
Independent Range Sampling, Revisited Again
Peyman Afshani
Aarhus University, Denmark
peyman@cs.au.dk

Jeff M. Phillips
University of Utah, Salt Lake City, USA
jeffp@cs.utah.edu

Abstract
We revisit the range sampling problem: the input is a set of points where each point is associated
with a real-valued weight. The goal is to store them in a structure such that given a query range
and an integer k, we can extract k independent random samples from the points inside the query
range, where the probability of sampling a point is proportional to its weight.

This line of work was initiated in 2014 by Hu, Qiao, and Tao and it was later followed up by
Afshani and Wei. The first line of work mostly studied unweighted but dynamic version of the
problem in one dimension whereas the second result considered the static weighted problem in one
dimension as well as the unweighted problem in 3D for halfspace queries.

We offer three main results and some interesting insights that were missed by the previous work:
We show that it is possible to build efficient data structures for range sampling queries if we allow
the query time to hold in expectation (the first result), or obtain efficient worst-case query bounds
by allowing the sampling probability to be approximately proportional to the weight (the second
result). The third result is a conditional lower bound that shows essentially one of the previous
two concessions is needed. For instance, for the 3D range sampling queries, the first two results
give efficient data structures with near-linear space and polylogarithmic query time whereas the
lower bound shows with near-linear space the worst-case query time must be close to n2/3, ignoring
polylogarithmic factors. Up to our knowledge, this is the first such major gap between the expected
and worst-case query time of a range searching problem.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Computational geometry

Keywords and phrases Range Searching, Data Structures, Sampling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.4

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/1903.08014.

Funding Peyman Afshani: supported by DFF (Det Frie Forskningsräd) of Danish Council for
Independent Research under grant ID DFF−7014−00404.
Jeff M. Phillips: supported by NSF CCF-1350888, CNS-1514520, CNS-1564287, IIS-1816149, and
in particular ACI-1443046. Part of the work was completed while visiting the Simons Institute for
Theory of Computing.

1 Introduction

In range searching, the goal is store a set P of points in a data structure such that given a
query range, we can answer certain questions about the subset of points inside the query
range. The difficulty of the range searching problem, thus depends primarily on the shape of
the query as well as types of questions that the data structure is able to answer. These range
searching questions have been studied extensively and we refer the reader to the survey by
Agarwal and Erickson [3] for a deeper review of range searching problems.

© Peyman Afshani and Jeff M. Phillips;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:peyman@cs.au.dk
mailto:jeffp@cs.utah.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.4
https://arxiv.org/abs/1903.08014
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Independent Range Sampling, Revisited Again

Let us for a moment fix a particular query shape. For example, assume we are given
a set P ⊂ R2 to preprocess and at the query time we will be given a query halfplane h.
The simplest type of question is an emptiness query where we simply want to report to the
user whether h ∩ P is empty or not. Within the classical literature of range searching, the
most general (and thus the most difficult) variant of range searching is semigroup range
searching where each point in P is assigned a weight from a semigroup and at the query
time the goal is to return the sum of the weights of the points of h ∩ P . The restriction of
the weights to be from a semigroup is to disallow subtraction. As a result, semigroup range
searching data structures can answer a diverse set of questions. Other classical variants of
range searching lie between the emptiness and the semigroup variant. In our example, the
emptiness queries can be trivially solved with O(n) space and O(logn) query time whereas
the semigroup variant can only be solved with O(

√
n) query time using O(n) space. Finally,

the third important variant, range reporting, where the goal is to output all the points in
P ∩ h, is often close to the emptiness variant in terms of difficulty. E.g., halfplane queries
can be answered in O(logn+ k) time where k is the size of the output, using O(n) space.

Sampling queries. Let P be a large set of points that we would like to preprocess for range
searching queries. Consider a query range h. Classical range searching solutions can answer
simple questions such as the list of points inside h, or the number of them. However, we
immediately hit a barrier if we are interested in more complex questions, e.g., what if we want
to know how a “typical” point in h looks like? Or if we are curious about the distribution of
the data in h. In general, doing more complex data analysis requires that we extract the list
of all the points inside h but this could be an expensive operation. For questions of this type,
as well as many other similar questions, it is very useful to be able to extract a (relatively)
small random sample from the subset of points inside h. In fact, range sampling queries were
considered more than two decades ago within the context of database systems [7, 4, 5, 11, 10].
Indeed the entire field of sample complexity, which provides the basis for statistics and
machine learning, argues how any statistical quantity can be understood from an iid sample
of the data. Range sampling allows this literature to quickly be specified to data in a query
range. However, many of these classical solutions fail to hold in the worst-case as they use
R-trees or Quadtrees whose performance depends on the distribution of the coordinates of
the input points (which could be pretty bad). Some don’t even guarantee that the samples
extracted in the future will be independent of the samples extracted in the past. For example,
sometimes asking the same query twice would return the same samples.

The previous results. Given a set of n weights, one can sample one weight with proportional
probability using the well-known “alias method” by A. J. Walker [12]. This method uses
linear space and can sample a weight in worst-case constant time.

