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intRoDuction
Aortic valvular disease (AVD) affects overall 0.9% of the 
general population.1 There is an increasing prevalence 
among the elderly (i.e. >65 years), which reflects the 
age-related progressive development of leaflet sclerosis and 
calcium deposition, leading to valvular remodelling.2

Crucial to patient management is the correct grading of 
disease severity, which depends on multiple factors such 
as the anatomy of the leaflets, valve hemodynamics and 
left ventricular (LV) function, in addition to patient symp-
toms. Particularly, in asymptomatic patients, imaging plays 
an important role in the initial evaluation of aortic valve 
disease.

Since the optimal medical therapy is only able to slow 
disease progression or reduce its hemodynamic effects on 
LV function, to establish the appropriate time for surgical 
treatment is fundamental.3

According to guidelines on management of aortic stenosis, 
surgical valve replacement is recommended in symptom-
atic patients with severe disease, and in asymptomatic 
patients with severe disease associated with LV impairment 
or while undergoing to cardiac surgery for other reasons.4,5 
However, minimally invasive percutaneous interventional 

techniques, like transcatheter aortic valve implantation 
(TAVI), have been recently established as a valid option in 
individuals with a high or prohibitive surgical risk and, the 
results of ongoing studies, such as SURTAVI6 and PART-
ENER 27 trials, could potentially extend the indications for 
TAVI to patients with intermediate risk.

In this complex clinical scenario, although echocardiog-
raphy remains the primary imaging modality both for 
both initial assessment and longitudinal evaluation of 
AVD,4,5,8,9 Cardiovascular magnetic resonance (CMR) is 
being increasingly used in daily clinical practise due to its 
versatility, which allows a comprehensive evaluation of the 
different aspects of valvular disease4,5,8

CMR is a viable and robust alternative for AVD assessment 
in patients with poor echo-windows evaluation or when 
the discrepancy between the clinical features and results 
on two-dimensional (2D) echocardiogram and Doppler 
ultrasound results makes the decision making difficult.4,5 
Furthermore, CMR can assess the consequences of the 
valvular lesions on ventricular remodelling by combining 
the assessment of LV function and myocardial fibrosis.5,9–13

The aim of this review is to provide a comprehensive and 
updated overview of CMR potentials in aortic AVD, from 
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AbstRAct

Cardiovascular magnetic resonance (CMR) has an emerging role in aortic valve disease evaluation, becoming an 
all-in-one technique. CMR evaluation of the anatomy and flow through the aortic valve has a higher reproducibility than 
echocardiography. Its unique ability of in vivo myocardial tissue characterization, significantly improves the risk stratifi-
cation and management of patients. In addition, CMR is equivalent to cardiac CT angiography for trans-aortic valvular 
implantation and surgical aortic valve replacement planning; on the other hand, its role in the evaluation of ventricular 
function improving and post-treatment complications is undisputed. This review encompasses the existing literature 
regarding the role of CMR in aortic valve disease, exploring all the aspects of the disease, from diagnosis to prognosis.
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disease staging and pre-procedural selection of candidates 
to surgical replacement to the evaluation of post-operative 
complications.

Well-known information regarding stenotic/insufficient/mixed 
AVDs imaging is integrated with new emerging clinical appli-
cations of the technique, like the evaluation of patients with 
bicuspid aortic valves or the pre-TAVI screening. Finally, the 
prognostic implications related to the presence of myocardial 
fibrosis will be analysed, with CMR providing a unique imag-
ing-based “histology in vivo”.

Normal anatomy, variants and related clinical 
implications
The aortic valve (AV) is a trifoliate structure supported by a 
fibrous skeleton, linked with the anterior leaflet of the mitral 
valve. The three valve leaflets (left, right and non-coronary), or 
cusps, are thin and symmetric flaps of fibrous tissue that open 
uniformly, pushing into their respective sinuses of Valsalva (SV) 
during systole. The aortic root is a complex structure, schemat-
ically outlined with three parallel virtual rings (sino-tubular 
junction, ventricular-arterial junction and basal attachment 
of AV leaflets) and one crown shaped line with three contour 
bumps (representing the aortic bulb with SV).14 Each cusp is 
anchored to the aortic wall by the outward semicircular edges. 
The double free edge is suspended within the aortic lumen 
during the systole, whereas it is pushed back by retrograde aortic 
flow. Vortices generated in the SV during diastole play a role in 
the valve mechanics by relieving abnormal stress on aortic leaf-
lets and facilitating smooth valve closure.15 The joining points 
between the valve cusp attachments and the annulus are called 
commissures.

The normal tricuspid morphology is easily recognized by the 
so-called “Mercedes sign” (three-pointed star) on cineMR 
images obtained on axial planes passing through the aortic bulb.

Echocardiography is generally sufficient to assess AV 
morphology; however, in the case of poor acoustic window or 
unclear morphology, CMR is indicated to provide a detailed 
assessment of valve and root anatomy.4

The most common anatomical abnormalities of the AV are the 
numeric variants of the leaflets and the fusion of the commis-
sures (Figure 1).

