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Abstract
We report the first improvement in the space-time trade-off of lower bounds for the orthogonal range
searching problem in the semigroup model, since Chazelle’s result from 1990. This is one of the very
fundamental problems in range searching with a long history. Previously, Andrew Yao’s influential
result had shown that the problem is already non-trivial in one dimension [14]: using m units of
space, the query time Q(n) must be Ω(α(m,n) + n

m−n+1 ) where α(·, ·) is the inverse Ackermann’s
function, a very slowly growing function. In d dimensions, Bernard Chazelle [9] proved that the
query time must be Q(n) = Ω((logβ n)d−1) where β = 2m/n. Chazelle’s lower bound is known to
be tight for when space consumption is “high” i.e., m = Ω(n logd+ε n).

We have two main results. The first is a lower bound that shows Chazelle’s lower bound was
not tight for “low space”: we prove that we must have mQ(n) = Ω(n(logn log logn)d−1). Our lower
bound does not close the gap to the existing data structures, however, our second result is that
our analysis is tight. Thus, we believe the gap is in fact natural since lower bounds are proven for
idempotent semigroups while the data structures are built for general semigroups and thus they
cannot assume (and use) the properties of an idempotent semigroup. As a result, we believe to close
the gap one must study lower bounds for non-idempotent semigroups or building data structures for
idempotent semigroups. We develope significantly new ideas for both of our results that could be
useful in pursuing either of these directions.
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1 Introduction

Orthogonal range searching in the semigroup model is one of the most fundamental data
structure problems in computational geometry. In the problem, we are given an input set
of points to store in a data structure where each point is associated with a weight from a
semigroup G and the goal is to compute the (semigroup) sum of all the weights inside an
axis-aligned box given at the query time. Disallowing the “inverse” operation in G makes
the data structure very versatile as it is then applicable to a wide range of situations (from
computing weighted sum to computing the maximum or minimum inside the query). In
fact, the semigroup variant is the primary way the family of range searching problems are
introduced, (see the survey [4]).

Here, we focus only on static data structures. We use the convention that Q(n), the query
time, refers to the worst-case number of semigroup additions required to produce the query
answer S(n), space, refers to the number of semigroup sums stored by the data structure.
By storage, denoted by S+(n), we mean space but not counting the space used by the input,
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3:2 A New Lower Bound for Semigroup Orthogonal Range Searching

i.e., S(n) = n+ S+(n). So we can talk about data structures with sublinear space, e.g., with
0 storage the data structure has to use the input weights only, leading to the worst-case
query time of n.

1.1 The Previous Results
Orthogonal range searching is a fundamental problem with a very long history. The problem
we study is also very interesting from a lower bound point of view where the goal is to
understand the fundamental barriers and limitations of performing basic data structure
operations. Such a lower bound approach was initiated by Fredman in early 80s and in a
series of very influential papers (e.g., see [10, 11, 12]). Among his significant results, was the
lower bound [11, 12] that showed a sequence of n insertions, deletions, and queries requires
Ω(n logn) time to run.

Arguably, the most surprising result of these early efforts was given by Andrew Yao
who in 1982 showed that even in one dimension, the static case of the problem contains
a very non-trivial, albeit small, barrier. In one dimension, the problem essentially boils
down to adding numbers: store an input array A of n numbers in a data structure s.t., we
can add up the numbers from A[i] to A[j] for i and j given at the query time. The only
restriction is that we should use only additions and not subtractions (otherwise, the problem
is easily solved using prefix sums). Yao’s significant result was that answering queries requires
Ω(α(S(n), n) + n/S+(n)) additions, where α(·, ·) is the inverse Ackermann function. This
bound implies that if one insists on using O(n) storage, the query bound cannot be reduced
to constant, but even using a miniscule amount of extra storage (e.g., a log∗ log∗ n factor
extra storage) can reduce the query bound to constant. Furthermore, using a bit less than
n storage, e.g., by a log∗ log∗ n factor, will once again yield a more natural (and optimal)
bound of n/S+(n). Despite its strangeness, it turns out there are data structures that can
match the exact lower bound (see also [5]). After Tarjan’s famous result on the union-find
problem [13], this was the second independent appearance of the inverse Ackermann function
in the history of algorithms and data structures.

Despite the previous attempts, the problem is still open even in two dimensions. At
the moment, using range trees [7, 8] on the 1D structures is the only way to get two or
higher dimensional results. In 2D for instance, we can have S+(n) = O(n/ logn) with
query bound Q(n) = O(log3 n), or S+(n) = O(n) with query bound Q(n) = O(log2 n), or
S+(n) = O(n logn) with query bound O(α(cn, n) logn), for any constant c. In general and
in d dimensions, we can build a structure with S+(n) = O(n logd−1 n) units of storage and
with Q(n) = O(α(cn, n) logd−1 n) query bound, for any constant c. We can reduce the space
complexity by any factor t by increasing the query bound by another factor t. Also, strangely,
if t is asymptotically larger than α(n, n), then the inverse Ackermann term in the query bound
disappears. Nonetheless, a surprising result of Chazelle [9] shows that the reverse is not true:
the query bound must obey Q(n) = Ω((logS(n)/n n)d−1) which implies using polylogarithmic
extra storage only reduces the query bound by a (log logn)d−1 factor. Once again, using
range tree with large fan out, one can build a data structure that uses O(n log2d−2+ε n)
storage, for any positive constant ε, and achieves the query bound of O((loglogn n)d−1). This,
however leaves a very natural and important open problem: Is Chazelle’s lower bound the
only barrier? Is it possible to achieve O(n) space and O(logd−1 n) query time?

