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Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-
crossings when drawn in the plane. For every fixed pair of integers with c ≥ 13 and d ≥ 1, we give
first explicit constructions of c-crossing-critical graphs containing a vertex of degree greater than
d. We also show that such unbounded degree constructions do not exist for c ≤ 12, precisely, that
there exists a constant D such that every c-crossing-critical graph with c ≤ 12 has maximum degree
at most D. Hence, the bounded maximum degree conjecture of c-crossing-critical graphs, which was
generally disproved in 2010 by Dvořák and Mohar (without an explicit construction), holds true,
surprisingly, exactly for the values c ≤ 12.
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14:2 Bounded Maximum Degree in Crossing-Critical Graphs

1 Introduction

Minimizing the number of edge-crossings in a graph drawing in the plane (the crossing
number of the graph, see Definition 2.1) is considered one of the most important attributes of
a “nice drawing” of a graph. In the case of classes of dense graphs (those having superlinear
number of edges in terms of the number vertices), the crossing number is necessarily very
high – see the famous Crossing Lemma [1, 13]. However, within sparse graph classes (those
having only linear number of edges), we may have planar graphs at one end and graphs with
up to quadratic crossing number at the other end. In this situation, it is natural to study
the “minimal obstructions” for low crossing number, with the following definition.

Let c be a positive integer. A graph G is called c-crossing-critical if the crossing number
of G is at least c, but every proper subgraph has crossing number smaller than c. We say
that G is crossing-critical if it is c-crossing-critical for some positive integer c.

Since any non-planar graph contains at least one crossing-critical subgraph, the under-
standing of the properties of the crossing-critical graphs is a central part of the theory of
crossing numbers.

In 1984, Širáň gave the earliest construction of nonsimple c-critical-graphs for every fixed
value of c ≥ 2 [18]. Three years later, Kochol [11] gave an infinite family of c-crossing-critical,
simple, 3-connected graphs, for every c ≥ 2. Another early result on c-crossing-critical
graphs was reported in the influential paper of Richter and Thomassen [17], who proved that
c-crossing-critical graphs have bounded crossing number in terms of c. They also initiated
research on degrees in c-crossing-critical graphs by showing that, if there exists an infinite
family of r-regular, c-crossing-critical graphs for fixed c, then r ∈ {4, 5}. Of these, 4-regular
3-critical graphs were constructed by Pinontoan and Richter [16], and 4-regular c-critical
graphs are known for every c ≥ 3, c 6= 4 [3]. Salazar observed that the arguments of Richter
and Thomassen could be applied to average degree as well, showing that an infinite family of
c-crossing-critical graphs of average degree d can exist only for d ∈ (3, 6], and established
their existence for d ∈ [4, 6). Nonexistence of such families with d = 6 was established much
later by Hernández, Salazar, and Thomas [9], who proved that, for each fixed c, there are only
finitely many c-crossing-critical simple graphs of average degree at least six. The existence
of such families with d ∈ [ 7

2 , 4] was established by Pinontoan and Richter [16], whereas the
whole possible interval was covered by Bokal [2], who showed that, for sufficiently large
crossing number, both the crossing number c and the average degree d ∈ (3, 6) could be
prescribed for an infinite family of c-crossing critical graphs of average degree d.

In 2003, Richter conjectured that, for every positive integer c, there exists an integer D(c)
such that every c-crossing-critical graph has maximum degree less than D(c) [14]. Reflecting
upon this conjecture, Bokal in 2007 observed that the known 3-connected crossing-critical
graphs of that time only had degrees 3, 4, 6, and asked for existence of such graphs with
arbitrary other degrees, possibly appearing arbitrarily many times. Hliněný augmented his
construction of c-crossing-critical graphs with pathwidth linear in c to show the existence of
c-crossing-critical graphs with arbitrarily many vertices of every set of even degrees. Only a
recent paper by Bokal, Bračič, Derňár, and Hliněný [3] provided the corresponding result
for odd degrees, showing in addition that, for sufficiently high c, all the three parameters
– crossing number c, rational average degree d, and the set of degrees D ⊆ N \ {1, 2} that
appear arbitrarily often in the graphs of the infinite family – can be prescribed. They also
analysed the interplay of these parameters for 2-crossing-critical graphs that were recently
completely characterized by Bokal, Oporowski, Richter, and Salazar [5].
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Despite all this research generating considerable understanding of the behavior of degrees
in known crossing-critical graphs as well as extending the construction methods of such
graphs, the original conjecture of Richter was not directly addressed in the previous works.
It was, however, disproved by Dvořák and Mohar [8], who showed that, for each integer
c ≥ 171, there exist c-crossing-critical graphs of arbitrarily large maximum degree. Their
counterexamples, however, were not constructive, as they only exhibited, for every such c,
a graph containing sufficiently many critical edges incident with a fixed vertex and argued
that those edges belong to every c-crossing-critical subgraph of the exhibited graph. On the
other hand, as a consequence of [5] it follows that, except for possibly some small examples,
the maximum degree in a large 2-crossing-critical graph is at most 6, implying that Richter’s
conjecture holds for c = 2. In view of these results, and the fact that 1-crossing-critical
graphs (subdivisions of K5 and K3,3) have maximum degree at most 4, this leaves Richter’s
conjecture unresolved for each c ∈ {3, 4, . . . , 170}.

