ≤ q, the
following diagram (in which horizontal maps are the inclusion maps)

Cpl > Cql

C̄pl

fp
l∨

> C̄ql

fq
l∨

commutes and the maps fpl , f
q
l are isomorphisms. J

Removal of a local pair. Given a local pair (c1, c2) of columns, the algorithm we propose
allows for deleting them from the boundary matrix. In this section, we formalize that in
terms of modifications of chain complexes and we prove that this operation does not affect
multi-parameter persistent homology.

Given a chain complex C∗ = (Cl, ∂l) endowed with a value function v : C∗ → R2, let us
consider two generators c1, c2 among the ones of the space of the k-chains Ck and of the space
of the (k + 1)-chains Ck+1, respectively, such that λ := 〈∂k+1(c2), c1〉 6= 0 and v(c1) = v(c2).
Let us define C̄∗ = (C̄l, ∂̄l) by setting:

the space of the l-chains C̄l as

C̄l =


{c ∈ Ck | 〈c, c1〉 = 0} if l = k,

{c ∈ Ck+1 | 〈c, c2〉 = 0} if l = k + 1,
Cl otherwise;

for any c ∈ C̄l,

∂̄l(c) =


∂k+1(c)− λ−1〈∂k+1(c), c1〉∂k+1(c2) if l = k + 1,
∂k+2(c)− 〈∂k+2(c), c2〉c2 if l = k + 2,
∂l(c) otherwise.

SoCG 2019



37:10 Chunk Reduction for Multi-Parameter Persistent Homology

As formally proven in the full version of the paper, C̄∗ is a chain complex.

Let us define the maps r∗ : C∗ → C̄∗, s∗ : C̄∗ → C∗ as follows:
for any c ∈ Cl,

rl(c) =


c− λ−1〈c, c1〉∂k+1(c2) if l = k,

c− 〈c, c2〉c2 if l = k + 1,
c otherwise;

for any c ∈ C̄l,

sl(c) =
{
c− λ−1〈∂k+1(c), c1〉c2 if l = k + 1,
c otherwise;

The just defined maps enable to prove the following result (see the full version of the
paper for detailed proofs).

I Proposition 4. The maps r∗ and s∗ are chain maps which are homotopy-inverse one with
respect to the other.

This latter combined with the fact that the function v is a valid value function for C̄∗
inducing a bifiltered chain complex C̄ and, for any p ∈ R2, the restrictions rpl : Cpl → C̄pl ,
spl : C̄pl → Cpl of the maps rl and sl, as well as the restrictions of the maps ensuring that r∗
and s∗ are homotopy-inverse, are well-defined (see the full version of the paper), guarantees
the homotopy-equivalence between the two bifiltered chain complexes C and C̄.

I Theorem 5. C and C̄ are homotopy-equivalent.

5 Optimality and complexity

Optimality. Let D be a bifiltered chain complex. For p ∈ R2, we define

D<p
∗ :=

∑
q<p

Dq
∗,

where the sum of chain complexes, analogously to the sum of the vector spaces, is the chain
complex spanned by the union of the generators of the summands. Moreover, let ηpk be the
homology map in dimension k induced by the inclusion of D<p

∗ into Dp
∗. We denote the

number of variations in the kth homology space occurred at value p as

δpk(D) := dim ker ηpk−1 + dim coker ηpk,

and the number of k-generators added at value p in D as

γpk(D) := dimDp
k − dimD<p

k .

I Theorem 6. Let C̄ be the bifiltered chain complex obtained by applying the chunk algorithm
to the bifiltered chain complex C. We have that δpk(C) = γpk(C̄).

The detailed proof is given in the full version of the paper and can be summarized as
follows. Every global column with value p either destroys a homology class of H(C<p), or it
creates a new homology class in H(Cp), which is not destroyed by any other column of value
p. Hence, each global column contributes a generator to ker ιpk−1 or to coker ιpk, where ι

p
l is



U. Fugacci and M. Kerber 37:11

the map between the lth homology spaces induced by the inclusion of C<p∗ into Cp∗ . Local
columns do not contribute to either of these two spaces. The result follows from the fact that
the number of global columns at value p is precisely the number of generators added at C̄.