The rigorous study of independent range sampling was initiated by Hu et al. [8]. They
emphasized the requirement that any random sample extracted from the data structure
should be independent of all the other samples. They studied the one-dimensional version
and for an unweighted point set and presented a linear-sized data structure that could extract
k random samples in O(logn+ k) time and it could be updated in O(logn) time as well. A
few years later, Afshani and Wei [2] revisited the problem and solved the one-dimensional
version of the problem for weighted points: they presented a linear-size data structure that
could answer queries in O(Pred(n) + k) time where Pred(n) referred to the running time
of a predecessor query (often O(logn) but sometimes it could be faster, e.g., if the input
is indexed by an array then the predecessor query can be answered trivially in O(1) time).
They also studied the 3D halfspace queries but for unweighted points. Their main result was
an optimal data structure of linear-size that could answer queries in O(logn+ k) time.



P. Afshani and J.M.Phillips 4:3

Our results. We provide general results for the independent range sampling problem on
weighted input (wIRS), and design specific results for 3D halfspace queries. We show a
strong link between the wIRS and the range max problem. Namely, we show that the range
max problem is at least as hard as wIRS, and also we provide a general formulation to solve
the wIRS problem using range max. For halfspace queries in 3D, our framework gives a
structure that uses O(n logn) space and has O(log2 n + k) query time. We improve the
space complexity to O(n) when the ratio of the weights is nO(1). This solution uses rejection
sampling, so it only provides an expected query time bound. To compensate, we provide
another solution that has worst-case query time, but allows the points to be sampled within
a (1± ε) factor of their desired probability, and may ignore points that would be sampled
with probability less than γ/n for γ < ε < 1. This structure requires O(n logn) space, and
has a worst-case query time of O(log(n/γ)(logn+ 1/ε3) + k).

Finally, we show a conditional lower bound when we enforce worst-case query time and
exact sampling probabilities, in what we call the separated algebraic decision tree (SAD)
model. This model allows any decision tree structure that compares random bits to algebraic
functions of a set of input weights. In this model, we show wIRS is as hard as the range sum
problem, which is conjectured to be hard. In particular, if the best known solution to the
range sum problem for halfspaces in 3D is optimal, then the wIRS problem would require
Ω(n2/3−o(1)) query time if it uses near-linear space. This provides the first such separation
between expected O(log2 n+ k) and worst-case Ω(n2/3−o(1)) query time for a range searching
problem that we are aware of.

2 A Randomized Data Structure

In this section, we show that if we allow for the query bound to hold in expectation, then
the range sampling problem can be solved under some general circumstances. Intuitively, we
show that we need two ingredients: one, a data structure for range maximum queries, and
two, a data structure that can sample from a weighted set of points under the assumptions
that the weights are within a constant factor of each other. Furthermore, with an easy
observation, we can also show that the range sampling problem is at least as hard as range
maximum problem. We consider the input as a general set system (X,R). We assume the
input is a set X of n data elements (e.g., points) and we consider queries to be elements of
a set of ranges R where each R ∈ R is a subset of X. The set R is often given implicitly,
and for example, if X is a set of points in R3, R could be the set of all h ∩X where h is a
halfspace in 3D. Note that our model of computation is the real RAM model.

I Definition 1 (The Range Maximum Problem). Let X be a data set, s.t., each element
x ∈ X is assigned a real-value weight w(x). The goal is to store X in a structure, s.t., given
a range R ∈ R, we can find the element in R with the maximum weight.

Given a weighted set X, for any subset Y ⊂ X, we denote by w(Y ) the sum
∑

x∈Y w(x).
First we observe that range sampling is at least as hard as the range maximum problem.

I Lemma 2. Assume we can solve range sampling queries on input (X,R) and for any
weight assignment w : X → R using S(|X|) space and Q(|X|) query time where the query
only returns one sample. Then, given the set X and a weight function w′ : X → R, we can
store X in a data structure of size S(|X|) such that given a query R, we can find the data
element in R with the maximum weight in Q(|X|) time, with high probability.

Proof. See the full paper for the proof [1]. J

SoCG 2019



4:4 Independent Range Sampling, Revisited Again

Next, we show that weighted range sampling can be obtained from a combination of
a range maximum data structure and a particular form of weighted range sampling data
structure for almost uniform weights.

I Lemma 3. Let (X,R) be an input to the range sampling problem. Assume, we have a
structure for the range maximum queries that uses O(Sm(|X|)) space and with query time of
O(Qm(|X|)). Furthermore, assume for any subset X ′ ⊂ X we can build a structure Ds(X ′)
that uses O(Ss(|X ′|)) space and given a query R ∈ R, it does the following: it can return
w(Y ) for a subset Y ⊂ X ′ with the property that R ∩X ′ ⊂ Y , and |Y | = O(|R ∩X ′|) and
furthermore, the structure can extract k random samples from Y in O(Qs(|X|) + k) time.

Then, we can answer range sampling queries using O(Sm(|X|) + Ss(|X|)) space and with
expected query time of O(Qm(|X|) +Qs(|X|) log |X|+ k).

Proof. Let n = |X|. We store X in a data structure for the range maximum queries. We
partition X into subsets Xi ⊂ X in the following way. We place the element x1 with the
largest weight in X1 and then we add to X1 any element whose weight is at least w(x1)/2
and then recurse on the remaining elements. Observe that for all x, x′ ∈ Xi we have
w(x)/w(x′) ∈ (1/2, 2]. Thus, the weight function w is almost uniform on each Xi. We store
Xi in a data structure Ds(Xi).

