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Abstract 

Purpose Initiatives like the EU Product Environmental Footprint have been pushing the discussion about the 

choice of life cycle impact assessment methods. Practitioners often prefer to use established methods for 

performance tracking, result stability, and consistency reasons. Method developers rather support newly 

developed methods. As case studies must provide consistent results in order to ensure reliable decision-making 

support, a systematic approach to qualify decision support maturity of newly developed impact assessment 

methods is needed. 

Methods A three step approach referring to key aspects for decision maturity was developed which takes the 

established life cycle impact assessment methods as a benchmark. In the first step, the underlying models of 

the methods and their respective differences are analyzed to capture the scope and detail of the 

characterization models. Second, the considered and available elementary flows covered by the methods are 

identified and compared to reveal consistent coverage, respectively, gaps between alternatives. In the third 

step, neglected elementary flows are evaluated with regard to their potential impact to the particular impact 

category. Furthermore, the characterization factors of concurring elementary flows are analyzed for significant 

differences in their shares. The developed approach was tested for LCIA methods for eutrophication and 

acidification in Europe. 

Results and discussion A systematic and practical qualification of decision support maturity can be achieved by 

a three-step approach benchmarking model scope, quantitative and qualitative coverage of elementary flows 

for new methods with established ones. For the application example, the established CML-IA method was 

compared with the ReCiPe method and the method of accumulated exceedance. These models vary regarding 

subdivision of environmental compartments, consideration offate, as well as regionalization of characterization 

factors. The amount of covered elementary flows varies significantly as CML-IA covers about 28 more flows 

within the category acidification and about 35 more flows within the category eutrophication compared to 

ReCiPe and accumulated exceedance. The significance of all neglected elementary flows for the categories 

eutrophication and acidification is significant and represents a gap of up to 80 %. Furthermore, it was shown 

that the shares of some concurring elementary flows differ significantly. 

Conclusions The introduced approach allows the benchmarking of newly developed against established 

methods based on application-oriented criteria. It was demonstrated that significant differences between the 

methods exist. To guarantee reliable decision-making support, newly developed methods should not replace 

established ones until a minimum level of decision support maturity is reached. 

Keywords: Accumulated exceedance; Acidification; Characterizationfactors; CML-IA; Eutrophication; Life cycle 

impactassessment; ReCiPe  



1 Introduction 

A default list of impact categories or even uniform characterization models for the life cycle impact 

assessment (LCIA) phase of life cycle assessment (LCA) is an issue of debate in the LCA community 

since years. One flagship project of the United Nations Environment Programme (UNEP)/Society for 

Environmental Toxicology and Chemistry (SETAC) initiative tries again to establish a global consensus 

on certain impacts and their modeling in LCIA. Recent initiatives like the EU Product Environmental 

Footprint (PEF) (European Commission 2014a) pushed a discussion about LCIA within a concrete 

application context. (e.g., Finkbeiner 2013; Rack et al. 2013; Jolliet et al. 2014; Lehmann et al., 2015). 

Both processes revealed different understandings and preferences between practitioners and real 

world decision makers using LCA and the scientific community of method developers. Users typically 

prefer established LCIA methods as important criteria are consistency, understandability, and 

decision support robustness. LCIA method developers are supporting newly developed methods and 

promote their application already in status nascendi. They typically think that an LCIA method is 

better, if the characterization model and impact pathway are more sophisticated and detailed, if 

there is a higher resolution in the scope of impact categories, and if the impacts are modeled on a 

regional basis etc. 

Some of the 14 predefined LCIA methods of PEF are rather new and have so far not been applied in 

many case studies, let alone real world decision-making processes. However, based on studies of 

method developers for JRC, the EU Commission requires using these newly developed ones. 

Established methods preferred by practitioners can be used additionally. However, due to the 

already very high effort of the pilot phase, almost none of the pilots have resources to test other 

methods as well. (Joint Research Centre 2011; European Commission 2014b; Laget and Carpentier 

2015; Lehmann et al. 2016). 