Idempotence and random point sets. A semigroup is idempotent if for every x ∈ G, we
have x+ x = x. All the previous lower bounds are in fact valid for idempotent semigroups.
Furthermore, Chazelle’s lower bound uses a uniform (or randomly placed) set of points
which shows the lower bound does not require pathological or fragile input constructions.
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Furthermore, his lower bound also holds for dominance ranges, i.e., d-dimensional boxes in
the form of (−∞, a1]×· · ·× (−∞, ad]. These little perks result in a very satisfying statement:
problem is still difficult even when G is “nice” (idempotent), and when the point set is “nice”
(uniformly placed) and when the queries are simple (“dominance queries”).

1.2 Our Results
We show that for any data structure that uses S+(n) storage and has query bound of Q(n),
we must have S+(n) ·Q(n) = Ω(n(logn log logn)d−1). This is the first improvement to the
storage-time trade-off curve for the problem since Chazelle’s result in 1990. It also shows
that Chazelle’s lower bound is not the only barrier. Observe that our lower bound is strong
at a different corner of parameter space compared to Chazelle’s: ours is strongest when
storage is small whereas Chazelle’s is strongest when the storage is large. Furthermore, we
also keep most of the desirable properties of Chazelle’s lower bound: our lower bound also
holds for idempotent semigroups and uniformly placed point sets. However, we have to
consider more complicated queries than just dominance queries which ties to our second
main result. We show that our analysis is tight: given a “uniformly placed” point set and an
idempotent semigroup G, we can construct a data structure that uses O(n) storage and has
the query bound of O((logn log logn)d−1). As a corollary, we provide an almost complete
understanding of orthogonal range searching queries with respect to a uniformly placed point
set in an idempotent semigroup.

Challenges. Our results and specially our lower bound require significantly new ideas. To
surpass Chazelle’s lower bound, we need to go beyond dominance queries which requires
wrestling with complications that ideas such as range trees can introduce. Furthermore, in
our case, the data structure can actually improve the query time by a factor f by spending
a factor f extra space. This means, we are extremely sensitive to how the data structure
can “use” its space. As a result, we need to capture the limits of how intelligently the data
structure can spend its budge of “space” throughout various subproblems.

Implications. It is natural to conjecture that the uniformly randomly placed point set
should be the most difficult point set for orthogonal queries. Because of this, we conjecture
that our lower bounds are almost tight. This opens up a few very interesting open problems.
See Section 5.

2 Preliminaries

The Model of Computation. Let P be an input set of n points with weights from a
semigroup G. Our model of computation is the same as the one used by the previous lower
bounds, e.g., [9]. There has been quite some work dedicated to building a proper model
for lower bounds in the semigroup model. We will not delve into those details and we only
mention the final consequences of the efforts. The data structure stores a number of sums
where each sum s is the sum of the weights of a subset sP ⊂ P . With a slight abuse of the
notation, we will use s to refer both to the sum as well as to the subset sP . The number of
stored sums is the space complexity of the data structure. If a sum contains only one point,
then we call it a singleton and we use S+(n) to denote the storage occupied by sums that
are not singletons. Now, consider a query range r containing a subset rP = r

⋂
P . The query

algorithm must find k stored subsets s1, . . . , sk such that rP = ∪ki=1si. For a given query r,
the smallest such integer k is the query bound of the query. The query bound of the data
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structure is the worst-case query bound of any query. Observe that the data structure does
not disallow covering any point more than once and in fact, for idempotent semigroups this
poses no problem. All the known lower bounds work in this way, i.e., they allow covering a
point inside the query multiple times. However, if the semigroup is not idempotent, then
covering a point more than once could lead to incorrect results. Since data structures work
for general semigroups, they ensure that s1, . . . , sk are disjoint.

Definitions and Notations. A d-dimensional dominance query is determined by one point
(x1, . . . , xd) and it is defined as (−∞, x1]× · · · × (−∞, xd].

I Definition 1. We call a set P ⊂ Rd well-distributed if the following properties hold:
(i) P is contained in the d-dimensional unit cube. (ii) The volume of any rectangle that
contains k ≥ 2 points of P is at least εdk/|P | for some constant εd that only depends on the
dimension. (iii) Any rectangle that has volume v, contains at most dv|P |/εde points of P .

I Lemma 2 ([2, 9, 3]). For any constant d and any given value of n, there exists a well-
distributed point set in Rd containing Θ(n) points.

3 The Lower Bound

This section is devoted to the proof of our main theorem which is the following.

I Theorem 3. If P is a well-distributed point set of n points in Rd, any data structure that
uses S+(n) storage, and answers (2d− 1)-sided queries in Q(n) query bound requires that
S+(n) ·Q(n) = Ω(n(logn log logn)d−1).

Let Q be the unit cube in Rd. Throughout this section, the input point set is a set P of
n well-distributed points in Q. Let D be a data structure that answers semigroup orthogonal
range searching queries on P .