The next statement shows that our construction is optimal in the sense that any bifiltered
chain complex D that is quasi-isomorphic to C must have at least as many generators as C̄.

I Theorem 7. Any bifiltered chain complex D quasi-isomorphic to C has to add at least
δpk(C) k-generators at value p. I.e., δpk(C) ≤ γpk(D).

The detailed proof is given in the full version of the paper. To summarize it, it is not too
hard to see that, for any bifiltered chain complex D,

δpk(D) ≤ γpk(D)

holds. Moreover, the quasi-isomorphism of C and D implies that dim ker ηpk−1 = dim ker ιpk−1
and dim coker ηpk = dim coker ιpk. So,

δpk(C) = δpk(D)

which implies that claim. The equality of the dimensions is formally verified using the
Mayer-Vietoris sequence and the 5-lemma to establish an isomorphism from Hk(C<p∗ ) to
Hk(D<p

∗ ) that commutes with the isomorphism at value p.

Complexity. In order to properly express the time and the space complexity of the proposed
algorithm, let us introduce the following parameters. Given a bifiltered chain complex C, we
denote as n the number of generators of C, as m the number of chunks (i.e., the number
of different values assumed by v), as ` the maximal size of a chunk, and as g the number
of global columns. Moreover, we assume the maximal size of the support of the boundary
of the generators of C as a constant. The latter condition is always ensured for bifiltered
simplicial complex of fixed dimension.

I Theorem 8. The chunk algorithm has time complexity O(m`3 log `+ g`n log `) and space
complexity O(n`+ g2).

Proof. Due to the similarity between the two algorithms, the analysis of complexity of the
proposed algorithm is analogous to the first two steps of the one-parameter chunk algorithm
[3]. The additional factor of log ` comes from our choice of using priority queues as column
type and could be removed by using list representations as in [3].2

On the space complexity, during the Phase I, the generators in the boundary of any
column can be at most O(`). So, O(n`) is a bound on the accumulated size of all columns
after Phase I. During Phase II, the boundary of any global column can consist of up to n
generators, but reduces to g generators at the end of the compression of the column because
all local entries have been removed. Hence, the final chain complex has at most g entries
in each of its g columns, and requires O(g2) space. Hence, the total space complexity is
O(n`+ n+ g2), where the second summand is redundant.3 J

2 We remark, however, that this would result in a performance penalty in practice. See [4].
3 We remark that this bound only holds for the sequential version of the algorithm. In a parallelized
version, it can happen that several compressed columns achieve a size of O(n) at the same time.

SoCG 2019



37:12 Chunk Reduction for Multi-Parameter Persistent Homology

6 Implementation and experimental results

We briefly introduce the developed implementation of the chunk algorithm and we evaluate
its performance. The current C++ implementation of the chunk algorithm consists of
approximately 350 lines of code. It takes as input a finite bifiltered chain complex expressed
accordingly to the representation described in Section 2 and encodes each column as a
std::priority_queue. Even if the chunk algorithm permits a parallelization in shared
memory, this first implementation does not exploit this potential. Our experiments have been
performed on a configuration Intel Xeon CPU E5-1650 v3 at 3.50 GHz with 64 GB of RAM.

For testing the implemented chunk algorithm, we have compared its performances with
the simplification process based on discrete Morse theory proposed in [17] (DMT-based
algorithm) whose implementation is publicly available [10]. We remark once more that the
DMT-based approach yields a somewhat richer output than solely a simplified chain complex
with the same homotopy; however, we only compare the size of the resulting structure (in
terms of the number of generators per chain group) in this experimental comparison.

In our experiments, we have considered both synthetic and real datasets represented as
simplicial complexes. The latter ones are courtesy of the AIM@SHAPE data repository [9].
Most of the datasets are of dimension 2 or 3 and are embedded in a 3D environment. For
our experiments, we have adopted as filtering functions the ones obtained by extending to
all the simplices of the complex the x and the y coordinates assigned to the vertices of the
datasets. Table 1 displays the achieved results.