The unicuspid variant is rare (0.02% of general population) and is 
frequently associated with early severe aortic stenosis occurring 
in infancy or childhood and with ascending aortic dilatation.16 
Unicuspid AV may be classified into a unicommissural form, 
which has an eccentric loophole-shaped orifice, and an acom-
missural form with a central orifice similar to a diaphragm.17

Biscuspid aortic valve (BAV) is the most common congenital 
heart disease (1–2% of the population, familial in 9% of cases)18 
and is increasingly recognized as a complex and heterogeneous 
clinical entity; it is frequently associated with other congenital 
cardiovascular abnormalities (coartaction, supra- or subvalvar 
aortic stenosis, ventricular septal defect) or genetics disorders, 
such as Marfan’s syndrome and Turner syndrome.18,19 BAV is 
commonly complicated by valvular stenosis (51% of cases), 
aortic regurgitation (17%) or mixed lesions (9%).20 BAV may be 
characterized by two specular leaflets with two SV or it can result 
from the congenital fusion of two leaflets. The most common 
type is due to the fusion of the right and left coronary leaflets 

Figure 1. Normal aortic valve and congenital variants. Comparison between “on valve plane” cine-MR images and schemes of valve 
anatomy (bottom). A normal tricuspid aortic valve (A, B), unicuspid unicommissural valve (C, D), bicuspid valve due to the con-
genital fusion of right coronary and non-coronary cusps (E, F) and a quadricuspid valve with incomplete closure of the valvular 
orifice during diastolic phase (G, H) are shown. (G, Courtesy of Prof Guido Ligabue).
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(RL-BAV type, 60% of cases), followed in prevalence by the 
fusion between the non-coronary and right coronary cusps with 
a right-left leaflet orientation (12% of cases).21

Dilatation of SV or ascending aorta is frequently reported in 
patients with BAV, with a prevalence ranging from 20 to 84%.22 
Serial evaluation of the size and morphology of the aortic 
sinuses and ascending aorta is recommended in patients with 
a bicuspid aortic valve and an aortic diameter greater than 4.0 
cm, with the examination interval determined by the degree 
and rate of progression of the aortic dilatation, and by family 
history.4

A well-established association between BAV phenotype and 
an aortic enlargement independent of valve function has been 
extensively demonstrated 23  and there has been growing interest 
in exploring the relationships between specific anatomy, down-
stream flow pattern and pathophysiology of aortic dilatation by 
using the novel four-dimensional (4D) flow CMRI.24 The altered 
valve opening confers the typical “fish mouthed” appearance to 
the valve opening and modifies the aortic hemodynamics, by 
distorting the LV outflow, with an eccentric jet directed towards 
the mid-ascending aortic wall, resulting in an increased localized 
wall shear stress.24

Nowadays, the only considered quantitative criterion predicting 
aortic dissection in BAV is the diameter and the 2017 AHA/ACC 
report on Appropriate Use Criteria for Multimodality Imaging 
recommend a close surveillance (<1 year, including CMR) in 
patients with BAV and aortic diameters greater than 4.5 or 4.0 
cm with a rapid rate of aortic diameter change or family history 
of aortic dissection.5

It is still controversial, if specific BAV phenotypes are more asso-
ciated with aneurysmal dilatation and increased risk of aortic 
dissection 23 , and long-term risk prediction, based on different 
phenotypes of BAV, could be of great benefit in tailoring indi-
vidual follow-up programme or preventive management in the 
future.

Quadricuspid aortic valves are extremely rare variants (0.01% 
at autopsy), generally associated with abnormal valve function 
(84% of cases, 75% of which have aortic regurgitation).25

AoRtic vAlve PAtholoGy
Aortic valve stenosis
Aortic stenosis (AS) is defined as the obstruction of the left 
ventricular outflow tract (LVOT) caused by valve disease.26 
The prevalence of AS in the population aged 65 years or older 
is approximately 2–9% and the survival rate, without repair, is 
50% at 10 years.27,28 According to the AHA/ACC classification, 
the severity of aortic stenosis can be divided into four stages: A 
(at risk of AS), B (progressive AS), C (asymptomatic, severe AS) 
and D (symptomatic, severe AS).4 Each of these stages is based 
on valve anatomy (planimetry), valve hemodynamics, hemody-
namic consequences on the LV and symptoms. Clinical grading 
of AS is currently performed non-invasively by Doppler trans-
thoracic echocardiography through measurement of the aortic 

peak velocity (Vpeak), mean transaortic pressure gradient, and 
the effective aortic valve area (AVA).

Severe AS is defined as peak velocity higher than 4.0 m s–1, corre-
sponding to a mean aortic valve gradient of 40 mmHg. Although 
AVA is not strictly included in the definition, an area <1.0 cm2 is 
considered pathological.2,4

Valve planimetry can be assessed by different techniques with 
various approaches, including TTE (indirectly through conti-
nuity equation), transesophageal echocardiography (TEE) and 
CT angiography (CTA) (direct planimetry), and invasive coro-
nary angiography (ICA) (Gorlin formula).