3.1 Definitions and Set up
We consider queries that have two boundaries in dimensions 1 to d − 1 but only have an
upper bound in dimension d. For simplicity, we rename the axes such that the d-th axis is
denoted by Y and the first d− 1 axes are denoted by X1, . . . , Xd−1. Thus, each query is in
the form of [x′1, x1]× . . . [x′d−1, xd−1]× (−∞, y]. The point (x1, . . . , xd−1, y) is defined as the
dot of q and is denoted by Dot(q). For every 1 ≤ i ≤ d− 1, the line segment that connects
Dot(q) to the point (x1, . . . , xi−1, x

′
i, xi+1, . . . , xd−1, y) is called the i-th marker of q and it

is denoted by ti(s).

The tree Ti. For each dimension i = 1, . . . , d− 1, we define a balanced binary tree Ti of
height h = logn as follows. Informally, we cut Q into 2h congruent boxes with hyperplanes
perpendicular to axis Xi which form the leaves of Ti. To be more specific, every node in Ti is
assigned a box r(v) ⊂ Q. The root of Ti is assumed to have depth 0 and it is assigned Q. For
every node v, we divide r(v) into two congruent “left” and “right” boxes with a hyperplane
`(v), perpendicular to Xi axis. The left box is assigned to left child of v and similarly the
right box is assigned to the right child of v. We do not do this if r(v) has volume less than
1/n; these nodes become the leaves of T . Observe that all trees Ti, 1 ≤ i ≤ d− 1 have the
same height h. The volume of r(v) for a node v at depth j is 2−j .
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Embedding the problem in R2d−1. The next idea is to embed our problem in R2d−1.
Consistent with the previous notation, the first d axes are X1, . . . , Xd−1 and Y . We label
the next axis Z1, . . . , Zd−1. We now represent Ti geometrically as follows. Consider h the
height of Ti. For each i, 1 ≤ i ≤ d− 1, we now define a representative diagram Γi which
is a axis-aligned decomposition of the unit (planar) square Qi in a coordinate system where
the horizontal axis is Xi and the vertical axis is Zi. As the first step of the decomposition,
cut Qi into h equal-sized sub-rectangles using h− 1 horizontal lines. Next, we will further
divide each sub-rectangle into small regions and we will assign every node v of Ti to one of
these regions. This is done as follows. The root v of Ti is assigned the topmost sub-rectangle
as its region, γ(v). Assume v is assigned a rectangle γ(v) as its region. We create a vertical
cut starting from the middle point of the lower boundary of γ(v) all the way down to the
bottom of the rectangle Qi. The children of v are assigned to the two rectangles that lie
immediately below γ(v). See Figure 1.

v
γ(v)

(xi, zi)
Ti

Xi

Zi

ti(s)

Figure 1 A tree and its representative diagram. The region of a node v is highlighted in grey.

Placing the Sums. Consider a semigroup sum s stored by the data structure D. Our
lower bound will also apply to semigroups that are idempotent which means without loss of
generality, we can assume that our semigroup is idempotent. As a result, we can assume
that each semigroup sum s stored by the data structure has the same shape as the query.
Let b(s) be the smallest box that is unbounded from below (along the Y axis) that contains
all the points of s. If s does not include a point, p, inside b(s), we can just p to s. Any query
that can use s must contain the box b(s) which means adding p to s can only improve things.
Each sum s is placed in one node of Ti for every 1 ≤ i ≤ d− 1. The details of this placement
are as follows.

A node vi in Ti stores any sum s such that the i-th marker of s, ti(s), intersects `(vi) with
v being the highest node with this property. Geometrically, this is equivalent to the following:
we place s at a node v if γ(v) is the lowest region that fully contains the segment ti(s) (or to
be precise, the projection of ti(s) onto the ZiXi plane). For example, in Figure 1(right), the
sum s is placed at v in Ti since ti(s), the green line segment, is completely inside γ(v) with
v being the lowest node of this property. Remember that s is placed at some node in each
tree Ti, 1 ≤ i ≤ d− 1 (i.e., it is placed d− 1 times in total).

Notations and difficult queries. We will adopt the convention that random variables are
denoted with bold math font. The difficult query is a 2d− 1 sided query chosen randomly
as follows. The query is defined as [x′1,x1]× · · · × [x′d−1,xd−1]× (−∞,y] where x′i,xi and
y are also random variables (to be described). y is chosen uniformly in [0, 1]. To choose
the remaining coordinates, we do the following. We place a random point (xi, zi) uniformly

SoCG 2019



3:6 A New Lower Bound for Semigroup Orthogonal Range Searching

inside the representative plane Γi (i.e., choose xi and zi uniformly in [0, 1]). Let vi be the
random variable denoting the node in Ti s.t., region γ(vi) contains the point (xi, zi). x′i is
the Xi-coordinate of the left boundary of γ(vi). Let `i be the depth of vi in Ti. We denote
the point (x1, . . . ,xd−1,y) by q and denote the 2d − 1 sided query by Domv1,...,vd−1(q).
See Figure 1(right). Note that a query Domv1,...,vd−1(q) is equivalent to a dominance query
defined by point q in r(v1)∩· · ·∩ r(vd−1). To simplify the presentation and to stop redefining
these concepts, we will reserve the notations introduced in this paragraph to only represent
the concepts introduced here.

I Observation 4. A necessary condition for being able to use a sum s to answer
Domv1,...,vd−1(q) is that s is stored at the subtree of vi, for every 1 ≤ i ≤ d− 1.