The richness of c-crossing-critical graphs is restricted for every c by the result of Hliněný
that c-crossing-critical graphs have bounded path-width [10]; this structural result is com-
plemented by a recent classification of all large c-crossing-critical graphs for arbitrary c by
Dvořák, Hliněný, and Mohar [7]. We use these results in Section 3 to show that Richter’s
conjecture holds for c ≤ 12. The result is stated below. It is both precise and surprising and
shows how unpredictable are even the most fundamental questions about crossing numbers.

I Theorem 1.1. There exists an integer D such that, for every positive integer c ≤ 12, every
c-crossing-critical graph has maximum degree at most D.

In fact, one can separately consider in Theorem 1.1 twelve upper bounds Dc for each of
the values c ∈ {1, 2, . . . , 12}. For instance, D1 = 4 and the optimal value of D2 (we know
D2 ≥ 8) should also be within reach using [5] and continuing research. On the other hand,
due to the asymptotic nature of our arguments, we are currently not able to give any “nice”
numbers for the remaining upper bounds, and we leave this aspect to future investigations.

We cover the remaining values of c ≥ 13 in the gap with the following:

I Theorem 1.2. For every positive integer d, there exists a 3-connected 13-crossing-critical
graph G(d), whose maximum degree is at least d.

I Corollary 1.3. For every two integers c ≥ 13 and d ≥ 1, there exists a 3-connected
c-crossing-critical graph G(c, d), whose maximum degree is at least d.

We also address the related question about the structure of c-crossing-critical graphs with
more than one vertex of large degree. We show the following:

I Corollary 1.4. For any integers c ≥ 13, i ≥ 1 and i, where 1 ≤ i ≤ c/13, there exists a
3-connected c-crossing-critical graph G(c, d, i), which contains i vertices of degree greater
than d.

Note that, without the 3-connectivity assumption, Corollary 1.4 is established simply by
taking disjoint or vertex-identified copies of the graphs from Corollary 1.3.

The paper is structured as follows. The preliminaries, needed to help understanding the
structure of large c-crossing critical graphs are defined in Section 2. We prove Theorem
1.1 in Section 3, and Theorem 1.2 in Section 4. This construction is combined with a new
technical operation called 4-to-3 expansion and zip product to establish Corollaries 1.3 and
1.4 in Section 5. We conclude with some remarks and open problems in Section 6.

SoCG 2019
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2 Graphs and the crossing number

In this paper, we consider multigraphs by default, even though we could always subdivide
parallel edges (while sacrificing 3-connectivity) in order to make our graphs simple. We
follow basic terminology of topological graph theory, see e.g. [15].

A drawing of a graph G in the plane is such that the vertices of G are distinct points and
the edges are simple (polygonal) curves joining their end vertices. It is required that no edge
passes through a vertex, and no three edges cross in a common point. A crossing is then
an intersection point of two edges other than their common end. A face of the drawing is a
maximal connected subset of the plane minus the drawing. A drawing without crossings in
the plane is called a plane drawing of a graph, or shortly a plane graph. A graph having a
plane drawing is planar.

The following are the core definitions used in this work.

I Definition 2.1 (crossing number). The crossing number cr(G) of a graph G is the minimum
number of crossings of edges in a drawing of G in the plane. An optimal drawing of G is
every drawing with exactly cr(G) crossings.

I Definition 2.2 (crossing-critical). Let c be a positive integer. A graph G is c-crossing-critical
if cr(G) ≥ c, but every proper subgraph G′ of G has cr(G′) < c.

Let us remark that a c -crossing-critical graph may have no drawing with only c crossings
(for c = 2, such an example is the Cartesian product of two 3-cycles, C3�C3).

Suppose G is a graph drawn in the plane with crossings. Let G′ be the plane graph
obtained from this drawing by replacing the crossings with new vertices of degree 4. We say
that G′ is the plane graph associated with the drawing, shortly the planarization of (the
drawing of) G, and the new vertices are the crossing vertices of G′.

Preliminaries. In some of our constructions, we will have to combine crossing-critical graphs
as described in the next definition.

I Definition 2.3. Let d = 2 or 3. For i ∈ {1, 2}, let Gi be a graph and let vi ∈ V (Gi) be a
vertex of degree d that is only incident with simple edges, such that Gi − vi is connected.
Let uj

i , j ∈ {1, . . . , d} be the neighbors of vi. The zip product of G1 and G2 at v1 and v2 is
obtained from the disjoint union of G1 − v1 and G2 − v2 by adding the edges uj

1uj
2, for each

j ∈ {1, . . . , d}.