Nevertheless, all of them present some drawbacks, such as poor 
acoustic windows (TTE, TEE), invasiveness (ICA), radiation 
exposure (ICA, CTA) and an indirect measurement (TTE and 
ICA).29

CMR evaluation is indicated mainly in cases of inappropriate 
acoustic windows, which occurs in up to 30% of cases,30 and 
complex valve anatomy.4,5 Two methods have been described for 
AVA measurement with CMR; direct planimetry and the conti-
nuity equation with good agreement between these two methods 
(correlation: R2 = 0.86, p < 0.0001).31

Direct planimetry is performed by manually tracing the internal 
leaflet borders on CineMR images in the aortic valve plane 
during the opening peak,32 which is operator-dependent and 
hence prone to measurement errors in severe or heavily calcified 
valves, because of the low signal of calcifications and turbulences 
close to the leaflet borders, and irregularity of the stenotic orifice 
shape. Continuity equation method offers an indirect AVA esti-
mation, based on the principle of conservation of the mass, 
which uses the quantitative analysis of the transvalvular aortic 
flows through phase contrast sequences (PC-MRI) acquired in 
the valve plane (AVA = stroke vol/velocity–time integral at the 
aortic flow velocity peak).33

Multimodality comparisons showed no differences between AVA 
measurements obtained by CMR versus 2D TTE, three-dimen-
sional (3D) TTE, Doppler echocardiography, TEE and ICA29,34,35 
whereas both 2D TTE and ICA underestimated valve annulus 
dimensions compared to CMR (p < 0.01).29 Moreover, the sensi-
tivity and specificity of CMR to detect AVA ≤0.80 cm2, compared 
with catheterization, were 78 and 89%, which are higher than 
TEE (70 and 70%) and TTE (74 and 67%),34 respectively.

The degree of valve stenosis can be evaluated by two techniques: 
direct visualization of the jet (qualitative) and PC-MRI (quanti-
tative).36 The qualitative method is performed by observing the 
flow void artifact seen as a jet in the aortic root during systole on 
cineMR images, caused by the acceleration of blood flow through 
the valve orifice on LVOT view36 (Figure 2).

CineMR imaging is also crucial to determine the geometry/direc-
tion of the jet and the exact location where the flow acceleration 
artifact originates, which may differentiate between valvular and 
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subvalvular stenosis32 (Figure  3). On the other hand, PC-MRI 
enables to encoding the blood flow signal as velocity maps and 
to quantify functional parameters (e.g. flow, mean and peak 
velocity) and pressure gradient37 (Figure 4).

Flow analysis performed by PC-MRI typically utilizes a mono-
directional 2D ECG-triggered acquisition, able to quantify 
velocities in a single direction perpendicular to the acquired 
plane (“through-plane” velocity encoding orientation). However, 
this approach requires proper slice orientation that should be 
exactly perpendicular to the AS jet direction and located at the 
level of the opening of the valve orifice (not at the level passing 
through the valvular annulus), which commonly is the point 
of maximum flow acceleration, otherwise Vpeak is underesti-
mated.37 Therefore, an appropriate planning of the acquisition 
planes by the operator with respect to the valve leaflets and the 
stenotic jet is crucial for a precise flow velocity measurement, 
and it could be challenging in valvular abnormalities associated 
with multiple or eccentric jets.38 Commonly, in the presence of 
severe AS, the markedly accelerated flow requires additional flow 

images after increasing Venc (from 200 to 500 cm s–1) in order 
to avoid velocity aliasing artifacts. The recent improvements 
obtained with the 3D PC-MRI sequences (4D Flow) not only 
allow to orientate the three-dimensional geometric position of 
the sampling plan during post-processing, but also to adapt the 
plan orientation in each timeframe, as the jet direction may vary 
throughout the cardiac cycle.38

PC-MRI shows a high degree of correlation (Pearson’s correla-
tion coefficient from 0.61 to 0.81) regarding flow derived 
parameter (mean and peak velocity and gradient, AVA) with 
respect to TTE38 and a good correlation with invasive pressure 
measurements.37

Software-assisted valve tracking algorithms offered by some 
vendors are promising to further improve the accuracy of flow 
measurement using 3D PC-MRI.

CMR is considered the gold-standard for studying LV func-
tion39–41 and it showed a higher interstudy reproducibility than 

Figure 2. CMR (top) and CCTA (bottom) from a 74-year-old female with severe calcified aortic stenosis. On cine-MR “on-valve 
plane” and three-chamber views acquired in systolic phase (A, B) valve calcifications appear as hypointense thicknening of the 
luminal edge of the cusps (A, arrow); severe stenosis is demonstrated by markedly reduced opening of the valve orifice (A) and 
systolic jet on downstream aortic flow on three chamber view (B, arrow). The corresponding CCTA images show diffuse valvular 
calcifications (black arrow) on multiplanar reformatted “valve plane” (C) and three-chamber images(D) CCTA, coronary CT angi-
ography; CMR, cardiovascular magnetic resonance.
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echocardiography for LV mass (2.8–4.8% vs 11.6–15.7%, p < 
0.001), LV ejection fraction (LVEF)(2.4 – 7.3% vs 8.6 – 19.4%, 
p < 0.001) and LV end-systolic volume (4.4–9.2% vs 13.720.3%; 
p < 0.001).42 Additionally, the assessment of myocardial strain 
by CMR feature tracking, beyond traditional functional param-
eters, allows an accurate analysis of the myocardial deforma-
tion,43 resulting in a earlier and more sensitive recognition of LV 
contractile dysfunction with respect to LVEF.44

Furthermore, in considering the valve defect and the AS-related 
ascending aortopathy as a single “aortic stenosis complex”,45 

CMR has the potential to merge morphological and functional 
valve features with the aortic anatomy and flow hemodynamics,46 
the latter by using 4D Flow imaging, which also enables the iden-
tification of regions of ascending aorta with increased wall shear 
stress.47,48

CMR has the unique capability to evaluate in a “all-in-one tech-
nique” all the principal severity parameters of AS (valve anatomy, 
valve hemodynamics, aortic and LV remodelling) and is able 
to provide pre-repair assessment49,50 and prognostic informa-
tion10,51,52 (see specific sections).