The data sets are given in off file format, that means, as a list of triangles specified
by boundary vertices. In order to apply our algorithm, we first have to convert the data
into a boundary matrix representation. Hence, we enlist in Table 1 the preparation time to
create the boundary matrix and the simplification time to perform our chunk algorithm. In
contrast, the DMT-based approach avoids the initial construction of the boundary matrix
but transforms the input into a different data structure before starting its simplification step.
We also list the running times of these separate steps in Table 1. In both cases, we do not
list the time for reading the input file into memory and writing the output structure on disk.

The column Size in Table 1 collects the sizes (in terms of the number of simplices/columns)
of the bifiltered chain complexes in input and in output. The compression factor achieved by
both algorithms varies between 9 and 23. As average, the reduced chain complex in output
is approximately 13 times smaller than the original one. Despite of the theoretical advantage
that our approach yields an optimal size in all situations, the size of the output returned
by the two algorithms is nearly the same in all listed examples. A difference can be noticed
just for datasets including shapes that can be considered as “pathological”. For instance, an
example of such a dataset is the conification of a dunce hat.

The column Time shows the computation times of both algorithms. In all tested examples,
the chunk algorithm takes a small fraction of time with respect to the DMT-based approach.
We also see that the creation of the boundary matrix (preparation step) takes more time
than the chunk algorithm (simplification step) by a factor of 2 to 3, but even these two
steps combined are faster than the simplification step of the DMT-based approach. It is
worth investigating whether the boundary matrix creation becomes a more severe bottleneck
for other datasets (e.g., in higher dimension), where the DMT-based approach might have
advantages by not creating the boundary matrix explicitly.

The column Memory Usage shows the memory consumption of both approaches. The
chunk algorithm does not need to encode auxiliary structures like the discrete Morse gradient
stored in the DMT-based approach resulting in a slightly less amount of required space.



U. Fugacci and M. Kerber 37:13

Table 1 Results and performances obtained by the chunk and the DMT-based algorithms. The
columns from left to right indicate: the name of the dataset (Dataset), the number of cells before
and after the simplification algorithms (Size), the time (Time), expressed in seconds, needed to
perform the preparation step (Prep.) and the simplification step (Simpl.), the maximum peak of
memory, expressed in GB, required by the two algorithms (Memory Usage).

Dataset
Size Time (sec.) Memory Usage (GB)

Input Output Chunk DMT Chunk DMT
Prep. Simpl. Prep. Simpl.

Eros 2.9 M 202 K 1.7 0.8 2.7 15.8 0.36 0.46
Donna 3.0 M 217 K 1.8 0.8 2.8 16.9 0.38 0.48
Chinese Dragon 3.9 M 321 K 2.5 1.1 3.9 22.3 0.52 0.64
Circular Box 4.2 M 365 K 2.9 1.2 4.3 24.0 0.68 0.68
Ramesses 5.0 M 407 K 3.4 1.3 5.5 29.4 0.68 0.81
Pensatore 6.0 M 369 K 3.8 1.6 6.8 34.3 0.76 0.97
Raptor 6.0 M 260 K 4.4 1.7 5.4 32.3 0.73 0.93
Neptune 12.0 M 893 K 8.4 4.4 14.9 69.2 1.52 1.94
Cube 1 590 K 67 K 0.5 0.3 0.7 3.2 0.09 0.10
Cube 2 2.4 M 264 K 1.8 1.1 2.6 13.1 0.35 0.40
Cube 3 9.4 M 1.0 M 7.6 4.8 11.0 53.1 1.37 1.58
Cube 4 37.7 M 4.2 M 31.9 19.4 44.9 216.0 5.50 6.32

Depending on the dataset, the chunk approach requires between 0.09 and 5.50 GB of memory
and it is, on average, 1.2 times more compact than the DMT-based one.

In summary, the chunk algorithm satisfies a stronger optimality condition than [17], but
still is an order of magnitude faster and uses comparable memory.

7 Conclusion

We have presented a pre-processing procedure for improving the computation of multi-
parameter persistent homology and we have provided theoretical and experimental evidence
of its effectiveness. In the future, we want to further improve the proposed strategy as
follows. First, we would like to develop a parallel implementation with shared memory of
the chunk algorithm and compare its performances with the ones obtained by the current
version. Similarly to [17], we also want to evaluate the impact of the chunk algorithm for the
computation of the persistence module and of the persistence space.

