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Abstract
Given a set of n points in the plane, and a parameter k, we consider the problem of computing
the minimum (perimeter or area) axis-aligned rectangle enclosing k points. We present the first
near quadratic time algorithm for this problem, improving over the previous near-O(n5/2)-time
algorithm by Kaplan et al. [23]. We provide an almost matching conditional lower bound, under the
assumption that (min,+)-convolution cannot be solved in truly subquadratic time. Furthermore, we
present a new reduction (for either perimeter or area) that can make the time bound sensitive to k,
giving near O(nk) time. We also present a near linear time (1 + ε)-approximation algorithm to the
minimum area of the optimal rectangle containing k points. In addition, we study related problems
including the 3-sided, arbitrarily oriented, weighted, and subset sum versions of the problem.
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1 Introduction

Given a set P of n points in the plane, and a parameter k, consider the problem of computing
the smallest area/perimeter axis-aligned rectangle that contains k points of P . (Unless stated
otherwise, rectangles are axis-aligned by default.) This problem and its variants have a long
history. Eppstein and Erickson [18] studied an exhaustive number of variants of this problem
for various shapes.

For the minimum perimeter variant, the first work on this problem seems to be Aggarwal
et al. [1], who showed a brute force algorithm with running time O(n3). Recently, Kaplan
et al. [23] gave an algorithm with running time O(n5/2 log2 n) that works for both minimum
perimeter and area.

Several works derived algorithms with running time sensitive to k, the number of points
in the shape. Aggarwal et al. [1] showed an algorithm for the minimum perimeter with
running time O(k2n logn). This was improved to O(n logn+ k2n) by Eppstein and Erickson
[18] or alternatively by Datta et al. [16]. Kaplan et al.’s algorithm [23] for the k-insensitive
case, coupled with these previous techniques [18, 16], results in an O(n logn+ nk3/2 log2 k)
running time, which is currently the state of the art.

Known techniques [18, 16] reduce the problem to solving O(n/k) instances of size O(k).
These reductions work only for the perimeter case, not the area case – in particular, there
are incorrect attributions in the literature to results on the minimum area rectangle – see the
introduction of de Berg et al. [17] for details. De Berg et al. described an algorithm with

© Timothy M. Chan and Sariel Har-Peled;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tmc@illinois.edu
mailto:sariel@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.23
https://arxiv.org/abs/1903.06785
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Smallest k-Enclosing Rectangle Revisited

running time O(n log2 n+ nk2 logn) for minimum area. Both de Berg et al. [17] and Kaplan
et al. [23] left as an open question whether there is a reduction from the minimum-area
problem to about Õ(n/k) instances of size O(k), where Õ hides1 polynomial factors in logn
and 1/ε. Such a reduction would readily imply an improved algorithm.

Our results

We revisit the above problems and provide significantly improved algorithms:

1. Exact smallest k-enclosing rectangle. In Section 2.1 we describe an algorithm for the
minimum k-enclosing rectangle (either area or perimeter) with running time O(n2 logn)
(see Theorem 2). It is based on a new divide-and-conquer approach, which is arguably
simpler than Kaplan et al.’s algorithm. Known reductions mentioned above then lead to
an O(n logn+ nk log k)-time algorithm for computing the minimum perimeter rectangle.

2. k-sensitive running time for smallest area. In Section 2.2 we describe a reduction of the
minimum-area problem to O(nk log n

k ) instances of size O(k) (see Theorem 8). Our
reduction uses shallow cutting for 3-sided rectangular ranges [22] and is conceptually
simple.
Plugging this the aforementioned new O(n2 logn)-time algorithm leads to O(nk log n

k log k)
time algorithm for computing the minimum area k-enclosing rectangle (see Corollary 9).
Thus, our new result strictly improves upon both Kaplan et al.’s and de Berg et al.’s
results for all k, from constant to Θ(n).

The smallest enclosing rectangle problem is amenable to sampling. Kaplan et al. used
samples in an approximation algorithm, with running time Õ(n/k), that computes a rectangle
containing at least (1−ε)k points of a prescribed perimeter, where k is the maximum number
of points in any such rectangle. Similarly, using relative approximations [21], de Berg et al.
[17] showed an algorithm that computes, in Õ(n) time, a rectangle containing ≥ (1 − ε)k
points, where k is the maximum number of points in any rectangle of a prescribed area. The
“dual” problem, of approximating the minimum area rectangle containing k points seems
harder, since sampling does not directly apply to it.

1. Approximating the area of the smallest k-enclosing rectangle. In Section 2.3, we present
an approximation algorithm that computes, in O(n logn) expected time, a rectangle
containing k points of area ≤ (1 + ε)α∗, for a constant ε ∈ (0, 1), where α∗ is the
smallest-area of such a rectangle (see Theorem 13).