Figure 3. CineMR images acquired on three-chamber (A, B) and on valve (C, D) views, and PC-MRI on valve plane. 46-years-old 
male with valvular stenosis (A, C, E) due to calcified commissure fusion with a raphe (triangle), where the flow-accelerated artifact 
is eccentric (arrow) and generated at the valve plane; the commissure makes the valve functionally bicuspid with the “fish mouth” 
opening on PC-MRI (E). 22-years-old female with sub-valvular stenosis (B, D, F) caused by a congenital diaphragm anchored to 
the septum: the artifact originates at the level of obstruction (arrow); although the valve has a normal tricuspid morphology (D) 
and a “fish mouth” shape of valve flow (F) reflecting the eccentricity of upstream stenosis. PC-MRI, phase contrast MRI.
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Aortic valve regurgitation
Aortic regurgitation (AR) is defined as the diastolic reflux of 
blood from the aorta to the LV, caused by the malcoaptation of 
the aortic leaflets. This condition may depend on primary impair-
ment of valve leaflets, by an alteration of aortic root morphology, 
or both.53

Similar to the scheme used for AS, AR can be classified into 
different stages, based on valve morphology, valve hemody-
namics, severity of LV dilation, LV systolic function, and symp-
toms: stage A includes patients at risk of AR, stage B patients 
with progressive mild-to-moderate AR, stage C severe asymp-
tomatic AR, and stage D symptomatic AR4,5

Correct clinical grading is pivotal to prevent and predict 
morbidity and mortality, with prognosis ranging from excellent, 
in asymptomatic patients with normal LV function,54 to poor in 
subjects with moderate to severe disease.55

CMR may offer both qualitative and quantitative analysis of 
AR and LV response to volume overload. AR severity can be 
approximately assessed on cineMR images using long axis 
LVOT views, where it is represented by the typical signal void 
of the regurgitation jet, backflowing into the ventricular lumen 
during diastole, which in some cases may impact on the ante-
rior leaflet of the mitral valve, preventing its correct opening 

and exacerbating the diastolic dysfunction. Visually, a wide jet 
at the origin on the valve plane suggests more severe regurgita-
tion. However, this technique is prone to many potential errors 
and the size of the jet may be not necessarily correlated to the 
severity of insufficiency, since it is caused by the local acceler-
ation of the flow and does not directly reflect the regurgitant 
volume (RGV).

When precise or serial assessment of RGV is needed, CMR 
can accurately quantify the amount of regurgitation using flow 
mapping and derived values such as regurgitant fraction (RF = 
RGV/forward volume×100%) can be obtained.56

Flow characteristics can be assessed by acquiring the PC-MRI 
slice and quantifying both forward and regurgitant flows per 
cardiac cycle.56

PC-MRI plane should be positioned just below the valve, other-
wise an underestimation of the regurgitation can occur due to a 
number of factors, including through-plane motion of the valve 
plane,56 even though a more reproducible estimation of AR is 
obtained with a plane positioned at the sino-tubular junction. 
Indeed, PC-MRI technique is accurate and robust when the 
regurgitant flow is laminar and the jet is exactly perpendic-
ular to the imaging planes. In some cases, the excessive motion 
of the valve plane may interfere with the RGV measurement; 

Figure 4. MRI images from a 65-year-old male with severe aortic stenosis. Cine-MR images “on valve plane” shows a tricuspid aor-
tic valve with a marked reduction of leaflet opening in systole (A). Aortic valvular area is measured on PC-MRI (B) by contouring 
the luminal edge of leaflets (red contour) and was severely reduced (0.85 mm2). On cineMR images acquired three chamber (C) 
and left outflow (D) views valve stenosis appears as a systolic jet of blood acceleration (flow void artifact) on downstream flow 
(arrows). The velocimetric study of aortic valve conducted by PC-MRI (E) demonstrates a high peak systolic velocity at the center 
of the valve orifice (light turquoise on the colorimetric map, Vpeak: 360 cm s–1), which indirectly represents an elevated gradient 
across the valve, with no regurgitation on the valve flow curve (F). PC-MRI, phase contrast MRI.
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acquisition of multiple PC-MRI planes at different levels may 
increase accuracy.

PC-MRI demonstrated a high precision and reproducibility of 
RGV measurement both in vitro and in vivo57–60 and correlates 
well with the degrees of severity assessed by TEE and ICA.60–62

CMR may also measure the anatomic regurgitant orifice (ARO) 
by manually contouring the internal edge of valve leaflets in 
systole. In particular, Debl et al found a strong correlation of 
ARO with RGV and RF as assessed by CMR (p < 0,001) and 
with invasively evaluated AR at catheterization (p = 0,01).63 
Based on CMR parameter AR may be classified into mild (RF 
<20%), moderate (RF: 20–29%, ARO: 0.3–0.5 cm2) and severe 
(RF ≥30%, ARO ≥ 0.5 cm2), when PC-MRI images are acquired 
at the sino-tubular junction.64 However, there is no unanimous 
consensus about the optimal threshold for classifying severe AR 
by CMR, as other studies demonstrated that a value above 33% 
strongly predicted the need of surgery in 3 years, similarly to the 
value of 50% used in echocardiography.28,65

