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Abstract
We consider the classical camera pose estimation problem that arises in many computer vision
applications, in which we are given n 2D-3D correspondences between points in the scene and points
in the camera image (some of which are incorrect associations), and where we aim to determine
the camera pose (the position and orientation of the camera in the scene) from this data. We
demonstrate that this posing problem can be reduced to the problem of computing ε-approximate
incidences between two-dimensional surfaces (derived from the input correspondences) and points
(on a grid) in a four-dimensional pose space. Similar reductions can be applied to other camera pose
problems, as well as to similar problems in related application areas.

We describe and analyze three techniques for solving the resulting ε-approximate incidences
problem in the context of our camera posing application. The first is a straightforward assignment
of surfaces to the cells of a grid (of side-length ε) that they intersect. The second is a variant
of a primal-dual technique, recently introduced by a subset of the authors [3] for different (and
simpler) applications. The third is a non-trivial generalization of a data structure Fonseca and
Mount [4], originally designed for the case of hyperplanes. We present and analyze this technique in
full generality, and then apply it to the camera posing problem at hand.

We compare our methods experimentally on real and synthetic data. Our experiments show that
for the typical values of n and ε, the primal-dual method is the fastest, also in practice.
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8:2 Approximation Algorithms for Camera Posing

1 Introduction

Camera pose estimation is a fundamental problem in computer vision, which aims at
determining the pose and orientation of a camera solely from an image. This localization
problem appears in many interesting real-world applications, such as for the navigation of
self-driving cars [6], in incremental environment mapping such as Structure-from-Motion
(SfM) [1, 10, 11], or for augmented reality [8, 9, 12], where a significant component are
algorithms that aim to estimate an accurate camera pose in the world from image data.

Given a three-dimensional point-cloud model of a scene, the classical, but also state-of-the-
art approach to absolute camera pose estimation consists of a two-step procedure. First, one
matches a large number of features in the two-dimensional camera image with corresponding
features in the three-dimensional scene. Then one uses these putative correspondences to
determine the pose and orientation of the camera. Typically, the matches obtained in the first
step contain many incorrect associations, forcing the second step to use filtering techniques
to reject incorrect matches. Subsequently, the absolute 6 degrees-of-freedom (DoF) camera
pose is estimated, for example, with a perspective n-point pose solver [7] within a RANSAC
scheme [5].

In this work we concentrate on the second step of the camera pose problem. That is, we
consider the task of estimating the camera pose and orientation from a (potentially large)
set of n already calculated image-to-scene correspondences.

Further, we assume that we are given a common direction between the world and camera
frames. For example, inertial sensors, available on any smart-phone nowadays, allow to
estimate the vertical gravity direction in the three-dimensional camera coordinate system.
This alignment of the vertical direction fixes two degrees of freedom for the rotation between
the frames and we are left to estimate four degrees of freedom out of the general six. To
obtain four equations (in the four remaining degrees of freedom), this setup requires two
pairs of image-to-scene correspondences1 for a minimal solver. Hence a corresponding
naive RANSAC-based scheme requires O(n2) filtering steps, where in each iterations a pose
hypothesis based on a different pair of correspondences is computed and verified against all
other correspondences.

Recently, Zeisl et al. [13] proposed a Hough-voting inspired outlier filtering and camera
posing approach, which computes the camera pose up to an accuracy of ε > 0 from a set
of 2D-3D correspondences, in O(n/ε2) time, under the same alignment assumptions of the
vertical direction. In this paper we propose new algorithms that work considerably faster
in practice, but under milder assumptions. Our method is based on a reduction of the
problem to a problem of counting ε-approximate incidences between points and surfaces,
where a point p is ε-approximately incident (or just ε-incident) to a surface σ if the (suitably
defined) distance between p and σ is at most ε. This notion has recently been introduced
by a subset of the authors in [3], and applied in a variety of instances, involving somewhat
simpler scenarios than the one considered here. Our approach enables us to compute a
camera pose when the number of correspondences n is large, and many of which are expected
to be outliers. In contrast, a direct application of RANSAC-based methods on such inputs
is very slow, since the fraction of inliers is small. In the limit, trying all pairs of matches
involves Ω(n2) RANSAC iterations. Moreover, our methods enhance the quality of the posing
considerably [13], since each generated candidate pose is close to (i.e., consistent with) with
many of the correspondences.

1 As we will see later in detail, each correspondence imposes two constraints on the camera pose.
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Our results. We formalize the four degree-of-freedom camera pose problem as an approxi-
mate incidences problem in Section 2. Each 2D-3D correspondence is represented as a
two-dimensional surface in the 4-dimensional pose-space, which is the locus of all possible
positions and orientations of the camera that fit the correspondence exactly. Ideally, we
would like to find a point (a pose) that lies on as many surfaces as possible, but since we
expect the data to be noisy, and the exact problem is inefficient to solve anyway, we settle
for an approximate version, in which we seek a point with a large number of approximate
incidences with the surfaces.