We next present a flotilla of related results:

1. 3-sided smallest k-enclosing rectangle. In Section 3.1 we (slightly) speed up the exact
algorithm for the 3-sided rectangles case (i.e., rectangles that must have their bottom
edge on the x-axis). The running time is O

(
n2/2Ω(

√
logn)), and is obtained using known

results on the (min,+)-convolution problem [7, 28] (see Theorem 16).
2. Arbitrarily oriented smallest k-enclosing rectangle. In Section 3.2 we briefly consider the

variant where the rectangle may not be axis-aligned. We show that this problem can
be solved in O(n3 logn + n3k/2Ω(

√
log k)) time, slightly improving a previous result of

O(n3k) [15] when k is not too small.

1 We reserve the right, in the future, to use the Õ to hide any other things we do not like.
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3. Minimum-weight k-enclosing rectangle. In Section 3.3 we show how to extend our
O(n2 logn)-time algorithm to the related problem of finding a minimum-weight rectangle
that contains k points, for n given weighted points in the plane (see Theorem 17).

4. Subset sum for k-enclosing rectangle. In Section 3.4, we study the problem of finding a
rectangle that contains k points and has a prescribed weight W (or as close as one can
get to it). The running time of the new algorithm is O(n5/2 logn) (see Theorem 19).

5. Conditional lower bound. In Section 3.5, we prove that our near quadratic algorithm
for exact minimum (perimeter or area) k-enclosing rectangle is near optimal up to an
arbitrarily small polynomial factor, under a “popular” conjecture that the (min,+)-
convolution problem cannot be solved in truly subquadratic time [14].

2 Smallest k-enclosing rectangle

2.1 An exact near-quadratic algorithm
Our O(n2 logn)-time algorithm for minimum k-enclosing rectangles is based on divide-and-
conquer. It has some similarity with an O(n2)-time divide-and-conquer algorithm by Barbay
et al. [5] for a different problem (finding the minimum-weight rectangle for n weighted
points in the plane, without any k-enclosing constraint), but the new algorithm requires
more ingenuity.

We start with a semi-dynamic data structure for a 1D subproblem:

I Lemma 1. Given a set P of n points in 1D with q marked points, and an integer k, we
can maintain an O(q2)-space data structure, with O(n logn+ nq) preprocessing time, that
supports the following operations:

report the shortest interval containing k points of P in O(q) time;
delete a marked point in O(q) time;
unmark a marked point in O(q) time.

Proof. Sort the points P , and let p1, . . . , pn he resulting order. Consider the (implicit)
matrix M = P − P . Formally, the entry Mij is pj − pi (we are interested only in the top
right part of this matrix) – such an entry can be computed in O(1) time directly from the
sorted point set. The optimal quantity of interest is the minimum on the kth diagonal; that
is, α(M) = miniMi,i+k−1. When a marked point get deleted, this corresponds to deleting
a row and a column of M – the quantity of interest remains the minimum along the kth
diagonal. Such a deletion, as far as a specific entry of the top right of the matrix is concerned,
either (i) removes it, (ii) keeps it in its place, (iii) shift it one diagonal down as its moves left,
or (iv) keep it on the same diagonal as it shifts both up and left (see Figure 1).

In particular, any sequence of at most q deletions of elements can shift an entry in the
matrix at most q diagonals down. This implies that we need to keep track only of the
k, . . . , k + q diagonals of this matrix. To do better, observe that if we track the elements of
an original diagonal of interest, the deletions can fragment the diagonal into at most O(q)
groups, where each group still appear as contiguous run of the original diagonal.

To this end, let a fragment of a diagonal be either (i) a singleton entry that appears in
a row or column of a marked point, or (ii) a maximum contiguous portion of the diagonal
which does not touch any singleton entries from (i). It is easy to verify that the kth diagonal
of the matrix at any given point in time is made out of a sequence of at most 3k fragments,
where each fragment is an original fragment of one of the diagonals in the range k, . . . , k + q.

As such, instead of storing all the elements of a fragment, we only maintain the minimum
entry of the fragment (together with the information of what pairs of points it corresponds
to). After this compression, a diagonal of interest can be represented as a linked list of O(q)

SoCG 2019
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Figure 1 Behold the matrix!

fragment summaries. In the preprocessing stage, the algorithm computes this representation
for the k to k + q diagonals (using this representation). This requires O(q2) space, and
O(nq) time.

A deletion of a marked point then corresponds to taking a contiguous block of linked
fragments at the ith list and moving it to list i− 1, doing this surgery for i = k, . . . , k + q.
The blocks being moved start and end in singleton entries that correspond to the deleted
point. We also need to remove these two singleton elements, and merge the two adjacent
fragment summaries that are no longer separated by a singleton. This surgery for all the q+ 1
lists of interest can be done in O(q) time (we omit the tedious but straightforward details).

A query corresponds to scanning the kth diagonal and reporting the minimum value
stored along it. An unmarking operation corresponds to merging two fragment summaries
and the singleton separating them into a single fragment summary, and doing this for all the
q + 1 lists. Both operations clearly can be done in O(q) time. J

I Theorem 2. Given a set P of n points in the plane and an integer k, one can compute,
in O(n2 logn) time, the smallest-area/perimeter axis-aligned rectangle enclosing k points.