Severe AR is also considered severe in case of reduced LV func-
tion parameters (LVEF <50 %, LV end-diastolic dimension 
≤70 mm, LV end-systolic dimension ≤50 mm, and indexed 
LV end-systolic dimension <25 mm/m).2,4 Compared to linear 
measurements, LV volumes measured by CMR seems to better 

predict survival and outcome.65 Assessment of LV end-diastolic 
and end-systolic volumes indexed for body surface area should 
be obtained serially,64 because even in asymptomatic patients 
with normal LV function, LV progressive dilatation is a reason-
able indication for surgery.4 Considering the importance of 
annual follow-up in patients with mild to severe AR, in order 
to estimate the progression of the disease, it is important not 
to classify chronic regurgitation as severe only on the basis of a 
single TTE or CMR.

CMR is a robust technique in providing accurate and repro-
ducible assessment of regurgitation and LV response overtime, 
which is crucial to manage this condition characterized by a long 
asymptomatic phase and to guide the optimal timing of surgery.

Mixed aortic valve disease (MAVD)
MAVD is defined as the coexistence of both aortic regurgita-
tion and aortic stenosis, at least of moderate degree of severity66 
(Figure 5). From a pathophysiological point of view, in MAVD the 
ventricle must adapt to accommodate both an elevated afterload 
and an increased stroke volume, resulting in a more pronounced 
LV remodelling.67 Zilberszac et al66 demonstrated that aortic 
valve jet velocity was the single most important independent 
predicting factor for event-free survival. In addition, LV mass 
and prevalence of advanced diastolic dysfunction were higher in 

Figure 5. CMR images from a 66-year-old male with mix stenotic-regurgitant valvular disease. Cine-MR (A, D) and PC-MRI (B, 
E) images acquired “on valve plane” show a tricuspid aortic valve with reduced opening in systole (A, B) and small defect of 
coaptation (D, E) on diastole. Valvular flow is codified as black when anterograde (B) and white when backward (E) on PC-MRI. 
The regurgitant diastolic volume is calculated as the area under the curve of the backward flow on the flow curve (C). Cine-MR 
on three chamber view (F) depicts the impact of the regurgitating diastolic jet on the anterior leaflet of mitral valve, hindering 
the valve opening and accentuating diastolic dysfunction. CMR, cardiovascular magnetic resonance; PC-MRI, phase contrast MRI.
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patients with MAVD with respect to moderate AR, moderate AS 
and severe AS (138 vs 94 g m–2 vs 103v s 123 g m–2, p < 0.02 and 
32 vs 5% vs 12 vs 22%, p < 0.03, respectively).68 Only a few studies 
have been designed to specifically address the role of CMR in 
MAVD, even though it can provide an accurate and independent 
evaluation of the different component of the disease.56 A modi-
fication of PC-MRI is recommended for MAVD assessment. 
Indeed, two axial planes are required on the LVOT, the first just 
below the aortic valve for measuring aortic regurgitation and the 
second at the tip of valve leaflets to quantify peak velocity.69 In 
addition, while diastolic dysfunction appeared to be the main 
alteration leading to the onset of symptoms,67 CMR myocardial 
strain analysis could be an additional tool for early recognition of 
ventricular contractile impairment.

PRe-PRoceDuRAl PlAnninG
Before surgical aortic valve repair (SAVR)
SAVR is indicated in low-risk patients with severe AS (class D), 
in AR patients with stages C2 and D or with class C/D under-
going cardiac surgery for other reasons.4 The choice between 
bioprosthetic or mechanical valves depends on patient’s age and 
life expectancy; in particular, mechanical valves have greater 
durability (20–30 years) than the bioprosthetic ones (10–15 
years) but they require lifelong anticoagulation therapy.70

The role of CMR in SAVR planning is growing since it allows to 
precisely assess the size of the aortic root, valve morphology, the 
associated aortic abnormalities, surgical access and relationships 
of aortic root with the surrounding structures. In addition, the 
LV evaluation offered by CMR allows a more accurate estimate of 
the degree of hypertrophy, LV function and myocardial viability, 
which is particularly useful for potential candidates of a SAVR 
and coronary bypass combined procedure. A more important 
role of CMR in the selection of patients for valve replacement 
would be helpful for recognizing those who would benefit from 
AVD correction, even in terms of clinical outcome and LV 
reverse remodelling.10,71

However, in clinical practise, the use of CMR in pre-surgical 
planning is still marginal in many centers, a secondary choice 
compared to echocardiogram and CTA, generally limited to 
selected cases (young patients or those with renal failure).

Before TAVI
TAVI is a minimally invasive alternative to conventional SAVR 
based on the transcatheter deployment of specific bioprosthetic 
valves using a transaortic, transfemoral or transapical approach.

