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Abstract

In this work we extend a recent kinetic traffic model [32] to the case of more than one class
of vehicles, each of which is characterized by few different microscopic features. We consider
a Boltzmann-like framework with only binary interactions, which take place among vehicles
belonging to the various classes. Our approach differs from the multi-population kinetic
model proposed in [31] because here we assume continuous velocity spaces and we introduce
a parameter describing the physical velocity jump performed by a vehicle that increases its
speed after an interaction. The model is discretized in order to investigate numerically the
structure of the resulting fundamental diagrams and the system of equations is analyzed by
studying well posedness. Moreover, we compute the equilibria of the discretized model and
we show that the exact asymptotic kinetic distributions can be obtained with a small number
of velocities in the grid. Finally, we introduce a new probability law in order to attenuate the
sharp capacity drop occurring in the diagrams of traffic.

Keywords Multispecies models, Boltzmann-like kinetic models, discrete velocity models, mul-
tivalued diagrams, two-phases diagrams

MSC 35Q20, 65Z05, 90B20

1 Introduction

In [31] we introduced a Boltzmann-like kinetic model for traffic flow, which draws inspiration from
the ideas presented in [2] for macroscopic models, in order to take into account the heterogeneous
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composition of the flow of vehicles on the road. This aspect, which is rather neglected in the
literature, is important to obtain a richer description of the macroscopic behavior of traffic flow.
In fact, we showed that the model is able to recover the whole structure of the diagrams relating
the macroscopic flux and speed to the vehicle density in homogeneous space conditions and which
represents a basic tool to study traffic problems.

In particular, the multi-population model [31] provides multivalued diagrams reproducing two-
phases of traffic which are computed from moments of equilibrium solutions of the kinetic equa-
tions. As a matter of fact, any kinetic model does not require an a priori link between the local
density of traffic and the macroscopic speed, as it is done in standard macroscopic traffic models,
see e.g. the classical works [24, 33], or the reviews [28, 34]. The diagrams provided by the model
are characterized by a sharp phase transition between the free and the congested phases of traffic,
with a capacity drop across the phase transition. Moreover, at low densities, there is a small
dispersion of the flux values, which increase nearly linearly with respect to the density. Instead, at
high densities, the model reproduces naturally the scattered data usually observed in the experi-
mental diagrams of traffic by taking into account the macroscopic variability of the flux and mean
speed at equilibrium due to the heterogeneous composition of the traffic “mixture”. This result is
reached without invoking further elements of microscopic randomness of the system: for example
in [7] the explanation for the phase transition appeals to the stochasticity of the drivers’ behavior
and to the consequent variability of the microscopic speeds at equilibrium. In the literature, a
variety of multiphase models, also at the macroscopic and at the microscopic scales, have been
introduced in order to reflect the features of traffic, for a review see [4] and references therein.

This work can be seen as a natural sequel of [31] because we revisit and refine the model by
extending the construction introduced in [32] to the case of traffic mixtures. We will consider
more than one class of vehicles, characterized by a few parameters accounting for the microscopic
differences which allow one to distinguish two (or more) types of vehicles. Here, these parameters
will be the typical length and the maximum speed, and we will introduce a kinetic distribution
function for each class of vehicles. We stress that the heterogeneity of traffic is not only described
by introducing two or more classes with different physical features, but also by considering two
or more types of drivers with different behavioral attributes according to the maximum velocity
they intend to keep, as in [2, 23, 26] for macroscopic models.

However, this approach differs from the model proposed in [31] because the latter is based on a
lattice of admissible microscopic speeds and the output of an interaction depends on the number
of velocities chosen in the lattice. Here, instead, using the framework discussed in [32], we will
consider continuous and bounded velocity spaces and we will introduce a parameter proportional
to the actual acceleration of a vehicle in order to describe the physical velocity jump performed
by vehicles when they increase their speed as a result of an interaction. Clearly, this parameter
may depend on the mechanical characteristics of a vehicle, but we will suppose that it is fixed.
This choice preserves the quantized structure of the asymptotic functions, already observed in [32]
for the single population model. In fact, Theorem 6 in Section 3.2 shows that the asymptotic
kinetic distribution approaches a combination of delta functions, centered in the velocities which
are proportional to the fixed parameter.

The purpose of the kinetic approach is to obtain an aggregate representation of the distribution
of vehicles on the road, thus it is not based on single particles as the microscopic “follow the
leader” models [35], and it allows one to recover the macroscopic behavior of car flow by means
of a detailed modeling of the microscopic interactions. As in any Boltzmann-like kinetic model,
here the relaxation of the distribution functions in time is due to the collision operator, which
describes the acceleration and the slowing down interactions among vehicles. Notice that in the
first kinetic traffic models [29, 30] the collision term accounted only for slowing down interactions
treating the acceleration by means of a relaxation term, e.g. depending on the desired speed of
the drivers as in [27]. Instead, later, models with a kinetic description also for the acceleration
were developed. In the present framework we will consider only binary interactions and, since
there is more than one population of vehicles, we will suppose that the interactions take place
also among vehicles belonging to different classes. Therefore, as in standard kinetic models for gas
mixtures [1, 5, 10, 11], the collision term will be split in the sum of many collision terms. Each
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one will be characterized by a probability density which allows one to assign a post-interaction
speed in a non-deterministic way. The probability of gaining or loosing a speed will depend on the
local mean traffic conditions. We suppose also that the microscopic interaction rules, prescribing
a post-interaction speed, do not depend on the type of vehicle which is considered.

For references on other kinetic approaches studied in the literature, see e.g. [13, 14] where both
the acceleration and the slowing down interactions are modeled with a Vlasov-type relaxation
towards a desired speed. Kinetic theory is also used to model multilane traffic flow [12, 19, 20, 25,
3], flows on networks [8], inhomogeneous space problems with non local interactions [18], control
problems [15] and safety aspects in vehicular traffic [9]. For a review on kinetic traffic models,
see [21].

The paper is organized as follows. In Section 2 we introduce the general framework of the
continuous-velocity multi-population model, then we discuss the modeling of the probability dens-
ity and we prove an indifferentiability principle. In Section 3 we discretize the model in order to
find the asymptotic behavior of the distribution functions. Then we analyze the resulting system
of ordinary differential equations by studying well posedness and the asymptotic kinetic distribu-
tion for the case of two populations. In Section 4 we show the macroscopic diagrams of traffic
provided by the model with three classes of vehicles. We also discuss the impact that different
probabilities of achieving the maximum speed in an interaction have on the sharp capacity drop
observed at the transition between free and congested traffic flow. In Section 5 we propose some
final comments and perspectives. Finally, we end in Appendix A with the explicit computation of
the terms resulting from the discretization of the collision operators and in Appendix B with the
analytical expression of the equilibria for the case of two populations.

2 A multi-population kinetic model

In this section we present the general form of a kinetic model for vehicular traffic with a new
structure accounting for the heterogeneous composition of the traffic flow on the road. Next, we
derive a simplified model based on particular choices made on the microscopic interaction rules.
This model is a generalization of [32] to the case of a multi-population framework. Therefore,
unlike [31], in this work we suppose that each class of vehicles (population) admits a continuous
space of admissible velocities and we introduce a parameter describing the physical acceleration
of each vehicle. Our approach differs from standard kinetic models in that we consider more than
one kinetic distribution function. Each one refers to a class of vehicles characterized by precise
physical features, in this case the maximum speed and the typical length of a vehicle.