As LCA is a tool to support decision-making in industry and politics (ISO 14044 2006), results have to 

be reliable and robust. They should mainly depend on the studied product system and not be 

primarily influenced by the applied impact assessment method. Any new method needs to be 

assessed and benchmarked with existing ones to guarantee actual improvement and reliable 

decisions as already raised by Baitz et al. (2012). This aspect of application readiness or decision 

support maturity has so far never been sufficiently included in ongoing discussions. Newly developed 

impact assessment methods do not automatically improve decision-making. They have to be 

compared to establish ones to identify strengths and weaknesses. Such testing or verification 

processes of actual improvements for decision-making are lacking. So far, newly developed methods 

are not comprehensively analyzed but rather recommended solely based on reflecting the cause-

effect chain in more detail. (Margni et al. 2008; Joint Research Centre 2010; Jolliet et al. 2014). 

The aim of this paper is to fill this gap by proposing a systematic approach for the benchmarking of 

established against newly developed LCIA methods by focusing on their suitability, respectively, 

maturity for decision making. The introduced approach is however only applicable to compare 

existing methods of the same impact category. It cannot be applied to assess fully new methods for 

impact categories for which so far not impact assessment methods or models exist, e.g., the newly 

developed model for ocean acidification by Bach et al. (2016). The introduced approach is 

demonstrated and tested for different methods of the impact categories acidification and 

eutrophication in a European context. The identification of the most relevant methods for these 

categories is based on recent publications of case studies (e.g., Buyle et al. 2013), product category 

rules (e.g., Institut Bauen und Umwelt e.V. 2009), environmental product declarations (e.g., 

Bombardier Transportation 2011), harmonization papers (e.g., PE International 2014), and 

publications providing a review of LCIA methods (e.g., International Reference Life Cycle Data System 



Handbooks addressing LCIA (Joint Research Centre 2010; Joint Research Centre 2011)). Overall within 

the European context, three methods were identified as being relevant for assessing acidification: 

Huijbregts (1999) and Hauschild & Wenzel (1998) known as part of the CML-IA method (referred to 

as CML-IA in the following) (Guinée et al. 2002), van Zelm et al. (2007) published within the ReCiPe 

method (Goedkoop et al. 2009) (referred to as ReCiPe in the following) and the accumulated 

exceedance method by Seppälä et al. (2006) (referred to as accumulated exceedance (AE) in the 

following). Three methods were identified as being relevant for assessing eutrophication: Heijungs et 

al. (1992a, b) published as part of CML-IA (Guinée et al. 2002), Struijs et al. (2008) as part of ReCiPe 

(Goedkoop et al. 2009), and AE (Seppälä et al. 2006). 

2 Methods 

A three-step approach has been developed to analyze the LCIA methods in the context of adequate 

decision-making support. Key criteria include the scope and detail of the characterization models and 

the quantitative and qualitative coverage of elementary flows. As shown in Fig. 1, the first step 

consists of an evaluation regarding the underlying models of each method to identify the maturity of 

reflecting the cause-effect chain, but also possible challenges regarding application and 

interpretation. 

Fig. 1 Overview of the developed three-step approach to evaluate LCIA methods 

Within the second step, the covered elementary flows of each method are determined. Even though 

the mere number of characterization factors (CFs) does not necessarily reflect the quality of the 

model, missing CFs can be a significant gap and a possible restriction regarding adequate decision-

making support for the identification of potential impacts. Therefore, in the steps three (a) and (b), 

the elementary flows are analyzed further in detail. The neglected flows are analyzed in step three 

(a) with regard to their importance for the considered impact assessment category. When LCIA 

methods do not provide CFs for certain elementary flows, which are covered by other methods, it 

has to be determined whether the associated potential impact neglected is significant or not. 

In step three (b), an analysis is carried out regarding the concurring elementary flows with regard to 

the considered impact assessment category, i.e., those flows that are covered by all the methods. 