Proof. We do divide-and-conquer by y-coordinates. Given a set P of n points in the plane,
and horizontal slabs σ and τ , each containing q points of P , we describe a recursive algorithm
to find a smallest k-enclosing axis-aligned rectangle containing P , under the restriction that
the top edge is inside σ and the bottom edge is inside τ . It is assumed that either σ is
completely above τ , or σ = τ . It is also assumed that all points above σ or below τ have
already been deleted from P . There can still be a large number of points in P − (σ ∪ τ)
(recursion will lower q but not necessarily n). We will not explicitly store the points in
P − (σ ∪ τ), but rather “summarize” the points in an O(q2)-space structure. Namely, we
assume that the x-coordinates of P are maintained in the 1D data structure S of Lemma 1,
where the marked points are the O(q) points in P ∩ (σ ∪ τ).

The algorithm proceeds as follows:
1. If q = 1, then report the answer by querying S in O(1) time. Else:
2. Divide σ into two horizontal subslabs σ1 and σ2, each containing q/2 points of P . Likewise

divide τ into τ1 and τ2.
3. For each i, j ∈ {1, 2}, recursively solve the problem for the slabs σi and τj ;2 to prepare

for the recursive call, make a copy of S, delete the (marked) points in P ∩ (σ ∪ τ) above

2 If σ = τ , one of the four recursive calls is unnecessary.
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σi or below τj , and unmark the remaining points in P ∩ (σ ∪ τ)− (σi ∪ τj), as shown in
Figure 2. The time needed for these O(q) deletions and unmarkings, and for copying S,
is O(q2) (we emphasize that this bound is independent of n).

σ

τ

σ1

σ2

τ1
τ2

σ1

τ1

σ1

τ2

σ2

τ1

σ2

τ2

Figure 2 Divide et impera for the problem at hand.

The running time satisfies the recurrence

T (n, q) = 4T (n, q/2) +O(q2),

with T (n, 1) = O(1), which gives T (n, q) = O(q2 log q). Initially, σ = τ is the entire plane,
with q = n; the data structure S can be preprocessed in O(n2) time. Thus, the total running
time is O(n2 logn). J

One can readily get an algorithm with k-sensitive running time for the perimeter case, by
reducing the problem into O(n/k) instance of size O(k). This reduction is well known [18, 16]
in this case – approximate the smallest enclosing disk containing k points in O(n logn) time,
partition the plane into a grid with side length proportional to the radius of this disk, and
then solve the problem for each cluster (i.e., 3× 3 group of grid cells) that contains at least
k points of P , using our above algorithm. We thus get the following.

I Corollary 3. Given a set P of n points in the plane and an integer k, one can compute,
in O(n logn+ nk log k) time, the smallest-perimeter axis-aligned rectangle enclosing k points
of P .

The O(n logn) term can be eliminated in the word RAM model, using a randomized
linear-time algorithm for approximate smallest k-enclosing disk [20] (which requires integer
division and hashing).

A similar reduction for the minimum-area case is more challenging, and was left as an
open problem in previous work [23]. The difficulty arises because the optimal-area rectangle
may be long and thin, with side length potentially much bigger than the radius of the
minimum k-enclosing disk. Nonetheless, we show that such a reduction is possible (with an
extra logarithmic factor) in the next subsection.

2.2 k-sensitive running time for smallest area
Our starting point is a shallow cutting lemma for 3-sided ranges [22]. (It can be viewed as
an orthogonal variant of Matoušek’s shallow cutting lemma for halfspaces [24].)

SoCG 2019
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I Lemma 4 ([22]). Given a set P of n points in the plane, lying above a horizontal line `,
and a parameter k, one can compute a family F of at most 2 dn/ke subsets of P , each of
size at most 6k. The collection of sets can be computed in O(n) time if the x-coordinates
have been pre-sorted. For any axis-aligned rectangle R with its bottom edge lying on `, that
contains less than k points of P , we have P ∩R ⊆ PA for some PA ∈ F .

I Definition 5. Let R be the set of all axis-aligned rectangles in the plane. A scoring
function is a function f : R→ R, with the following properties:
1. Translation invariant: ∀p ∈ R2, we have f(p+R) = f(R).
2. Monotonicity: ∀R,R′ ∈ R, such that R ⊆ R′, we have that f(R) ≤ f(R′).

Functions that satisfy the above definition include area, perimeter, diameter, and enclosing
radius of a rectangle.

For a set U ⊆ Rd, let lU = {(x,−y) | (x, y) ∈ U} be the reflection of U through the
x-axis. Similarly, let |U |y =

{
(x, |y|)

∣∣ (x, y) ∈ U
}
be the folding of U through the x-axis.