Proof. Due to how we have placed the sums, the sums stored at the ancestors of vi contain
at least one point that lies outside r(vi) and since Dom(q) is entirely contained inside r(vi)
those sums cannot be used to answer the query. J

Subproblems. Consider a query Dom(q) = Domv1,...,vd−1(q). We now define subproblems
of Dom(q). A subproblem is represented by an array of d−1 integral indices j = (j1, . . . , jd−1)
and it is denoted as j-subproblem. The state of j-subproblem of a query Domv1,...,vd−1(q)
could either be undefined, or it could refer to covering a particular subset of points inside the
query. In particular, given Dom(q), a j-subproblem is undefined if for some 1 ≤ i ≤ d− 1,
there is no node ui ∈ Ti with the following properties: ui has depth `i + ji, ui has a right
sibling u′i with r(u′i) containing the query point q. See Figure 2. However, if such nodes ui
exist for all 1 ≤ i ≤ d− 1, then the j-subproblem of Dom(q) is well-defined and it refers
to the problem of covering all the points inside the region Dom(q) ∩ r(u1) ∩ · · · ∩ r(ud−1);
observe that this is equivalent to covering all the points inside the region r(u1)∩ · · · ∩ r(ud−1)
that have Y -coordinate at most y. Further observe that for ui to exist in Ti, it needs to pass
two checks: (check I) `i + ji ≤ h as otherwise, there are no nodes with depth `i + ji and
(check II) a node ui at depth `i + ji has a right sibling u′i with r(u′i) containing q. The
nodes u1, . . . , ud−1 are called the defining nodes of the j-subproblem. Thus, the random
variable vi defines the random variable ui where ui could be either undefined or it could be
a node in Ti. Clearly, the distribution of ui is independent of the distributions of uj and vj
for i 6= j as ui only depends on vi.

I Observation 5. Consider a well-defined j = (j1, . . . , jd−1) subproblem of a query
Domv1,...,vd−1(q) and its defining nodes u1, . . . , ud−1. To solve the j-subproblem (i.e., to
cover the points inside the subproblem), the data structure can use a sum s only if for every
1 ≤ i ≤ d−1, we either have case (i) where s is stored at ancestors of ui but not the ancestors
of vi or case (ii) where s is stored at the subtree of ui. If a sum s violates one of these two
conditions for some i, then it cannot be used to answer the j-subproblem. See Figure 2.

Proof. See the full paper for the proof [1]. J

3.2 The Main Lemma
In this subsection, we prove a main lemma which is the heart of our lower bound proof.
To describe this lemma, we first need the following notations. Consider a well-defined
j-subproblem of a query Domv1,...,vd−1(q) where ji ≤ h

2 for 1 ≤ i ≤ d− 1. As discussed, this
subproblem corresponds to covering all the points in the region r(u1) ∩ · · · ∩ r(ud−1) whose
Y -coordinate is below y, the Y -coordinate of point q; thus, the j-subproblem of the query
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vi

ui u′i

...

...
case (i)

case (ii)

(xi, zi)

Xi

Zi

ui

γ(vi)

u′i

Figure 2 ui is a defining node. The blue line segments correspond to ti(s) of a sum s that is
placed in the subtree of ui. The green ones correspond to those placed at ancestors of ui but not at
ancestors of vi. The red ones correspond to sums that cannot be used to answer the subproblem.

(xi, zi)

Xi

Zi

ti(s)

ui
ti(s

′)

Figure 3 The extensions of two sums that can be used to answer a subproblem.

can be represented as the problem of covering all the points inside the box [a1, b1]× · · · ×
[ad−1, bd−1]× (−∞, y] where ai and bi correspond to the left and the right boundaries of the
slab r(ui). Let 0 < λ be a parameter. Consider the region [a1, b1]×· · ·×[ad−1, bd−1]×[y−β, y]
in which β is chosen such that the region contains λ points; as our pointset is well-distributed,
this implies that the volume of the region is Θ(λ/n). We call this region the λ-top box.
The λ-top, denoted by Top(j, λ), is then the problem of covering all the points inside the
λ-top box of the j-subproblem. With a slight abuse of the notation, we will use Top(j, λ)
to refer also to the set of points inside the λ-top box. If there are not enough points in
the λ-top box, the λ-top is undefined, otherwise, it is well-defined. These of course also
depend on the query but we will not write the dependency on the query as it will clutter the
notation. Furthermore, observe that when the query is random, then Top(j, λ) becomes a
random variable which is either undefined or it is some subset of points.

Extensions of sums. Due to technical issues, we slightly extend the number of points each
sum covers. Consider a sum s stored at a subtree of vi such that s can be used to answer
the j-subproblem. By Observation 4, s is either placed at the subtree of ui or on the path
connecting vi to ui. We extend the Xi range of the sum s (i.e., the projection of s on the
Xi) to include the left and the right boundary of the node ui along the Xi-dimension. We
do this for all d− 1 first dimensions to obtain an extension e(s) of sum s. We allow the data
structure to cover any point in e(s) using s.
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3:8 A New Lower Bound for Semigroup Orthogonal Range Searching

I Lemma 6 (The Main Lemma). Consider a j = (j1, . . . , jd−1) subproblem of a random query
Domv1,...,vd−1(q), for 1 ≤ ji ≤ h/2. Let λ = δhd−1

j1j2...jd−1
· n
S+(A) where δ is a small enough

constant and S+(A) is the storage of the data structure. Let Sj be the set of sums s such that
(i) s is contained inside the query Domv1,...,vd−1(q), and (ii) e(s) covers at least C points
from Top(j, λ), meaning, |e(s) ∩ Top(j, λ)| ≥ C where C is a large enough constant.