Here, the question arises, whether the same substance has different CF values in different methods 

and whether there is then a plausible and transparent explanation, if and why the new factor is 

scientifically more robust than the existing one. Adopted from the approach of Posch et al. (2008), 

the share of different CFs are compared on a percentage basis as often different reference units exist 

making a direct comparison impossible. A relative comparison can also reveal, if concurring 



elementary flows have similar potential impacts. If shares of elementary flows differ, the results and 

recommendations of LCA studies vary accordingly. 

3 Results and discussion 

Within step one of the three-step approach, the underlying models of the identified methods are 

analyzed. Within CML-IA, a baseline and a non-baseline approach are provided, the baseline 

approach representing the most common impact assessment model (within this paper, the CML-IA 

version 4.2 is applied). Practitioners usually apply both as the non-baseline complementing the 

baseline approach. For acidification, the baseline approach by Huijbregts (1999) considers fate and 

deposition of acidifying substances and critical load1 data for Europe. Within the non-baseline 

method by Hauschild and Wenzel (1998), CFs are determined stoichiometrically based on the 

number of hydrogen ions, which are potentially produced by an acidifying substance. For 

eutrophication, the baseline method by Heijungs et al. (1992a, b) determines CFs stoichiometrically 

based on potential contributions of nitrogen and phosphorus emissions as limiting factors to biomass 

formation. Distribution and deposition of substances within environmental compartments are not 

considered. 

Within ReCiPe, the impact categories acidification and eutrophication are subdivided into several 

separate impact categories based on the environmental compartments (within this paper, the ReCiPe 

version 1.07 is taken into account). For acidification, only the terrestrial compartment is considered. 

Freshwater and marine ecosystems are taken into account with regard to eutrophication. CFs for 

terrestrial acidification are determined considering the fate of the substances using simulation 

models, tracking the changes in base saturation of soil based on changes in acid deposition in Europe. 

For aquatic eutrophication, CFs are determined based on increased concentration of phosphor and 

nitrogen emissions in water bodies based on nutrient changes via air emissions and from emission 

sources like agriculture. As phosphorus is the limiting substance for freshwater bodies and nitrogen 

for marine water bodies, only substances containing phosphorus or nitrogen are considered within 

the related impact assessment category, respectively (Goedkoop et al. 2009). 

Netherlands, and Sweden). As LCA case studies are usually performed with general not with site-

specific inventory data,   the emission profiles in the LCI do not contain any regional resolution. As a 

consequence, the method has so far not been applied as it was originally intended. To make it 

applicable 

Within AE, only the terrestrial compartment is taken into account. Impacts on freshwater and marine 

compartments are not considered (within this paper CFs for AE are used as published by Seppälä et 

al. (2006)). The characterization model is taking fate and background load into account. An additional 

sophistication is introduced by including regional differences. Sensitive areas at and above critical 

load based on emission and critical load data within Europe are considered when determining CFs for 

terrestrial eutrophication and terrestrial acidification. Three site specific CFs for acidification and two 

for terrestrial eutrophication are provided by Seppälä et al. (2006) for several European countries 

(these include Finland, Germany, France, UK, Spain, Netherlands, and Sweden). As LCA case studies 

are usually performed with general not with site-specific inventory data,   the emission profiles in the 

LCI do not contain any regional resolution. As a consequence, the method has so far not been applied 

as it was originally intended. To make it applicable with existing inventory databases, European 

weighted CFs were provided by Posch et al. (2008) and Joint Research Centre (2011). However, using 

                                                           
1 Critical load data is used to characterize the sensitivity of the ecosystem for additional acidifying depositions due to 

limited buffer capacity. (Margni et al. 2008; Joint research Centre 2011; Seppälä et al. 2006). 



these average values means that the key advantage of the method in terms of a regionalized 

resolution of impacts is basically lost. 