I Lemma 6. Given a set P of n points in the plane, a parameter k, and a scoring function
f , let Rmin be the minimum score axis-aligned rectangle that contains k points of P , and
intersects the x-axis. Then, one can compute a family F of O(n/k) subsets of P , such that
(i) each set of F is of size ≤ 12k, and (ii) Rmin ∩ P ⊆ PA, for some PA ∈ F .

Proof. Let P ′ = |P |y be the “folding” of P over the x-axis, and let F ′ be the cover of P ′ by
sets of size ≤ 12k, as computed by Lemma 4 for rectangles containing at most 2k points.
Let F be the corresponding family of sets for P . We claim that F has the desired property.

Rmin

x-axis

R

x-axis

R′

x-axis

Let R = |Rmin|y be the folding of Rmin, and let R′ = lR. Observe that f(R) = f(R′) ≤
f(Rmin) because of the translation invariance of f , and monotonicity of f .

If |R∩P | > k then one can shrink it so that it contains only k points of P , but this would
imply that Rmin is not the minimum, a contradiction. The case that |R′ ∩ P | > k leads to a
similar contradiction. We conclude that R ∪R′ contains at most 2k points of P . Implying
that R = |Rmin|y contains at most 2k points of P ′. As such, there is a set PA′ ∈ F ′ that
contains R ∩ P ′. Now, let PA be the corresponding set in F to PA′. Since Rmin ⊆ R ∪R′,
it follows that Rmin ∩ P ⊆ (R ∪R′) ∩ P ⊆ PA, as desired. J

I Lemma 7. Given a set P of n points in the plane, a parameter k, and a scoring function
f , let Rmin be the minimum score rectangle that contains k points of P . One can compute,
in O(n logn) time, a family F of O(nk log n

k ) subsets of P , such that (i) each subset of F is
of size ≤ 12k, and (ii) Rmin ∩ P ⊆ PA, for some PA ∈ F .

Proof. Find a horizontal line ` that splits P evenly, and compute the family of Lemma 6.
Now recurse on the points above ` and the points below `. The recursion bottoms out when
the number of points is ≤ 12k. The correctness is by now standard – as soon as a recursive
call picks a line that stabs the optimal rectangle, the family generated for this line contains
the desired set. The x-coordinates need to be pre-sorted just once at the beginning. J
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I Theorem 8. Let P be a set of n points in the plane, k be a parameter, f be a scoring function
for rectangles, and let alg be an algorithm the computes, in Talg(m) time, the axis-aligned
rectangle containing k points in a set of m points that minimizes f . Then one can compute the
rectangle containing k points of P that minimizes f , in time O

(
n logn+ Talg(12k)nk log n

k

)
.

Proof. Compute the family of sets F using Lemma 7, and then apply alg to each set in
this family. J

Combining Theorem 2 with Theorem 8 gives the following.

I Corollary 9. Given a set P of n points in the plane and an integer k, one can compute,
in O(nk log n

k log k) time, the smallest-area axis-aligned rectangle enclosing k points of P .

For the case when t = n− k is very small (i.e., finding the smallest enclosing axis-aligned
rectangle with t outliers), there is an easy reduction (for both perimeter and area) yielding
O(n+Talg(4t)) time [26, 2], by keeping the t leftmost/rightmost/topmost/bottommost points.
Immediately from Theorem 2, we get O(n+ t2 log t) running time.

2.3 An approximation algorithm for smallest area
In this subsection, we give an efficient approximation algorithm for the smallest-area k-
enclosing rectangle problem. The smallest perimeter case is straightforward to approximate,
by grid rounding, but the area case is tougher, again because the optimal rectangle may be
long and thin.

I Definition 10. A laminar family of 3-sided rectangles is a collection R of axis-aligned
rectangles with the bottom edges lying on the x-axis, such that for every pair of rectangles
[a, b]× [0, c] and [a′, b′]× [0, c′] in R, one of the following is true:

[a, b] ∩ [a′, b′] = ∅, or
[a, b] ⊆ [a′, b′] and c > c′, or
[a′, b′] ⊆ [a, b] and c′ > c.

Standard range trees can answer orthogonal range counting queries (counting the number
of points inside rectangular ranges) in logarithmic time per query (this has been improved to
O(
√

logn) in the offline setting by Chan and Pătraşcu [12]). The following lemma shows how
to achieve constant time per query in the offline laminar special case, which will be useful
later in our approximation algorithm.

I Lemma 11. Let P be a set of n points, and let R be a laminar family of O(n) 3-sided
rectangles in the plane. Suppose that we are given a designated point on the top edge of
each rectangle in R, and the x- and y-coordinates of all the designated points and all the
points of P have been pre-sorted. Then we can count, for each rectangle R ∈ R, the number
of points of P inside the rectangle, in O(n) total time.