We will focus only on the space homogeneous case, because we want to investigate the structure
of the collision term, and of the resulting equilibrium distributions which allow one to obtain the
fundamental diagrams of traffic. From now on, we adopt a compact notation, which makes use of
an index p, to label various quantities referred to the different classes of vehicles. Thus, let

fp = fp(t, v) : R+ × Vp → R+

be the kinetic distribution function of the p-th class of vehicles, then fp(t, v)dv gives the number
of vehicles belonging to the p-class with velocity in [v, v + dv] at time t. The space Vp = [0, V p

max]
is the domain of the microscopic speeds related to the p-class, where V p

max is the maximum speed
which can be reached by the p-vehicles. It may depend on the mechanical characteristics of the
vehicles, on imposed speed limits or on the type of drivers, according to the maximum velocity they
intend to keep in free road conditions. Thus, the different maximum speeds allow one to model
a first microscopic feature which identifies a class of vehicles. Another difference is introduced by
considering the typical length lp of vehicles which will be used later to define the concept of the
total space occupied on the road.

As usual, macroscopic quantities are obtained as moments of the distribution functions fp with
respect to the velocity v:

ρp(t) =

∫
Vp

fp(t, v)dv, qp(t) =

∫
Vp

vfp(t, v)dv, up(t) =
qp(t)

ρp(t)
(1)
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where ρp is the density, i.e. the number of vehicles of the p-class per unit length (typically,
kilometers), qp and up are the macroscopic flux of vehicles and the mean speed of the p-th class,
respectively.

Here we consider a Boltzmann-type kinetic model for vehicular traffic, in which the relaxation
to equilibrium is due to binary interactions. In the homogeneous case, we can model the evolution
of the fp’s in time by means of the following system of equations:

∂tf
p(t, v) = Qp [fp, (fp, fq)] (t, v), ∀ p (2)

where Qp [fp, (fp, fq)] (t, v) is the collision operator which accounts for the change of fp in time
due to the microscopic interactions among vehicles. Clearly, a multi-population model has to
consider also the interactions taking place between p- and q-vehicles, where q represents all classes
of vehicles which are not p. For this reason, and following an approach frequently used for mixtures
of gases in kinetic theory, see e.g. [5, 10, 11], Qp can be naturally thought of as a sum of two or
more collision operators, one describing the interactions among vehicles belonging to the same
class (self-interactions) and the other ones describing the interactions among vehicles belonging
to different classes (cross-interactions), so that

Qp [fp, (fp, fq)] (t, v) = Qpp [fp, fp] (t, v)︸ ︷︷ ︸
self-interactions

+
∑
q∈¬p

Qpq [fp, fq] (t, v)︸ ︷︷ ︸
cross-interactions

For mass conservation to hold the right-hand side of the above expression has to vanish when it
is integrated over the space of admissible speeds of the p-th class, and this is verified e.g. if we
assume that the collision terms satisfy∫

Vp

Qpp[fp, fp](t, v)dv =

∫
Vp

Qpq[fp, fq](t, v)dv = 0,

for all q ∈ ¬p. In fact, this ensures that, in the space homogeneous case, the density remains
constant:

d

dt
ρp(t) = ∂t

∫
Vp

fp(t, v)dv =

∫
Vp

Qp [fp, (fp, fq)] (t, v)dv = 0.

Following the same logic underlying the construction of a classical Boltzmann-like kinetic
model, each collision operator is written as a balance of a gain (Gpp or Gpq) and a loss term that
model statistically the interactions which lead to get or to loose the speed v ∈ Vp:

Qpp[fp, fp](t, v) =

∫
Vp

∫
Vp

ηp(v∗, v
∗)Ap(v∗ → v|v∗; s)fp(t, v∗)fp(t, v∗)dv∗dv∗︸ ︷︷ ︸

Gpp[fp,fp](t,v)

(3a)

− fp(t, v)

∫
Vp

ηp(v∗, v
∗)fp(t, v∗)dv∗,

Qpq[fp, fq](t, v) =

∫
Vp

∫
Vq

ηpq(v∗, v
∗)Apq(v∗ → v|v∗; s)fp(t, v∗)fq(t, v∗)dv∗dv∗︸ ︷︷ ︸

Gpq[fp,fq](t,v)

(3b)

− fp(t, v)

∫
Vq

ηpq(v∗, v
∗)fq(t, v∗)dv∗.

Throughout the paper, we will denote by v∗ ∈ Vp the pre-interaction velocity of the p-vehicle
which is likely to change speed after an interaction. Conversely, v∗ ∈ Vp or v∗ ∈ Vq identifies the
velocity of other p- or q-vehicles which induce the gain or loss of the speed v ∈ Vp. In order to
shorten formulas, we will use the following traditional shorthand fp(t, v∗) = fp∗ , f

p(t, v∗) = fp∗,
∀ p, and similarly for fq∗ , f

q∗, ∀ q ∈ ¬p.
In (3), ηp(v∗, v

∗) and ηpq(v∗, v
∗) are the interaction rates which model the frequency of self- and

cross-interactions respectively. Although they may depend on the relative speed of the interacting
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vehicles, as in [6, 17] for a single population case, in [31] we found that a constant interaction
rate is already sufficient to account for many aspects of the complexity of traffic. In the space
homogeneous case, the interaction rates affect only the relaxation time towards equilibrium. Thus,
in this paper we will set ηp(v∗, v

∗) = ηp and ηpq(v∗, v
∗) = ηpq.

Finally, Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) are the probability densities of gaining the
speed v ∈ Vp in the case of self- and cross-interactions, respectively. More precisely, Ap(v∗ →
v|v∗; s) (Apq(v∗ → v|v∗; s), resp.) gives the probability that a p-vehicle modifies its pre-interaction
speed v∗ ∈ Vp in the speed v ∈ Vp when it interacts with a p-vehicle (q-vehicle, resp.) traveling
at the speed v∗ ∈ Vp (v∗ ∈ Vq, resp.).

We will suppose that these probabilities depend also on the macroscopic traffic conditions
(local road congestion) through the fraction of occupied space on the road:

0 ≤ s =
∑
p

lpρp ≤ 1. (4)

Notice that s was already introduced in [2] for a multi-population macroscopic model and it was
also used in [31] for a two-population kinetic model based on a discrete-velocity framework. The
quantity ρp appearing in (4) is defined in (1). We will assume that ρp ∈ [0, ρpmax] where ρpmax is
the maximum density of p-vehicles chosen as 1

lp , i.e. as the maximum number of vehicles per unit
length in bumper-to-bumper conditions when ρq = 0, ∀ q ∈ ¬p. Therefore, s can be rewritten as

0 ≤ s =
∑
p

ρp

ρpmax
≤ 1.