Analyzing the identified methods, the following features became apparent as main differences: 

 subdivision of impact categories by separation of environmental compartments and 

 consideration of fate and regionalization of characterization factors. 

Whereas the established CML-IA method assesses terrestrial and aquatic impacts together, ReCiPe 

and AE split the environmental compartments. Thus, to assess all compartments, several models and 

indicators have to be applied. However, for acidification neither ReCiPe nor AE consider the aquatic 

compartment. Furthermore, by subdividing the compartments, not only one result but also up to 

three results are presented for originally one impact category. This might lead to implicit over 

weighting in the interpretation of the categories acidification and eutrophication compared to other 

categories, which are not subdivided. In addition, separation of the compartment leads to the fact 

that always both nitrogen and phosphorus emissions dominate one category. In CMLIA, the user 

could identify whether nitrogen or phosphorus is more relevant for a certain product system. By 

separating the compartments, this information is lost. 

ReCiPe, AE and, the acidification model by Huijbregts (1999) consider the fate of the substances 

within the environmental compartments, but in different ways. Furthermore, the background load is 

taken into account. Within Hauschild and Wenzel (1998) and Heijungs et al. (1992a, b), neither fate 

nor background contamination are considered. Modeling detailed cause-effect chains including fate 

of substances and background load supports a more sophisticated and realistic reflection of 

acidifying and eutrophying substances and their specific impacts on the environment. As fate and 

background information are region specific, the determined CFs are only valid for the specific region 

of Europe—either provided as one overall value for Europe (ReCiPe and Huijbregts (1999)) or divided 

for several European countries (AE). However, the European based CFs are typically applied for the 

entire life cycle. Most supply chains however also include regions outside of Europe, where 

regionalized inventory data are only partly available (Berger et al. 2012; Martínez-Blanco et al. 2013). 

For emissions occurring outside of Europe, the evaluation based on European conditions might be 

misleading as it results in either over or underestimations of the impacts occurring. 

In the second step of the approach, the coverage of elementary flows by each method is determined 

including a gap analysis of missing elementary flows. The results of these analyses are shown in Table 

1. For acidification, CML-IA considers 35 elementary flows. ReCiPe and AE only consider 14 to 20 % of 

these flows with five elementary flows by ReCiPe and seven by AE. However, as ReCiPe and AE are 

only assessing terrestrial acidification and CML-IA additionally considers aquatic acidification, only 

elementary flows contributing to terrestrial acidification can be compared. For terrestrial 

acidification, 23 flows are covered within CML-IA (identified by not accounting for emissions into 

freshwater and marine water), leading to a coverage by ReCiPe and AE of 20 to 30 %. 

 



Table 1 Overview of considered impact assessment methods, underlying models, reference substance, amount of characterization factors provided, and list of not considered elementary flows for 

eutrophication and acidification methods CML-IA, ReCiPe, and AE 

  

 



With regard to the category, eutrophication ReCiPe covers 12 flows for the freshwater and 17 flows 

for the marine compartment. For the terrestrial compartment, AE considers seven flows. Thus, 

contrary to acidification where ReCiPe and AE together only considering the aquatic compartment, 

for eutrophication, the aquatic and terrestrial compartments are taken into account when applying 

both methods together. Thus, the overall amount of CFs provided by ReCiPe and AE can be compared 

to the overall amount of CFs made available by CML-IA. Whereas CML-IA provides CFs for 52 

elementary flows, ReCiPe and AE even together only consider 36 flows. This means that the potential 

impacts of 16 elementary flows not taken into account. 

In step three (a), the relevance of missing CFs is assessed. For acidification, ReCiPe and AE only 

evaluate terrestrial acidification. As a consequence, only neglected elementary flows contributing to 

terrestrial acidification are analyzed. However, it should be highlighted that aquatic acidification is an 

important environmental problem that should not be dismissed within LCA (Guinée et al. 2002; 

Wright et al. 2011; Dunford et al. 2012; Finstad et al. 2012). 