Formally, we solve the following problem. We have an error parameter ε > 0, we lay down
a grid on [0, 1]d of side length ε, and compute, for each vertex v of the grid, a count I(v) of
surfaces that are approximately incident to v, so that (i) every surface that is ε-incident to v
is counted in I(v), and (ii) every surface that is counted in I(v) is αε-incident to v, for some
small constant α > 1 (but not all αε-incident surfaces are necessarily counted). We output
the grid vertex v with the largest count I(v) (or a list of vertices with the highest counts, if
so desired).

As we will comment later, (a) restricting the algorithm to grid vertices only does not
miss a good pose v: a vertex of the grid cell containing v serves as a good substitute for v,
and (b) we have no real control on the value of I(v), which might be much larger than the
number of surfaces that are ε-incident to v, but all the surfaces that we count are “good”
– they are reasonably close to v. In the computer vision application, and in many related
applications, neither of these issues is significant.

We give three algorithms for this camera-pose approximate-incidences problem. The
first algorithm simply computes the grid cells that each surface intersects, and considers the
number of intersecting surfaces per cell as its approximate ε-incidences count. This method
takes time O

(
n
ε2

)
for all vertices of our ε-size grid. We then describe a faster algorithm

using geometric duality, in Section 3. It uses a coarser grid in the primal space and switches
to a dual 5-dimensional space (a 5-tuple is needed to specify a 2D-3D correspondence and
its surface, now dualized to a point). In the dual space each query (i.e., a vertex of the
grid) becomes a 3-dimensional surface, and each original 2-dimensional surface in the primal
4-dimensional space becomes a point. This algorithm takes O

(
n3/5

ε14/5 + n+ 1
ε4

)
time, and is

asymptotically faster than the simple algorithm for n > 1/ε2.
Finally, we give a general method for constructing an approximate incidences data

structure for general k-dimensional algebraic surfaces (that satisfy certain mild conditions)
in Rd, in Section 4. It extends the technique of Fonseca and Mount [4], designed for the
case of hyperplanes, and takes O(n+ poly(1/ε)) time, where the degree of the polynomial in
1/ε depends on the number of parameters needed to specify a surface, the dimension of the
surfaces, and the dimension of the ambient space. We first present and analyze this technique
in full generality, and then apply it to the surfaces obtained for our camera posing problem.
In this case, the data structure requires O(n+ 1/ε6) storage and is constructed in roughly
the same time. This is asymptotically faster than our primal-dual scheme when n ≥ 1/ε16/3

(for n ≥ 1/ε7 the O(n) term dominates and these two methods are asymptotically the same).
Due to its generality, the latter technique is easily adapted to other surfaces and thus is
of general interest and potential. In contrast, the primal-dual method requires nontrivial
adaptation as it switches from one approximate-incidences problem to another and the dual
space and its distance function depend on the type of the input surfaces.

We implemented our algorithms and compared their performance on real and synthetic
data. Our experimentation shows that, for commonly used values of n and ε in practical
scenarios (n ∈ [8K, 32K], ε ∈ [0.02, 0.03]), the primal-dual scheme is considerably faster than
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8:4 Approximation Algorithms for Camera Posing

the other algorithms, and should thus be the method of choice. Due to lack of space, the
experimentation details are omitted in this version, with the exception of a few highlights.
They can be found in the full version of the paper [2].

2 From camera positioning to approximate incidences

Suppose we are given a pre-computed three-dimensional scene and a two-dimensional picture
of it. Our goal is to deduce from this image the location and orientation of the camera in
the scene. In general, the camera, as a rigid body in 3-space, has six degrees of freedom,
three of translation and three of rotation (commonly referred to as the yaw, pitch and roll).
We simplify the problem by making the realistic assumption, that the vertical direction of
the scene is known in the camera coordinate frame (e.g., estimated by en inertial sensor on
smart phones). This allows us to rotate the camera coordinate frame such that its z-axis is
parallel to the world z-axis, thereby fixing the pitch and roll of the camera and leaving only
four degrees of freedom (x, y, z, θ), where c = (x, y, z) is the location of the camera center,
say, and θ is its yaw, i.e. horizontal the orientation of the optical axis around the vertical
direction. See Figure 1.

6DOF camera pose

object

object point

image points

4DOF camera pose

y

x

z

y

z

object

object point

image points

x

y

z
up

x

up

world frame

camera frame upright camera frame

Figure 1 With the knowledge of a common vertical direction between the camera and world
frame the general 6DoF camera posing problem reduces to estimating 4 parameters. This is the
setup we consider in our work.

By preprocessing the scene, we record the spatial coordinates w = (w1, w2, w3) of a
discrete (large) set of salient points. We assume that some (ideally a large number) of
the distinguished points are identified in the camera image, resulting in a set of image-to-
scene correspondences. Each correspondence w = {w1, w2, w3, ξ, η} is parameterized by five
parameters, the spatial position w and the position v = (ξ, η) in the camera plane of view
of the same salient point. Our goal is to find a camera pose (x, y, z, θ) so that as many
correspondences as possible are (approximately) consistent with it, i.e., the ray from the
camera center c to w goes approximately through (ξ, η) in the image plane, when the yaw of
the camera is θ.
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2.1 Camera posing as an ε-incidences problem
Each correspondence and its 5-tuple w define a two-dimensional surface σw in parametric 4-
space, which is the locus of all poses (x, y, z, θ) of the camera at which it sees w at coordinates
(ξ, η) in its image. For n correspondences, we have a set of n such surfaces. We prove that
each point in the parametric 4-space of camera poses that is close to a surface σw, in a
suitable metric defined in that 4-space, represents a camera pose where w is projected to a
point in the camera viewing plane that is close to (ξ, η), and vice versa (see Section 2.2 for
the actual expressions for these projections). Therefore, a point in 4-space that is close to
a large number of surfaces represents a camera pose with many approximately consistent
correspondences, which is a strong indication of being close to the correct pose.