SoCG 2019
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Proof. We describe a sweep algorithm, with a horizontal sweep line ` moving downward.
Let X denote the set of x-coordinates of all points of P and all designated points of the
rectangles of R. Consider the union of R ∩ ` over all R ∈ R; it can be expressed as a union
of disjoint intervals. Let I` be the x-projection of these disjoint intervals. Store the following
collection Γ` of disjoint sets in a union-find data structure [27]: for each interval I ∈ I`,
define the set X ∩ I, and for each a ∈ X not covered by I`, define the singleton set {a}.
Create a linked list L` containing these sets in Γ` ordered by x. For each set in Γ`, we store
a count of the number of points of P below ` with x-coordinates inside the set.

Suppose that the sweep line ` hits the top edge of a rectangle R with x-projection [a, b].
By definition of a laminar family, any interval in I` that intersects [a, b] must be contained
in [a, b]. We find the set in Γ` that contains the x-coordinate of the designated point of R.
From this set, we walk through the list L` in both directions to find all sets contained in
[a, b], and replace these sets with their union in Γ` and L`. The count for the new set is the
sum of the counts of the old sets; this also gives the output count for the rectangle R.

Next, suppose that the sweep line ` hits a point p ∈ P . We find the set in Γ` that contains
the x-coordinate of p, and decrement its count. (For example, if the set is a singleton, its
count changes from 1 to 0.)

The entire sweep performs O(n) union and find operations. Gabow and Tarjan [19] gave
a linear-time union-find algorithm for the special case where the “union tree” is known in
advance; their algorithm is applicable, since the union tree here is just a path of the elements
ordered by x. J

We first solve the approximate decision problem:

I Lemma 12. Given a set P of n points in the plane, a value α, and parameters k and
ε ∈ (0, 1), one can either compute a k-enclosing axis-aligned rectangle R′ such that area(R′) ≤(
1 +O(ε)

)
α, or conclude that the smallest-area k-enclosing axis-aligned rectangle has area

greater than α. The running time of the algorithm is O
(
ε−3 log ε−1 · n logn

)
.

Proof. It is sufficient to solve the problem for the case where the rectangle must intersect a
horizontal line ` in O((1/ε)3 log(1/ε) ·n) time, assuming that the x- and y-coordinates of the
given points P have been pre-sorted. Then standard divide-and-conquer by y-coordinates
gives an O((1/ε)3 log(1/ε) ·n logn)-time algorithm for the general problem. Pre-sorting needs
to be done only once at the beginning.

Without loss of generality, assume that ` is the x-axis. Suppose there exists a rectangle
R∗ intersecting ` that contains at least k points and has area at most α. By symmetry, we
may assume that R∗ has greater area above ` than below, and that the top edge passes
through some input point p = (px, py) ∈ P . Then the height h∗ of R∗ is between py and 2py,
and the width w∗ is at most α/py.
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Without loss of generality, assume that all x-coordinates are in [0, 1/3]. Define a one-
dimensional quadtree interval (also known as a dyadic interval) to be an interval of the
form [m2i ,

m+1
2i ]. It is known that every interval of length w < 1/3 is contained in a quadtree

interval of length O(w) after shifting the interval by one of two possible values s ∈ {0, 1/3}
(this is a special case of a shifting lemma for d-dimensional quadtrees [6, 8]). Thus, suppose
that [px −α/py, px +α/py] is contained in the interval [m2i + s, m+1

2i + s], where the length 1
2i

is equal to the smallest power of 2 greater than cα/py, for some constant c. (Note that i is
a nondecreasing function of py.) Without loss of generality, assume that 1/ε = 2E for an
integer E. Define a family of O(1/ε3) canonical rectangles of the form

[m2i + j
2i+E + s, m

2i + j′

2i+E + s] × [−j′′εpy, py]

over all possible indices j, j′, j′′ ∈ {0, . . . , 1/ε} such that px ∈ [m2i + j
2i+E + s, m

2i + j′

2i+E + s].
By rounding, R∗ is contained in a canonical rectangle R′ with height at most h∗+O(ε)py ≤

(1 +O(ε))h∗ and width at most

w∗ +O(ε)α/py ≤
(
1 +O(ε)

)
α/h∗,

and thus area at most (1 +O(ε))α. So, it suffices to count the number of points inside each
canonical rectangle and return the smallest area among those rectangles containing at least
k points.

To speed up range counting, observe that for canonical rectangles with the same j, j′, j′′,
the same s ∈ {0, 1/3}, and the same value for (i mod E), the portion of the rectangles above
(resp. below) ` forms a laminar family. This is because: (i) in the x-projections, if a pair
of intervals intersects, one interval must be contained in the other; (ii) as the height of
the 3-sided rectangle increases, py increases, and so i can only increase (or stay the same),
and so the width of the rectangle can only decrease (or stay the same). Thus, we can
apply Lemma 11 to compute the counts of the points inside each rectangle, for all canonical
rectangles with a fixed j, j′, j′′, s and (i mod E), in O(n) time (for each canonical rectangle,
we can use a point (px, py) ∈ P on the top edge, and a corresponding point (px,−j′′εpy)
on the bottom edge, as the designated points). The number of choices for j, j′, j′′, s and
(i mod E) is O((1/ε)3 log(1/ε)). J

I Theorem 13. Given a set P of n points in the plane, and parameters k and ε ∈ (0, 1),
one can compute a k-enclosing rectangle R′ such that area(R′) ≤ (1 + ε)opt(P, k), where
opt(P, k) is the area of the smallest axis-aligned rectangle containing k points of P . The
expected running time of the algorithm is O

(
(1/ε)3 log(1/ε) · n logn

)
.