Theoretically, all substances potentially contributing to terrestrial acidification have to be considered 

within the “perfect” LCIA model. This includes substances emitted directly into soil as well as 

indirectly due to wet and dry depositions of airborne emissions (Jacobson 2004; Meyer 2013). 

Nitrogen-based substances are widely accepted as major contributors to acidification and should 

therefore not be neglected in any impact assessment method evaluating acidifying impacts on the 

environment (World Health Organization 2006; OECD 2013; European Union 2014). Nitrogen 

monoxide is not considered within ReCiPe. However, it is a big contributor to acidification as it is 

emitted during the burning of fossil fuels, which is a vital part of several product systems (Seinfeld 

and Pandis 2006). Next to nitrogen, sulfur compounds contribute to acidification as well (Dunford et 

al. 2012; Posch et al. 2015). Sulfur trioxide, which is not covered by ReCiPe, can convert into sulfuric 

acid when released into air. By wet and dry deposition over land, it can contribute to terrestrial 

acidification. It is mainly emitted during the use of fossil fuels (Kikuchi 2001; Wright and Welbourn 

2002; Jacobson 2004; Apsimon 2014). Furthermore, also hydrogen chloride, hydrogen fluoride, and 

hydrogen sulfide neglected by ReCiPe as well as AE can contribute to acidification when released to 

the environment. They are used in different industry sectors like the electronic and waste 

management industries and can be released when coal, waste, and plastic are burned or during 

sewage treatment (EPA 2000; Tylenda 2003; Meyer 2013). Additionally, nitric, sulfuric, and 

phosphoric acids are not considered in ReCiPe and AE, even though their impact on acidification has 

been proven to be significant (Poor et al. 2001; Bouwman et al. 2002). Nitric acid can be emitted 

directly by processes using nitric acid like electroplating, fertilizer, or during fossil fuel production. 

Sulfuric and phosphoric acid can be released during processing of sulfur containing metal ores, 

phosphate rock processing, or during phosphate acid production (Wright and Welbourn 2002; Hill 

2010; Apsimon 2014; Tyrell 2014). Within CML-IA, the CF for sulfur oxides as a sum parameter is 

missing. However, as sulfur oxides are the sum parameter for sulfur dioxide and sulfur trioxide and 

are often included in inventory data, an acidification potential should be allocated. 

For eutrophication, all substances, which can potentially contribute to oversupply of nutrients in 

water and soil leading to overgrowth of e.g., algae in water bodies or shifts in plant species towards 

nitrophilic species, have to be considered. Dry and wet depositions of airborne emissions over soil or 

water bodies need to be taken into account as an additional source of pollution next to direct release 

into soil and water (Bergestrom and Jansson 2006; Baron et al. 2014; Palani et al. 2014; Kolzau et al. 

2014; Mischler et al. 2014; Trochine et al. 2014). Elementary flows neglected are identified with 

regard to the considered environmental compartment: for AE, only elementary flows contributing to 

terrestrial eutrophication (emissions to air and soil); for ReCiPe, only flows contributing to freshwater 

(emissions to air, soil, and freshwater) and marine (emissions to air, soil, freshwater, and marine 



water) eutrophication; and for CML-IA, flows contributing to all compartments are analyzed. 

Nitrogen flows (e.g., dinitrogen oxide, nitric acid, and nitrogen, etc.) into soil are identified as leading 

substances regarding terrestrial eutrophication (Poor et al. 2001; Bouwman et al. 2002; Pecka and 