Extending the notation used in the earlier work [3], we say that a point q is ε-incident to
a surface σ if dist(q, σ) ≤ ε. Our algorithms approximate, for each vertex of a grid Gε of side
length ε, the number of ε-incident surfaces and suggest the vertex with the largest count
as the best candidate for the camera pose. This work extends the approximate incidences
methodology in [3] to the (considerably more involved) case at hand.

2.2 The surfaces σw

Let w = (w1, w2, w3) be a salient point in R3, and assume that the camera is positioned at
(c, θ) = (x, y, z, θ). We represent the orientation of the vector w − c, within the world frame,
by its spherical coordinates (ϕ,ψ), except that, unlike the standard convention, we take ψ to
be the angle with the xy-plane (rather than with the z-axis):

tanψ = w3 − z√
(w1 − x)2 + (w2 − y)2

tanϕ = w2 − y
w1 − x

In the two-dimensional frame of the camera the (ξ, η)-coordinates model the view of w, which
differs from above polar representation of the vector w − c only by the polar orientation θ of
the viewing plane itself. Writing κ for tan θ, we have

ξ = tan(ϕ− θ) = tanϕ− tan θ
1 + tanϕ tan θ = (w2 − y)− κ(w1 − x)

(w1 − x) + κ(w2 − y) , (1)

η = tanψ = w3 − z√
(w1 − x)2 + (w2 − y)2

.

We note that using tan θ does not distinguish between θ and θ + π, but we will restrict θ to
lie in [−π/4, π/4] or in similar narrower ranges, thereby resolving this issue.

We use R4 with coordinates (x, y, z, κ) as our primal space, where each point models a
possible pose of the camera. Each correspondence w is parameterized by the triple (w, ξ, η),
and defines a two-dimensional algebraic surface σw of degree at most 4, whose equations (in
x, y, z, κ) are given in (1). It is the locus of all camera poses v = (x, y, z, κ) at which it sees
w at image coordinates (ξ, η). We can rewrite these equations into the following parametric
representation of σw, expressing z and κ as functions of x and y:

κ = (w2 − y)− ξ(w1 − x)
(w1 − x) + ξ(w2 − y) z = w3 − η

√
(w1 − x)2 + (w2 − y)2. (2)

For a camera pose v = (x, y, z, κ), and a point w = (w1, w2, w3), we write

F (v;w) = (w2 − y)− κ(w1 − x)
(w1 − x) + κ(w2 − y) G(v;w) = w3 − z√

(w1 − x)2 + (w2 − y)2
. (3)

In this notation we can write the Equations (1) characterizing σw (when regarded as
equations in v) as ξ = F (v;w) and η = G(v;w).

SoCG 2019



8:6 Approximation Algorithms for Camera Posing

2.3 Measuring proximity
Given a guessed pose v = (x, y, z, κ) of the camera, we want to measure how well it fits the
scene that the camera sees. For this, given a correspondence w = (w, ξ, η), we define the
frame distance fd between v and w as the L∞-distance between (ξ, η) and (ξv, ηv), where, as
in Eq. (3), ξv = F (v;w), ηv = G(v;w). That is,

fd(v,w) = max {|ξv − ξ|, |ηv − η|} . (4)

Note that (ξv, ηv) are the coordinates at which the camera would see w if it were placed
at position v, so the frame distance is the L∞-distance between these coordinates and the
actual coordinates (ξ, η) at which the camera sees w; this serves as a natural measure of how
close v is to the actual pose of the camera.

We are given a viewed scene of n distinguished points (correspondences) w = (w, ξ, η).
Let S denote the set of n surfaces σw, representing these correspondences. We assume
that the salient features w and the camera are all located within some bounded region, say
[0, 1]3. The replacement of θ by κ = tan θ makes its range unbounded, so we break the
problem into four subproblems, in each of which θ is confined to some sector. In the first
subproblem we assume that −π/4 ≤ θ ≤ π/4, so −1 ≤ κ ≤ 1. The other three subproblems
involve the ranges [π/4, 3π/4], [3π/4, 5π/4], and [5π/4, 7π/4]. We only consider here the first
subproblem; the treatment of the others is fully analogous. In each such range, replacing θ
by tan θ does not incur the ambiguity of identifying θ with θ + π.

Given an error parameter ε > 0, we seek an approximate pose v of the camera, at which
many correspondences w are within frame distance at most ε from v, as given in (4).

The following two lemmas relate our frame distance to the Euclidean distance. Their
(rather technical) proofs are given in the full version of this paper [2].