From the last expression it is clear that the parameter s generalizes the term ρ
ρmax

appearing in

the case of single population models, see [14, 17, 30].
Since Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) are probability densities, they fulfill the following

properties:

Ap(v∗ → v|v∗; s) ≥ 0,

∫
Vp

Ap(v∗ → v|v∗; s)dv = 1, for v∗, v
∗, v ∈ Vp, s ∈ [0, 1]

Apq(v∗ → v|v∗; s) ≥ 0,

∫
Vp

Apq(v∗ → v|v∗; s)dv = 1, for v∗, v ∈ Vp, v∗ ∈ Vq, s ∈ [0, 1].

(5)

Remark 1. All transition probability densities Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) satisfying
properties (5) guarantee mass conservation. In fact, by integrating over the velocity space Vp we
obtain∫
Vp

Qpp[fp, fp](t, v)dv =

∫
Vp

∫
Vp

fp∗f
p∗
(∫
Vp

Ap(v∗ → v|v∗; s)dv
)
dv∗dv

∗−
∫
Vp

fpdv

∫
Vp

fp∗dv∗ = 0.

Analogously for the cross-interaction operators we have
∫
Vp Q

pq[fp, fq](t, v)dv = 0, for all q ∈ ¬p.

Remark 2. Since the mass of each population is conserved, also s given in (4) is conserved. In
particular, it satisfies the prescribed bounds if the fp’s are properly chosen at the initial time.

2.1 Choice of the probability densities

As in any Boltzmann-like kinetic traffic model, the introduction of a probability density al-
lows one to assign a post-interaction speed in a non-deterministic way, consistently with the
intrinsic stochasticity of the drivers’ behavior. Therefore, the construction of Ap(v∗ → v|v∗; s)
and Apq(v∗ → v|v∗; s), ∀ p, q ∈ ¬p, is at the core of the model we propose. They are obtained with
a very small set of rules which are similar to those given in [32] for a single population model.

We will suppose that all types of vehicles react in the same way to the parameter s, accounting
for the state of congestion of the road, and to all field classes of vehicles. Clearly, it would also
be possible to consider different reactive behaviors for different classes of vehicles. However, this

5



choice is coherent with the experience and, as we showed in [31] for the heterogeneous discrete-
velocity model, and as we will see later in Section 4, this simpler choice results in a realistic
macroscopic behavior.

• If v∗ ≤ v∗, i.e. the candidate vehicle is slower than the leading vehicle, the post-interaction
rules are:

Do nothing: the candidate vehicle keeps its pre-interaction speed, thus v = v∗ with prob-
ability 1− P1;

Accelerate: the candidate vehicle accelerates to a velocity v > v∗ with probability P1.

• If v∗ > v∗, i.e. the candidate vehicle is faster than the leading vehicle, the post-interaction
rules are:

Do nothing: the candidate vehicle keeps its pre-interaction velocity, i.e. v = v∗, with
probability P2, thereby overtaking the leading vehicle;

Brake: the candidate vehicle decelerates to the velocity v = v∗ with probability 1 − P2,
thereby queuing up and following the leading vehicle.

From the previous rules, we observe that the probability densities will contain terms that will
be proportional to a Dirac delta function at v = v∗, due to interactions in which the pre-interaction
microscopic speed is preserved (the two “Do nothing” alternatives). Note that these are “false
gains” for the distributions fp, because the number of vehicles of the p-class with speed v is not
altered by these interactions.

The speed after braking is assigned as proposed in [29] and used also in [7, 31] in the context
of a discrete velocity model. Namely, we suppose that if a vehicle brakes, interacting with a slower
vehicle, it slows down to the speed v∗ of the leading vehicle, thus, after the interaction, v = v∗,
and the field vehicle will remain behind the leading one.

For the post-interaction speed due to acceleration we assume that the output velocity v is
obtained by accelerating instantaneously from v∗ to v∗ + ∆vp, unless the resulting speed is larger
than V p

max, namely the new speed is min {v∗ + ∆vp, V p
max}. This choice corresponds to the case of

the quantized acceleration (or δ model) introduced in [32] for a single population model. Clearly,
other choices are possible, in particular the case of a uniformly distributed acceleration. However,
we proved that although a model with such an acceleration is more refined, at equilibrium the
essential information is caught by the simpler δ model. For this reason, here we will not investigate
other models.

Considering all possible outcomes, the resulting probability distribution accounting for self-
interactions is

Ap(v∗ → v|v∗; s) =

{
(1− P1(s)) δv∗(v) + P1(s) δmin{v∗+∆vp,V p

max}(v), if v∗ ≤ v∗
(1− P2(s)) δv∗(v) + P2(s) δv∗(v), if v∗ > v∗.

(6)

Since we have assumed that all classes of vehicles react in the same way to the parameter s
and to different interacting populations, the probability densities describing the cross-interactions
differ from Ap(v∗ → v|v∗; s) only in their domain. In fact, Ap(v∗ → v|v∗; s) is defined for (v∗, v

∗) ∈
Vp × Vp and v ∈ Vp, while Apq(v∗ → v|v∗; s) for (v∗, v

∗) ∈ Vp × Vq and v ∈ Vp, see Figure 1.
Note that the modeling (6) of Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s), ∀ p, q ∈ ¬p, may seem as

a continuous extension of the multi-population model [31] which was based on a discrete velocity
space. However, in [31] the velocity jump ∆vp is chosen as the distance between two adjacent
discrete velocities, thus ∆vp depends on the number of elements in the speed lattice. In this work,
∆vp is a physical parameter that represents the ability of a class of vehicles to change its pre-
interaction speed v∗. With this choice, ∆vp does not depend on the discretization of the velocity
space Vp and the maximum acceleration is bounded, as in [22] and [32]. In contrast, deceleration
can be larger than ∆vp, and this fact reflects the idea that drivers tend to brake immediately if
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v∗ ≤ v∗

v∗ > v∗

Vp

Vp

V p
max

V p
max

v∗ ≤ v∗

v∗ > v∗

Vp

Vq

V q
max

V p
max

v∗ ≤ v∗

v∗ > v∗

Vp

Vq

V q
max

V p
max

Figure 1: The domain of the probability density Ap(v∗ → v|v∗; s) (left), the domains of the
probability densities Apq(v∗ → v|v∗; s) in the case Vp ⊃ Vq (center) and Vp ⊂ Vq (right).

the traffic becomes more congested, while they react more slowly when they accelerate (see the
concept of traffic hysteresis in [35] and references therein).

In the following, the probabilities P1 and P2 are taken as P = P1 = P2 and P is a function of
the fraction of occupied space s only. In general P should be a decreasing function of s, see also
[13] or [34]. For instance in [31] we have taken

P = 1− sγ , γ ∈ (0, 1). (7)

In more sophisticated models, one may also choose P as a function of the relative velocity of the
interacting vehicles, but we will not explore this possibility in the present work.

Remark 3. In [17] Klar and Wegener assume that the velocity after an acceleration is uniformly
distributed over a range of speeds between v∗ and v∗+α(Vmax−v∗), where α is supposed to depend
on the local density. Thus, they suppose that the output speed resulting from the acceleration
rule depends on the free space on the road, in other words they consider ∆vp as function of s.
Instead, here ∆vp is fixed while P is function of s, so that when the road becomes congested the
probability of accelerating decreases.