Next, we build a subset sum information over the total weight W (Xi) of the (disjoint)
union of all subsets Xi′ with i′ ≥ i, that is, W (Xi) =

∑
j≥i w(Xj). Consider a query R ∈ R.

Step 1: Use the Range Maximum Structure. Issue a single range-max query on X for
the query range R ∈ R. Let x be the answer to the range-max query, assume x ∈ Xi.

Step 2: top-level alias structure. Having found i, we identify the smallest index i′ ≥ i

such that the maximum weight w(x′) for x′ ∈ Xi′ and the minimum weight w(x) for x ∈ Xi

satisfy w(x)/w(x′) > n2. As the weights in the sets Xi decreases geometrically, we have
i′ − i = O(logn). Then, for each Xj with j ∈ [i, i′), we use the data structure Ds(Xj) to
identify the set Yj such that Yj contains the set R ∩Xj . This returns the values w(Yj), and
the total running time of this step is O(Qs(n) logn).

We build a top-level alias structure on i′ − i + 1 values: all the i′ − i values w(Yj),
i ≤ j < i′, as well as the value W (Xi′). Let T = W (Xi′) +

∑i′−1
j=i w(Yj). This can be done

in O(logn) time as i′ − i = O(logn).

Step 3: Extracting samples. To generate k random samples from R, we first sample a
value using the top-level alias structure. This can result in two different cases:
Case 1. It returns the value W (Xi′). Let Xi′+ = ∪j≥i′Xj . In this case, we sample an

element from the set R ∩Xi′+, by building an alias structure on Xi+ in O(n) time. The
probability of sampling an element xj ∈ Xi′+ is set exactly to w(xj)

W (Xi′ ) . Note that these
probabilities of xj ∈ Xi′+ ∩ R do not add up to one which means the sampling might
fail and we might not return any element. If this happens, we go back to the top-level
alias structure and try again. Notice that R contains at least one element xi from Xi,
and that for any x ∈ Xj , j ≥ i′ have w(x) ≤ w(xi)/n2 which implies W (Xi′) ≤ w(xi)/n.
Thus, this case can happen with probability at most 1/n, meaning, even if we spend O(n)
time to answer the query, the expected query time is O(1).

Case 2. It returns a value w(Yj), for i ≤ j < i′. We place Yj into a list for now. At some
later point (to be described) we will extract a sample z from Yi. If z happens to be
inside R, then we return z, otherwise, the sampling fails and we go back to the top-level
structure.



P. Afshani and J.M.Phillips 4:5

We iterate until k queries have been pooled. Then, we issue them in O(logn) batches to data
structure Ds(Xj), i ≤ j < i′. Ignoring the failure events in case (2), processing a batch of k
queries will take O(Qs(n) logn+ k) time. Notice that each iteration of the above procedure
will succeed with a constant probability: case (1) is very unlikely (happens with probability
less than 1/n) and for case (2) observe that we have w(Yi) = O(w(R ∩Xi)) and thus each
query will succeed with constant probability. As a result, in expectation we only issue a
constant number of batches of size k to extract k random samples.

It remains to show that we sample each element with the correct probability. The
probability of reaching case (1) is equal to W (Xi′ )

T . Thus, the probability of sampling an
element xj ∈ Xi′+ is equal to W (Xi′ )

T · w(xj)
W (Xi′ ) = w(xj)

T . The same holds in case (2) and the
probability of sampling an element xj ∈ Xj , i ≤ j < i′ is w(xj)

T . Thus, conditioned on the
event that the sampling succeeds, each element is sampled with the correct probability. J

3 3D Halfspace Sampling

3.1 Preliminaries
In this section, we consider random sampling queries for 3D halfspaces. But we first need to
review some preliminaries.

I Lemma 4. Let P be a set of n points in R3. Let P = P1 ∪ · · · ∪ Pt be a partition of P
into t subsets. We can store P in a data structure of size O(n log t) such that given a query
halfspace h, we can find the smallest index i such that Pi ∩ h 6= ∅ in O(logn log t) time.

Proof. See the full paper for the proof [1]. J

The following folklore result is a special case of the above lemma.

I Corollary 5. Let P be a set of n points in R3 where each point p ∈ P is assigned a
real-valued weight w(p). We can store P in a data structure of size O(n logn) such that given
a query halfspace h, we can find the point with maximum weight in O(log2 n) time.

We also need the following preliminaries. Given a set H of n hyperplanes in R3, the
level of a point p is the number hyperplanes that pass below p. The (≤ k)-level of H (resp.
k-level of H) is the closure of the subset of R3 containing points with level at most k (resp.
exactly k). An approximate k-level of H is a surface composed of triangles (possibly infinite
triangles) that lies above k-level of H but below (ck)-level of H for a fixed constant c. For a
point q ∈ R3, we define the conflict list of q with respect to H as the subset of hyperplanes
in H that pass below q and we denote this with ∆(H, q). Similarly, for a triangle τ with
vertices v1, v2, and v3, we define ∆(H, τ) = ∆(H, v1)∪∆(H, v2)∪∆(H, v3). One of the main
tools that we will use is the existence of small approximate levels. This follows from the
existence of shallow cuttings together with some geometric observations.

I Lemma 6. For any set H of n hyperplanes in R3, and any parameter 1 ≤ k ≤ n/2, there
exists an approximate k-level which is a convex surface consisting of O(n/k) triangles.