I Lemma 1. Let v = (x, y, z, κ), and let σw be the surface associated with a correspondence
w = {w1, w2, w3, ξ, η}. Let v′ be a point on σw such that |v − v′| ≤ ε (where | · | denotes the
Euclidean norm). If
(i) |(w1 − x) + κ(w2 − y)| ≥ a > 0, and
(ii) (w1 − x)2 + (w2 − y)2 ≥ a > 0, for some absolute constant a,

then fd(v,w) ≤ βε for some constant β that depends on a.

Informally, Condition (i) requires that the absolute value of the ξ = tan(ϕ− θ) coordinate
of the position of w in the viewing plane, with the camera positioned at v, is not too large
(i.e., that |(ϕ− θ)| is not too close to π/2). We can ensure this property by restricting the
camera image to some suitably bounded ξ-range.

Similarly, Condition (ii) requires that the xy-projection of the vector w − c is not too
small. It can be violated in two scenarios. Either we look at a data point that is too close to
c, or we see it looking too much “upwards” or “downwards”. We can ensure that the latter
situation does not arise, by restricting the camera image, as in the preceding paragraph, to
some suitably bounded η-range too. That done, we ensure that the former situation does not
arise by requiring that the physical distance between c and w be at least some multiple of a.

The next lemma establishes the converse connection.

I Lemma 2. Let v = (x, y, z, κ) be a camera pose and w = {w1, w2, w3, ξ, η} a correspondence,
such that fd(v,w) ≤ ε. Assume that |(w1 − x) + ξ(w2 − y)| ≥ a > 0, for some absolute
constant a, and consider the point v′ = (x, y, z′, κ′) ∈ σw where (see Eq. (2))

z′ = w3 − η
√

(w1 − x)2 + (w2 − y)2 κ′ = (w2 − y)− ξ(w1 − x)
(w1 − x) + ξ(w2 − y) .
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Then |z − z′| ≤
√

2ε and |κ− κ′| ≤ cε, for some constant c, again depending on a.

Informally, the condition |(w1 − x) + ξ(w2 − y)| ≥ a > 0 means that the orientation of the
camera, when it is positioned at (x, y) and sees w at coordinate ξ of the viewing plane is not
too close to ±π/2. This is a somewhat artificial constraint that is satisfied by our restriction
on the allowed yaws of the camera (the range of κ).

A Simple algorithm. Using Lemma 2 and Lemma 1 we can derive a simple naive solution
which does not require any of the sophisticated machinery developed in this work. We
construct a grid G over Q = [0, 1]3× [−1, 1], of cells τ , each of dimensions ε× ε× 2

√
2ε× 2aε,

where a is the constant of Lemma 2. We use this non-square grid G since we want to find
ε-approximate incidences in terms of frame distance. For each cell τ of G we compute the
number of surfaces σw that intersect τ . This gives an approximate incidences count for the
center of τ . Further details and a precise statement can be found in the full version [2].

3 Primal-dual algorithm for geometric proximity

Following the general approach in [3], we use a suitable duality, with some care. We write
ε = 2γδ1δ2, for suitable parameters γ, and ε/(2γ) ≤ δ1, δ2 ≤ 1, whose concrete values are
fixed later, and apply the decomposition scheme developed in [3] tailored to the case at
hand. Specifically, we consider the coarser grid Gδ1 in the primal space, of cell dimensions
δ1 × δ1 ×

√
2δ1 × cδ1, where c is is the constant from Lemma 2, that tiles up the domain

Q = [0, 1]3× [−1, 1] of possible camera positions. For each cell τ of Gδ1 , let Sτ denote the set
of surfaces that cross either τ or one of the eight cells adjacent to τ in the (z, κ)-directions.2
The duality is illustrated in Figure 2.

Figure 2 A schematic illustration of our duality-based algorithm.

We discretize the set of all possible positions of the camera by the vertices of the finer
grid Gε, defined as Gδ1 , with ε replacing δ1, that tiles up Q. The number of these candidate
positions is m := O(1/ε4). For each vertex q ∈ Gε, we want to approximate the number of
surfaces that are ε-incident to q, and output the vertex with the largest count as the best
candidate for the position of the camera. Let Vτ be the subset of Gε contained in τ . We
ensure that the boxes of Gδ1 are pairwise disjoint by making them half open, in the sense
that if (x0, y0, z0, κ0) is the vertex of a box that has the smallest coordinates, then the box
is defined by x0 ≤ x < x0 + δ1, y0 ≤ y < y0 + δ1, z0 ≤ z < z0 +

√
2δ1, κ0 ≤ κ < κ0 + cδ1.

This makes the sets Vτ pairwise disjoint as well. Put mτ = |Vτ | and nτ = |Sτ |. We have

2 The choice of z, κ is arbitrary, but it is natural for the analysis, given in the full version [2].
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8:8 Approximation Algorithms for Camera Posing

mτ = O
(
(δ1/ε)4) for each τ . Since the surfaces σw are two-dimensional algebraic surfaces

of constant degree, each of them crosses O(1/δ2
1) cells of Gδ1 , so we have

∑
τ nτ = O(n/δ2

1).
We now pass to the dual five-dimensional space. Each point in that space represents a

correspondence w = (w1, w2, w3, ξ, η). We use the first three components (w1, w2, w3) as the
first three coordinates, but modify the ξ- and η-coordinates in a manner that depends on the
primal cell τ . Let cτ = (xτ , yτ , zτ , κτ ) be the midpoint of the primal box τ . For each σw ∈ Sτ
we map w = (w, ξ, η), where w = (w1, w2, w3), to the point wτ = (w1, w2, w3, ξτ , ητ ), where
ξτ = ξ − F (cτ ;w) and ητ = η −G(cτ ;w), with F and G as given in (3). We have