3 Analysis of the model

In this section, first we rewrite explicitly the model using the expression (6) for Ap(v∗ → v|v∗; s)
and Apq(v∗ → v|v∗; s). Next, we discretize it in order to analyze later numerically the asymptotic
traffic behavior, see Section 4. Furthermore, we study the well-posedness (existence, uniqueness,
and continuous dependence of the solution on initial data) of the discretized model and we char-
acterize explicitly the asymptotic distributions (fp)∞ of the discrete-velocity model.

The gain term of the collision operator (3a) describing self-interactions can be easily rewritten
in the following way by distinguishing the cases v∗ ≤ v∗ and v∗ > v∗:

Gpp[fp, fp](t, v) =ηp
∫ V p

max

0

∫ V p
max

v∗

[
(1− P )δv∗(v) + Pδmin{v∗+∆vp,V p

max}(v)
]
fp∗f

p∗dv∗dv∗

+ ηp
∫ V p

max

0

∫ v∗

0

[(1− P )δv∗(v) + Pδv∗(v)] fp∗f
p∗dv∗dv∗

Observe that the Dirac delta function at v = min {v∗ + ∆vp, V p
max} can be split as

δmin{v∗+∆vp,V p
max}(v) =

{
δv∗+∆vp(v), if v∗ ∈ [0, V p

max −∆vp]

δV p
max

(v), if v∗ ∈ (Vmax −∆vp, V p
max]

,
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and since Qp is defined on Vp×Vp, then Gpp[fp, fp](t, v) corresponds to the gain term of the single
population model. Thus, recalling [32], Gpp[fp, fp](t, v) can be written as

Gpp[fp, fp](t, v) =ηp(1− P )fp

[∫ V p
max

v

fp∗dv∗ +

∫ V p
max

v

fp∗dv∗

]
+ ηpPfp

∫ v

0

fp∗dv∗

+ ηpPfp(t, v −∆vp)H∆vp(v)

∫ V p
max

v−∆vp
fp∗dv∗

+ ηpPδV p
max

(v)

∫ V p
max

V p
max−∆vp

fp∗dv∗

∫ V p
max

v∗

fp∗dv∗

(8)

where Hα(v) is the Heaviside step function defined as Hα(v) := d
dv max{0, v − α}, α ∈ R. Notice

that the first two integrals on the right-hand side actually coincide, in the space homogeneous case.
However, we kept them separate to stress the fact that they come from different contributions.

Conversely, the gain term resulting from the collision operators (3b) describing the cross-
interactions has to be treated differently because Qpq is defined on Vp × Vq and we have to
distinguish V p

max > V q
max (i.e. Vp ⊃ Vq) from V p

max < V q
max (i.e. Vp ⊂ Vq), see Figure 1. Since we

also want to separate the cases v∗ ≤ v∗ and v∗ > v∗, we take into account both these alternatives
by rewriting the generic gain term Gpq[fp, fq](t, v) as

Gpq[fp, fq](t, v) =ηpq
∫ min{V p

max,V
q
max}

0

∫ V q
max

v∗

[
(1− P )δv∗(v) + Pδmin{v∗+∆vp,V p

max}(v)
]
fp∗f

q∗dv∗dv∗

(9)

+ ηpq
∫ V p

max

0

∫ min{v∗,V q
max}

0

[(1− P )δv∗(v) + δv∗(v)] fp∗f
q∗dv∗dv∗.

Computing explicitly the terms appearing in Gpq[fp, fq](t, v), we obtain two different expressions.
If V p

max > V q
max:

Gpq[fp, fq](t, v) =ηpq(1− P )fpχ[0,V q
max](v)

∫ V q
max

v

fq∗dv∗ + ηpq(1− P )fq
∫ V p

max

v

fp∗dv∗

+ ηpqPfp
∫ min{v,V q

max}

0

fq∗dv∗

+ ηpqPfp(t, v −∆vp)χ[∆vp,min{V q
max+∆vp,V p

max}](v)

∫ V q
max

v−∆vp
fq∗dv∗

+ ηpqPδV p
max

(v)

∫ V q
max

min{V q
max,V

p
max−∆vp}

fp∗dv∗

∫ V q
max

v∗

fq∗dv∗,

(10)

while if V p
max < V q

max:

Gpq[fp, fq](t, v) =ηpq(1− P )fp
∫ V q

max

v

fq∗dv∗ + ηpq(1− P )fq
∫ V p

max

v

fp∗dv∗ + ηpqPfp
∫ v

0

fq∗dv∗

+ ηpqPfp(v −∆vp)H∆vp(v)

∫ V q
max

v−∆vp
fq∗dv∗ (11)

+ ηpqPδV p
max

(v)

∫ V p
max

V p
max−∆vp

fp∗dv∗

∫ V q
max

v∗

fq∗dv∗.

Using the explicit expressions (8), (10) and (11) of the gain term, the model is then globally
defined and it can be discretized as we do in the following subsection.

Finally, the following theorem states that when all the classes of vehicles composing the mixture
of traffic have the same microscopic characteristics then the multi-population model is consistent
with the equation defining the single population model introduced in [32]. This property is known
in the kinetic theory of gas mixtures as indifferentiability principle, see e.g. [1].
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Figure 2: Discretization of velocity spaces.

Theorem 4 (Indifferentiability principle). Assume that the types of vehicles have the same physical
and kinematic characteristics, i.e.

lp := l, V p
max := Vmax, ∆vp := ∆v, ∀ p.

Let ηp = ηpq =: η be the interaction rate. Then the total distribution function f : R+ × V → R+,
defined as

f(t, v) =
∑
p

fp(t, v) (12)

obeys the evolution equation of the single population model introduced in [32].

Proof. If the populations have the same microscopic features then for any fixed p in the set of all
classes of vehicles the velocity spaces are such that Vp = Vq := V, ∀ q ∈ ¬p, and the gain terms (8)-
(9) are the same because now the probability densities Ap(v∗ → v|v∗; s) and Apq(v∗ → v|v∗; s) are
defined on the same velocity space V ×V. Then, we have Ap(v∗ → v|v∗; s) = Apq(v∗ → v|v∗; s) :=

A(v∗ → v|v∗; s) and moreover s =
∑

p
ρp

ρpmax
=

∑
p ρ

p

ρmax
= ρ

ρmax
. In addition to that, the interaction

rates are the same because the populations are identical, hence finally the multi-population model
writes as

∂tf
p = Qpp[fp, fp](t, v) +

∑
q∈¬p

Qpq[fp, fq](t, v)

= η

∫
V

∫
V
A(v∗ → v|v∗; s)fp∗

∑
j=p,q∈¬p

f j∗dv∗dv∗ − ηfp
∫
V

∑
j=p,q∈¬p

f j∗dv∗.

Summing this equation over p and using the definition (12), we obtain

∂tf(t, v) = η

∫
V

∫
V
A(v∗ → v|v∗; s)f(t, v∗)f(t, v∗)dv∗dv∗ − ηf(t, v)

∫
V
f(t, v∗)dv∗

which represents the equation for the single population model given in [32].