Note that, for different labellings of the neighbors of v1 and v2, different graphs may result
from the zip product. However, the following has been shown:

I Theorem 2.4 ([4]). Let G be a zip product of G1 and G2 as in Definition 2.3. Then,
cr(G) = cr(G1) + cr(G2). Furthermore, if for both i = 1 and i = 2, Gi is ci-crossing-critical,
where ci = cr(Gi), then G is (c1 + c2)-crossing-critical.

For vertices of degree 2, this theorem was established already by Leaños and Salazar in [12].
Dvořák, Hliněný, and Mohar [7] recently characterized the structure of large c-crossing-

critical graphs. From their result, it can be derived that in a crossing-critical graph with a
vertex of large degree, there exist many internally vertex-disjoint paths from this vertex to
the boundary of a single face, see the following corollary for a more precise formulation. To
keep our contribution self-contained, we also give a simple independent proof of this claim in
the full version of the paper.
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I Corollary 2.5. There exists a function f2.5 : N2 → N such that the following holds. Let
c ≥ 1 and t ≥ 3 be integers and let G be an optimal drawing of a 2-connected c-crossing-
critical graph. If G has maximum degree greater than f2.5(c, t), then there exists a path Q

contained in the boundary of a face of G and internally vertex-disjoint paths P1, . . . , Pt

starting in the same vertex not in Q and ending in distinct vertices appearing in order on Q

(and otherwise disjoint from Q), such that no crossings of G appear on P1, Pt, nor in the
face of P1 ∪ Pt ∪Q that contains P2, . . . , Pt−1.

3 Crossing-critical graphs with at most 12 crossings

We now use Corollary 2.5 to prove the following “redrawing” lemma.

I Lemma 3.1. Let G be a 2-connected c-crossing-critical graph. If G has maximum degree
greater than f2.5(c, 6c + 1), then there exist integers r ≥ 2 and k ≥ 0 such that kr ≤ c − 1
and G has a drawing with at most c− 1− kr +

(
k
2
)
crossings.

Proof. Consider an optimal drawing of G. Let P1, . . . , P6c+1 be paths obtained using
Corollary 2.5 and v their common end vertex. For 2 ≤ i ≤ 6c − 1, let Ti denote the 2-
connected block of G− ((V (Pi−1)∪V (Pi+2))\{v}) containing Pi and Pi+1, and let Ci denote
the cycle bounding the face of Ti containing Pi−1. Note that if 2 ≤ i and i + 3 ≤ j ≤ 6c− 1,
then G− V (Ti ∪ Tj) has at most three components: one containing Pi+2 − v, one containing
P1 − v, and one containing P6c+1 − v, where the latter two components can be the same.

Let e be the edge of P3c+1 incident with v and let G′ be an optimal drawing of G− e.
Since G is c-crossing-critical, G′ has at most c− 1 crossings. Hence, there exist indices i1
and i2 such that 2 ≤ i1 ≤ 3c − 1, 3c + 2 ≤ i2 ≤ 6c − 1, and none of the edges of Ti1 and
Ti2 is crossed. Let us set L = Ti1 , CL = Ci1 , R = Ti2 , and CR = Ci2 . Let M , S1, and
S2 denote the subgraphs of G consisting of the components of G − V (L ∪ R) containing
P3c+1−v, P1−v, and P6c+1−v, respectively, together with the edges from these components
to the rest of G and their incident vertices (where possibly S1 = S2). Let SL and ML be
subpaths of CL of length at least one intersecting in v such that V (S1 ∩ CL) ⊆ V (SL) and
V (M ∩CL) ⊆ V (ML). Analogously, let SR and MR be subpaths of CR of length at least one
intersecting in v such that V (S2 ∩ CR) ⊆ V (SR) and V (M ∩ CR) ⊆ V (MR). See Figure 1.

We can assume without loss of generality (by circle inversion of the plane if necessary)
that neither CL nor CR bounds the outer face of CL ∪ CR in the drawings inherited from G

and from G′. Let eML
, eSL

, eSR
, eMR

be the clockwise cyclic order of the edges of CL ∪ CR

incident with v in the drawing G, where eQ ∈ E(Q) for every Q ∈ {ML, SL, SR, MR}. By
the same argument, we can assume that the clockwise cyclic order of these edges in the
drawing of G′ is either the same or eML

, eSL
, eMR

, eSR
.