Mill 2012; Baron et al. 2014). However, AE does not provide CFs for ammonium, nitrate, nitric acid, 

dinitrogen oxide, and nitrogen. Even though phosphate, phosphoric acid, phosphorus, and 

phosphorus oxide flows have been proven to change soil fertility, these substances are not 

considered within AE for terrestrial eutrophication (Bennett et al. 2001; Elser et al. 2007; Conley et 

al. 2009; Palani et al. 2014). ReCiPe does not take into account phosphate, phosphoric acid, 

phosphorus pentoxide, and phosphorus flows to air, freshwater, and soil although phosphor flows 

are identified as the main contributor to freshwater eutrophication (Goedkoop et al. 2009). For 

marine eutrophication, ReCiPe only focuses on nitrogen flows as these were identified as the limited 

substance. However, several nitrogen flows are not considered, including ammonium, nitric acid, 

dinitrogen acid, and ammonia. Furthermore, recent studies show that next to nitrogen flows also 

other emissions e.g., phosphor substances may play a bigger role in marine water eutrophication 

than originally assumed (Howarth and Marino 2006; Conley et al. 2009). Thus, phosphorus emissions 

should be included in the model. As the category is subdivided into several subcategories, there is a 

severe risk that phosphorous emissions into water are neglected at all when freshwater acidification 

is not a prioritized category. Nitrite as part of common fertilizers leading to eutrophication (Nollet 

and Gelder 2000; Camargo and Alonso 2006; Shinn et al. 2013) is neglected by CML-IA. Furthermore, 

cyanide is not considered within CML-IA, even though it can oxidize into the eutrophying substance 

nitrogen dioxide. They are used by e.g., gold mining or agricultural herbicides and can be emitted 

additionally during petroleum refining or coal gasification (Dzombak et al. 2005; Cui et al. 2012). 

To demonstrate the relevance of the gaps in characterized elementary flows in AE and ReCiPe, a 

benchmark with CML-IA was performed. For this purpose, the CFs available within CML-IA are 

divided into two groups: “elementary flows covered by all methods” and “elementary flows covered 

by CML-IA only” (which equals the flows neglected by AE and ReCiPe). For both groups, the flows and 

their corresponding CMLIA CFs are shown in Fig. 2 for terrestrial acidification (left), terrestrial 

eutrophication (center left), freshwater eutrophication (center right), and marine water 

eutrophication (right). Here, only the values of the CFs are examined; no statement is made in regard 

to the importance of the elementary flow itself. The impact of an elementary flow with regard to 

case study results is not only determined based on the value of the CFs but also based on the 

retrospective amount of the elementary flow. For example, an elementary flow can have a high CF 

but is barley emitted into the environment and thus, its importance for the examined product 

systems is low. However, just because certain elementary flows might not be important for one or 

even the majority of product systems, this does not mean that they are not of upmost importance to 

some product systems. Thus, determining the importance of an elementary flow is not a 

straightforward task. However, here, the elementary flows only covered by CML-IA, but not the other 

methods are ranked with regard to their overall value not to determine their overall importance but 

to give a first impression how significant the neglect of these elementary flows might be. By not 

considering elementary flows with high values, the possibility of not considering significant impacts 

to the environment is higher. However, also elementary flows with only small CFs should not be 

neglected. For terrestrial acidification, six of the overall 18 neglected substances have a CF higher 

than one and three of almost one, whereas only three out of six of the covered substances show a CF 

higher than one. For terrestrial eutrophication, 15 of the 25neglected substances have a higher CF as 

all of the 11 covered substances. For freshwater eutrophication, only small differences occur. For 

marine eutrophication, none of the neglected substance has a CF as high as the considered flows. 

However, six of the 13 neglected flows show similar CFs. 



 

Fig. 2 Overview of elementary flows covered and neglected and their associated characterization factors of CML-IA for 

terrestrial acidification (left), terrestrial eutrophication (center left), freshwater eutrophication (center right), and marine 

water eutrophication (right) 

As shown within the detailed analysis of step three (a), the neglected flows can contribute to 

acidification and eutrophication and should be included in a comprehensive LCIA method to avoid 

underestimation of impacts and undesired burden shifting. It is apparent that the choice of the best 

method suffers from trade-offs between the breadths and the depths of the characterization model 

and resulting factors. The methods that employ a more specific and sophisticated model of the 

impact pathway suffer from significant gaps in the coverage of contributing substances. Vice versa, 

the method which has the broadest coverage of substances has a limited depth with regard to model 

to environmental mechanisms. 