3.1 Discretization of the model

In order to address the qualitative properties of the model, we consider a discretization of the
velocity spaces. The study becomes simpler with the following assumptions:

Assumption 1 The velocity jump ∆vp is a fixed parameter and ∆vp = ∆v, ∀ p;

Assumption 2 ∆v = V p
max/T

p, with T p ∈ N, ∀ p. This means that

|V p
max − V q

max| = mpq∆v, ∀ p, q ∈ ¬p, mpq ∈ N,

i.e. the distance between the maximum velocities of the populations is a multiple of ∆v, see
the left panel of Figure 2;

9



Assumption 3 Let δv be the numerical parameter of the velocity space discretization. We take
δv = ∆v

r , i.e. ∆v corresponds to an integer number of intervals in the velocity discretization,

see the center panel of Figure 2. Thus r = np−1
T p ∈ N depends on the number of grid points

np.

Notice that Assumption 1 is not as restrictive as it appears. Since ∆vp represents the instant-
aneous velocity jump of a vehicle as a result of the acceleration interaction, it might be thought of
as another microscopic feature characterizing the classes of vehicles. Then we may suppose that
the populations do not differ in the jump of velocity but we can characterize them by assuming
that they have different microscopic accelerations ap. As proved in [32] in the case of a single
population model, the acceleration of the vehicles depends on the product of ∆v and the inter-
action rate, thus in order to account for different accelerations in each class we could act on the
interaction rates ηp and ηpq, without modifying ∆v. However, this is relevant only in the spa-
tially inhomogeneous model because in the framework analyzed in this work the interaction rates
influence only the rate of convergence towards equilibrium solutions. However, the equilibrium
solutions themselves do not depend on the interaction rates.

Finally, observe that Assumption 2 leads to:

ηpqPδV p
max

(v)

∫ V q
max

min{V q
max,V

p
max−∆v}

fp∗dv∗

∫ V q
max

v∗

fq∗dv∗ ≡ 0

in the cross-collision term (10), i.e. when Vp ⊃ Vq. In fact, the previous integral is zero since
min{V q

max, V
p
max −∆v} = V q

max.
We define the velocity cells Ipj = [(j − 3

2 )δv, (j − 1
2 )δv] ∩ [0, V p

max], ∀ p and for j = 1, . . . , np =
V p
max

δv + 1. Note that all cells have amplitude δv except Ip1 and Ipnp which have amplitude δv/2.
The velocity grid nodes, located at the center of each cell, are vp1 = δv/4, vpnp = V p

max − δv/4, and
vpj = (j − 1)δv for j = 2, . . . , np − 1. This choice was already used in [32] and it is convenient
for computations because all grids with r > 1 contain all the points of the coarser mesh with
r = 1 (except the first and the last point). See the right panel of Figure 2 for the discretization of
Vp × Vq.

In order to discretize the model, we approximate each velocity distribution with the piece-wise
constant function

fp(t, v) =

np∑
j=1

fpj (t)
χIpj (v)∣∣Ipj ∣∣ (13)

where fpj : R+ → [0, ρp] represents the number of p-vehicles traveling with velocity v ∈ Ipj .

By integrating the kinetic equation (2) over the cells Ipj we obtain the following system of
ordinary differential equations

dfpj (t)

dt
= Qp

j [f
p, (fp, fq)](t) =

∫
Ipj

Qpp[fp, fp](t, v)dv︸ ︷︷ ︸
Qpp
j [fp,fp](t)

+

∫
Ipj

Qpq[fp, fq](t, v)dv︸ ︷︷ ︸
Qpq
j [fp,fq](t)

, j = 1, . . . , np, ∀ p

(14)
whose initial condition fp1 (0), . . . , fpnp(0) are such that:

np∑
j=1

fpj (0) =

∫
Vp

fp(t = 0, v)dv = ρp, ∀ p, ρp ∈ [0, ρpmax]

and ρp is the initial density, which remains constant in the spatially homogeneous case, see Re-
mark 1.

Once the right-hand side of (14) is computed, then the ODE system can be easily rewritten
by means of the matrices Ap,j and Bpq,j , for j = 1, . . . , np, which are the so-called self- and cross-
interaction matrices, respectively. The terms Qpp

j [fp, fp](t) and Qpq
j [fp, fq](t) can be explicitly

written out and they appear in the Appendix A.
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The multi-population model writes finally as

dfpj (t)

dt
=ηp

np∑
h,k=1

Ap,j
hk f

p
hf

pk +
∑
q∈¬p

ηpq
np∑
h=1

nq∑
k=1

Bpq,j
hk fphf

qk

− fpj

(
ηp

np∑
k=1

fpk +
∑
q∈¬p

ηpq
nq∑
k=1

fqk

)
, j = 1, . . . , np,∀ p

(15)

where the kinetic distribution functions of candidate and field vehicles are distinguished by the
position of the index of the components: bottom-right for candidate vehicles (such as e.g. fph),
top-right for field vehicles (such as e.g. fpk or fqk). The matrices Ap,j and Bpq,j are defined as

Ap,j
hk = P

(
v∗ ∈ Iph → v ∈ Ipj |v∗ ∈ Ipk

)
and Bpq,j

hk = P
(
v∗ ∈ Iph → v ∈ Ipj |v∗ ∈ Iqk

)
, (16)

namely they contain in the position (h, k) the probability that the candidate vehicle with velocity
in Iph will acquire a velocity in Ipj when it interacts with a field vehicle traveling at a velocity in

Ipk , if the p-vehicles play also the role of field class, or in Iqk otherwise.
In Figure 3a we show the sparse structure of the self-interaction matrices Ap,j ∈ Rnp×np

, for
j = 1, . . . , np. The cross-interaction matrices Bpq,j for the case Vp ⊃ Vq have the same structure
as the Ap,j ’s, apart from being rectangular of dimensions np × nq, with np > nq. Differences
however arise for j ≥ nq, see Figure 3b in which for simplicity we have assumed that nq + r = np

(i.e. V p
max − V q

max = ∆v). Finally, the cross-interaction matrices Bpq,j for the case Vp ⊂ Vq are
np × nq, with np < nq. They can in turn be easily derived from the Ap,j ’s, the only different case
being the one for j = np, see Figure 3c in which for simplicity we have assumed that nq = np + r
(i.e. V q

max − V p
max = ∆v).

In all these figures, the nonzero elements are shaded with different hatchings, corresponding to
the different values of the elements, as indicated in the panels in which they appear for the first
time.

The fact that these matrices are sparse means that a velocity in Ipj can be acquired only for
special values of the pre-interaction velocity of candidate and field vehicles. In particular, the j-th
row of the matrices contains the probability that the candidate vehicle does not change its speed.
The nonzero elements of the j-th column are the probabilities that a candidate vehicle acquires
a speed in Ipj by braking down to the speed of the leading vehicle. The nonzero row, located
at h = j − r, contains the probabilities that the candidate vehicle accelerates by ∆v, acquiring
therefore a velocity in Ipj = Iph + ∆v. The band between the rows h = j − r and h = j is filled
with zeroes because the acceleration is quantized, i.e. the post-interaction velocity is acquired by
a velocity jump.