In G, L is drawn in the closed disk bounded by CL, R is drawn in the closed disk bounded
by CR, and M , S1, and S2 together with all the edges joining them to v are drawn in the
outer face of CL∪CR. Since CL and CR are not crossed in the drawing G′, we can if necessary
rearrange the drawing of G′ without creating any new crossings1 so that the same holds for the
drawings of L, R, M , S1, and S2 in G′. Let r ≥ 1 denote the maximum number of pairwise

1 As G is not 3-connected, it is possible that some 2-connected components or some edges of L, R are
drawn in the exterior of the disk bounded by CL, CR. However, these can be flipped into the interior of
CL, CR, and after such rearranging, CL, CR bound the outer face of the drawings of L, R. Similarly, if
S1 6= S2, either of them could be in the interior of CL, CR, and we flip them into the exterior, so that
the interior of CL, CR contains only drawings of L, R, respecitvely.

SoCG 2019
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v

P1 P6c+1

S1 S2

SL

eSL

ML

eMLCL

SR

eSR

MR

eMR CR

1
2

r

M1 M2

M

a)

v

P1 P6c+1

S1 S2

SL

eSL

ML

eMLCL
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MR

eMR CR

1
2

3
r

1
2
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SL
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1
2

3
r

1
2
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Figure 1 An illustration of the proof of Lemma 3.1. a) The original optimal drawing of G, with
subdrawings of M1 and M2 (red) that will be glued into the drawing of G0 from an optimal drawing
of G− e. b) A drawing of G with at most c− 1 crossings, obtained from G0 (black, blue, green)
and M1, M2 (red). c) A drawing of G with at most

(
c−1−kr+k

2

)
crossings, obtained from G0 (black,

blue) and M1, M2 (red).
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edge-disjoint paths in M − v from V (M ∩CL − v) to V (M ∩CR − v). By Menger’s theorem,
M − v has disjoint induced subgraphs M ′

1 and M ′
2 such that V (M − v) = V (M ′

1) ∪ V (M ′
2),

V (M ∩CL−v) ⊆ V (M ′
1), V (M ∩CR−v) ⊆ V (M ′

2), and G contains exactly r edges with one
end in M ′

1 and the other end in M ′
2. For i ∈ {1, 2}, let Mi be the subgraph of M induced by

V (M ′
i)∪{v}. Let F be a path in M−v from V (M ∩CL−v) to V (M ∩CR−v) that has in the

drawing G′ the smallest number of intersections with the edges of S1 ∪ S2, and let k denote
the number of such intersections. Let G0 denote the drawing G′ − (V (M) \ V (ML ∪MR)).
Since M − v contains r pairwise edge-disjoint paths from V (M ∩CL − v) to V (M ∩CR − v)
and each of them crosses S1 ∪ S2 at least k times, we conclude that G′ has at least kr

crossings (and thus kr ≤ c− 1) and G0 has at most c− 1− kr crossings.
Suppose first that edges of CL∪CR incident with v are in G′ drawn in the same clockwise

cyclic order as in G. We construct a new drawing of the graph G in the following way: Start
with the drawing of G0. Take the plane drawings of M1 and M2 as in G, “squeeze” them
and draw them very close to ML and MR, respectively, so that they do not intersect any
edges of G0. Finally, draw the r edges between M1 and M2 very close to the curve tracing
F (as drawn in G′), so that each of them is crossed at most k times. This gives a drawing
of G with at most (c− 1− kr) + kr < c crossings, contradicting the assumption that G is
c-crossing-critical.

Hence, we can assume that the edges of CL ∪ CR incident with v are in G′ drawn in
the clockwise order eML

, eSL
, eMR

, eSR
. If r = 1, then proceed analogously to the previous

paragraph, except that a mirrored version 2 of the drawing of M2 is inserted close to MR; as
there is only one edge between M1 and M2, this does not incur any additional crossings, and
we again conclude that the resulting drawing of G has fewer than c crossings, a contradiction.
Therefore, r ≥ 2.

Consider the drawing G′, and let q be a closed curve passing through v, following ML

slightly outside CL till it meets F , then following F almost till it hits MR, then following
MR slightly outside CR till it reaches v. Note that q only crosses G0 in v and in relative
interiors of the edges, and it has at most k crossings with the edges. Shrink and mirror the
part of the drawing of G0 drawn in the open disk bounded by q, keeping v at the same spot
and the parts of edges crossing q close to q; then reconnect these parts of the edges with
their parts outside of q, creating at most

(
k
2
)
new crossings in the process. Observe that in

the resulting re-drawing of G0, the path ML ∪MR is contained in the boundary of a face
(since q is drawn close to it and nothing crosses this part of q), and thus we can add M

planarly (as drawn in G) to the drawing without creating any further crossings. Therefore,
the resulting drawing has at most c− 1− kr +

(
k
2
)
crossings. J

It is now easy to prove Theorem 1.1.

