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Abstract
Let p1, . . . , pn be n distinct points in the plane, and assume that the minimum inter-point distance
occurs smin times, while the maximum inter-point distance occurs smax times. It is shown that
sminsmax ≤ 9

8 n2 + O(n); this settles a conjecture of Erdős and Pach (1990).
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1 Introduction

Let p1, . . . , pn be n distinct points in the plane, and assume that the minimum inter-point
distance occurs smin times, while the maximum inter-point distance occurs smax times. It is
well-known that smin ≤ 3n and smax ≤ n; see, e.g., [3, Ch. 13]; and these classical bounds
immediately imply that sminsmax ≤ 3n2. Erdős and Pach [1] asked for a proof or disproof of
the following sharper product inequality:

sminsmax ≤
9
8n

2 + o(n2).

The authors also remarked that this inequality, if true, essentially cannot be improved; and
this would follow from a construction of E. Makai Jr. (not discussed in their paper). Indeed,
the main term in the inequality cannot be improved: the point configuration exhibited in
Fig. 1 has smin = 3

4n+ 3
4n−O(

√
n) = 3

2n−O(
√
n), and smax = 3

4n (provided that the circular
arc subtends an angle of 60◦), and so sminsmax = 9

8n
2−O(n

√
n). The m = 1

4n interior points
make a section of a unit triangular lattice with b3m−

√
12m− 3c unit distances, where the

minimum inter-point distance is equal to 1; see [2] or [3, p. 211].

3n/4

n/4

Figure 1 An n-element point set with 3
4 n points on the convex hull and 1

4 n interior points.
3
4 n− 1 boundary points are evenly distributed on a circular arc of radius Θ(

√
n) centered at the

leftmost point.

Here we prove the claimed inequality in a slightly stronger form (with a linear lower
order term).

I Theorem 1. Let p1, . . . , pn be n distinct points in the plane, and let smin and smax denote
the multiplicity of the minimum and maximum inter-point distance, respectively. Then
sminsmax ≤ 9

8n
2 +O(n).
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30:2 A Product Inequality for Extreme Distances

Definitions and notations. A convex polygon is one in strictly convex position, i.e., no
three boundary points are collinear.

Preliminaries. Let S = {p1, . . . , pn} be a set of n distinct points in the plane. Given two
points p and q, let `(p, q) denote the line determined by p and q. Let δ and ∆ denote the
minimum and maximum pairwise distance of S, respectively. We may assume that δ = 1; a
standard packing argument then yields ∆ = Ω(

√
n). Let Gδ and G∆ denote the respective

graphs. It is well-known that |E(Gδ)| ≤ 3n and |E(G∆)| ≤ n; see, e.g., [3, Ch. 13].
For any point u ∈ S, let deg(u) denote its degree in Gδ; it is well known that deg(u) ≤ 6

for any u ∈ S. For any point u ∈ S, let Γ(u) = {v ∈ S : uv ∈ E(Gδ)}; i.e., Γ(u) is the set of
vertices adjacent to u in Gδ. For a point u, let x(u) and y(u) denote its x- and y-coordinates
respectively.

For a point set S, conv(S) denotes the convex hull of S, and ∂conv(S) denotes the
boundary of conv(S). The perimeter of a polygon P is denoted by per(P ).

2 Setup of the proof

Let H ⊆ S denote the set of (extreme) vertices of conv(S) labeled in a clockwise manner:
H = {u1, u2, . . . , uh}, and so that indices can be read in a circular fashion, i.e., uh+1 = u1.
We say that a vertex ui ∈ H has a flat neighborhood if the interior angles of the seven vertices
{ui−3, ui−2, ui−1, ui+1, ui+2, ui+3} all belong to the interval (179◦, 180◦). Observe that the
number of vertices of conv(S) that do not have flat neighborhoods is O(1).

Let F ⊆ H denote the set of vertices of conv(S) that have flat neighborhoods. Let D ⊆ H
denote the set of vertices of conv(S) that are endpoints of some diameter pair. Put |D| = d,
f = |F |, and recall that h = |H|; as such, d ≤ h and f ≤ h.