I Corollary 3. If σw crosses τ then |ξτ |, |ητ | ≤ γδ1, for some absolute constant γ, provided
that the following two properties hold, for some absolute constant a > 0 (the constant γ
depends on a).
(i) |(w1 − xτ ) + κτ (w2 − yτ )| ≥ a, and
(ii) (w1−xτ )2 + (w2− yτ )2 ≥ a, where (xτ , yτ ) are the (x, y)-coordinates of the center of τ .

Proof. If σw ∈ Sτ then it contains a point v′ such that |v′−cτ | ≤ c′δ1, for a suitable absolute
constant c′ (that depends on c). We now apply Lemma 1, recalling (4). J

We take the γ provided by Corollary 3 as the γ in the definition of δ1 and δ2. We map
each point v ∈ Vτ to the dual surface σ∗v = σ∗v;τ = {wτ | v ∈ σw}. Using (3), we have

σ∗v;τ = {(w, F (v;w)− F (cτ ;w), G(v;w)−G(cτ ;w)) | w = (w1, w2, w2) ∈ [0, 1]3}.

By Corollary 3, the points wτ , for the surfaces σw that cross τ , lie in the region Rτ =
[0, 1]3 × [−γδ1, γδ1]2. We partition Rτ into a grid Gδ2 of 1/δ5

2 small congruent boxes, each of
dimensions δ2 × δ2 × δ2 × (2γδ1δ2)× (2γδ1δ2) = δ2 × δ2 × δ2 × ε× ε.

Exactly as in the primal setup, we make each of these boxes half-open, thereby making
the sets of dual vertices in the smaller boxes pairwise disjoint. We assign to each of these dual
cells τ∗ the set S∗τ∗ of dual points that lie in τ∗, and the set V ∗τ∗ of the dual surfaces that cross
either τ∗ or one of the eight cells adjacent to τ∗ in the (ξτ , ητ )-directions. Put nτ∗ = |S∗τ∗ |
and mτ∗ = |V ∗τ∗ |. Since the dual cells are pairwise disjoint, we have

∑
τ∗ nτ∗ = nτ . Since

the dual surfaces are three-dimensional algebraic surfaces of constant degree, each of them
crosses O(1/δ3

2) grid cells, so
∑
τ∗ mτ∗ = O

(
mτ/δ

3
2
)
.

We compute, for each dual surface σ∗v , the sum
∑
τ∗ |S∗τ∗ |, over the dual cells τ∗ that are

either crossed by σ∗v or that one of their adjacent cells in the (ξτ , ητ )-directions is crossed by
σ∗v . We output the vertex v of Gε with the largest resulting count, over all primal cells τ .

The following theorem establishes the correctness of our technique. Its proof is given in
Appendix B of the full version [2].

I Theorem 4. Suppose that for every cell τ ∈ Gδ1 and for every point v = (x, y, z, κ) ∈ Vτ
and every w = ((w1, w2, w3), ξ, η) such that σw intersects either τ or one of its adjacent cells
in the (ξτ , ητ )-directions, we have that, for some absolute constant a > 0,
(i) |(w1 − x) + κ(w2 − y)| ≥ a,
(ii) (w1 − x)2 + (w2 − y)2 ≥ a, and
(iii) |(w1 − x) + ξ(w2 − y)| ≥ a.
Then (a) For each v ∈ V , every pair (v,w) at frame distance ≤ ε is counted (as an ε-incidence
of v) by the algorithm. (b) For each v ∈ V , every pair (v,w) that we count lies at frame
distance ≤ αε, for some constant α > 0 depending on a.
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3.1 Running time analysis
The cost of the algorithm is clearly proportional to

∑
τ

∑
τ∗ (mτ∗ + nτ∗) , over all primal

cells τ and the dual cells τ∗ associated with each cell τ . We have

∑
τ

∑
τ∗

(mτ∗ + nτ∗) = O

(∑
τ

(
mτ/δ

3
2 + nτ

))
= O

(
m/δ3

2 + n/δ2
1
)
.

Optimizing the choice of δ1 and δ2, we choose δ1 =
(
ε3n
m

)1/5
and δ2 =

(
ε2m
n

)1/5
. These

choices make sense as long as each of δ1, δ2 lies between ε/(2γ) and 1. That is, ε
2γ ≤(

ε3n
m

)1/5
≤ 1 and ε

2γ ≤
(
ε2m
n

)1/5
≤ 1, or c′ε2m ≤ n ≤ c′′m

ε3 , where c′ and c′′ are absolute
constants (that depend on γ).

If n < c′ε2m, we use only the primal setup, taking δ1 = ε (for the primal subdivision).

The cost is then O
(
n/ε2 +m

)
= O (m) . Similarly, if n > c′′m

ε3 , we use only the dual setup,
taking δ1 = 1 and δ2 = ε/(2γ), and the cost is thus O

(
n+m/ε3) = O(n). Adding everything

together, to cover all three subranges, the running time is then O
(
m2/5n3/5

ε6/5 + n+m
)
.