Proof of Theorem 1.1. We prove by induction on c that, for every positive integer c ≤ 12,
there exists an integer ∆c such that every c-crossing-critical graph has maximum degree at
most c. The only 1-crossing-critical graphs are subdivisions of K5 and K3,3, and thus we
can set ∆1 = 4. Suppose now that c ≥ 2 and the claim holds for every smaller value. We
define ∆c = max(2∆c−1, f2.5(c, 6c + 1)). Let G be a c-crossing-critical graph and suppose
for a contradiction that ∆(G) > ∆c.

2 Mirrored version of a drawing is the drawing obtained by reversing the vertex rotations of edges around
every vertex and every crossing, and embedding the edges and the vertices accordingly. The name
explains that this is homeomorphic to the original drawing seen in a mirror.

SoCG 2019



14:8 Bounded Maximum Degree in Crossing-Critical Graphs

If G is not 2-connected, then it contains induced subgraphs G1 and G2 such that
G1 6= G 6= G2, G = G1 ∪G2, and G1 intersects G2 in at most one vertex. Then c ≤ cr(G) =
cr(G1) + cr(G2), and for every edge e ∈ E(G1) we have c > cr(G− e) = cr(G1 − e) + cr(G2).
Hence, cr(G1) ≥ c − cr(G2) and cr(G1 − e) < c − cr(G2) for every edge e ∈ E(G1), and
thus G1 is (c− cr(G2))-crossing-critical. Similarly, G2 is (c− cr(G1))-crossing-critical. Since
cr(G1) ≥ 1 and cr(G2) ≥ 1, it follows by the induction hypothesis that ∆(Gi) ≤ ∆c−1 for
i ∈ {1, 2}, and thus ∆(G) ≤ ∆c, which is a contradiction.

Hence, G is 2-connected. By Lemma 3.1, there exist integers r ≥ 2 and k ≥ 0 such that
kr ≤ c − 1 and c − 1 − kr +

(
k
2
)
≥ c, and thus

(
k
2
)
≥ kr + 1 ≥ 2k + 1. This inequality is

only satisfied for k ≥ 6, and thus the first inequality implies c ≥ kr + 1 ≥ 13. This is a
contradiction. Hence, the maximum degree of G is at most ∆c. J

4 Explicit 13-crossing-critical graphs with large degree

We define the following family of graphs, which is illustrated in Figure 2. To simplify the
terminology and the pictures, we introduce “thick edges”: for a positive integer t, we say
that uv is a t-thick edge, or an edge of thickness t, if there is a bunch of t parallel edges
between u and v. Naturally, if a t1-thick edge crosses a t2-thick edge, then this counts as
t1t2 ordinary crossings. By routing every parallel bunch of edges along the “cheapest” edge
of the bunch, we get the following important folklore claim:

B Claim 4.1. For every graph G, there exists an optimal drawing D of G, such that every
bunch of parallel edges is drawn as one thick edge in D.

I Definition 4.2 (Critical family {Gk
13}). Let k ≥ 2 be an integer. Let Cu be a 6-cycle on the

vertex set {x, u1, u2, u3, u4, u5} with (thick) edges xu1, u1u2, u2u3, u3u4, u4u5, u5x which
are of thickness 7, 5, 4, 4, 4, 1 in this order. Analogously, let Cv be a 6-cycle on the vertex set
{x, v1, v2, v3, v4, v5} isomorphic to Cu in this order of vertices. We denote by B the graph
obtained from the union Cu ∪ Cv (identifying their vertex x) by adding edges u2v3 and u3v2,
and 2-thick edges u1v4 and u4v1.

Let Di, for i ∈ {1, . . . , k}, denote the graph on the vertex set {x, wi
1, wi

2, wi
3, wi

4} with
the edges xwi

1, xwi
4, wi

1wi
4, wi

2wi
3 and the 2-thick edges wi

1wi
2 and wi

3wi
4. From the union

B ∪D1 ∪ . . . ∪Dk (again identifying their vertex x), we obtain obtain the graph Gk
13 via

identifying u5 with w1
2 and wk

3 with v5, and
for i = 2, 3, . . . , k, identifying wi−1

3 with wi
2.

This definition is illustrated in Figure 2. For reference, we will call the graph B the
bowtie of Gk

13, and the graph Di the i-th wedge of Gk
13.

I Observation 4.3.
a) For every k ≥ 2, the graph Gk

13 is a 3-connected and non-planar.
b) The degree of the vertex x in Gk

13 equals 2k + 16.
c) There exists an automorphism of Gk

13 exchanging ui with vi, for i = 1, 2, 3, 4, 5.

In order to prove Theorem 1.2, e.g. for G(d) = G
bd/2c
13 , it suffices to show two claims; that

cr(Gk
13) ≥ 13 for k ≥ 2, and that, for every edge e of Gk

13, we get cr(Gk
13 − e) ≤ 12. (We also

remark that cr(G1
13) ≤ 12, and for this reason we assume k ≥ 2.)