As it can be checked, both the self- and the cross-interaction matrices are stochastic with
respect to the index j, i.e. all their elements are positive and bounded above by 1 and

np∑
j=1

Ap,j = Onp×np ,

np∑
j=1

Bpq,j = Onp×nq , ∀ p, q ∈ ¬p.

where ON×M is the matrix of size N ×M with the value 1 in each entry. These properties come
from (5), and they guarantee mass conservation.

3.2 Qualitative analysis

Now we study the well-posedness of the discrete-velocity model (15) and for the sake of simplicity
we work with two populations only, but the analysis can be generalized to multiple populations.
We show that the model has a unique solution, which remains positive and bounded in time, and
finally we compute the analytical equilibria.

To this end, we consider the Cauchy problem associated to the ODE system (15) with initial
conditions fpj (0), j = 1, . . . , np, ∀ p. Since in spatially homogeneous conditions the density is

11



r
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j
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P
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Ap,j for r < j < np
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(a) Self-interaction matrices Ap,j , j = 1, . . . , np.

r

Bpq,j for j = nq

nq
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4
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j
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(b) Cross-interaction matrices Bpq,j , j ≥ nq, for the case Vp ⊃ Vq.

r
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np
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(c) Cross-interaction matrices Bpq,j , j = np, for the case Vp ⊂ Vq.

Figure 3: General structure of the interaction matrices.

12



constant in time, the generic equation of the Cauchy problem can be written as

dfpj (t)

dt
= ηp

np∑
h,k=1

Ap,j
hk f

p
hf

p
k +

∑
q∈¬p

ηpq
np∑
h=1

nq∑
k=1

Bpq,j
hk fphf

q
k −Rpfpj , j = 1, . . . , np,∀ p (17)

where Rp := ηpρp +
∑

q∈¬p η
pqρq. Notice that in (17) we do not use the upper index to distinguish

the distributions, but the index h is referred to the candidate vehicle distribution, while the index
k to the field vehicle distributions. We assume that each density ρp is normalized with respect to
ρpmax so that

0 ≤ fpj (0) ≤ ρp ≤ 1, j = 1, . . . , np,∀ p

0 ≤
np∑
j=1

fpj (0) = ρp ≤ 1, ∀ p.
(18)

Assume that the two populations are labeled with p and with q, respectively, and let

X = C
(
R+; Rn

p
)
× C

(
R+; Rn

q
)

be the space of vector-valued continuous functions on R+. From now on, we will endow Rnp

and Rnq

with the 1-norm. Let (u,v) be a generic element of X and let fp = (fp1 , . . . , f
p
np) and

fq = (fq1 , . . . , f
q
nq) be the solution of the Cauchy problem. We define

B =

(u,v) ∈ X : 0 ≤ uj(t) ≤ ρp, 0 ≤ vj(t) ≤ ρq,
np∑
j=1

uj(t) = ρp,

nq∑
j=1

vj(t) = ρq


the subset of X such that ρp and ρq are fixed constants, the same as in (17), then the elements of
B have the properties we require for the solution (fp, fq) of the Cauchy problem.

Theorem 5 (Well posedness). For any given initial condition (fp(0), fq(0)) satisfying the assump-
tions (18), there exists a unique global solution (fp, fq) ∈ B of the Cauchy problem (17).

Proof. The proof of the theorem is organized by steps and is achieved by applying the basic general
theorem on global existence and uniqueness of solutions to first order ODE systems with sublinear
growth.

Step 1 First of all we prove that the solution (fp(t), fq(t)) (if any) of the Cauchy problem (17)
remains positive in time if the initial conditions satisfy (18). For this, consider the population
p and assume that there exists an index j = 1, . . . , np such that fpj (0) = 0. Then, since the

elements of the transition matrices are non-negative,
dfp
j (t)

dt ≥ 0 (see equation (17)). Therefore
the solution (fp(t), fq(t)) of the first order ODE system (17) cannot cross the hyperplane
fpj = 0 of the phase space during the time evolution and this guarantees that the solution is
non-negative.

Step 2 Now we show that the hypotheses of the general theorem on global existence and unique-
ness of solutions to first order ODE systems with sublinear growth are satisfied. In particular,
observe that the right hand side of equation (17) is continuous and locally Lipschitz con-
tinuous, since it is at most a quadratic function in the unknowns f = (fp, fq). Moreover,
focusing on the population p, since Ap,j

hk ∈ [0, 1] and Bpq,j
hk ∈ [0, 1], the non-negativeness of

the solution (Step 1) and the conservation of mass yield the following bounds:

0 ≤
np∑
h=1

Ap,j
hk f

p
h ≤

np∑
h=1

fph = ρp, 0 ≤
np∑
h=1

Bpq,j
hk fph ≤

np∑
h=1

fph = ρp
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which render each differential equation sublinear. In fact, we obtain∥∥∥∥dfpdt
∥∥∥∥

1

=

np∑
j=1

∣∣∣∣∣ηp
np∑
k=1

(
np∑
h=1

Ap,j
hk f

p
h

)
fpk + ηpq

nq∑
k=1

(
np∑
h=1

Bpq,j
hk fph

)
fqk −Rpfpj

∣∣∣∣∣
≤

np∑
j=1

∣∣∣ηp (ρp)
2

+ ηpqρpρq −Rpfpj

∣∣∣ =

np∑
j=1

Rp
∣∣ρp − fpj ∣∣ ≤ Rp(np − 1) ‖fp‖1 .

Notice that a similar inequality holds for the population q:∥∥∥∥dfqdt
∥∥∥∥

1

≤ Rq(nq − 1) ‖fq‖1 .

This implies the existence and uniqueness of a global and infinitely differentiable in time
solution of the Cauchy problem associated to the ODE system (17) with initial conditions
(18).

Step 3 Finally, we show that the solution f = (fp, fq) is an element of the subset B. We have
already proved that f remains non-negative in time (Step 1). Again, let us focus the attention
on the population p. By Step 2 the following inequality holds:

dfpj
dt

+Rpfpj ≤ Rpρp.

Multiplying it by etR
p

and integrating in time we obtain

fpj e
tRp ≤ fpj (0) +

∫ t

0

RpρpesR
p

ds.

Evaluating explicitly the integral and multiplying both sides by e−tR
p

we finally get

fpj ≤ fpj (0)e−tR
p

+ ρp(1− e−tRp

)

which proves that fpj : R+ → [0, ρp] ⊆ [0, 1]. Moreover, using the integral formulation of

equation (17) we prove that the sum of the fpj ’s is constant for all t ≥ 0 and equal to the
density ρp. In fact:

np∑
j=1

fpj = e−tR
p
np∑
j=1

fpj (0) +

∫ t

0

e(τ−t)Rp

ρpRpdτ = e−R
ptρp

[
1 +Rp

∫ t

0

eτR
p

dτ

]
= ρp.

Similarly, we have that fqj : R+ → [0, ρq] ⊆ [0, 1] and
∑nq

j=1 f
q
j = ρq, for all t ≥ 0. This

proves that the solution f = (fp, fq) ∈ B.