Proof. We can use known techniques for reducing optimization problems to decision problems.
We give a self-contained description of one approach based on Chan’s randomized technique [9].

Let b be a sufficiently large constant. Divide the plane into b columns (vertical slabs)
each containing n/b points. Similarly divide the plane into b rows (horizontal slabs) each
containing n/b points. These steps take linear time by invoking a selection algorithm O(b)
times. For each quadruple τ = (c, c′, r, r′) where c and c′ are columns (with c left of c′ or
c = c′) and r and r′ are rows (with r below r′ or r = r′), consider the subproblem of finding
the smallest-area rectangle containing k points of P , subject to the extra constraints that the
left edge of the rectangle lies in c, the right edge lies in c′, the bottom edge lies in r, and the
top edge lies in r′. To solve this subproblem, it suffices to consider the at most 4n/b points
in P ∩ (c ∪ c′ ∪ r ∪ r′). To ensure that the extra constraints are satisfied, we add 4n/b copies
of the four intersection points formed by the right boundary of c, the left boundary of c′, the
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top boundary of r, and the bottom boundary of r′; and we add 16n/b to k. (Straightforward
modifications can be made in the special case when c = c′ or r = r′.) Let Pτ be the resulting
point set of size at most 20n/b points, and kτ be the resulting value of k. We thus have

opt(P, k) = min
τ

opt(Pτ , kτ ).

To compute an approximation to the minimum, we consider the at most b4 quadruples
in random order τ1, τ2, . . . and keep track of an approximate minimum α with the invariant
that α ≤ min{opt(Pτ1 , kτ1), . . . , opt

(
Pτi−1 , kτi−1

)
} < (1 + ε)α after the (i − 1)th iteration.

Let ε′ be such that (1 + ε′)2 = 1 + ε; note that ε′ = Θ(ε). At the ith iteration, we run the
approximate decision procedure for Pτi twice, at values α and α/(1 + ε′), which allows us to
conclude one of the following:

opt(Pτi , kτi) ≥ α. In this case, we can continue to the next iteration and the invariant is
maintained.

α/(1 + ε′) ≤ opt(Pτi
, kτi

) < (1 + ε′)α. In this case, we reset α to α/(1 + ε′) and the
invariant is maintained.

opt(Pτi
, kτi

) < α. In this case, we recursively compute an approximation αi to the
quantity opt(Pτi , kτi), satisfying αi ≤ opt(Pτi , kτi) < (1 + ε)αi. We reset α to αi and the
invariant is maintained.

We land in the third case only if opt(Pτi
, kτi

) is the smallest among the i values opt(Pτ1 , kτ1),
. . . , opt(Pτi

, kτi
), which happens with probability at most 1/i. Thus, the expected number

of recursive calls is bounded by the (b4)th Harmonic number
∑b4

i=1 1/i < ln(b4) + 1. The
expected running time satisfies the recurrence

T (n) ≤ (4 ln b+ 1)T (20n/b) +O
(
(1/ε)3 log(1/ε) · n logn

)
,

which gives T (n) = O
(
(1/ε)3 log(1/ε) · n logn

)
when b = 1000, for example. J

3 Extensions

3.1 3-sided smallest k-enclosing rectangle
In this subsection, we give a slightly faster algorithm for the 3-sided variant of the prob-
lem, finding the smallest-area/perimeter rectangle enclosing k points, under the restriction
that the bottom edge lies on the x-axis. The improvement uses the latest result on the
(min,+)-convolution problem, and is interesting in view of a reduction in Section 3.5 in
the reverse direction, establishing essentially an equivalence of the 3-sided problem to
(min,+)-convolution.

I Problem 14. (min,+)-Convolution. Given real numbers a0, . . . , an−1, b0, . . . , bn−1, compute
c` = min`i=0(ai + b`−i) for all ` = 0, . . . , 2n− 2.

Let Tconvol(n) be the time complexity of the (min,+)-convolution problem. As observed
by Bremner et al. [7], the problem can be reduced to (min,+)-matrix multiplication, and
using the current best result by Williams [28] (derandomized by Chan and Williams [13]),
Tconvol(n) = O(n2/2Ω(

√
logn)). We use (min,+)-convolution to speed up the preprocessing

time of the 1D data structure from Section 2.1.