Furthermore, we can construct a hierarchy of approximate ki-levels Li, for ki = 2i and
i = 0, · · · , logn, together with the list ∆(H, τ) for every triangle τ ∈ Li in O(n logn) time
and O(n) space. Given a query point q, we can find an index i in O(logn) time such that
there exists a triangle τ ∈ Li that lies above q such that |∆(H, q)| = O(|∆(H, τ)|).

Proof. See the full paper for the proof [1]. J

SoCG 2019



4:6 Independent Range Sampling, Revisited Again

We will also use the following results.

I Theorem 7 (The Partition Theorem, [9]). Given a set P of n points in 3D and an integer
0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size Θ(n/r),
where each Pi is enclosed by a tetrahedron Ti, s.t., any hyperplane crosses O(r2/3) tetrahedra.

I Lemma 8. Let T be tree of size n where each leaf v stores a real-valued non-negative weight
w(v). We can build a data structure s.t., given an internal node u ∈ T at the query time, we
can independently sample a leaf with probability proportional to its weight in the subtree of u.
The data structure uses O(n) space and it can answer queries in O(1) worst-case time.

Proof. See the full paper for the proof [1]. J

Afshani and Wei [2] consider unweighted sampling for 3D halfspace queries. We next use
the following technical result of theirs.

I Lemma 9. Let H be a set of n hyperplanes in 3D. Let f(n) = (logn)c log log n where c is
a large enough constant. We can build a tree Tglobal with n leafs where each hyperplane is
stored in one leaf such that the following holds: Given a point q ∈ R3 with level k where
k ≥ f(n), we can find k′ = O(k/ log2 n) internal nodes u1, · · · , uk′ in Tglobal such that
∆(H, q) = Tglobal(u1) ∪ · · · ∪ Tglobal(uk′) where Tglobal(ui) is the set of hyperplanes stored in
the subtree of ui.

Unfortunately, the above lemma is not stated explicitly by Afshani and Wei, however, Tglobal
is the “Global Structure” that is described in [2] under the same notation.

3.2 A Solution with Expected Query Time

We now observe that we can use Lemma 3 to give a data structure for weighted halfspace
range sampling queries in 3D. We first note that using Corollary 5 and by building a hierarchy
of shallow cuttings, i.e., building approximate ki-levels for ki = 2i, i = 0, · · · , logn, we can
get a data structure with O(n logn) space that can answer queries in O(log2 n+ k) query
time. Furthermore, as Lemma 2 shows, our problem is at least as hard as the halfspace
range maximum problem which currently has no better solution than O(n logn) space and
O(log2 n) expected query time. Thus, it seems we cannot do better unless we can do better
for range maximum queries, a problem that seems very difficult.

However, the reduction given by Lemma 2 is not completely satisfying since we need to
create a set of weights that are exponentially distributed. As a result, it does not capture
a more “natural” setting where the ratio between the largest and the smallest weight is
bounded by a parameter U that is polynomial in n. Our improved solution is the following
which shows when U = nO(1) we can in fact reduce the space to linear.

I Theorem 10. Let P be a set of n weighted points in R3, where the smallest weight is 1 and
the largest weight is U . We can store P in a data structure of size O(nmin{logn, log logn U})
such that given a query halfspace and an integer k, we can extract k independent random
samples from the points inside h in O(log2 n+ k) time.

Proof summary. For the complete proof see the full paper [1]. The basic idea is to partition
the input into sets where the ratio of weights is within n2. Then, we use Lemmas 9 and 8. J



P. Afshani and J.M.Phillips 4:7

3.3 Worst-Case Time with Approximate Weights
All of the previous data structures sample items exactly proportional to their weight, but rely
on rejection sampling. Hence, their query time is expected, and not worst case. With small
probability these structures may repeatedly sample items which are not in h, and then need
to reset and try again with no bound on the worst-case time. To achieve worst-case query
time, we need some modifications. We allow for items to be sampled “almost” proportional
to their weights, i.e., we introduce a notion of approximation. As we shall see in the next
chapter, without some kind of approximation, our task is very likely impossible.

Problem definition. We consider an input set X of n points where xi has weight wi and we
would like to store X in a data structure. At the query time, we are given a halfspace h and a
value k and we would like to extract k random samples from X ∩h. Let w(h) =

∑
xi∈X∩h wi,

and set two parameters 0 < γ < ε < 1. Ideally, we would like to sample each xi with
probability wi/w(h). Instead we sample xi with probability ρi, if wi/w(h) ≥ γ/n then

(1− ε) wi

w(h) ≤ ρi ≤ (1 + ε) wi

w(h) , (1)

and if wi/w(h) < γ/n then we must have ρi ≤ (1 + ε) wi

w(h) . That is, we sample all items
within a (1± ε) factor of their desired probability, except for items with very small weight,
which could be ignored and not sampled. The smaller items are such that the sum of their
desired probabilities is at most γ.

Overview of modifications. We start in the same framework as Section 3.2 and Lemma
3, i.e., we partition X into subsets X` by weight. Then, we need to make the following
modifications: (1) We can now ignore small enough weights; (2) We can no longer use
rejection sampling to probe into each set X`, rather we need to collect a bounded number (a
function f(ε)) of candidates from all X` which is guaranteed to contain some point in the
query h. (3) We can also no longer use rejection sampling within each X` to get candidates,
instead we build a stratified sample via the partition theorem.