The set of points S can be partitioned into three parts as S = H ∪H ′ ∪ I, where
H is the set of extreme vertices of conv(S); an element of H can be in any of the following
sets D ∩ F , D \ F , F \ D, or S \ (D ∪ F ). Let u1, . . . , uh (where uh+1 = u1) be the
extreme vertices of conv(S) in clockwise order.
H ′ is the set of points on ∂conv(S) that are not in H (the interior angle of each vertex
in H ′ is 180◦).
I is the set of interior vertices, i.e., those that are not on ∂conv(S).

As mentioned earlier, we have

smax ≤ d ≤ h. (1)

Indeed, the endpoints of any diameter pair must be extreme points on the boundary of
conv(S). If d ≤ n/3, then smax ≤ d ≤ n/3 and consequently, sminsmax ≤ 3n · 1

3n = n2, as
required (with room to spare). We therefore subsequently assume that d ≥ n/3; and so we
have h ≥ d ≥ n/3.

I Lemma 2. If h ≥ n/3, then ∆ ≥ n
3π ; in particular ∆ = Ω(n).

Proof. Let p = per(conv(S)); since δ = 1 and h ≥ n/3, we have p ≥ n/3. By a standard
isoperimetric inequality, p ≤ π∆; see, e.g., [4]. Putting the two inequalities together yields
∆ ≥ n

3π , as required. J
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3 Charging scheme

Assume that each point in S carries an initial charge equal to its degree in Gδ (at most 6).
The scheme we discuss below transfers a unit charge from each convex hull vertex of degree
3 that belongs to D ∩F to one or two interior vertices, in such a way that the final charge of
each interior vertex is at most 6. This achieves the desired effect that the endpoints on the
convex hull of these edges are left with a charge of 2 (while their initial charge was 3). Once
this goal is achieved, the upper bound we need on the number of unit distances follows from
Lemma 5 (in Section 5).

The main difficulties posed by this plan are (i) deciding how to implement the charging
scheme; and (ii) verifying its validity (namely that the final charge of each interior vertex is
bounded from above by 6). We next describe the charging scheme, after which we show in
Lemma 4 that it works as intended.

Overview

Recall that u1, . . . , uh (where uh+1 = u1) are the extreme vertices of conv(S) in clockwise
order. For any extreme vertex with a flat neighborhood ui ∈ F , let Σui

be an orthogonal
coordinate system whose origin is ui, and where the x-axis is a supporting line of conv(S)
incident to ui, and S lies in the closed halfplane below the x-axis. See Fig. 2. More precisely:
if uiui+1 ∈ Gδ and there exists v ∈ I s.t. uiv, ui+1v ∈ Gδ (i.e., ∆uiui+1v is an equilateral
triangle), the x-axis will be chosen as #           »uiui+1; otherwise, the x-axis will be chosen so that
S \ {ui} lies strictly below this line and the bisector of the interior angle ∠ui−1uiui+1 is the
negative direction of the y-axis.

Having defined Σui
, consider the rectangleRui

= [x(ui)−7/4, x(ui)+7/4]×[y(ui)−2, y(ui)]
in this system. When sending charge from ui, a reference will be made to Rui

(in the details
of the charging scheme).

Σui x

y

ui+1
ui−1

ui

Rui

ui−2

Figure 2 The coordinate system Σui and the axis-aligned rectangle Rui for a vertex ui ∈ H with
a flat neighborhood.

Vertices in H = {u1, . . . , uh} are processed one by one in this order (pairs of adjacent
vertices of H corresponding to equilateral triangles in Gδ are processed at the same time).
Equivalently, we keep the coordinate system fixed (with the two axes horizontal and vertical)
and rotate S counterclockwise so that ui is the highest vertex in S at the time it is processed;

SoCG 2019



30:4 A Product Inequality for Extreme Distances

see Fig. 3 (middle) for the case (a) when the x-axis will be chosen as #           »uiui+1; and see Fig. 3 (left)
for the remaining case (b). In either case, the point set S is contained in the closed halfplane
below the x-axis.

Let ui ∈ D ∩F be an extreme vertex of degree 3; if the vertices in Γ(ui) are ordered from
left to right, let vi ∈ Γ(ui) be the second (middle) element. We refer to the edge uivi as the
middle edge associated (and incident) to ui.