Within step three (b), concurring elementary flows of all three methods are compared with regard to 

their shares to acidification and eutrophication. For acidification, the elementary flows identified as 

concurring are just four emissions into air, i.e., ammonia (NH3), nitrogen dioxide (NO2), nitrogen 

oxides (NOx), sulfur trioxide (SO3), and sulfur dioxide (SO2). As shown in Fig. 3 (top left), the relative 

shares of the four concurring elementary flows differ depending on the LCIA method. Within AE, the 

highest CF values originate from NOx and NO2, whereas for CML-IA and ReCiPe NH3, SO2, and SO3 

have the biggest CF values. However, for ReCiPe, the CF value of SO3 is even higher as for CML-IA. 

For NH3, the biggest variance between AE and ReCiPe occurs. When comparing the CFs of NH3 in 

both methods, the characterization factor in ReCiPe (1.99) is around 83 % higher as for AE (0.33). All 

three models consider the fate of the substances within the environmental compartments, but the 

acidification model applied within CML-IA does not use the most current data. ReCiPe and AE both 

take background contamination into account. The AE model even goes one step further by including 



the sensitivity of the environment. Thus, it might be more precise when it comes to determining the 

impacts of these substances and their impacts on European soils. 

 

Fig. 3 Shares of acidifying elementary flows (top left) to indicator results and of terrestrial (top right), marine water (lower 

right), and freshwater (lower left) eutrophying elementary flows to indicator results for CML-IA, ReCiPe, and AE 

For eutrophication, the three compartments terrestrial, freshwater, and marine have to be 

considered separately (see Fig. 2 top right and bottom graphs). For terrestrial eutrophication, 

assessed by CML-IA and AE, six concurring elementary flows are identified, i.e., nitrogen monoxide 

(NO), NO2, NOx, nitrate (NO3), ammonium (NH4), and ammonia (NH3) to air. CF values of NH3 and NH4 

are high within CML-IA, but low within AE. For AE, however, CF values of NO3, NOx, and NO2 are high, 

whereas they are low within CML-IA. The biggest difference occurs for NH4. As AE considers the 

background load as well as the ecosystem sensitivity, it can be seen as more precise for impacts on 

European soils. However, as most supply chains and associated emissions are not only European but 

include manufacturing locations all over the world, the CFs of AE can lead to over or underestimation 

of impacts. Comparing again the six concurrent elementary flows (i.e., phosphorusoxide (P4O10) to 

water, dihydrogen phosphate ion (H2PO4) to water, phosphorus (P) to soil, H2PO4 to soil, phosphate 

(PO4
3−) to soil) for freshwater eutrophication of CML-IA and ReCiPe shows the smallest differences 

compared to the other compartments. Both methods identify P as the main contributor for 

freshwater eutrophication. However, for P4O10 to water, bigger differences occur. As ReCiPe 

considers fate of substances and background load, it might be more precise for determining the 

impacts on European soils and in European freshwater bodies. However, for global supply chains, 

CML-IA might be the better choice. For marine eutrophication, 11 concurrent elementary flows were 

identified for CML-IA and ReCiPe i.e., NO3, NH4, NO, NO2, and NOx to air; nitrogen (N) to soil; and NH4, 

N, NH3, NO2, and NO3 to water. The CF values of NH4, NO3, NO2, N, and NH3 flows into water are 

higher for ReCiPe than for CML-IA. Within CML-IA, the CF value of N into soil is higher as for ReCiPe. 



ReCiPe considers the fate of substances as well as background load and thus might be more precise 

for determining the impacts on European marine water bodies. However, for assessing the impacts in 

global supply chains, CML-IA might be a better choice. 