I Lemma 4.4. cr(G2
13) = cr(G3

13) = 13.
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Figure 2 The graph Gk
13 of Definition 4.2, drawn with 13 crossings. The thick edges of this graph

have their thickness written as numeric labels, and all the unlabeled edges are of thickness 1. The
bowtie part of this graph is drawn in red and blue (where blue edges are those between ui and vj

vertices), and the wedges are drawn in black. Only the (k − 1)-th and k-th wedges are detailed,
while the remaining wedges 1, . . . , k − 2 analogously span the grey shaded area. Dotted lines show
possible alternate routings of the edge v1u4 (which preserve the number of 13 crossings).

Proof. For every k ≥ 2, Figure 2 shows a drawing of Gk
13 with 13 crossings. For the lower

bounds, we use the computer tool Crossing Number Web Compute [6] which uses an ILP
formulation of the crossing number problem (based on Kuratowski subgraphs), and solves it
via a branch-and-cut-and-price routine. Moreover, this computer tool generates machine-
readable proofs3 of the lower bound, which (roughly) consist of a branching tree in which
every leaf holds an LP formulation of selected Kuratowski subgraphs certifying that, in this
case, the crossing number must be greater than 12. J

I Lemma 4.5. For every k ≥ 2, cr(Gk
13) ≥ 13.

Proof. We proceed by induction on k, where the base cases k = 2, 3 are proved in Lemma 4.4.
Hence, we may assume that k ≥ 4.

Consider a drawing of Gk
13 with c = cr(Gk

13) crossings. Let 1 ≤ i ≤ k − 1, and recall that
wi

3 = wi+1
2 . By Claim 4.1, we may assume that all thick edges are drawn together in a bunch.

We now distinguish three cases based on the cyclic order of edges leaving the vertices wi
3

(the orientation is not important):

3 See the computation results at http://crossings.uos.de/job/PZPmFDmDEKsgxLpftZmlXw (k = 2) and
http://crossings.uos.de/job/EDsMIoyqrgonXEeD0plqdg (k = 3). Vertex x is labeled 0. Cycle Cu

uses vertices 0, 1, 2, 3, 4, 10. Cycle Cv uses vertices 0, 5, 6, 7, 8, and 14 for k = 2 (resp. 17 for k = 3).
We remark that the proof file for k = 3 is particularly large, it spans 2150 cases with 717 Kuratowski
constraints per case on average. For k = 2, there are just 1300 cases with about 180 constraints each.
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Figure 3 Two cases of the induction step in the proof of Lemma 4.5. (a) We “shrink” two wedges
into one by drawing new edges wi

1wi+1
4 (green) and wi

2wi+1
3 (blue) along the depicted paths. (b) We

likewise “shrink” three wedges into one by drawing the depicted new edges w1
1w3

4 and w1
2w3

3 (this
picture does not specify how w2

1 and w2
4 connect to x since it is not important for us).

There exists i ∈ {1, . . . , k − 1}, such that the edges incident to wi
3 = wi+1

2 , in a small
neighbourhood of wi

3, have the cyclic order wi
3wi

4, wi
3wi+1

1 , wi
3wi+1

3 , wi
3wi

2. See in
Figure 3 a, where this cyclic order is anti-clockwise. In this case, we draw a new edge
wi

1wi+1
4 along the path (wi

1, wi
4, wi

3, wi+1
1 , wi+1

4 ), and another new edge wi
2wi+1

3 along the
path (wi

2, wi
3, wi+1

3 ) (both new edges are of thickness 1). Then we delete the vertices
wi

4, wi
3, wi+1

1 together with incident edges. The resulting drawing represents a graph
which is clearly isomorphic to Gk−1

13 – the wedges i and i + 1 have been replaced with one
wedge.
Moreover, thanks to the assumption, we can avoid crossing between wi

1wi+1
4 and wi

2wi+1
3

in the considered neighbourhood of former wi
3. Therefore, every crossing of the new

drawing (including possible crossings of each of the new edges wi
1wi+1

4 and wi
2wi+1

3 among
themselves or with other edges) existed already in the original drawing of Gk

13, and so
cr(Gk−1

13 ) ≤ c. However, cr(Gk−1
13 ) ≥ 13 by the induction assumption, and so c ≥ 13 holds

true in this case.
The same proof as above works if the cyclic order around wi

3 is wi
3wi

4, wi
3wi+1

1 , wi
3wi

2,
wi

3wi+1
3 .