Next we investigate the structure of the equilibria resulting from the ODE system (15). In
particular, we prove prove that equilibria of each p-class are uniquely determined by the initial
densities ρp, ρq, ∀ q ∈ ¬p, and that they do not depend on the number of grid points np. Observe
that a fixed value of s ∈ [0, 1] can be obtained with different values of the initial densities ρp, ρq,
∀ q ∈ ¬p, thus the equilibria will not be uniquely determined once s is chosen.

Moreover, the theorem shows that for any s ∈ [0, 1] the number of nonzero asymptotic distri-

bution functions is determined by T p =
V p
max

∆v . More precisely, each p-class of vehicles has exactly
T p + 1 non-vanishing equilibria, which are related to the cells Ip1 , Ipr+1, Ip2r+1, . . . , I

p
np .

Theorem 6 (Stable equilibria). For any fixed ∆v, let (fr)
p denote the equilibrium of the ODE

system (15) related to the p-class and obtained on the grid with spacing δv given by ∆v = rδv
with r = np−1

T p ∈ N, ∀ p. Then

(fr)
p
j =

{
(f1)

p

d jr e if mod(j − 1, r) = 0

0 otherwise
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is the unique stable equilibrium for all classes of vehicles p and the values of (f1)
p

depend uniquely
on the initial densities.

Proof. To prove the statement, we compute explicitly the equilibrium solutions of the discretized
model, using the explicit expression of the collision kernel given in (A.1), (A.2) and (A.3). For
the sake of simplicity we again consider only two populations and we indicate the related discrete
distributions as f1 and f2, with V1 ⊃ V2.

The equilibrium equations resulting from d
dtf

p
j = 0, ∀ j = 1, . . . , np, ∀ p ∈ {1, 2}, are quadratic

functions of fpj and we prove that for any j they depend only on the previous j − 1 equilibrium
values. In order to find the stable equilibrium, we recall that it is the larger root of the quad-
ratic equation if its leading coefficient is negative, while it is the smaller root otherwise. This
consideration will be applied several times during the proof.

For j = 1, the equation d
dtf

p
1 = 0 is computed by means of the expressions (A.1a)-(A.3a) if

p = 1 and (A.1a)-(A.2a) if p = 2. Using the fact that
∑
k f

p
k = ρp, ∀ p ∈ {1, 2}, we obtain

d

dt
fp1 = 0 ⇔

(
3P − 2

2

)
(fp1 )

2
+

[(
3P − 2

2

)
fq1 + (1− 2P )ρp − Pρq

]
fp1 + (1− P )fq1ρ

p = 0, ∀ p
(19)

which is a quadratic equation for fp1 , ∀ p. In order to define the asymptotic expression of fp1 , we
consider the sum of the equation (19) for p = 1 and p = 2:(

3P − 2

2

)(
f1

1 + f2
1

)2
+ (1− 2P )

(
ρ1 + ρ2

) (
f1

1 + f2
1

)
= 0 (20)

which has two real roots, f1
1 + f2

1 = 0 and f1
1 + f2

1 = 2 2P−1
3P−2

(
ρ1 + ρ2

)
. It is easy to see that one

solution is stable and the other one unstable, depending on the value of P . More precisely, we
find that the stable one is

f1
1 + f2

1 =

{
0 P ≥ 1

2

2 2P−1
3P−2

(
ρ1 + ρ2

)
P < 1

2

. (21)

Since solutions of (15) are non-negative (see Theorem 5) the equilibrium distributions of each
population are

f1
1 = f2

1 = 0, if P ≥ 1

2
.

On the other hand, if P < 1
2 , since ρ1 and ρ2 are arbitrary, the equilibrium of the sum is equal to

the sum of the steady states of each vehicle class, so that

f1
1 = 2

2P − 1

3P − 2
ρ1, f2

1 = 2
2P − 1

3P − 2
ρ2

and by substituting these quantities into the equation (19) we find indeed that the equation is
satisfied. Moreover, since they are positive provided P < 1

2 and the roots of (19) have opposite
sign if P < 1

2 , the stable equilibrium solutions are

(fr)
p
1 =

{
0 P ≥ 1

2

2 2P−1
3P−2ρ

p P < 1
2

, ∀ p ∈ {1, 2}. (22)

Thus, no vehicle is in the lowest speed class Ip1 if P ≥ 1
2 .

For 2 ≤ j ≤ r, the equilibrium equation of each population is(
3P − 2

2

)(
fpj
)2

+

[
(3P − 2)

j−1∑
k=1

fpk + (2P − 1)

j−1∑
k=1

fqk +

(
3P − 2

2

)
fqj + (1− 2P )ρp − Pρq

]
fpj

+(1− P )fqj

(
ρp −

j−1∑
k=1

fpk

)
= 0, ∀ p
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and summing this for p = 1 and p = 2 we obtain(
3P − 2

2

)(
f1
j + f2

j

)2
+

[
(3P − 2)

j−1∑
k=1

(
f1
k + f2

k

)
+ (1− 2P )

(
ρ1 + ρ2

)] (
f1
j + f2

j

)
= 0.

Start from j = 2. Clearly, for P ≥ 1
2 , substituting the related equilibrium given in equation (21),

the stable root is again f1
2 + f2

2 = 0. For P < 1
2 , the equation for f1

2 + f2
2 , with f1

1 + f2
1 given

by (21), becomes (
3P − 2

2

)(
f1

2 + f2
2

)2 − (1− 2P )
(
ρ1 + ρ2

) (
f1

2 + f2
2

)
= 0.

Comparing with the equation (20), we see that now the stable root is f1
2 + f2

2 = 0. Thus, recalling
that the solutions of (15) are positive in time, the equilibrium values of each class of vehicles are
(fr)

p
2 ≡ 0, ∀ P ∈ [0, 1]. Analogously, it is easy to prove that (fr)

p
j ≡ 0, ∀ j = 3, . . . , r.

Consider now r+1 ≤ j ≤ 2r, the equilibrium equations d
dtf

p
j = 0 is computed by using the self-

and cross-collision terms given in (A.1b)-(A.3b) if p = 1 and in (A.1b)-(A.2b) if p = 2. Therefore,
the equations will contain four extra terms:

P

2

(
fpj−r

)2
+ Pfpj−r

np∑
k=j−r+1

fpk +
P

2
fpj−rf

q
j−r + Pfpj−r

nq∑
k=j−r+1

fqk

and they write as(
3P − 2

2

)(
fpj
)2

+

[
(3P − 2)

j−1∑
k=1

fpk + (2P − 1)

j−1∑
k=1

fqk +

(
3P − 2

2

)
fqj + (1− 2P )ρp − Pρq

]
fpj

+(1− P )fqj

(
ρp −

j−1∑
k=1

fpk

)
+ Pfpj−r

[
−1

2

(
fpj−r + fqj−r

)
+ ρp + ρq −

j−r−1∑
k=1

(fpk + fqk)

]
= 0, ∀ p.

(23)

If j = r + 1 and P ≥ 1
2 , then from the previous step fpk = 0, ∀ k = 1, . . . , r and ∀ p. Therefore,

the new terms are certainly zero and the equation is identical to (19), so (fr)
p
r+1 ≡ 0 ∀ p. Instead,

if P < 1
2 , then fpk = 0, ∀ k = 2, . . . , r and ∀ p, thus the equation (23) reduces to(

3P − 2

2

)(
fpr+1

)2
+

[
(3P − 2)fp1 + (2P − 1)fq1 +

(
3P − 2

2

)
fqr+1 + (1− 2P )ρp − Pρq

]
fpr+1

+(1− P )fqr+1 (ρp − fp1 ) + Pfp1

[
−1

2
(fp1 + fq1 ) + ρp + ρq

]
= 0, ∀ p.