Change (1) is trivial to implement. Remember that given query h, we first identify indices
i and i′ such that Xi contains the largest weight in h and the weights in Xi′ are a factor n2

smaller. We now require weights in Xi′ to be a factor n/γ smaller, and let i′ = i+ t where
t = O(log(n/γ)). We can now ignore all the remaining sets: the sets Xj with j ≥ i+ t will
have weights so small that even if there are Ω(n) points within, the sum of their weights will
be at most γ times the largest weight. Since γ < ε, this implicitly increases all of the other
weights in each X` (for ` ∈ [i, i+ t)) by at most a factor (1 + ε).

We next describe how we can build a data structure on each X` to generate f(1/ε)
candidate points. Once we have these t · f(1/ε) points, we can build two alias structures on
them (they will come with weights proportional to the probability they should be selected),
and select points until we find one in h. As a first pass, to generate k samples, we can repeat
this k times, or bring kf(1/ε) samples from each X`. We will return to this subproblem to
improve the dependence on k and ε by short-circuiting a low-probability event and reloading
these points dynamically.

3.3.1 Generating Candidate Points
Here we will focus on sampling our set of candidates. We will do this for every set X`,
i ≤ ` < i′. However, to simplify the presentation, we will assume that the input is a set X of
n points such that the weights of the points in X are within factor 2 of each other. We will

SoCG 2019



4:8 Independent Range Sampling, Revisited Again

sample f(1/ε) candidate points from X (representing a subset X`) s.t., the set of candidates
intersects with the query halfspace h. Each candidate will be sampled with a probability
that is almost uniform, i.e., it fits within our framework captured by Eq. 1.

Let H be the set of hyperplanes dual to points in X. We maintain a hierarchical shallow-
cutting of approximate levels (Lemma 6) on H. By Lemma 6, we get the following in the
primal setting (on X), given a query halfspace h: We can build O(|X|) subsets of X where
the subsets have in total O(|X| log |X|) points. Given a query halfspace h, in O(logn) time,
we can find a subset X ′ so that X ∩ h ⊂ X ′ and |X ′| = O(|X ∩ h|). We now augment
this structure with the following information on each such subset X ′, without increasing
the space complexity. We maintain an r-partition (Z1,∆1), (Z2,∆2), . . . (Zr′ ,∆r′) on X ′.
(That is, so r′ = Θ(r), each subset Zj ⊂ ∆j and has size bound |X ′|/r ≤ |Zj | ≤ 2|X ′|/r,
and the boundary of any halfspace h intersects at most O(r2/3) cells ∆j .) For each Zj we
maintain an alias structure so in O(1) time we can generate a random sj from the points
within. It is given a weight Wj =

∑
x∈Zj

w(x). In O(r) time we can generate a weighted set
S = {s1, s2, . . . , sr′}; this will be the candidate set.

The sum of all weights of points within h is w(h) =
∑

x∈X∩h w(x), and so we would like
to approximately sample each x ∈ X ′ ∩ h with probability w(x)/w(h).

I Lemma 11. Let r = Ω(1/ε3) and consider a candidate set S, and sample one point
proportional to their weights. For a point x ∈ X ′ ∩ h, the probability ρx that it is selected
satisfies

(1− ε)w(x)
w(h) ≤ ρx ≤ (1 + ε)w(x)

w(h) .

Proof. Of the r′ cells in S, classify them in sets as inside if ∆j ∈ h, as outside if ∆j ∩ h = ∅,
and as straddling otherwise. We can ignore the outside sets. There are O(r) inside sets, and
O(r2/3) straddling sets.

For point x ∈ Sj from an inside set, it ideally should be selected with probability
w(x)
Wj
· Wj

w(h) = w(x)
w(h) . Indeed it is the representative of Sj with probability w(x)

Wj
and is give weight

proportional to Wj in the alias structure. We now examine two cases, that all representative
points in the straddling sets are in h, and that none are; the probability x is selected will be
between the probability of these two cases, and the desired probability it is selected will also
be between these two cases. Let Win =

∑
Sj is inside Wj and Wstr =

∑
Sj is straddling Wj . The

probability x is selected if it is the representative of Sj is then in the range [ Wj

Win+Wstr
,

Wj

Win
].

The ratio of these probabilities is Wj

Win
· Win+Wstr

Wj
= Win+Wstr

Win
= 1 + O(r2/3)

Θ(r) = 1 + O(r1/3).
Setting r = Ω(1/ε3) ensures that these probabilities are within a (1 + ε)-factor of each other,
and on all points from an inside set, are chosen with approximately the correct probability.

For a point x in a straddling set Sj , it should be selected with probability w(x)
Wj

and
is selected with probability between Lx = w(x)

Wj

Wj

Win+Wstr
and Ux = w(x)

Wj

Wj

Win+Wj
. As with

points from an inside set, these are within a (1 + ε)-factor of each other if r = Ω(1/ε3). And
indeed since Win ≤ w(h) ≤Win +Wstr then Lx ≤ w(x)

w(h) ≤ Ux, and the desired probability of
sampling straddling point x is in that range. J

3.3.2 Constructing the k Samples
To select k random samples, the simplest way is to run this procedure k times sequentially,
generating O(k/ε3) candidate points; this is on top of O(logn) to identify the proper subset
X ′ from the shallow cutting, applied to all t = O(log(n/γ)) weight partitions X`.