For all i ∈ {1, . . . , k−1}, in a small neighbourhood of wi
3, the edges incident to wi

3 = wi+1
2

have (up to orientation reversal) the cyclic order wi
3wi

4, wi
3wi+1

3 , wi
3wi+1

1 , wi
3wi

2. See
Figure 3 b. We will use this assumption only for i = 1, 2 as follows.
We draw a new edge w1

1w3
4 along the path (w1

1, w1
4, w1

3, w2
3, w3

1, w3
4), and another new edge

w1
2w3

3 along the path (w1
2, w1

3, w2
1, w2

4, w2
3, w3

3) (both new edges are of thickness 1). Then
we delete the vertices w1

4, w1
3, w2

1, w2
4, w2

3, w3
1 together with incident edges. The resulting
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Figure 4 Two drawings of the graph Gk
13, having (a) 14 and (b) 16 crossings. These drawings

are used to argue criticality of some of the bowtie (red) edges of Gk
13. The grey areas span the

crossing-free wedges of Gk
13 which are not detailed in the pictures, similarly as in Figure 2.

drawing represents a graph which is now isomorphic to Gk−2
13 – the wedges 1, 2 and 3

have been replaced with one wedge.
As in the previous case, we can avoid crossing between w1

1w3
4 and w1

2w3
3 in the considered

neighbourhoods of former w1
3 and w2

3. Therefore, analogously, cr(Gk−2
13 ) ≤ c. However,

k − 2 ≥ 2 and so cr(Gk−2
13 ) ≥ 13 by the induction assumption, and hence c ≥ 13 holds

true also in this case.
By induction, for every integer k ≥ 2, cr(Gk

13) = c ≥ 13 holds. J

I Lemma 4.6. For every edge e of Gk
13, we have cr(Gk

13 − e) ≤ 12.

Proof. On a high level, our proof strategy can be described as follows. We provide a
collection of drawings of Gk

13, such that each edge of Gk
13 in some of the drawings, when

deleted, exhibits a “drop” of the crossing number below 13. Note that, for thick edges, we
are deleting only one edge of the multiple bunch.

In particular, the drawing of Figure 2 proves the claim for e ∈ {u1v4, u2v3, u3v2, u4v1}
(the blue edges of the bowtie subgraph); whenever any one of these edges is removed, we save
at least one crossing from the optimal number 13. Likewise, Figure 2 proves the claim for
e ∈ {xv5, v4v5} (see the dotted routings of the edge v1u4), and hence also for e ∈ {xu5, u4u5}
by symmetry (the automorphism from Observation 4.3).

To proceed with the remaining edges e of the bowtie graph B ⊆ Gk
13 (the red edges),

we resort to drawings that may have more than 13 crossings but still provide a drawing
of Gk

13 − e with at most 12 crossings. Consider first the drawing obtained from the one of
Figure 2 by “flipping” the right-hand part of the picture along the line through x and u5.
See Figure 4 a. In this drawing (with 14 crossings), the only crossings occur between the
7-thick edge xu1 and the edges wk

1 wk
4 , wk

2 v5. By a slight shift of the latter two edges, we
obtain another drawing with only 14 crossing between the 5- and 2-thick edges u1u2, u1v4
and again the edges wk

1 wk
4 , wk

2 v5. Removing an edge of the bunch xu1 (respectively, one edge
of u1u2) drops the crossing number down to 12. Second, there is a drawing with 16 crossing,
which occur only between the 4-thick edges v2v3 and u3u4; see Figure 4 b. Deleting any one
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Figure 5 Two drawings of the graph Gk
13, having (a) 13 and (b) 18 crossings. These drawings

are used to argue criticality of edges of the i-th wedge. The grey areas span the crossing-free wedges
of Gk

13 which are not detailed in the pictures, similarly as in Figure 4.

edge of v2v3, u3u4 again drops the crossing number down to at most 12. Consequently, our
claim holds for e ∈ {xu1, u1u2, v2v3, u3u4} and, by symmetry, for e ∈ {xv1, v1v2, u2u3, v3v4}.

We are left with the last, and perhaps most interesting, cases in which e is an edge in
the i-th wedge Di. Imagine we “disconnect” Di by removing vertices wi

1 and wi
4 and the

edge wi
2wi

3, and then twist the bowtie graph B together with the adjacent strips of wedges
D1 ∪ . . .∪Di−1 and Di+1 ∪ . . .∪Dk, removing all crossings. If we introduce the vertices and
edges of Di back, we get a drawing in Figure 5 a with 13 crossings which are only between the
edges xwi

1, wi
2wi

3, wi
1wi

4 and the six blue bowtie edges. For every edge e ∈ {xwi
1, wi

2wi
3, wi

1wi
4}

its removing from Gk
13 thus decreases the crossing number to at most 12. Lastly, we may

move the vertex wi
1 to obtain another drawing as in Figure 5 b. The latter drawing has 18

crossings between the edges wi
1wi

2, wi
2wi

3 and the six blue bowtie edges. Removing one edge
of wi

1wi
2 thus drops the crossing number down to 12, again. With help of symmetry, the

claim is thus proved also for every edge e ∈ E(Di), for each i ∈ {1, 2, . . . , k}. J

For d ≥ 4, Theorem 1.2 is then established with G(d) := G
bd/2c
13 .