Our optimality criterion is formulated for the class of chain complexes quasi-isomorphic to
the input. It is possible to produce counterexamples showing that this statement cannot be
generalized to the class of the chain complexes homology-equivalent to the input. Nevertheless,
we want to further investigate the optimality properties satisfied by our algorithm and compare
our algorithm with the minimal presentation algorithm for persistence modules from RIVET.

References
1 M. Allili, T. Kaczynski, and C. Landi. Reducing complexes in multidimensional persistent

homology theory. Journal of Symbolic Computation, 78:61–75, 2017. doi:10.1016/j.jsc.
2015.11.020.

2 M. Allili, T. Kaczynski, C. Landi, and F. Masoni. Acyclic partial matchings for multidi-
mensional persistence: algorithm and combinatorial interpretation. Journal of Mathematical
Imaging and Vision, pages 1–19, 2018.

SoCG 2019

http://dx.doi.org/10.1016/j.jsc.2015.11.020
http://dx.doi.org/10.1016/j.jsc.2015.11.020


37:14 Chunk Reduction for Multi-Parameter Persistent Homology

3 U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: computing persistent homology
in chunks. In Topological methods in data analysis and visualization III, pages 103–117.
Springer, 2014.

4 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Phat - persistent homology algorithms
toolbox. Journal of Symbolic Computation, 78:76–90, 2017.

5 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &
Computational Geometry, 42(1):71–93, 2009.

6 A. Cerri and C. Landi. The persistence space in multidimensional persistent homology. In
R. Gonzalez-Diaz, M.-J. Jimenez, and B. Medrano, editors, Discrete Geometry for Computer
Imagery, pages 180–191. Springer Berlin Heidelberg, 2013.

7 W. Chachólski, M. Scolamiero, and F. Vaccarino. Combinatorial presentation of multidi-
mensional persistent homology. Journal of Pure and Applied Algebra, 221(5):1055–1075,
2017.

8 C. Chen and M. Kerber. Persistent homology computation with a twist. In Proceedings 27th
European Workshop on Computational Geometry, volume 11, pages 197–200, 2011.

9 Digital Shape WorkBench. AIM@SHAPE project, 2006. URL: http://visionair.ge.imati.
cnr.it.

10 F. Iuricich. FG-multi, 2018. URL: http://github.com/IuricichF/fg_multi.
11 F. Iuricich, S. Scaramuccia, C. Landi, and L. De Floriani. A discrete Morse-based approach to

multivariate data analysis. In SIGGRAPH ASIA 2016 Symposium on Visualization, pages
5–12. ACM, 2016.

12 K. P. Knudson. A refinement of multi-dimensional persistence. Homology, Homotopy and
Applications, 10(1):259 – 281, 2008.

13 M. Lesnick and M. Wright. Computing minimal presentations of bipersistence modules in
cubic time. In preparation.

14 M. Lesnick and M. Wright. Interactive visualization of 2-D persistence modules. arXiv preprint,
2015. arXiv:1512.00180.

15 E. Miller. Data structures for real multiparameter persistence modules. arXiv preprint, 2017.
arXiv:1709.08155.

16 S. Scaramuccia. Computational and theoretical issues of multiparameter persistent homology
for data analysis. PhD thesis, University of Genova, Italy, 2018. URL: http://hdl.handle.
net/11567/929143.

17 S. Scaramuccia, F. Iuricich, L. De Floriani, and C. Landi. Computing multiparameter persistent
homology through a discrete Morse-based approach. arXiv preprint, 2018. arXiv:1811.05396.

http://visionair.ge.imati.cnr.it
http://visionair.ge.imati.cnr.it
http://github.com/IuricichF/fg_multi
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/1709.08155
http://hdl.handle.net/11567/929143
http://hdl.handle.net/11567/929143
http://arxiv.org/abs/1811.05396

	Introduction
	Background
	Algorithm
	Correctness
	Optimality and complexity
	Implementation and experimental results
	Conclusion