I Lemma 15. The preprocessing time in Lemma 1 can be reduced to O((n/q)Tconvol(q) + q3).
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Proof. Divide the n × n matrix M vertically into n/q submatrices M1, . . . ,Mn/q each
of dimension n × q. For each submatrix Mi, we consider the portions of the diagonals
k, . . . , k + q that are within Mi – each such portion will be called a chunk. We precompute
the minimum of the entries in each chunk. For a fixed i, this is equivalent to computing
minqi<j≤q(i+1)(pj+`−1 − pj) for all ` ∈ {k, . . . , k + q}. Notice that after some massaging
of the sequence (negating, reversing, and padding), this computation can be reduced to
(min,+)-convolution over O(q) elements, and can thus be done in O(Tconvol(q)) time. The
total time over all i is O((n/q)Tconvol(q)).

Recall that in the preprocessing algorithm in Lemma 1, we need to compute the minimum
of each fragment in the k, . . . , k + q diagonals. Each fragment can be decomposed into some
number of disjoint chunks plus O(q) extra elements. Over all O(q) diagonals, there are O(q2)
fragments and O(n/q · q) = O(n) chunks in total. Thus, we can compute the minima of all
fragments in O(q2 · q + n/q · q) = O(q3 + n) time, after the above precomputation of the
minima of all chunks. J

I Theorem 16. Given a set P of n points in the plane and integer k, one can compute, in
O(n2/2Ω(

√
logn)) time, the smallest-area/perimeter axis-aligned rectangle enclosing k points

of P , under the restriction that the bottom edge lies on the x-axis.

Proof. Divide the plane into n/q horizontal slabs each containing q points, for some parameter
q to be set later.

Take such a slab σ. We solve the subproblem of finding a smallest k-enclosing axis-aligned
rectangle under the restriction that the top edge is in σ and the bottom edge is on the x-axis.
To this end, we first delete all points above σ or below the x-axis. We build the 1D data
structure S in the lemma for the x-coordinates of the surviving points, where the marked
points are the q points in σ. The preprocessing time is O((n/q)Tconvol(q) + q3). Then for
each point p ∈ σ, we can compute a smallest k-enclosing axis-aligned rectangle where the top
edge has p’s y-coordinate and bottom edge is on the x-axis, by making a copy of S, deleting
all points in σ above p, and querying S. The time needed for the O(q) deletions, and for
copying S, is O(q2). The total time over all p ∈ σ is O(q3).

We return the minimum (by area or perimeter) of all the rectangles found. The overall
running time over all n/q slabs σ is

O((n/q) · ((n/q)Tconvol(q) + q3)).

With Tconvol(q) = O(q2/2Ω(
√

log q)), we can set q = n1/3, for example, and obtain the final
time bound O(n2/2Ω(

√
log q)). J

For k-sensitive bounds, we can apply the shallow cutting technique from Section 2.2
(which is easier for 3-sided rectangles) and obtain an O(n logn+ nk/2Ω(

√
log k)) time bound.

3.2 Arbitrarily oriented smallest k-enclosing rectangle
We briefly consider the problem of computing a smallest-area/perimeter arbitrarily oriented
rectangle (not necessarily axis-aligned) enclosing k points. The optimal rectangle is defined
by 5 points, with one edge containing 2 points p∗1 and p∗2. Given a fixed choice of p∗1 and
p∗2, we can use a rotation and translation to make p∗1p∗2 lie on the x-axis and thereby obtain
a 3-sided axis-aligned rectangle problem, which can be solved in O(n logn+ nk/2Ω(

√
log k))

time. Exhaustively trying all pairs p∗1p∗2 then gives O(n3 logn+ n2k/2Ω(
√

log k)) total time.
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3.3 Minimum-weight k-enclosing rectangle
Our O(n2 logn)-time algorithm can be adapted to solve the following related problem.
(Without the k constraint, the problem has an O(n2)-time algorithm [5].)

I Theorem 17. Given a set P of n points in the plane each with a real weight, and an
integer k, one can compute, in O(n2 logn) time, the axis-aligned rectangle enclosing k points
minimizing the total weight of the points inside.

Proof. We follow the same approach as in Section 2.1, with the following differences in the
data structure of Lemma 1. For every fragment we maintain the minimum weight solution.
Using prefix sums, the entry Mi,j in the matrix contains the total weight of the elements
from i to j. As before, we break the q + 1 diagonals of entry into fragments, where each
fragment summary maintains the minimum weight encountered.

A deletion of a marked point p of weight w would result is an insertion of a fixup entry,
of value −w into a linked list of a diagonal where p appeared as a singleton (when crossing a
column of p), and a fixup entry of value +w when encountering the row column of p. The
real value of a fragment is the value stored in the fragment plus the total sum of the fixups
appearing before it in the linked list of its diagonal. As such, during query the real value
can be computed in O(q) time overall, as this list is being scanned. When we merge two
adjacent fragments separated by a singleton, we should increase the later fragment by the
fixup value at the singleton before taking the minimum. Clearly, all the operations can be
implemented in O(q) time.

Now, we can use the divide-and-conquer algorithm in the proof of Theorem 2 with
no change. J

As an application, we can solve the following problem: given n points in the plane each
colored red or blue, and an integer k, find an axis-aligned rectangle enclosing exactly k points
minimizing the number of red points inside. This is a special case of the problem in the
above theorem, where the red points have weight 1 and blue points have weight 0, and can
thus be solved in O(n2 logn) time.