(c) If uiv and ui+1v are unit edges incident to v connecting v with two non-adjacent
extreme vertices ui and ui+1 (i.e., |uiui+1| > 1), then uiv and ui+1v are not middle edges,
and so we are in the situation described in (a) or (b); see Fig. 3 (right), where middle edges
uivi and ui+1vi+1 will be those charged to interior vertices.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v

Figure 3 Illustrations to the scenarios described in (a), (b) and (c). Middle edges are drawn
in bold.

Charging rules. When handling the current vertex ui, or two consecutive vertices ui, ui+1
that belong to a unit equilateral triangle, we use the coordinate system Σui

. Let uivi be the
middle edge from ui, where vi is an interior vertex. We distinguish four cases, depending on
whether (i) the degree of vi is 6 or less than 6; and (ii) vi is connected to one or two vertices
on ∂conv(S). The following charging rules are observed:

1. Every middle edge has its unit charge distributed to one or two interior vertices.
2. Charging amounts can be 1/2 or 1: we sometimes transfer the entire unit charge of a

middle edge to an interior vertex and sometimes split the unit charge into two equal
parts, 1/2, that are sent to two different interior vertices.

3. The unit charge on the middle edge incident to ui is distributed to one or two interior
vertices at distance at most 2 in Gδ; i.e., this charging process can only affect vertices in
Γ(ui) ∪ Γ(Γ(ui)).

Before the execution of the charging scheme, we clearly have smin = 1
2

∑
p∈S deg(p). The

charging scheme that is put in place transfers one unit from each extreme vertex of degree 3
that is an element of D ∩ F to one or two interior vertices. After completion, smin can be
calculated in an alternative way, as half the sum of final charges of all vertices (Lemma 5 in
Section 5).

Details

Case 1: deg(vi) = 6, and uivi is the unique unit edge incident to vi connecting vi with an
extreme vertex; see1 Fig. 4. Note that the six vertices in Γ(vi) form a regular hexagon of
unit side-length. Let a, b ∈ Γ(ui)∩ Γ(vi) be the other two common neighbors of ui and vi

1 In all subsequent figures, solid edges are of unit length and middle edges are drawn in bold.
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on the left and right, respectively. Note that deg(a) ≤ 5, and similarly, deg(b) ≤ 5; indeed,
if deg(a) = 6 (or deg(b) = 6), one element in Γ(a) (resp., Γ(b)) would lie strictly above
ui, a contradiction. Distribute the unit charge on edge uivi into two equal parts: 1/2 to
the left interior vertex a and 1/2 to the right interior vertex b. Observe that a, b ∈ Rui .

ui

vi

a b

ui+1

Figure 4 Case 1. All points lie in the closed halfplane below the horizontal line incident to ui.

Case 2: deg(vi) = 6, where uivi and ui+1vi are unit edges incident to vi connecting vi with
two adjacent extreme vertices ui and ui+1; see Fig. 5 (left). The argument assumes that
both ui and ui+1 are elements of D ∩ F , since otherwise, there is no need to transfer
charge from the respective unit edges. Note that the six vertices in Γ(vi) form a regular
hexagon of unit side-length. Let a ∈ Γ(ui) ∩ Γ(vi) be the interior vertex on the left,
and b ∈ Γ(ui+1) ∩ Γ(vi) be the interior vertex on the right. Note that deg(a) ≤ 5 and
deg(b) ≤ 5; indeed, if say, deg(a) = 6 (or deg(b) = 6), the interior angle at ui (resp., at
ui+1) would be 180◦, a contradiction, since we have assumed that ui, ui+1 ∈ D.
We further identify other vertices of low degree that will be charged. Let wi, wi+1 ∈ Γ(vi)
be the two neighbors of vi below it, as in Fig. 5 (right). Our charging scheme is symmetric,
and here we show how to distribute the unit charge of edge ui+1vi to b and some other
interior vertex (the distribution of the unit charge of edge uivi is analogous, involving a
and some other interior vertex).

ui ui+1

vi
a

wi wi+1 wi+2

dc

wi−1

ui ui+1

vi
a b b

Figure 5 Case 2. All points lie in the closed halfplane below the horizontal line `(ui, ui+1).