5 Extended crossing-critical constructions

In the previous section, we have constructed an infinite family of 13-crossing-critical graphs
with unbounded maximum degree. There are two further natural questions to be asked;
(a) what about analogous c-crossing-critical families for c > 13, and (b) what about con-
structing c-crossing-critical graphs with more than one high-degree vertex?

Clearly, disjoint union of a graph Gk
13 with c−13 disjoint copies of K3,3 yields a (disconnec-

ted) c-crossing-critical graph with maximum degree greater than d, for every c ≥ 14. Similarly,
concerning (b), we can consider disjoint union of t copies of Gk

13 to get a 13t-crossing-critical
graph with t vertices of arbitrarily high degree. Though, our aim is to preserve also the
3-connectivity property of the resulting graphs.

First, to motivate the coming construction, we recall that the zip product of Definition 2.3
requires a vertex of degree 3 in the considered graphs. However, the graph Gk

13 of Definition 4.2
has no such vertex, and so we come with the following modification.
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Figure 6 An illustration of the 4-to-3 expansion of the vertex s in a graph G. Clearly, for every
optimal drawing of G respecting Claim 4.1, this “split” construction can be preformed in a small
neighbourhood of s without introducing additional crossings.

I Definition 5.1 (Critical family {Hk
13}). Let G be a graph and s ∈ V (G) be a vertex incident

exactly with two 4-thick edges st1, st2, and one ordinary edge st3. We call a 4-to-3 expansion
of s the following operation: in G, remove the vertex s with its incident edges, and add three
new vertices s1, s2, s3, two 4-thick edges s1t1, s2t2, one 3-thick edge s1s2, and three ordinary
edges s3t1, s3t2, s3t3. See the sketch in Figure 6.

Now, for k ≥ 2, the graph Hk
13 is constructed from the graph Gk

13 of Definition 4.2 by a
4-to-3 expansion of the vertex v3 and of the vertex u3 (cf. Figure 2).

The proof of the following technical Lemma is present in the full paper.

I Lemma 5.2. Let G be a 13-crossing-critical graph, and let s ∈ V (G) be a vertex incident
exactly with two 4-thick edges and one ordinary edge in G. If G1 is a graph obtained by a
4-to-3 expansion of s, then G1 is also 13-crossing-critical.

I Remark 5.3. The number 13 of crossings in Lemma 5.2 is rather special and the claim
cannot be easily generalized to other numbers of crossings. For instance, one can construct
a graph of crossing number 14, such that one of its 4-to-3 expansions has crossing number
only 13.

I Corollary 5.4. For every k ≥ 2, the graph Hk
13 is 13-crossing-critical.

Proof. We start with Theorem 1.2, and apply Lemma 5.2 to the vertices v3 and u3 of Gk
13. J

Proof of Corollary 1.3. For c = 13, we set G(13, d) := H
bd/2c
13 from Corollary 5.4. Note that

G(13, d) contains two vertices of degree 3. For c > 13, we proceed by induction, assuming
that we have already constructed the graph G(c− 1, d) and it contains a vertex of degree 3.
Theorem 2.4 establishes that G(c, d), as a zip product of G(c− 1, d) with K3,3, is c-crossing-
critical (and it still contains the same vertex x of high degree as Hk

13 does). Furthermore,
G(c, d) contains a vertex of degree 3 coming from the K3,3 part. J

Proof of Corollary 1.4. The proof proceeds in a manner similar to the proof of Corollary 1.3.
This time we inductively zip together (cf. Theorem 2.4) i ≤ c/13 copies of the graph H

bd/2c
13

and c− 13i copies of K3,3, which results in a c-crossing-critical graph with i vertices (one
per each copy) of degree greater than d. Note that we never “run out” of degree-3 vertices in
the construction since each copy of H

bd/2c
13 has two such vertices. J

6 Concluding remarks and open problems

While our contribution closes the questions related to the validity of the bounded maximum
degree conjecture, the following problems remain open:

SoCG 2019
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I Problem 6.1. For each c ≤ 12, determine the least integer D(c) bounding maximum degree
of c-crossing-critical graphs.

I Problem 6.2. Develop a theory of wedges that parallels the theory of tiles for constructively
establishing c-crossing-criticality of graphs with large maximum degrees.

Furthermore, the requirement in Corollary 1.4 that the number i of large degree vertices
is at most c/13 could possibly be weakened. The following is a natural question. For an
integer i ≥ 0, let ci denote the largest possible positive integer c for which there exists an
integer D such that every 3-connected c-crossing-critical graph has at most i vertices of
degree larger than D. From the previous, we easily see that 12 ≤ ci ≤ 13i + 12, and we have
exactly determined the value c0 = 12 in Theorems 1.1 and 1.2.

I Problem 6.3. Determine ci as a function of i.
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