Similarly, we can solve for other variants of the red/blue problem, for example, finding
a k-enclosing rectangle maximizing (or minimizing) the number of red points, or finding
a k-enclosing rectangle with exactly a given number kr of red points. (For the latter, the
following observation allows us to reduce the 1D subproblem to querying for the maximum
and minimum: given a set P of red/blue points in 1D and a value k, let Kr denote the set of
all possible values kr for which there exists an interval containing k points of P and exactly
kr red points; then Kr forms a contiguous range of integers, and thus contains all numbers
between min(Kr) and max(Kr).)

3.4 Subset sum for k-enclosing rectangle
A more challenging variant of the weighted problem is to find a rectangle enclosing exactly
k points with total weight exactly W (similar to subset sum), or more generally, find an
axis-aligned rectangle enclosing exactly k points with total weight closest to W .

We use a different approach, using a 1D data structure that is static but can “plan for” a
small number of deletions.

I Lemma 18. Given a set P of n points in 1D and integers k and q, we can build a static
data structure, with O(nq logn) preprocessing time, that supports the following type of queries
in O(q logn) time: for any subset D ⊂ P of at most q points and any weight W , find an
interval containing k points of P −D with weight closest to W .



T.M. Chan and S. Har-Peled 23:13

Proof. See full version [10]. J

I Theorem 19. Given n points in the plane each with a real weight, and given a real number
W and an integer k, one can compute, in O(n5/2 logn) time, an axis-aligned rectangle
enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

We can further improve the running time for small k:

I Theorem 20. Given n points in the plane each with a real weight, and given a real number
W and an integer k, one can compute, in O(n2

√
k log k) time, an axis-aligned rectangle

enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

As an application, we can solve the following problem: given n colored points in the plane
with d different colors, and integers k1, . . . , kd, with k1 + · · ·+ kd = k, find an axis-aligned
rectangle enclosing exactly ki points of the ith color. The problem was proposed by Barba
et al. [4], who gave an O(n2k)-time algorithm. (It may be viewed as a geometric variant of
the jumbled or histogram indexing problem for strings [11].) It is a special case of the problem
from Theorem 19: we can give points with color i a weight of M i for a sufficiently large M ,
e.g., M = n+ 1, and set the target to W =

∑d
i=1 kiM

i. Since weights require O(d logn) bits,
each addition has O(d) cost, and so the running time becomes O(dn2

√
k log k). The weights

can be reduced to O(logn) bits by randomized hashing (for example, by randomly selecting
M from {0, . . . , p−1} and working with numbers modulo p for an O(logn)-bit prime p), since
there are only polynomially (i.e., O(n4)) many combinatorially different rectangles. This
way, the running time can be reduced to O(n2

√
k log k) – this improves Barba et al.’s result.

3.5 Conditional lower bounds
We can prove that the smallest-perimeter k-enclosing axis-aligned rectangle problem do
not have truly subquadratic (i.e., O(n2−δ)) algorithms, under the conjecture that (min,+)-
convolution does not have a truly subquadratic algorithm. Our proof holds for the 3-sided
version of the problem, which complements nicely with our upper bound in Section 3.1 using
(min,+)-convolution.

We describe a reduction from the following decision problem, which Cygan et al. [14]
showed does not have a truly subquadratic algorithm under the (min,+)-convolution
conjecture.
I Problem 21. (min,+)-Convolution Decision. Given real numbers a0, . . . , an−1, b0, . . . , bn−1,

and c0, . . . , cn−1, decide whether

∀` : c` ≤ min
i+j=`

(ai + bj).

I Theorem 22. If there is a T (n)-time algorithm for computing the smallest-perimeter/area
axis-aligned rectangle enclosing k points for a given set of n points in the plane and a given
number k (with or without the constraint that the bottom edge lies on the x-axis), then there
is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A similar reduction holds for the minimum-weight k-enclosing rectangle problem from
Theorem 17:
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I Theorem 23. If there is a T (n)-time algorithm for computing the minimum-weight axis-
aligned rectangle enclosing k points for a given set of n weighted points in the plane and
number k (with or without the constraint that the bottom edge lies on the x-axis), then there
is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A near-quadratic conditional lower bound for the minimum-weight rectangle problem
without the k constraint was given by Backurs et al. [3] (under a different “popular” conjecture
about the complexity of maximum-weight clique).

We can similarly prove that the subset-sum variant of the k-enclosing rectangle prob-
lem from Theorem 19 (or its 3-sided variant) does not have truly subquadratic algo-
rithms, under the conjecture that the convolution-3SUM problem (given real numbers
a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, decide whether c` = ai + b`−i for some i and `) does
not have a truly subquadratic algorithm (which is known to be true under the conjecture
that 3SUM for integers does not have a truly subquadratic algorithm [25]).
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