With Ω(1) probability, the j-subproblem and the Top(j, λ) are well-defined. Furthermore
conditioned on both of these being well-defined, with probability 1 − O(

√
δ/εd), the nodes

v1, · · · ,vd−1 will be sampled as nodes v1, · · · , vd−1, s.t., the following holds: E[
∑
s∈Sj
|e(s)∩

Top(j, λ)|] < |Top(j,λ)|
C′ where the expectation is over the random choices of y and C ′ is

another large constant.

Let us give some intuition on what this lemma says and why it is critical for our lower
bound. For simplicity assume S+(A) = n and assume we sample v1, · · · ,vd−1 as the first
step, and and then sample y as the last step. The above lemma implies that if we focus on
one particular subproblem, the sums in the data structure cannot cover too many points;
to see this consider the following. The lemma first says that after the first step, with
positive constant probability, j-subproblem and Top(j, λ) are well-defined. Furthermore, here
is a very high chance that our random choices will “lock us” in a “doomed” state, after
sampling v1, · · · , vd−1. Then, when considering the random choices of y, sums that cover
at least C points in total cover a very small fraction of the points. As a result, we will
need Ω(λ/C) = Ω( δ logd−1 n

Cj1j2...jd−1
) sums to cover the points inside the λ-top of the subproblem.

Summing these values over all possible subproblems, ji, 1 ≤ ji ≤ h/2, 1 ≤ i ≤ d − 1 will
create a lot of Harmonic sums of the type

∑h/2
x=1 x = O(log logn) which will eventually lead to

our lower bound. In particular, we will have
∑
ji,1≤ji≤h/2 Ω( hd−1

j1j2...jd−1
) = (logn log logn)d−1.

There is however, one very big technical issue that we will deal with later: a sum can cover
very few points from each subproblem but from very many subproblems! Without solving
this technical issue, we only get the bound maxji,1≤ji≤h/2 Ω( hd−1

j1j2...jd−1
) = (logn)d−1 which

offers no improvements over Chazelle’s lower bound. Thus, while solving this technical issue
is important, nonetheless, it is clear that the lemma we will prove in this section is also very
critical.

As this subsection is devoted to the proof of the above lemma, we will assume that we
are considering a fixed j-subproblem and thus the indices j1, . . . , jd−1 are fixed.

3.2.1 Notation and Setup
By Observation 5, only a particular set of sums can be used to answer the j-subproblem of a
query. Consider a sum s that can be used to answer the subproblem of some query. By the
observation, we must have that s must either satisfy case (i) or case (ii) for every tree Ti,
1 ≤ i ≤ d− 1. Over all indices i, 1 ≤ i ≤ d− 1, they describe 2d−1 = O(1) different cases.
This means that we can partition Sj into 2d−1 different equivalent classes s.t., for any two
sums s1 and s2 in an equivalent class, either they both satisfy case (i) or they both satisfy
case (ii) in Observation 5 and for any dimension i. Since 2d−1 is a constant, it suffices to
show that our lemma holds when only considering sums of particular equivalent class. In
particular, let S′j be the subset of eligible sums that all belong to one equivalent class. Now,
it suffices to show that E[

∑
s∈S′

j
|e(s) ∩ Top(j, λ)|] < |Top(j,λ)|

2dC′
. since summing these over

all 2d−1 equivalent classes will yield the lemma. Furthermore, w.l.o.g and by renaming the
X-axes, we can assume that there exists a fixed value t, 0 ≤ t ≤ d− 1, such that for every
sum s ∈ S′j, for dimensions 1 ≤ i ≤ t, s satisfies case (i) in Ti and for t < i ≤ d − 1, s is
within case (ii). Note that if t = 0, then it implies that we have no instances of case (i) and
for t = d− 1 we have no instances of case (ii).
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The probability distribution of subproblems. To proceed, we need to understand the
distribution of the subproblems. This is done by the following observation.

I Observation 7. Consider a j = (j1, . . . , jd−1) subproblem of a random query
Domv1,...,vd−1(q) defined by random variables u1, . . . ,ud−1. We can make the following
observations. (i) the distribution of the random variable ji + `i is uniform among the integers
ji + 1, . . . , h+ ji. (ii) With probability ji/h, ui will be undefined because it fails (Check I).
(iii) If (Check I) does not fail for ui, there is exactly 0.5 probability that ui is undefined. (iv)
For a fixed ji, the probability distribution, µi, of ui is as follows: with probability 1− 1−ji/h

2 ,
ui is undefined. Otherwise, ui is a node in Ti sampled in the following way: sample a
random integer (depth) `′ uniformly among integers in ji + 1, . . . , h and select a random node
uniformly among all the nodes at depth `′ that have a right sibling.