P. Afshani and J.M.Phillips 4:9

We can do better by first generating O(1/ε3) candidate points per X`, enough for a single
random point in h. Now we place these candidates in two separate alias structures along with
the candidate points from the other t structures. There are O(t/ε3) candidate points placed
in an inside alias structure, and O(t/ε2) points placed in a straddling alias structure. Now
to generate one point, we flip a coin proportional to the total weights in the two structures.
If we go to the inside structure, we always draw a point in h, we are done. If we go to the
straddling structure, we may or may not select a point in h. If we do, we are done; if not we
flip another coin to decide to go to one of the two structures, and repeat.

It is easy to see this samples points with the correct probability, but it does not yet have
a worst case time. We could use a dynamic aliasing structure [6] on the straddling set, so
we sample those without replacement, and update the coin weight. However, this adds a
O(log( 1

ε log(n/γ))) factor to each of O(t/ε2) steps which might be needed. A better solution
is to only allow the coin to direct the sampler to the straddling sets at most once; if it goes
there and fails, then it automatically redirects to the alias structure on the inside sets which
must succeed. This distorts the sampling probabilities, but not by too much since in the
rejection sampling scheme, the probability of going to the straddling set even once is O(ε).

I Lemma 12. For any candidate point s let ρs be the probability it should be sampled, and ρ′s
the probability it is sampled with the one-shot deterministic scheme. Then ρs ≤ ρ′s ≤ (1+ε)ρs

if s is an inside point and (1− ε)ρs ≤ ρ′s ≤ ρs if s is from a straddling set.

Proof. The probability that the coin directs to the inside set is πin = Win
Win+Wstr

= 1
1+Wstr/Win

=
1

1+Ω(ε) = 1−O(ε). Let wstr be the probability of selecting a point inside h, given that the
coin has directed to the straddling set; we only need that Wstr ∈ [0, 1].

For a candidate point in the inside set s, the probability it is selected in the rejection
sampling scheme is ρs = w(s)

Win
(1−O(ε)), and in the deterministic scheme is ρ′s = w(s)

Win
(πin +

(1− πin)(1− wstr)) which is in the range [ρs,
w(s)
Win

], and these have a ratio 1 +O(ε).
Similarly, for a candidate point in the straddling set s, the probability it is selected in

the rejection sampling scheme is

ρs = w(s)
Wstr

(1− πin)(1 +Wstr(1− πin)(1 + . . .)) = w(s)
Wstr

(1− πin)(1 +O(ε))

and in the deterministic scheme is ρ′s = w(s)
Wstr

(1−πin). Thus ρ′s is in the range [ρs(1−O(ε)), ρs].
Adjusting the constant coefficients in ε elsewhere in the algorithm completes the proof. J

Now to generate the next independent point (which we need k of), we do not need to
re-query with h or rebuild the alias structures. In particular, each candidate point can have a
pointer back to the alias structure within its partition cell, so it can replace its representative
candidate point. Moreover, since the points have weight proportional to their cell in the
partition Wj , these weights do not change on a replacement. And more importantly, the
points we never inspected to see if they belong to h do not need to be replaced. This
deterministic process only inspects at most 2 points, and these can be replaced in O(1) time.
Hence extending to k samples, only increases the total runtime by an additive term O(k).

Final bound. We now have the ingredients for our final bound. In general the argument
follows that of Lemma 3 except for a few changes. First, we allow items with probability
total less than γn to be ignored. This replaces a logn factor in query time to be replaced
with t = log(n/γ) term. Second, we require O(t logn) time to identify the relevant subset X ′
in each of t shallow-cutting structures. Then we select O(1/ε3) candidate points from each
of t weight partitions, in O(t/ε3) time. Then pulling k independent samples, and refilling
the candidates takes O(k) time. This results in the following final bound:

SoCG 2019



4:10 Independent Range Sampling, Revisited Again

I Theorem 13. Let X be a set of n weighted points in R3, where the smallest weight is 1
and the largest weight is U . Choose 0 < γ < ε ≤ 1/2. We can store X in a data structure of
size O(nmin{logn, log logn U}) such that for any integer k, we can extract k independent
random samples from the points (ε, γ)-approximately proportional to their weights in worst
case time O(log(n/γ)(logn+ 1/ε3) + k)

In particular, if ε, γ = Ω(1), then the worst case time is O(log2 n+ k) matching the expected
time algorithm to sample by the exact weights.

4 Lower Bound for Worst-Case Time with Exact Weights

In this section, we focus on proving a (conditional) lower bound for a data structure that can
extract one random sample in Q(n) worst-case time using S(n) space. Our main result is that
under a reasonably restricted model, the data structure must essentially solve an equivalent
range searching problem in the “group model”. As a result, we get a conditional lower bound
as this latter problem is conjectured to be difficult. As an example, our conditional lower
bound suggests that halfspace range sampling queries would require that S(n)Q3(n) = Ω(n3),
i.e., with near-linear space we can only expect to get close to O(n2/3) query time. This
is in contrast to the case when we allow expected query time or approximate weights. As
already shown, we can solve the same problem with O(n logn) space and O(log2 n) query
time which reveals a large polynomial gap between the expected and the worst-case variants
of the problem. To our knowledge, this is the first time such a large gap appears in the range
searching literature between the worst-case and expected query times.