In step three (b), it was shown that the share of the concurring elementary flows is different 

depending on the chosen LCIA method. The overall effect of these differences might even be 

amplified when neglected flows would be taken into account as well. Taking into account the 

concurrent flows, only for a few flows significant differences occur. In that sense, the more 

sophisticated models did not lead to fundamentally different results. Thus, using a less sophisticated 

method, such as CML-IA, that has a much broader coverage of elementary flows might be more 

suitable for assessing potential environmental impacts within LCA than methods that appear more 

sophisticated, but which cover only a rather small part of the relevant emissions. 

4 Conclusions and outlook 

The developed three-step approach has shown that newly developed LCIA methods for the impact 

categories acidification and eutrophication tend to do the following: 

 separate impact pathways according to their environmental compartments, 

 consider fate of the substances, 

 include background load, 

 take into account substance specific behavior, 

 provide regionalized CFs (so far limited to Europe), but 

 consider fewer substances and therefore have gaps in the coverage of elementary flows. 

Furthermore, it was demonstrated that these neglected elementary flows have in reality acidifying 

and eutrophying impacts, and therefore, their neglection represents a significant gap of these 

models. It was also demonstrated that only some concurring elementary flows differ significantly. All 

identified aspects might lead to substantial differences in case study results depending on the LCIA 

methods defined in the goal and scope. Thus, for adequate decision-making support, newly 

developed method cannot just replace established ones, rather a transparent transitioning process 

has to take place. 

In a nutshell, the more recent methods do lead to different results for concurrent flows, but have a 

much smaller coverage of elementary flows. As mentioned earlier, the subdivision into more granular 

impact categories is not really an application advantage as such. Based on the assessment presented 

above, switching to AE and ReCiPe does not automatically improve the decision support quality of 

LCIA. Explaining method switches and associated differences to decision makers without significant 

benefits or improvements is usually not recommended. The decision support maturity of AE and 

ReCiPe is not yet sufficient to make the case for a method switch from CML-IA. It just makes LCA 

application more complex without a proven improvement in decision support quality. 

The introduced approach is a first step in setting up a benchmark or testing procedure of established 

against newly developed methods to transparently support the application of newly developed LCIA 

methods for decision-making processes. Within this paper, the focus is on methods used within 

Europe. However, identified results and associated consequences of the analysis can be transferred 

to other regions and models like TRACI (Bare 2002) used within the USA or the Japanese LIME model 

(Itsubo and Inaba 2012). 

At the end of the day, the selection of the preferred LCIA method is a value choice. If a new method 

is preferred due to a more sophisticated impact pathway or simply to document that a practitioner is 

up-to-date, this is acceptable as long as the inherent gaps of the new methods are accounted for. 



One option could be that next to the newly developed methods also established methods like CML-IA 

are used during the interpretation of the results. Thus, neglected elementary flows by AE and ReCiPe 

are taken into account, and their influence on the production system can be analyzed. Furthermore, 

newly developed methods should be sufficiently tested in case studies of several sectors and results 

have to be compared to established methods until application readiness is proven. This should 

include explicit application of new versus established methods in a range of case studies that should 

be selected from the perspective of covering the full range of low to high expected differences in the 

results. It should be the duty of the developers of the new method to transparently explain the 

differences—positive and negative. Changes in results just based on method switches need to be 

made plausible to the responsible stakeholders using or judging upon the LCIA methods, like 

implementers of LCIA methods into software and databases, reviewers, as well as in the end to 

decision makers. 

International standards, schemes, and groups (e.g., ISO, national standardization bodies, scientific 

working groups like UNEP/SETAC life cycle initiative, EPD operators, labeling procedures, as well as 

the PEF pilot process) should do better in serving this purpose, by assessing different LCIA methods in 

a transparent way. Unfortunately, no initiatives so far succeeded to do so in a proper way, and new 

methods are rather applied or recommended without proper reflection or comparison with existing 

methods. These exercises generate a lot of numbers, but rather limited information with regard to 

the decision support maturity of new methods. Thus, the results of LCA projects and studies in 

different sectors might be distorted as the proposed methods lead to other results than the 

established methods. 
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