Proof. See the full paper for the proof [1]. J

Partial Queries. Observe that w.l.o.g., we can assume that we first generate the dimensions
1 to t of the query, and then the dimensions t+ 1 to d− 1 of the query, and then the value
y. A partial query is one where only the dimensions 1 to t have been generated. This is
equivalent to only sampling t random points (xi, zi) for 1 ≤ i ≤ t. To be more specific,
assume we have set vi = vi, for 1 ≤ i ≤ t where each vi is a node in Ti. Then, the partial
query is equivalent to the random query Domv1,...,vt,vt+1,...,vd−1(q) and in which the first t
coordinates of q are known (not random). Thus, we can still talk about the j-subproblem of
a partial query; it could be that the j-subproblem is already known to be undefined (this
happens when one of the nodes ui, 1 ≤ i ≤ t is known to be undefined) but otherwise, it is
defined by defining nodes u1, . . . , ut and the random variables ut+1, . . . ,ud−1; these latter
random variables could later turn out to be undefined and thus rendering the j-subproblem
of the query undefined.

After sampling a partial query, we can then talk about eligible sums: a sum s is eligible
if it could potentially be used to answer the j-subproblem once the full query has been
generated. Note that the emphasis is on answering the j-subproblem. This means, there are
multiple ways for a sum to be ineligible: if j-subproblem is already known to be undefined
then there are no eligible sums. Otherwise, the defining nodes u1, · · · , ut are well-defined.
In this case, if it is already known that s is outside the query, or it is already known that
s cannot cover any points from the j-subproblem then s becomes ineligible. Final and the
most important case of ineligibility is when s is placed at a node wi which is a descendant of
node ui ∈ Ti for some 1 ≤ i ≤ t. If this happens, even though s can be potentially used to
answer the j-subproblem, it can do so from a different equivalent class, as the reader should
remember that we only consider sums that are stored in the path that connects ui to vi
for 1 ≤ i ≤ t. If a sum passes all these, then it is eligible. Clearly, once the final query is
generated, the set S′j is going to be a subset of the eligible sums.

I Definition 8. Given a partial query Domv1,...,vt,vt+1,...,vd−1(q), and considering a fixed
j-subproblem, we define the potential function Φv1,...,vt

to be the number of eligible sums.

I Lemma 9. We have

E(Φv1,...,vt ·
t∏
i=1

h2`i+ji

ji
) ≤ O(S+(D)).

Proof. See the full paper for the proof [1]. J
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By the above lemma, we except only few eligible sums for a random partial query. Let
BAD1 be the “bad” event that the nodes v1, . . . ,vt are sampled to be nodes v1, . . . , vt such that
Φv1,...,vt

·
∏t
i=1

h2`i+ji

ji
> |S+(D)/ε|. By Markov’s inequality and Lemma 9, Pr[BAD1] = O(ε).

Now, fix v1 = v1, . . . ,vt = vt. In the rest of the proof we will assume these values are fixed
and we are going to generate the rest of the query. Next, we define another potential function.

I Definition 10. The potential Ψwt+1,...,wd−1 for wt+1 ∈ Tt+1, . . . , wd−1 ∈ Td−1, where the
depth of wi in Ti is di is defined as follows. First define #xt+1,...,xd−1 for nodes xi ∈ Ti to
be the number of eligible sums s such that s is placed at xi for t+ 1 ≤ i ≤ d− 1. Given the
nodes wt+1, · · · , wd−1, and for non-negative integers kt+1, . . . , kd−1, we define #kt+1,...,kd−1

as the sum of all #w′t+1,...,w
′
d−1

over all nodes w′i where w′i has depth di + ki in Ti and w′i is
a descendant of wi. We define the potential function as follows.

Ψwt+1,...,wd−1 =
∞∑

kt+1=0
· · ·

∞∑
kd−1=0

#kt+1,...,kd−1

2kt+1+···+kd−1
.

I Lemma 11. Having fixed the nodes v1, . . . , vt, we have,

E[Ψut+1,...,ud−1 ·
d−1∏
i=t+1

(h2`i+ji)] = O(Φv1,...,vt
)

where `i is the depth of vi, ui is the defining node of the j-subproblem, the expectation is
taken over the random choices of vi, t+ 1 ≤ i ≤ d− 1 and the potential is defined to be zero
if any of the nodes ui is undefined.

Proof. See the full paper for the proof [1]. J

Now we define the second bad event BAD2 to be the event that Ψut+1,...,ud−1 ·(h2`t+1+jt+1) ·
. . . (h2`d−1+jd−1) ≥ Φv1,...,vt/ε. By Markov’s inequality and Lemma 11, Pr[BAD2] = O(ε).

Proof of the main lemma. We now prove our main lemma (Lemma 6 at page 7).
Remember that we will focus on one equivalent class S′j of Sj. Observe that the summation∑
s∈S′

j
|e(s) ∩ Top(j, λ)| counts how many times a point in Top(j, λ) is covered by extensions

of sums that cover at least C points of the Top(j, λ) and this only takes into account the
random choices of y as the nodes v1, · · · , vd−1 have been fixed. As a result, S′j is a random
variable that only depends on y. To make this clear, letMj be the set that includes all the
sums that can be part of S′j over all the random choices of y. As a result, S′j is a random
subset ofMj. Observe that every sum s ∈ Mj has the property that it is stored in some
node on the path from ui to vi for 1 ≤ i ≤ t and at the subtree of ui for t+ 1 ≤ i ≤ d− 1.
Since Top(j, λ) has exactly, λ points, we can label them from one to λ under some global
ordering of the points (e.g., lexicographical ordering). Thus, let f(g) be the x-th point in
Top(j, λ), 1 ≤ g ≤ λ. Also, let m(g) be the number of sums s ∈ S′j s.t., e(s) contains f(g).
Then, we can do the following rewriting:

∑
s∈S′

j

|e(s) ∩ Top(j, λ)| =
λ∑
g=1

m(g).