The procedure has shown to improve quality of life and to prolong 
short- and mid-term survival of high risk individuals (non-eli-
gible for SAVR), becoming a widely accepted therapeutic option 
which has been integrated in the most recent clinical guidelines 
for management of AVD.4,5

TAVI is specifically recommended for patients with severe AS 
(class D) and a high surgical risk (STS score >8–10% or Euro-
SCORE II > 15–20%).4,5 More recently, the SURTAVI6 and 
PARTNER 2 trials7 showed that TAVI is comparable to surgery 

even among intermediate surgical risk individuals, with no 
statistically significant differences in death or disabling stroke 
risk at 24 months (respectively 12.6 vs 14.0% in SURTAVI trial 
and 19.1 vs 21.1% in PARTENER II trial, respectively). For these 
reasons, a steep increase in the number of TAVI procedures may 
soon be expected, accompanied by a rising demand of pre- and 
post-TAVI imaging examinations.72

Pre-TAVI imaging is routinely performed for planning the 
preffered anatomic access and selecting the type and the size of 
implanted prosthesis73 (Figure 6).

CCTA is considered as gold-standard73 because of its wide avail-
ability, ease of use and comprehensiveness, covering the whole 
spectrum of required anatomical information, from the evalu-
ation of the annular and aortic root to imaging of the coronary 
arteries and peripheral vascular vessels.

However, TAVI candidates, may be ineligible to CCTA in up to 
20% of cases due to the presence of coexisting borderline renal 
function, in the context of which the use of an additional iodine 
dose (preceding the intervention) should be avoided to reduce 
the cumulative risk of acute kidney injury.74

In such cases, CMR may be a valid alternative to CCTA49,73 using 
non-contrast enhanced techniques, like the 3D-SSFP ECG-gated 
navigator-echo (so-called “whole heart”) for thoracic aorta and 
the various available flow-enhanced or flow-independent based 
MR angiography sequences for the evaluation of the aorto-iliac 
arteries.72,75,76

Anatomical region Detailed info
Thoracic Aortic valve morphology, LV 

geometry, annular size, aortic root 
measurement, coronary arteries 
height, aortic root angulation, and 
ascending aorta dimension.

Peripheral access Superficial femoral arteries anatomy 
and guidewire/catheter pathway to 
the valve.

LV, left ventricular;

The method has shown an excellent correlation with CCTA for 
all the relevant pre-procedural parameters regarding aortic root 
including annulus size, aortic leaflet length, and coronary artery 
ostia height. It systemically underestimates the amount of leaflet 
calcifications which have been demonstrated to be a negative 
predictor of post-procedural paravalvular leak, particularly when 
located in the so-called “landing zone” valvular area, where the 
prosthetic device is attached although calcium estimation is not a 
key parameter for selection.76 An additional strength of CMR, is 
the excellent temporal resolution of the method which allows to 
obtain high quality motion-free images of the aortic root even in 
patients with higher heart rates, suggesting its possible utilisation 
in individuals that respond poorly to beta blockers76

On cross-sectional imaging, the shape of aortic root is circular at the 
level of the sino-tubular junction, but take a more clover-leaf shape 
at the level of the aortic sinus, often becoming oval to ellipsoid at 
the annular plane and the LVOT. In heavily calcified anatomy with 
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severe aortic stenosis/incompetence, the cross-sectional shape can 
be even more complex and not comparable to geometric assump-
tions. Precise measurements of aortic dimensions is crucial for 
procedural success, since a small differences in the choice of a 
measurement plane in the aortic root and choice of start–end point 
of the selected diameter can produce notably different results influ-
encing the choice of endograft size. Therefore, high-quality images 
are essential in order to provide reliable measurements.

Finally, still favoring CMR utilization in pre-TAVI planning, is 
the incremental prognostic value of this method, which derives 
from its unique tissue characterization capabilities, making it 
suitable for postoperative outcome prediction (see dedicated 
paragraph).

Post-PRoceDuRAl iMAGinG
The sternal wire and the mechanical valve prostheses are generally 
MR compatible, yet the magnetic field inhomogeneities produced 
by the metal component of the devices (particularly for mechanical 
prostheses) may decrease image quality.77 Therefore, the ability of 
CMR to detect and recognize valve complications depends on the 
type of implanted device. Biological prostheses include homografts, 
pulmonary autografts, and xenografts (stentless and stented), 
whose neo-leaflets are generally made of porcine heart valves or 
bovine pericardium and well assessed by CMR (Figure 7).77 The 
assessment of AV is not recommended for mechanical prostheses 
(including those used in TAVI) due to the significant susceptibility 
artifacts caused by the prosthetic material, which prevent visualiza-
tion of the valvular and paravalvular regions (Figure 7).77

Although TTE has an undisputed role in the post-SAVR 
follow-up, CMR could play a pivotal role in the evaluation of 

Figure 6. TAVI planning. Based on cineMR imaging of left ventricular outflow tract and aortic root (A) and three-chambers view 
(E). The precise measurements of the aortic root diameters are performed by acquiring a stack of axial plane cine images perpen-
dicular to the longitudinal axis of the vessel at the sino-tubular junction (B), sinuses of Valsalva (C) and valve annulus (D) levels. 
Dedicated oblique cineMR plane are acquired in order to measure the distance between the coronary orifices and the valve plane 
(F left coronary artery, G right coronary artery, respectively). MR angiography of aorta and femoraliliac axes (H) is also performed 
to assess the vascular access of the introducer system. TAVI, transcatheter aortic valve implantation.

http://birpublications.org/bjr


10 of 17 birpublications.org/bjr Br J Radiol;91:20170868

BJR  De Rubeis et al

short- and long-term effects on valve function and ventricular 
remodelling, when an adequate image quality is obtained.