If deg(wi+1) ≤ 5, distribute the unit charge on edge ui+1vi into two equal parts: 1/2
to interior vertex b and 1/2 to the interior vertex wi+1. We subsequently assume that
deg(wi+1) = 6. Let wi+2 ∈ Γ(b) ∩ Γ(wi+1) be the interior vertex on the line `(wi, wi+1)
to the right. If deg(wi+2) ≤ 5, distribute the unit charge on edge ui+1vi into two equal
parts: 1/2 to interior vertex b and 1/2 to the interior vertex wi+2. We subsequently
assume that deg(wi+2) = 6. Let d ∈ Γ(b) ∩ Γ(wi+2) be the interior vertex on the line
`(vi, b) to the right. Observe that deg(d) ≤ 4: since each element of Γ(d) \ {b, wi+2} must
lie strictly below the line `(wi+2, d), there are at most two such vertices. In this last case,
distribute the unit charge on edge ui+1vi into two equal parts: 1/2 to the interior vertex
b and 1/2 to the interior vertex d. Observe that b, d, wi+1, wi+2 ∈ Rui+1 , and similarly
that a, c, wi, wi−1 ∈ Rui .

SoCG 2019



30:6 A Product Inequality for Extreme Distances

Case 3: deg(vi) ≤ 5, and uivi is the unique unit edge incident to vi connecting vi with an
extreme vertex; see Fig. 6. If deg(vi) ≤ 4, charge edge uivi to the interior vertex vi; i.e.,
vi receives a unit charge; see Fig. 6 (left).

ui

vi

ui−1

ui

vi

c

d

ui−1ui

vi

ba

ui−1 ui+1ui+1
ui+1

Figure 6 Case 3. Left: deg(vi) = 4. Middle: b is the highest among {a, b}. Right: c is the highest
among {c, d}. All points lie in the closed halfplane below the horizontal line incident to ui.

If deg(vi) = 5, refer to Fig. 6 (middle and right). Let a and b be the two neighbors of vi
left and right of ui, respectively; see Fig. 6 (middle). Let high(a, b) denote the element
of {a, b} which is the highest (i.e., closest to the x-axis of Σui

). Observe that high(a, b)
has degree at most 5; since otherwise, the y-coordinate of one of its neighbors (w.r.t.
this coordinate system) would be non-negative, a contradiction. Further observe that
high(a, b)ui is an edge in Gδ; since otherwise, ui would not have degree 3 or its interior
angle would be 180◦, either of which is a a contradiction. Distribute the unit charge on
edge uivi into two equal parts: 1/2 unit to vi and 1/2 unit to high(a, b) (with ties broken
arbitrarily). Observe that vi, a, b ∈ Rui .

Case 4: deg(vi) ≤ 5, where uivi and ui+1vi are unit edges incident to vi connecting vi with
two adjacent extreme vertices ui and ui+1; see Fig. 7 (left). If deg(vi) ≤ 4, distribute the
two unit charge on uivi and ui+1vi to vi. Assume now that deg(vi) = 5 and let wi denote
the vertex in Γ(vi) below vi that is farthest from `(uiui+1).
If deg(wi) ≤ 5, distribute the two units of charge for edges uivi and ui+1vi into two equal
parts: one unit to vi and one unit to wi. Observe that vi, wi ∈ Rui

.

ui ui+1

vi

wi

b

a

ui−1 ui+2
ui ui+1

vi

wi

Figure 7 Case 4. Left: deg(wi) = 5. Right: deg(wi) = 6. All points lie in the closed halfplane
below the horizontal line `(ui, ui+1).

Assume now that deg(wi) = 6; observe that the six vertices in Γ(wi) form a regular
hexagon of unit side-length. Let a, b ∈ Γ(vi) ∩ Γ(wi) be as in Fig. 7 (right). We claim
that deg(a) ≤ 5 and deg(b) ≤ 5. We may assume that ∠aviui ≥ 90◦ ≥ ∠bviui+1.
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If deg(a) = 6, let vi−1 be the next counterclockwise vertex after vi in Γ(a). Since the
triangle ∆avi−1vi is equilateral, this implies that vi−1vi is yet another edge in Gδ, which
is in contradiction with the assumption that deg(vi) = 5.
If deg(b) = 6, then bui+1 is an edge in Gδ, thus vib ‖ uiui+1 and so vib is horizontal.
Let c be the next clockwise vertex after ui+1 in Γ(b). Then ui+1c is also horizontal,
thus c ∈ ∂conv(S), which implies that the interior angle at ui+1 is 180◦, which is a
contradiction (we have assumed that ui, ui+1 ∈ D).
Since each of the two assumptions deg(a) = 6 and deg(b) = 6 leads to a contradiction,
this proves the claim. Distribute the two unit charges for edges uivi and ui+1vi as one
unit to vi, 1/2 unit to a and 1/2 unit to b. (This can be also viewed as distributing the
unit charge for uivi as 1/2 unit to vi and 1/2 unit to a, and distributing the unit charge
for ui+1vi as 1/2 unit to vi and 1/2 unit to b.) Observe that vi, a ∈ Rui