By linearity of expectation,

E[
∑
s∈S′

j

|e(s) ∩ Top(j, λ)|] =
λ∑
g=1

E[m(g)] =
∑
s∈Mj

λ∑
g=1

Pr[s covers f(g), s ∈ S′j]. (1)
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In the rest of the proof, we bound the right hand side of Eq. 1 and note that the probability
is over the choices of y. Consider a particular outcome of our random trials in which the
random variable vi has been set to node vi, for 1 ≤ i ≤ d− 1 in which none of the bad events
BAD1 and BAD2 have happened. Set the parameter ε used in the definition of these bad events
to ε =

√
δ/εd. Thus, none of the bad events happen with probability at least 1−O(

√
δ/εd),

conditioned on the event that the j-subproblem of the query is defined. Note that can we
assume the random variable y has not been assigned yet. This is a valid assumption since
the subproblem of a query only depend on the selection of the nodes v1, . . . , vd−1 and not on
the Y -coordinate of the query.

As BAD1 has not occurred, we have Φv1,...,vt
·
∏t
i=1

h2`i+ji

ji
≤ |S(D)/ε|. As BAD2 has not

occurred either, we know that Ψut+1,...,ud−1 ·
∏d−1
i=t+1(h2`i+ji) < Φv1,...,vt

/ε. Thus,

Ψvt+1,...,vd−1 <
Φv1,...,vt

ε
∏d−1
i=t+1(h2`i+ji)

≤ |S+(D)|
ε
∏t
i=1

h2`i+ji

ji

.
1

ε
∏d−1
i=t+1(h2`i+ji)

=
|S+(D)|

∏t
i=1 ji

ε2hd−1∏d−1
i=1 2ji+`i

. (2)

The experiment. To bound the sum at the Eq. 1, we will use the above inequality combined
with the following experiment. We select a random point p from Top(j, λ) by sampling an
integer g ∈ [1, · · · , λ] and considering f(g). We compute the probability that f(g) can be
covered by the extension of a sum in S′j where the probability is computed over the choices
of g and the Y -coordinate of the query y.

We now look at the side lengths of the box Top(j, λ). The i-th side length of λ-top box is
1

2`i+ji
for 1 ≤ i ≤ d− 1; this is because the j-subproblem was defined by nodes ui where ui

has depth `i + ji. Let β be the side length of Top(j, λ) along the Y -axis. As β is chosen such
that Top(j, λ) contains λ points and the pointset well distributed, the volume of λ-top box
is Θ(λ/n). This implies, it suffices to pick β = Θ(λn

∏d−1
i=1 2`i+ji). Now remember that the

Y -coordinate of the top boundary of the λ-top box is y and the Y -coordinate of its lower
boundary is y − β.

Consider a sum s ∈Mj. Now consider the smallest box enclosing e(s); w.l.o.g., we use
the notation e(s) to refer to this box. For t+ 1 ≤ i ≤ d− 1, the i-th side length of e(s) is
2−`i−ji−ζi(s) because s was placed at node wi ∈ Ti which is below ui and thus our extensions
extends the i-dimension of the box to match that of wi. However, for 1 ≤ i ≤ t, the i-th side
length of e(s) is 2−`i−ji . We have

Vol(e(s) ∩ Top(j, λ)) ≤ β
t∏
i=1

2−`i−ji

d−1∏
i=t+1

2−`i−ji−ζi(s) = Θ(λ
n

d−1∏
i=t+1

2−ζi(s)). (3)

Observe that we have assumed s covers at least C points inside Top(j, λ). However, our
point set is well-distributed which implies the number of points covered by s is at most
n
εd
Vol(e(s) ∩ Top(j, λ)) which by Eq. 3 is bounded by O( λεd

∏d−1
i=t+1 2−ζi(s)). We are picking

the point f(g) randomly among the λ points inside the Top(j, λ) which implies the probability
that f(g) gets covered is at most

O( 1
εd

d−1∏
i=t+1

2−ζi(s)). (4)

Note that above inequality is only with respect to the random choices of g and ignores the
probability of s ∈ S′j. However, the only necessary condition for a sum s ∈Mj to be in S′j
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is that its Y -coordinate falls within the top and bottom boundaries of Top(j, λ) along the
Y -axis. The probability of this event is at most β by construction. As this probability is
indepdenent of choice of p, we have

Pr[s covers f(g), s ∈ S′j] = O( β
εd

d−1∏
i=t+1

2−ζi(s)). (5)

Now we consider the definition of the potential function Ψ to realize that we have

∞∑
kt+1=0

· · ·
∞∑

kd−1=0

#kt+1,...,kd−1

2kt+1+···+kd−1
= Ψvt+1,...,vd−1 =

∑
s∈S′

j

d−1∏
i=t+1

2−ζi(s). (6)

The left hand side is the definition of the potential function Ψ where as the right hand side
counts exactly the same concept: a sum s placed at depth `i + ji + ζi(s) of Ti and at a
descendant of vi, for t+ 1 ≤ i ≤ d− 1, contributes exactly

∏d−1
i=t+1 2−ζi(s) to the potential Ψ.