Substituting m = O
(
1/ε4), we get a running time of O

(
n3/5

ε14/5 + n+ 1
ε4

)
. The first term

dominates when n = Ω( 1
ε2 ) and n = O( 1

ε7 ) . In conclusion, we have the following result.

I Theorem 5. Given n data points that are seen (and identified) in a two-dimensional image
taken by a vertically positioned camera, and an error parameter ε > 0, where the viewed points

satisfy the assumptions made in Theorem 4, we can compute, in O
(
n3/5

ε14/5 + n+ 1
ε4

)
time,

a vertex v of Gε that maximizes the approximate count of ε-incident correspondences, where
“approximate” means that every correspondence w whose surface σw is at frame distance at
most ε from v is counted and every correspondence that we count lies at frame distance at
most αε from v, for some fixed constant α.

Restricting ourselves only to grid vertices does not really miss any solution. We only
lose a bit in the quality of approximation, replacing ε by a slightly large constant multiple
thereof, when we move from the best solution to a vertex of its grid cell.

4 Geometric proximity via canonical surfaces

In this section we present a general technique to preprocess a set of algebraic surfaces into a
data structure that can answer approximate incidences queries. In this technique we round
the n original surfaces into a set of canonical surfaces, whose size depends only on ε, such
that each original surface has a canonical surface that is “close” to it. Then we build an
octree-based data structure for approximate incidences queries with respect to the canonical
surfaces. However, to reduce the number of intersections between the cells of the octree and
the surfaces, we further reduce the number of surfaces as we go from one level of the octree
to the next, by rounding them in a coarser manner into a smaller set of surfaces.

This technique has been introduced by Fonseca and Mount [4] for the case of hyperplanes.
We describe as a warmup step, in Appendix C of the full version [2], our interpretation
of their technique applied to hyperplanes. We then extend here the technique to general
surfaces, and apply it to the specific instance of 2-surfaces in 4-space that arise in the camera
pose problem.
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8:10 Approximation Algorithms for Camera Posing

We have a set S of n k-dimensional surfaces in Rd that cross the unit cube [0, 1]d, and a
given error parameter ε. We assume that each surface σ ∈ S is given in parametric form,
where the first k coordinates are the parameters, so its equations are

xj = F
(σ)
j (x1, . . . , xk), for j = k + 1, . . . , d.

Moreover, we assume that each σ ∈ S is defined in terms of ` essential parameters t =
(t1, . . . , t`), and d−k additional free additive parameters f = (fk+1, . . . , fd), one free parameter
for each dependent coordinate. Concretely, we assume that the equations defining the surface
σ ∈ S, parameterized by t and f (we then denote σ as σt,f ), are

xj = Fj(x; t) + fj = Fj(x1, . . . , xk; t1, . . . , t`) + fj , for j = k + 1, . . . , d.

For each equation of the surface that does not have a free parameter in the original
expression, we introduce an artificial free parameter, and initialize its value to 0. (We need
this separation into essential and free parameters for technical reasons that will become clear
later.) We assume that t (resp., f) varies over [0, 1]` (resp., [0, 1]d−k).

Remark. The distinction between free and essential parameters seems to be artificial, but
yet free parameters do arise in certain basic cases, such as the case of hyperplanes discussed
in Appendix C of [2]. In the case of our 2-surfaces in 4-space, the parameter w3 is free,
and we introduce a second artificial free parameter into the equation for κ. The number of
essential parameters is ` = 4 (they are w1,w2,ξ, and η).

We assume that the functions Fj are all continuous and differentiable, in all of their
dependent variables x, t and f (this is a trivial assumption for f), and that they satisfy the
following two conditions.

(i) Bounded gradients. |∇xFj(x; t)| ≤ c1, |∇tFj(x; t)| ≤ c1, for each j = k+ 1, . . . , d, for
any x ∈ [0, 1]k and any t ∈ [0, 1]`, where c1 is some absolute constant. Here ∇x (resp.,
∇t) means the gradient with respect to only the variables x (resp., t).

(ii) Lipschitz gradients. |∇xFj(x; t)−∇xFj(x; t′)| ≤ c2|t − t′|, for each j = k + 1, . . . , d,
for any x ∈ [0, 1]k and any t, t′ ∈ [0, 1]`, where c2 is some absolute constant. This
assumption is implied by the assumption that all the eigenvalues of the mixed part of the
Hessian matrix ∇t∇xFj(x; t) have absolute value bounded by c2.

4.1 Canonizing the input surfaces
We first replace each surface σt,f ∈ S by a canonical “nearby” surface σs,g. Let ε′ = ε

c2 log(1/ε)
where c2 is the constant from Condition (ii). We get s from t (resp., g from f) by rounding
each coordinate in the essential parametric domain L (resp., in the parametric domain Φ)
to a multiple of ε′/(`+ 1). Note that each of the artificial free parameters (those that did
not exist in the original equations) has the initial value 0 for all surfaces, and remains 0 in
the rounded surfaces. We get O

(
(1/ε′)`′

)
canonical rounded surfaces, where `′ ≥ ` is the

number of original parameters, that is, the number of essential parameters plus the number
of non-artificial free parameters; in the worst case we have `′ = `+ d− k.