CineMR is particularly useful and accurate in quantifying the 
effective orifice area, which is essential to recognize prosthe-
sis–patient mismatch, and to visualize the incomplete opening 
or closing of one or more of the prosthetic cusps, sometimes 
identifying the underlying cause (e.g. pannus ingrowth or 
thrombosis).77

As with native aortic valves, PC-MRI is able to measure trans-
prosthetic blood flow velocities and is able to quantify peak 
transprosthetic velocity, tranvalvular gradient and transvalvular 
backflow in cases of residual or recurrent valve regurgitation.77

CMR may also accurately assess the LV reverse remodelling 
and the mass regression occuring immediately after SAVR, 
predictiving good long-term prognosis, or over time during 
follow-up.78 Interestingly, recent evidence revealed a gender 
difference in AS-related hypertrophy (males are associated with 
greater degree of hypertrophy) and on remodeling response 
(more pronounced in females).79

CMR plays also a role in the detection and follow-up of SAVR 
complications, including paravalvular leakage (PVL), dehis-
cence, obstruction, structural failure, aortic dissection, pseudo-
aneurysm formation (Figure  8), endocarditis and hemolysis.80 
Apart from hemolysis, CMR is able to characterize all these 
potential adverse events.

Figure 7. CineMR images acquired on three chamber and LVOT views acquired in systolic (middle row) and diastolic (bottom row) 
phases of patients subject to valve replacement with mechanical (A, D, G) and biological prosthesis (B, E, H), and valve sparing 
aortic root replacement (C, F, I). Assessment of mechanic prosthesis is characterised by remarkable artifacts of magnetic susc-
ettibility due to the high metallic content, which makes the function of prosthetic components poorly evaluable. The biological 
prosthesis has a peripheral metal ring with an absence of signal, whereas the leaflets are clearly assessable. Aortic surgery with 
valve sparing technique does not alter the visualization of the valve cusps. LVOT, left ventricular outflow tract.
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PVL refers to regurgitation between the prosthetic sewing ring 
and the surrounding anchoring tissue and is a serious SAVR 
complication.81 Paradoxically, a minimal PVL is desired and 
required to aid device closure during diastole.81 However, PVL 
can reveal dehiscence and malposition of the valve. At CMR 
imaging, PVL appears as a dephasing artifact in the three 
chamber view and can be quantified using the PC-MRI, with 
a plane positioned just below the valve.82 The PARTNER trial 
found out that paravalvular leak was more frequent in TAVI than 
in SAVR (6.8% vs 1.9%),83 although in other studies paravalvular 
regurgitation in SAVR occurred in 10 to 48% of patients.78

Dehiscence is the spontaneous breakdown of the surgical sutures 
sewed between the prosthetic valve and the annulus and it may 
represent a life threatening condition. Its leading cause is infec-
tive endocarditis, usually extending into nearby soft tissues.84 
The most common CMR findings include the presence of PVL 
and of a gap between the prosthetic valve and the annulus, using 
the cine-MR sequences through an “on annulus” plane.80

The implanted valve can be obstructed by thrombosis (prevalence 
0.3–1%) and pannus formation (incidence 0.2–4.5% patients/
years).80 The differential diagnosis cannot be performed with 
the echocardiographic imaging modalities (TOE and TTE);85 
conversely, CT attenuation is able to differentiate a thrombus 
(hypodense structure adhering to the prosthesis) from a pannus 
(its attenuation should be similar to that of the ventricular 
septum).80 Although only a few CMR studies have addressed 
this issue, its intrinsic ability of tissue characterization may add 
crucial information on implanted valve obstruction.

The prevalence of bioprosthetic valve structural failure ranges 
from 30% for heterograft valves to 10–20% for homograft valves 
within 10–15 years, whereas the incidence of this complication 
for mechanical valves is only 0.01–0.05% per patient/year.80

Stanford type A aortic dissection occurs in approximately 0.6% 
of post-SAVR patients86 but it appears to be more related to the 
intrinsic aortic wall abnormalities (aortic wall fragility, aortic 
regurgitation, and aortic wall thinning) rather than to the 
surgical procedure itself.80 According to Nienaber et al,87 MRI 
showed 100% sensitivity, specificity, accuracy, positive predictive 
value and negative predictive value.

Pseudoaneurysm formation is 27 times more common in 
composite graft (7–25% of the patients), where the aortic root is 
replaced by an mechanical or biological valve pre-mounted on 
an tube graft, with respect to aortic valve replacement alone.88 
In case of clinical suspicion, a prompt TTE evaluation is manda-
tory. CMR is helpful in the differential diagnosis between pseu-
doaneurysm and other pathological diverticular lesions and for 
assessing the patency of coronary ostia.80

Emerging applications of CMR include the investigation of the 
relationship between specific surgical techniques and resulting 
aortic hemodynamics, which could help to customize the inter-
vention to the individual anatomy.89

vAlvulAR MAsses AnD PseuDoMAsses
Aortic valvular masses are uncommon and include benign and 
malignant disease and pseudomasses like vegetations (Figure 9), 
paravalvular abscesses (Figure  10) and pseudoaneurysms 
(Figure 8).