Remember that m(p) is the number of sums that cover a random point p selected
uniformly among the points inside Top(j, λ). We have

∑
s∈Mj

Pr[s covers f(g), s ∈ S′j] =
∑
s∈Mj

O

(
β
∏d−1
i=t+1 2−ζi(s)

εd

)
= (from Eq. 5)

O

(
βΨvt+1,...,vd−1

εd

)
= O

(
β

εd
·
|S+(D)|

∏t
i=1 ji

ε2hd−1∏d−1
i=1 2ji+`i

)
= (from Eq. 6 and Eq. 2)

O

(
λ
n

∏d−1
i=1 2`i+ji

εd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1∏d−1
i=1 2ji+`i

)
= (from definition of β)

O

(
λ

nεd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1

)
= O

 δhd−1

j1j2...jd−1
· n
S+(A)

nεd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1

 =

(from the definition of λ)

O

(
δ

εdε2

)
<

1
2dC ′ . (from simplification and picking δ = O(εdε

2C′−12−d) small enough)

Observe that Pr[s covers f(g), s ∈ S′j] = 1
λ

∑λ
g=1 Pr[s covers f(g), s ∈ S′j]. Now our Main

Lemma follows from plugging this in Eq. 1.

3.3 The Lower Bound Proof
Our proof strategy is to use Lemma 6 to show that the query algorithm is forced to use a
lot of sums that only cover a constant number of points inside the query, leading to a large
query time.

I Theorem 12. Let P be a well-distributed point set containing Θ(n) points in Rd. Answering
semigroup queries on P using S+(n) storage and with Q(n) query bound requires that
S+(n) ·Q(n) = Ω(n(logn log logn)d−1).

We pick a random query according to the distribution defined in the previous subsection.
By Lemma 6, every j-subproblem for 1 ≤ ji ≤ h/2, has a constant probability of being well-
defined. Let W be the set of all the well-defined subproblems. For a j-subproblem, let λj be the
value λ as it is defined in Lemma 6. Observe that if a j-subproblem for j = (j1, · · · , jd−1), is
well-defined, then Top(j, λj) contains λj = δhd−1

j1j2...jd−1
· n
S+(A) points. However, if j-subproblem
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or Top(j, λj) is not well-defined, then we consider Top(j, λj) to contain 0 points. We define the
top of the query, Top(q), to be the set of points ∪j=(j1,...,jd−1),1≤j1,...,jd−1≤h/2Top(j, λj). As
each j-subproblem and Top(j, λj), for ji ≤ h/2 has a constant probability of being well-defined,
we have

E[|Top(q)|] =
∑

j=(j1,...,jd−1),1≤j1,...,jd−1≤h
2

E[Top(j, λj)]

= Θ(1)
h/2∑
j1=1

. . .

h/2∑
jd−1=1

δhd−1

j1j2 . . . jd−1
· n

S+(A)

=
h/2∑
j1=1

. . .

h/2∑
jd−2=1

δΘ(log h)hd−1

j1j2 . . . jd−2
· n

S+(A)

= . . . = Θ
(
δ logd−1 hhd−1n

S+(A)

)
. (7)

In the full paper [1], we show that we can find a subset Top(q) that contain at least a
constant fraction its points, s.t., every sum can cover at most a constant number of points in
this subset. As a result, the total number of sums required to cover the points in Top(q) is
asymptotically the same as Eq. 7, our claimed lower bound. This would complete the proof.

4 The Upper Bounds

In the full version of our paper [1], we prove the following theorem that shows the analysis of
our lower bound from the previous section is almost tight.

I Theorem 13. For a set P of n points placed uniformly randomly inside the unit cube in
Rd, one can build a data structure that uses O(n) storage such that a (d+ k)-sided query can
be answered with the expected query bound of O(logd−1 n(log logn)k), for 1 ≤ k ≤ d− 1.

If P is well-distributed, then the query bound can be made worst-case.

Due to lack of space, the technical parts of the proof appear in the full version only.
However, the main idea is to simulate the phenomenon we have captured in our lower bound:
the idea that one can store sums such that the sums from different subproblems “help”
each other. To do that, we define the notion of “collectively well-distributed” point sets.
Intuitively, collectively well-distributed point sets is a collection of point sets P where each
element of P is a well-distributed point set but importantly, certain unions of the point sets
in P are also well-distributed point sets. See Fig. 4 for an example. It turns out that we can
turn any properly “collectively well-distributed” point set P that contains O(n) points, into
a data structure that uses O(n) space (i.e., we form a constant number of sums per point in
P) and has the desired query time.

P3

P2

P1

P4

Figure 4 The point sets P1, P2, P3, P4 are well-distributed. For any continuous set of integers
I ⊂ {1, . . . , 4}, ∪i∈IPi is also well-distributed but P1 ∪ P3 might not be well-distributed.
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5 Conclusions

In this paper we considered the semigroup range searching problem from a lower bound
point of view. We improved the best previous lower bound trade-off offered by Chazelle by
analysing a well-distributed point set for (2d− 1)-sided queries for an idempotent semigroup.
Furthermore, we showed that our analysis is tight which leads us to suspect that we have
found an (almost) optimal lower bound for idempotent semigroups as we believe it is unlikely
that a more difficult point set exists. Thus, two prominent open problems emerge: (i) Can
we improve the known data structures under the extra assumption that the semigroup is
idempotent? (ii) Can we improve our lower bound under the extra assumption that the
semigroup is not idempotent? Note that the effect of idempotence on other variants of range
searching was studied at least once before [6].
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