and vi, b ∈ Rui+1 .

Illustration. An example illustrating the final charges in a few representative cases is shown
in Fig. 8.

4.5

4.5

4.5

5.5

2

6

5.5

2

4.5

4.5

5.5

2 22

4.5

2 2

2
2

4.5

5
5.5

5.5
3.5

5.5

Figure 8 Charging illustrations for vertices on the upper hull; middle edges adjacent to extreme
vertices of degree 3 in D ∩ F are drawn in thick lines.

4 Charging scheme analysis

By direct inspection of the scheme we note the two properties announced prior to describing
the charging scheme:

I Observation. The following hold: (i) Unit charges associated to middle edges are distributed
to interior vertices in amounts of 1/2 or 1. (ii) The unit charge on the middle edge incident
to ui is distributed to one or two interior vertices at distance at most 2 in Gδ; i.e., this
process can only affect vertices in Γ(ui) ∪ Γ(Γ(ui)).

The following lemma specifies the range affected by one charge distribution.

I Lemma 3. Let ui ∈ D∩F be a vertex of degree 3 that sends charge to some interior vertex
v ∈ Γ(ui) ∪ Γ(Γ(ui)), where v is not necessarily unique. Then v can only receive charges
from elements of {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3}.

Proof. Write u = ui (for short). Consider the coordinate system Σu, and the rectangle
Ru = [x(u)− 7/4, x(u) + 7/4]× [y(u)− 2, y(u)] in this system; refer to Fig 9. By the charging
scheme, u can only send charges to interior vertices contained in Ru. Consider the larger
rectangle R′u = [x(u)− 15/4, x(u) + 15/4]× [y(u)− 4, y(u)] ⊃ Ru. Since v can only receive
charges from vertices at distance at most 2 from it, any element sending charges to v would
be contained in R′u.

Since u ∈ D ∩ F , u is an endpoint of a diameter pair, say, uu′, where u′ ∈ D. Observe
that the ray

#   »

uu′ makes an angle of at most 1◦ with #»ru, the vertical ray from u pointing
downwards. Indeed, otherwise one of the two distances |ui−1u

′| and |ui+1u
′| would be larger

SoCG 2019
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ui−2

u′

ui+4

ui+3ui−3

ui−1

ui−4

ui+2
ui ui+1

Figure 9 The flat neighborhood of u = ui and a diameter pair (u, u′). All points lie in the closed
halfplane below the horizontal line incident to ui.

than |uu′| = ∆, as the longest side in an obtuse triangle. Recall that ∆ = Ω(n) by Lemma 2;
we may assume that n is large enough, e.g., n ≥ 100, so that ∆ ≥ 10. By convexity,
conv(ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3, u

′) is empty of points from H in its interior. Recall
that u has a flat neighborhood, and intuitively, this implies that v cannot receive charges
from the ’other side’ of the boundary. More precisely, since u has a flat neighborhood, the
rectangle R′u does not contain any elements of H \ {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3},
and so v cannot receive charges from elements in H \ {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3},
as required. J

We next formulate and prove the main property accomplished by the charge distribution.

I Lemma 4. The final charge for any interior vertex is at most 6.

Proof. By Lemma 3 it suffices to bound from above the charge received by an interior vertex
from the left and from the right. Specifically, we show that the maximum final charge for
any such vertex is at most 6.

Overcharging by Case 1 only: Let v be an interior vertex of degree 5 that is charged as b in
Fig. 4 from the left (i.e., from an edge uivi on the left), and as a in Fig. 4 from the right
(i.e., from an edge uivi on the right). The charges received sum up to at most 1

2 + 1
2 = 1,

as required.
Overcharging by Case 1 and Case 2: The argument is similar to that for the previous case.