The Model of Computation. We assume the input is a list X of n elements, x1, · · · , xn,
where each element xi is associated with a real-valued weight w(xi). We use the decision tree
model of computation. We assume the data structure has three components: a preprocessing
algorithm that builds the data structure, a data structure which is a set of S(n) stored real
values, and finally a query algorithm that given a query q it returns an element sampled
with the correct probability in Q(n) worst-case time. We allow no approximation: the query
algorithm should return an element x with exactly w(x)/w(X) probability.

The main bottleneck. The challenge in obtaining our lower bound was understanding
where the main computational bottleneck lied and formulating a plan of attack to exploit
it. This turned out to be in the query algorithm. As a result, we place no restrictions
on the storage, or the preprocessing part of the algorithm, an idea that initially sounds
very counter intuitive. After giving the algorithm the input X together with the weight
assignment w : X → R, the algorithm stores some S(n) values in its storage. Afterwards, we
move to the query phase and this is where we would like to put reasonable limits. We give the
query algorithm the query q. We allow the query algorithm access to a set of t real random
numbers, R = {r1, · · · , rt}, generated uniformly in [0, 1]. We restrict the query algorithm
to be a “binary decision tree” T but in a specialized format: each node v of T involves a
comparison between some random number rv ∈ R and a rational function fv = gv/Gv where
gv and Gv are n-variate polynomials of the input weights w1, · · · , wn. To be more precise, we
assume the query algorithm can compute polynomials gv and Gv (either using polynomials
stored at the ancestors of v or using the values stored by the data structure). The query
algorithm at node v computes the ratio gv and Gv and compares it to the random value
rv ∈ {r1, · · · , rt}. If v is an internal node, then v will have two children u1 and u2 and the
algorithm will proceed to u1 if fv(w(x1), · · · , w(xn)) < rv and to u2 if otherwise. If v is a



P. Afshani and J.M.Phillips 4:11

leaf node, then v will return (a fixed) element xv ∈ X. Note that there is no restriction
on the rational function fv; it could be of an arbitrary size or complexity. We call this the
separated Algebraic decision tree (SAD) model since at each node, we have “separated” the
random numbers from the rational function that involves the weights of the input elements; a
more general model would be to allow a rational function of the weights wi and the random
numbers rj . If we insist the polynomials gv and Gv be linear (i.e., degree one), then we call
the model separated linear decision tree model (SLD).

I Theorem 14. Consider an algorithm for range sampling in the SAD model where the input
is a list of n of elements, x1, · · · , xn together with a weight assignment w(xi) ∈ R, for each
xi. Assume that the query algorithm has a worst-case bound, i.e., the maximum depth of its
decision tree T is bounded by a function d(n). Then, for every query q, there exists a node
v ∈ T such that Gv is divisible by the polynomial

∑
p∈q w(p).

Proof. Consider the query decision tree T . By our assumptions, T is a finite tree that
involves some N(n) nodes and it has the maximum depth of d(n). Each node v involves a
comparison between some random number ri and a rational function fv(w(x1), · · · , w(xt)).
To reduce clutter, we will simply write the rational function as fv. Let P be the set of all
the rational functions stored at the nodes of T . Note that each unique rational function
appears only once in P. Consider the set ∆P = {f1 − f2|f1, f2 ∈ P} which is the set of
pairwise differences. As each unique rational function appears only once in P , it follows that
none of the rational functions in ∆P is identical to zero. This in particular implies that we
can find real values w1, · · · , wn such that none of the rational functions in ∆P are zero on
w1, · · · , wn. Thus, as these functions are continuous at the points (w1, · · · , wn), it follows
that we can find a real value ε > 0 such that for every weight assignment w(xi) ∈ [wi, wi + ε],
the rational functions in ∆P have the same (none zero) sign. In the rest of the proof, we
only focus on the weight assignment functions w with the property that w(xi) ∈ [wi, wi + ε].

Let U be the unit cube in Rt. U denotes the total probability space that corresponds to
the random variables r1, · · · , rt. Every point in U corresponds to a possible value for the
random variables r1, · · · , rt. Now consider one rational function fv stored at a node v of T ,
and assume v involves a comparison between ri and fv and let u1 and u2 be the left and
the right child of v. By our assumption, we follow the path to u1 if fv ≤ ri but to u2 if
otherwise. Observe that this is equivalent to partitioning U into two regions by a hyperplane
perpendicular to the i-th axis at point fv. As a result, for every node v ∈ T , we can assign a
rectangular subset of U that denotes its region and it includes all the points (r1, · · · , rt) of U
such that we would reach node v if our random variables were sampled to be (r1, · · · , rt).

The next observation is that we can assume the region of each node is defined by fixed
rational functions. Consider the list of rational functions encountered on the path from v

to the root of T . Assume among this list, the rational functions f1, · · · , fm are involved in
comparisons with ri. Clearly, the lower boundary of the region of v along the i-th dimension
is min{f1, · · · , fm} whereas its upper boundary is max{f1, · · · , fm}. Now, observe that since
we have assumed that each fi − fj has a fixed sign, it follows that these evaluate to a fixed
rational function. Thus, let fi,v (resp. Fi,v) be the rational function that describes the lower
(resp. upper) boundary of the region of v along the i-th dimension. Let fi,v = ai,v/bi,v and
Fi,v = Ai,v/Bi,v where ai,v, bi,v, Ai,v, Bi,v are some polynomials of w(x1), · · · , w(xn) stored
in tree T (e.g., bi,v is equal to some Gu for some ancestor u of v and the same holds for Bi,v).