For a surface σt,f and its rounded version σs,g we have, for each j,

|(Fj(x; t) + fj)− (Fj(x; s) + gj)| ≤ |∇tFj(x; t′)| · |t− s|+ |fj − gj |
≤ c1|t− s|+ |fj − gj | ≤ (c1 + 1)ε′,

where t′ is some intermediate value, which is irrelevant due to Condition (i).



D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:11

We will use the `2-norm of the difference vector ((Fj(x; t) + fj)− (Fj(x; s) + gj))dj=k+1
as the measure of proximity between the surfaces σt,f and σs,g at x, and denote it as
dist(σt,f , σs,g; x). The maximum dist(σt,f , σs,g) := maxx∈[0,1]k dist(σt,f , σs,g; x) measures the
global proximity of the two surfaces. (Note that it is an upper bound on the Hausdorff
distance between the two surfaces.) We thus have dist(σt,f , σs,g) ≤ (c1 + 1)ε′ when σs,g is
the canonical surface approximating σt,f .

We define the weight of each canonical surface to be the number of original surfaces that
got rounded to it, and we refer to the set of all canonical surfaces by Sc.

4.2 Approximately counting ε-incidences
We describe an algorithm for approximating the ε-incidences counts of the surfaces in S and
the vertices of a grid G of side length 4ε.

We construct an octree decomposition of τ0 := [0, 1]d, all the way to subcubes of side
length 4ε such that each vertex of G is the center of a leaf-cube. We propagate the surfaces
of Sc down this octree, further rounding each of them within each subcube that it crosses.

The root of the octree corresponds to τ0, and we set Sτ0 = Sc. At level j ≥ 1 of the
recursion, we have subcubes τ of τ0 of side length δ = 1/2j . For each such τ , we set S̃τ to
be the subset of the surfaces in Sp(τ) (that have been produced at the parent cube p(τ) of
τ) that intersect τ . We now show how to further round the surfaces of S̃τ , so as to get a
coarser set Sτ of surfaces that we associate with τ , and that we process recursively within τ .

At any node τ at level j of our rounding process, each surface σ of Sτ is of the form
xj = Hj(x; t) + fj , for j = k + 1, . . . , d where x = (x1, . . . , xk), and t = (t1, . . . , t`).

(a) For each j = k + 1, . . . , d the function Hj is a translation of Fj . That is Hj(x; t) =
Fj(x; t) + c for some constant c. Thus the gradients of Hj also satisfy Conditions (i) and
(ii).

(b) t is some vector of ` essential parameters, and each coordinate of t is an integer multiple
of ε′

(`+1)δ , where δ = 1/2j .
(c) f = (fk+1, . . . , fd) is a vector of free parameters, each is a multiple of ε′/(`+ 1).

Note that the surfaces in Sτ0 = Sc, namely the set of initial canonical surfaces constructed
in Section 4.1, are of this form (for j = 0 and Hj = Fj). We get Sτ from S̃τ ⊆ Sp(τ) by the
following steps. The first step just changes the presentation of τ and S̃τ , and the following
steps do the actual rounding to obtain Sτ .

1. Let (ξ1, . . . , ξk, ξk+1, . . . , ξd) be the point in τ of smallest coordinates and set ξ =
(ξ1, . . . , ξk). We rewrite the equations of each surface of S̃τ as follows: xj = Gj(x; t) + f ′j ,
for j = k+ 1, . . . , d, where Gj(x; t) = Hj(x; t)−Hj(ξ; t) + ξj , and f ′j = fj +Hj(ξ; t)− ξj ,
for j = k + 1, . . . , d. Note that in this reformulation we have not changed the essential
parameters, but we did change the free parameters from fj to f ′j , where f ′j depends on
fj , t, ξ, and ξj . Note also that Gj(ξ; t) = ξj for j = k + 1, . . . , d.

2. We replace the essential parameters t of a surface σt,f by s, which we obtain by rounding
each coordinate of t to the nearest integer multiple of ε′

(`+1)δ . So the rounded surface
has the equations xj = Gj(x; s) + f ′j , for j = k + 1, . . . , d. Note that we also have that
Gj(ξ; s) = ξj , for j = k + 1, . . . , d.

3. For each surface, we round each free parameter f ′j , j = k+1, . . . , d, to an integral multiple
of ε′

`+1 , and denote the rounded vector by g. Our final equations for each rounded surface
that we put in Sτ are xj = Gj(x; s) + gj for j = k + 1, . . . , d.
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8:12 Approximation Algorithms for Camera Posing

By construction, when t1 and f ′1 and t2 and f ′2 get rounded to the same vectors s and g
then the corresponding two surfaces in S̃τ get rounded to the same surface in Sτ . The weight
of each surface in Sτ is the sum of the weights of the surfaces in Sp(τ) that got rounded to it,
which, by induction, is the number of original surfaces that are recursively rounded to it. In
the next step of the recursion the Hj ’s of the parametrization of the surfaces in Sτ are the
functions Gj defined above.

The total weight of the surface in Sτ for a leaf cell τ is the approximate ε-incidences
count that we associate with the center of τ .