Neoplastic heart disease is rare, with a prevalence ranging 
from 0.0017 to 0.33.90 Secondary involvement from a cardiac 
disease is 20–40 times more frequent than primary malig-
nant lesion.90–92 However, cardiac neoplasms are mostly 
benign (75% of cases).90,91 Papillary fibroelastoma is the most 
common cause of aortic valve tumor, accounting for 10% of 
the benign cardiac tumors. Other neoplasms may involve the 

Figure 8. Cine-MR images acquired on outflow tract plane (A) and valve planes (B) from a 26-year-old male with a history of 
surgical replacement of aortic valve with a mechanic prosthesis who developed a subvalvular pseudoaneurism (*) from suture 
dehiscence (arrow), extending in proximity of the atrioventricular junction and the right coronary ostium.
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aortic valvular apparatus such as myxoma, hamartoma, lipoma, 
metastasis.90,93

Generally, the first imaging of choice in the diagnosis and char-
acterization of valvular masses is echocardiography. However, 
despite its technical limitations, CMR may help to further eval-
uate valvular masses. The sequences used to assess the valve are 
indicated in the Expert Consensus Document on CMR,94 and 
they would include cine-MR sequence on the plane of the valve 
to assess mass mobility and 3D SSFP with a T2 preparatory pulse 
and fat suppression on the plane of the valve, to improve spatial 
resolution.

CMR may be helpful in distinguishing benign from malignant 
neoplasms, as shown by Hoffman et al. (area under receiver oper-
ator curve 0.90).95 CMR can easily evaluate important features, 
such as location, tissue inhomogeneity, infiltration of adjacent 
compartments, tumor size, presence of pericardial or pleural 
effusion, and contrast enhancement96 An important limitation 
of CMR compared to CCTA is the inability to study calcifications 
of cardiac masses. Nonetheless, it gives important information 

about myocardial abnormalities and allows imaging in multiple 
planes and providing information about functional impairment.

Moreover, CMR may be helpful in those challenging cases, when 
the risk of misdiagnosis caused by the sub optimal imaging 
quality at echocardiographic study, makes difficult to differentiate 
between vegetation and tumor.97 Indeed, CMR performed better 
in the imaging evaluation of cardiac masses over a combination 
of TTE and TEE, discerning between masses and thrombi in 75% 
cases compared with 29% cases of echocardiography.98 However, 
aortic endocarditis, despite being more common than aortic 
valve neoplasm, remains a sporadic disease (median incidence 
range of infective endocarditis from 1993 to 2003; 0.3–22.4%).99

Concerning other rare pseudolesions, such as pseudoaneurysms 
or valvular abscesses, CMR may be helpful in assessing the extent 
of the disease. Both pathologies are related to post-SAVR infec-
tion. Infective endocarditis may develop from a paravalvular 
abscess or a cavity contiguous with a cardiac chamber (pseu-
doaneurysm). CMR may aid to characterize their localization 
and extension; particularly, cine-MR may evaluate the presence 
of communication between the abscess cavity and the cardiac 
chambers. Finally, it is a non-invasive and accurate exam in the 
follow-up of patients with perivalvular extension of infection.

PRoGnostic iMPlicAtion oF cMR: FibRosis 
equAtes with PRoGnosis
Myocardial fibrosis is an end-stage manifestation of aortic 
valvular pathology characterized by the accumulation of extra-
cellular matrix proteins causing an expansion of the interstitial 
space, with subsequent impairment of the ventricular proper-
ties and progressive systo–diastolic dysfunction.13 The process 
is known to be complex and multifactorial, depending on the 
equilibrium between myocyte growth and death, with an over-
expression of profibrotic cytokines stimulating fibroblasts activa-
tion. In AVDs, fibrotic remodelling is triggered by the volume or 
pressure overload.

The model of AS has shown that tissue fibrosis occurs in a late 
stage of the disease, following the initial myocyte hypertrophy 
which triggers the activation of myocardial fibroblasts, leading 
to an inflammatory response that controls the turnover of 
collagen, with the development of both diffuse interstitial and 
focal replacement fibrosis.100 In the AR disease tissue, fibrosis 
occurs during the initial phase of adaptive hypertrophy, in which 
more elastic forms of collagen are accumulated to maintain an 
adequate ventricular compliance being gradually replaced, in late 
stages, by inelastic matrix causing progressive heart failure.11,101

Regardless of the underlying mechanisms, tissue fibrosis is a 
major prognostic determinant in AVD, causing a damage to the 
structural integrity of the heart, with loss of its electrical conduc-
tive properties.13 These histologic changes in myocardial tissue 
are mostly irreversible and results in sub-optimal outcomes after 
valvular replacement.102

CMR is the gold-standard for non-invasive assessment of myocar-
dial fibrosis, which can be detected directly with late-gadolinium 

Figure 9. CMR from a 67-year-old male with an aortic valve 
vegetation, secondary to endocarditis. CineMR “on valve 
plane” (A) and outflow tract plane images (B) show a hypoin-
tense vegetation attached to the aortic side of the non-coro-
nary valve leaflet (white arrow).

Figure 10. CMR and CCTA from a 58-year-old male with 
valve endocarditis complicated by paravalvular abscess. On 
Cine-MR “on valve plane” (A) and three-chamber (B) views 
the aortic valve appears diffusely thicked and narrowed. Par-
avalvular abscesses appear as little saccular collections local-
ized between the sinuses of Valsalva (arrows), also detectable 
on the corresponding CCTA reformatted image(C). CCTA, 
coronary CT angiography; CMR, cardiovascular magnetic res-
onance.
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conclusion
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