The Lebesgue measure of the region of v, Vol(v), is thus defined by the rational function

Vol(v) =
t∏

i=1
(Fi,v − fi,v) =

t∏
i=1

(Ai,v

Bi,v
− ai,v

bi,v
) =

t∏
i=1

Ai,vbi,v − ai,vBi,v

Bi,vbi,v
.

SoCG 2019



4:12 Independent Range Sampling, Revisited Again

Vol(v) is the probability of reaching v. Consider a query q that contains k elements. W.l.o.g,
let x1, · · · , xk be these k elements. Let v1, · · · , v` be the set of all the leaf nodes that return
x1. For x1 to have been sampled with correct probability we must have the following identity

∑̀
i=1

Vol(vi) = w(x1)
w(x1) + · · ·+ w(xk) .

Observe that since the polynomial w(x1) + · · ·+ w(xk) is irreducible, it follows that at least
one of the polynomials bi or Bi for some i has this polynomial as a factor. J

Conditional Lower Bound. Intuitively, our above theorem suggests that if we can perform
range sampling in finite worst-case time, then we should also be able to find the total weight
of the points in the query range – since the total weight

∑
p∈q w(p) is encoded in some

rational function. This latter problem is conjectured to be difficult but obtaining provable
good lower bounds remains elusive. This suggests that short of a breakthrough, we can only
hope for a conditional lower bound. This is reinforced by this observation that an efficient
data structure for range sum queries leads to an efficient data structure for range sampling.

I Observation 15. Assume for any set of X of n elements each associated with a real-valued
weight, we can build a data structure that uses S(n) space such that given a query range q, it
can output the total weight of the elements in q in Q(n) time.

Then, we can extract k random samples from q by a data structure that uses O(S(n) logn)
space and has the query time of O(kQ(n) logn).

Proof. Partition X into two equal-sized sets X1 and X2 and build the data structure for
range sum on each. Then recurse on X1 and X2. The total space complexity is O(S(n) logn).
Given a query q, it suffices to show how to extract one sample. Using the range sum query q
on X1 and X2, we can know the exact value of w1 =

∑
x∈q∩X1

w(x) and w2 =
∑

x∈q∩X2
w(x).

Thus, we can recurse into X1 with probability w1/(w1 +w2) and into X2 with w2/(w1 +w2).
In O(logn) recursion steps we find a random sample with query time O(Q(n) logn). J

This implies that in the SLD model, the range sampling problem in the worst-case is
equivalent to the range sum problem, ignoring polylog factors. This has consequences for
query ranges like halfspaces where the latter problem is conjectured to be hard.

I Conjecture 16. For every integer n, there exists a set P of Θ(n) points in Rd with the
following property: If for any function w : P → R given as input, we can build a data structure
of size S(n) such that for any query halfspace h, it can return the value

∑
p∈P∩h w(p) in

Q(n) time, then, we must have S(n)Qd(n) = Ω(nd−o(1)).

I Corollary 17. Assume Conjecture 1 holds for d = 3. Then, there exists an input set of
n points in R3 such that for any data structure that uses S(n) space and solves the range
sampling problem where the query algorithm is a decision tree T with worst-case query time
Q(n), we must have S(n)Q3(n) = Ω(n3−o(1)). Thus if space S(n) is near-linear, query time
Q(n) = Ω(n2/3−o(1)).

References
1 Peyman Afshani and Jeff M. Phillips. Independent Range Sampling, Revisited Again, 2019.

arXiv:1903.08014.
2 Peyman Afshani and Zhewei Wei. Independent Range Sampling, Revisited. In European

Symposium on Algorithms, pages 3:1–3:14, 2017.

http://arxiv.org/abs/1903.08014


P. Afshani and J.M.Phillips 4:13

3 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Advances
in Discrete and Computational Geometry, pages 1–56, 1999.

4 Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. BlinkDB: queries with bounded errors and bounded response times on very large
data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages 29–42.
ACM, 2013.

5 Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for histogram
construction: How much is enough? In ACM SIGMOD Record, pages 436–447. ACM, 1998.

6 T Hagerup, K Mehlhorn, and JI Munro. Optimal algorithms for generating discrete random
variables with changing distributions. Lecture Notes in Computer Science, 700:253–264, 1993.

7 Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. ACM SIGMOD
Record, 26(2):171–182, 1997.

8 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In ACM Symposium
on Principles of Database Systems, pages 246–255, 2014.

9 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

10 Frank Olken. Random sampling from databases. PhD thesis, University of California at
Berkeley, 1993.

11 Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics and
Computing, 5(1):25–42, 1995.

12 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, 1974.

SoCG 2019


	Introduction
	A Randomized Data Structure
	3D Halfspace Sampling
	Preliminaries
	A Solution with Expected Query Time
	Worst-Case Time with Approximate Weights
	Generating Candidate Points
	Constructing the k Samples


	Lower Bound for Worst-Case Time with Exact Weights