Let v be an interior vertex that is charged from the left as b or d in Fig. 5 (right) and is
charged from the right as a in Fig. 4. The charges received sum up to at most 1

2 + 1
2 = 1,

as required.
Overcharging by Case 1 and Case 3: Assume that an interior vertex receives a unit charge

as vertex vi in Fig. 6 according to Case 3. This happens only when deg(vi) ≤ 4; and
then it is easy to see that no overcharging can occur even if vi receives 1/2 unit from the
left and from the right (according to Case 1). In the remaining case, deg(vi) = 5, both
vertices that get charged according to Case 3, only receive 1/2 unit charge each. Since
charges received from Case 1 are limited to 1/2 unit, the charges received by vi sum up
to at most 1

2 + 1
2 = 1, as required.
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Overcharging by Case 1 and Case 4: Assume that some interior vertex receives a unit
charge from the left according to Case 4 and 1/2 unit charge from the right according to
Case 1. See Fig. 10 and Fig. 11, and observe that j = i+ 2. First, consider the situation
in Fig. 10, when deg(wi) = 5. If the overcharged vertex is vi = c, the interior vertex
c would be adjacent to three extreme vertices (ui, ui+1, ui+2), a contradiction. If the
overcharged vertex is wi = c, the distance from wi to `(uiui+1) is at least 2

√
3

2 =
√

3; on
the other hand, the distance from c to the same line is less than 1, since ui+1 has a flat
neighborhood. Therefore such an overcharging cannot occur.

uj

vj

c d

ui ui+1

vi

wi

Figure 10 Overcharging by Case 4 (left) and Case 1 (right); deg(wi) = 5.

Second, consider the situation in Fig. 11, when deg(wi) = 6. If the overcharged vertex is
b = c, the charges received sum up to at most 1

2 + 1
2 = 1, as required.

ui ui+1

vi
a

b

wi

uj

vj

c d

Figure 11 Overcharging by Case 4 (left) and Case 1 (right); deg(wi) = 6.

Overcharging by Case 2 only: Each charge received by an interior vertex is Case 2 is equal
to 1/2; as such, an interior vertex of degree at most 5 can receive at most 1/2 units from
the left and at most 1/2 units from the right, as required.

Overcharging by Case 2 and Case 3: Refer to Fig. 12. Assume for contradiction that a
vertex of degree at most 5 receives a 1/2 unit charge from the left according to Case 2 (as
vertex b, wi+1, wi+2, or d), and a 1/2 unit charge as vertex c or vj according to Case 3.
It is clear that j ≥ i + 2. The charge received is at most 1

2 + 1
2 = 1, as required. The

situation when deg(vj) ≤ 4 is similarly easy to analyze.
Overcharging by Case 2 and Case 4: Assume for contradiction that an interior vertex has

degree 5 and receives a 1/2 unit charge from the left according to Case 2, and a one unit
charge from the right according to Case 4; see Fig. 13. Then

SoCG 2019
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uj

vj

c

uj+1uj−1

d

ui ui+1

vi
a

wi wi+1 wi+2

dc

wi−1

b

Figure 12 Overcharging by Case 2 (left) and Case 3 (right).

vertex wi+2 on the left must coincide with vertex wj on the right.
vertex b on the left must coincide with vertex e on the right.
vertex d on the left must coincide with vertex vj on the right.

However this is impossible to achieve with ui, ui+1, uj , uj+1 consecutive extreme vertices
with flat neighborhoods, since uj , uj+1 would need to lie strictly below `(ui, ui+1), while
the triangle ∆vjujuj+1 is equilateral and `(uj , uj+1) is almost horizontal (recall from
Case 2 that deg(d) ≤ 4 due to some restrictions imposed on its neighbors). The above
conditions imply that vj is lower than d and so the two points cannot coincide.

ui ui+1

vi
a

wi wi+1

c

wi−1

uj uj+1

vj

wj
wi+2

d
e

b

Figure 13 Overcharging by Case 2 (left) and Case 4 (right).