4.3 Error analysis
We now bound the error incurred by our discretization. We start with the following lemma,
whose proof is given in Appendix A of the full version [2].

I Lemma 6. Let τ be a cell of the octtree and let xj = Gj(x; t) +f ′j , for j = k+ 1, . . . , d be a
surface obtained in Step 1 of the rounding process described above. For any x = (x1, . . . , xk) ∈
[0, δ]k, for any t, s ∈ [0, 1]`, and for each j = k + 1, . . . , d, we have

|Gj(x; s)−Gj(x; t)| ≤ c2|x− ξ| · |t− s|, (5)

where c2 is the constant of Condition (ii), and ξ = (ξ1, . . . , ξk) consists of the first k
coordinates of the point in τ of smallest coordinates.

I Lemma 7. For any x = (x1, . . . , xk) ∈ [0, δ]k, for any t, s ∈ [0, 1]`, and for each
j = k + 1, . . . , d, we have∣∣Gj(x; s) + gj − (Gj(x; t) + f ′j)

∣∣ ≤ c2ε
′ ≤ ε

log(1/ε) , (6)

where c2 is the constant of Condition (ii).

Proof. Using the triangle inequality and Lemma 6, we get that∣∣Gj(x; s) + gj − (Gj(x; t) + f ′j)
∣∣

≤ |Gj(x; s)−Gj(x; t)|+
∣∣gj − f ′j∣∣ ≤ c2|x− ξ||t− s|+ ε′

`+ 1 .

Since |x− ξ| ≤ δ, |t− s| ≤ `ε′

(`+1)δ , and |gj − f
′
j | ≤ ε′

`+1 , the lemma follows. J

We now bound the number of surfaces in Sτ . Since s ∈ [0, 1]` and each of its coordinates
is a multiple of ε′

(`+1)δ , we have at most ( δε′ )
` different values for s. To bound the number of

possible values of g, we prove the following lemma (see [2] for the proof).

I Lemma 8. Let xj = Gj(x; t) + f ′j, for j = k + 1, . . . , d, be a surface σt,f′ in S̃τ . For each
j = k + 1, . . . , d, we have

∣∣f ′j∣∣ ≤ (c1 + 1)δ, where c1 is the constant of Condition (i).

Lemma 8 implies that each gj , j = k+ 1, . . . , d, has only O( δε′ ) possible values, for a total
of at most O(( δε′ )

d−k) possible values for g. Combining the number of possible values for s
and g, we get that the number of newly discretized surfaces in Sτ is

O

((
δ

ε′

)`
·
(
δ

ε′

)d−k)
= O

((
δ

ε′

)`+d−k)
. (7)
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It follows that each level of the recursive octree decomposition generates

O

((
1
δ

)d
·
(
δ

ε′

)`+d−k)
= O

(
δ`−k

(ε′)`+d−k

)
re-discretized surfaces, where the first factor in the left-hand side expression is the number
of cubes generated at this recursive level, and the second factor is the one in (7).

Summing over the recursive levels j = 0, . . . , log 1
ε , where the cube size δ is 1/2j at level

j, we get a total size of O
(

1
(ε′)`+d−k

∑log 1
ε

j=0
1

2j(`−k)

)
. We get different estimates for the sum

according to the sign of ` − k. If ` > k the sum is O(1). If ` = k the sum is O
(
log 1

ε

)
. If

` < k the sum is O
(
2jmax(k−`)) = O

(
1

(ε′)k−`

)
. Accordingly, the overall size of the structure,

taking also into account the cost of the first phase, is
O
(

1
(ε′)`+d−k

)
for ` > k

O
(

1
(ε′)d log 1

ε

)
for ` = k

O
(

1
(ε′)d

)
for ` < k.

(8)

The following theorem summarizes the result of this section. Its proof follows in a
straightforward way from the preceding discussion from Lemma 7, analogously to the proof
of Lemma 8 in the appendix of the full version [2].

I Theorem 9. Let S be a set of n surfaces in Rd that cross the unit cube [0, 1]d, given
parametrically as xj = Fj(x; t) + fj for j = k + 1, . . . , d, where the functions Fj satisfy
conditions (i) and (ii), and t = (t1, . . . , t`). Let G be the (4ε)-grid within [0, 1]d. The
algorithm described above reports for each vertex v of G an approximate ε-incidences count
that includes all surfaces at distance at most ε from v and may include some surfaces at
distance at most (2

√
d+ 1)ε from v. The running time of this algorithm is proportional to

the total number of rounded surfaces that it generates, which is given by Equation (8), plus
an additive O(n) term for the initial canonization of the surfaces.

We can modify our data structure so that it can answer approximate or exact ε-incidence
queries as we describe in Appendix C of [2] for the case of hyperplanes.

4.4 Experimental Results: Summary
We implemented our algorithms and compared their performance on real and synthetic data.
Some of our results are shown in Figures 3 and 4. They show that in practical scenarios
(n ∈ [8K, 32K], ε ∈ [0.02, 0.03]), the primal-dual scheme is considerably faster than the other
algorithms. See full details in the full version of the paper [2].
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Figure 3 The run-time of the three methods on synthetic data for various values of ε.
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Figure 4 Run-time for real-world data.
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