Overcharging by Case 3 only: Since vi is is adjacent to exactly one extreme vertex, vi
cannot receive multiple charges. Any other vertex can only receive a 1/2 unit charge from
the left and a 1/2 unit charge from the right. As such, the charge received is bounded
from above by 1

2 + 1
2 = 1, as required.

Overcharging by Case 3 and Case 4: Observe that vertex vi in Case 4, see Fig. 7 (left or
right), is adjacent to exactly two extreme vertices; consequently it cannot receive any
charge according to the procedure in Case 3. Similarly, observe that vertex wi in Case 4,
see Fig. 7 (left), is not adjacent to any extreme vertex; consequently it cannot receive any
charge according to the procedure in Case 3.
Consider now the scenario illustrated in Fig. 14 in which deg(vi) = deg(vj) = 5; observe
that j = i+ 2. If b = vj receives a 1/2 unit charge according to Case 4 and another 1/2
unit charge according to Case 3, the charge received is bounded from above by 1

2 + 1
2 = 1,

as required; see Fig. 14 (middle). Similarly, if b = c receives a 1/2 unit charge according
to Case 4 and another 1/2 unit charge according to Case 3, the charge received is at most
1
2 + 1

2 = 1, as required; see Fig. 14 (right). Therefore such an overcharging cannot occur.
Overcharging by Case 4 only: Refer to Fig. 15 and Fig. 16; observe that j = i + 2. One

possibility is having wi = a, with wi receiving a unit charge according to Case 4 (on the
left) and a receiving a 1/2 unit charge according to the same case (on the right); see
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ui ui+1

vi
a

b

wi

ui−1 uj

vj

uj

vj

c

Figure 14 Overcharging by Case 4 (left) and Case 3 (middle and right).

Fig. 15. However this requires vivj to be yet another edge in Gδ beyond the five incident
to vj , contradicting the assumption of Case 4 that deg(vj) = 5.

uj uj+1

vj

wj

b

a

ui ui+1

vi

wi

Figure 15 Overcharging by Case 4 only.

Another possibility is having b = c, with b receiving a 1/2 unit charge according to Case 4
(on the left) and c receiving a 1/2 unit charge according to the same case (on the right);
see Fig. 16. The charge received is at most 1

2 + 1
2 = 1, as required.

uj uj+1

vj

wj

d

c

ui ui+1

vi

wi

b

a

Figure 16 Overcharging by Case 4 only.

With all possibilities of potential overcharging having been analyzed, the proof of Lemma 4
is now complete. J
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5 Conclusion of the proof

In this section we finalize the proof of Theorem 1.

I Lemma 5. smin ≤ 3n− 2d+O(1).

Proof. Assume that each element of I carries an initial charge equal to its degree in Gδ (at
most 6). Note that each element of H has degree at most 3; indeed, if deg(u) = 4, then the
interior angle at u equals 180◦, and so u is not an extreme vertex of conv(S). In particular,
each element of D ∩ F has degree at most 3.

Each vertex of D ∩ F of degree 3 in Gδ sends (distributes) a unit charge to one or two
interior vertices of degree at most 5; so that the final charge of each interior vertex is at most
6; with each vertex receiving a charge at most 2 (and the final charge of each element of D∩F
is 2); all these are consequences of Lemma 4. A key observation is that |F ∩D| ≥ |D| −O(1),
since there are only O(1) elements of D that do not have flat neighborhoods. Assuming the
charging procedure finalized, we have

2smin =
∑
p∈S

deg(p) ≤ 3|H \ F ∩D|+ 2|F ∩D|+ 6|S \H|

= 3h− 3|F ∩D|+ 2|F ∩D|+ 6n− 6h
= 6n− 3h− |F ∩D| ≤ 6n− 3d− d+O(1)
= 6n− 4d+O(1),

as required. J

Proof of Theorem 1. Using the inequalities on smin and smax stated in Lemma 5 and
Equation (1), respectively, we obtain

sminsmax ≤ (3n− 2d+O(1)) d ≤ 9
8n

2 +O(n),

as required. Indeed, setting x = d/n yields the quadratic function f(x) = x(3 − 2x),
which attains its maximum value 9

8 for x = 3
4 . Thus (3n − 2d)d ≤ 9

8n
2 and we also have

O(1)d = O(d) = O(n); adding these two inequalities yields the one claimed above. This
concludes the proof of Theorem 1.
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