(24)

Summing this equation for p = 1 and p = 2 and substituting the expression for f1
1 + f2

1 we obtain(
3P − 2

2

)(
f1
r+1 + f2

r+1

)2
+ (2P − 1)

(
ρ1 + ρ2

) (
f1
r+1 + f2

r+1

)
+2P

(P − 1)(2P − 1)

(3P − 2)2

(
ρ1 + ρ2

)2
= 0.

The resulting stable equilibrium solution is f1
r+1 + f2

r+1 =
(
ρ1 + ρ2

) (1−2P )−
√

∆r+1

3P−2 where ∆r+1 =

(2P − 1)
[
(2P − 1)− 4P (P−1)

3P−2

]
is positive provided P < 1

2 . The equilibria of population p can be

found recalling that they depend only on the quantity ρp, so that

f1
r+1 = ρ1 (1− 2P )−

√
∆r+1

3P − 2
, f2

r+1 = ρ2 (1− 2P )−
√

∆r+1

3P − 2
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Figure 4: Evolution towards equilibrium of the ODE system (15) for the case of two populations,
p = 1 (top panels) and p = 2 (bottom panels), with a fixed value of the velocity jump ∆v =
25 km/h. The maximum velocities are V 1

max = 100 km/h and V 2
max = 50 km/h. The velocity grid

is obtained with r = 1 (cyan) and r = 3 (magenta), which correspond to n1 = 5, 13 and n2 = 3, 7
grid points. Black squares indicate the equilibrium values.

and it can be checked that these are the positive solutions of (24). Thus, if j = r + 1 the stable
equilibrium values are

(fr)
p
r+1 =

{
0 P ≥ 1

2

ρp
(1−2P )−

√
∆r+1

3P−2 P < 1
2

, ∀ p.

If, instead, r + 1 < j ≤ 2r, then fpj−r ≡ 0, ∀ P ∈ [0, 1] and ∀ p, so the equilibrium equation

resulting from d
dt

(
f1
j + f2

j

)
= 0 is identical to (20) if P ≥ 1

2 , while it is(
3P − 2

2

)(
f1
j + f2

j

)2 −√∆r+1

(
ρ1 + ρ2

) (
f2
j + f1

j

)
= 0

if P < 1
2 . Then, we obtain (fr)

p
j ≡ 0, for j = r + 2, . . . , 2r and ∀ P ∈ [0, 1].

Clearly, this procedure can be repeated, in fact, the cases j = 1, . . . , 2r that we just computed
are typical. Also for larger values of j we find a quadratic equation for the unknown fpj , which
involves only previously equilibrium values, hence we can easily find successively all components
of (fr)

p
, ∀ p. The values of the asymptotic solutions are listed in Appendix B.

Theorem 6 ensures that the equilibrium values of the discretized model (15) can be found on
the coarser grid, namely taking r = 1. The result can be better appreciated by looking at the
evolution towards equilibrium shown in Figure 4. In this figure, we consider two populations such
that V 1

max = 100 km/h and V 2
max = V 1

max − 2∆v = 50 km/h. Then, T 1 = 4 and T 2 = 2. The
different plots show the evolution towards equilibrium, starting from uniform initial distributions
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Figure 5: Evolution towards equilibrium of the ODE system (15) for the case of two populations,
p = 1 (left panels) and p = 2 (right panels), with two different values of the velocity jump
∆v1 = 20 km/h and ∆v2 = 10 km/h. The maximum velocities are V 1

max = 100 km/h and
V 2

max = 50 km/h. The velocity grid is obtained with r1 = 2, r2 = 1 (cyan) and r1 = 4, r2 = 2
(magenta). Black squares indicate the equilibrium values.

for r = 1 (cyan) and r = 3 (magenta), which correspond to np = 5, 13 velocity grid points for the
population p = 1 (top panels) and np = 3, 7 velocity grid points for the population p = 2 (bottom
panels). The left plots are obtained with the fraction of occupied space s = 0.2, while the right
plots with s = 0.6. Note that different dynamics towards equilibrium are observed, for different
values of the number np, p = 1, 2, of grid points, but as equilibrium is approached, the values of
the equilibria go to zero, except for the cells Ipj , p = 1, 2, corresponding to integer multiples of
∆v. In fact, for r = 3, the nonzero equilibrium values, marked with black squares, are related
to the velocities of the grid with r = 1 and marked with cyan filled circles. While the additional
velocities of the refined grid, marked with magenta filled circles, correspond to zero values of the
equilibria.

Remark 7 (∆v depending on p). In Section 3.1 we have assumed that the speed jump ∆v is
independent of p so that it is a fixed parameter for all classes of vehicles. Taking the velocity jump
dependent on p would mean to consider another microscopic difference characterizing the types of
vehicles. More precisely, we can use it in order to model the subjective behavior of drivers, since
we can think of ∆v as a parameter describing different types of drivers, more or less aggressive
depending on the value of the jump in velocity.
Even with ∆v dependent on p, equilibrium solutions preserve the property of being quantized
that is non-zero on a reduced number of discrete velocities. Let us consider the same example
shown in the right panels of Figure 4 with two populations, p = 1, 2, having maximum velocities
V 1

max = 100 km/h and V 2
max = 50 km/h. Now we take two different velocity jumps, ∆v1 = 20 km/h

and ∆v2 = 10 km/h in order to model the case in which population p = 1 is more aggressive than
population p = 2. We choose the discretization parameters r1 and r2 in such a way that the
velocity grids of the two populations have the same spacing δv = V 1

max/r
1 = V 2

max/r
2. This means

that we have to take r1 = 2r2. In Figure 5 we show the evolution towards equilibrium for both
populations p = 1 (left plot) and population p = 2 (right plot). We start from uniform initial
distributions and we consider two cases: first we choose r2 = 1 (and therefore r1 = 2) (cyan),
then we choose r2 = 2 (and therefore r1 = 4) (magenta). These values correspond to n1 = 13, 25
and n2 = 6, 11 velocity grid points. Again we observe that equilibria are quantized. Precisely
only the values related to the cells Ipj , p = 1, 2, corresponding to integer multiples of ∆v2, i.e.
the minimum of the two jumps, give a non-zero contribution irrespective of grid refinements. In
fact, the equilibrium values of population p = 1 are quantized according to the velocity jump of
population p = 2.
Notice that in this case ∆v1 is an integer multiple of ∆v2 but the same phenomenon verifies in a
more general situation.
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Remark 8 (Unstable equilibria). Theorem 6 gives the uniqueness of the stable equilibria of the
model. However, unstable ones may occur if the initial condition is such that fp1 (0) = 0, ∀ p. In
fact, the interaction rules in the case v∗ > v∗ do not allow for a post-interaction velocity v ∈ Vp

which is lower than v∗. Thus if fp1 (0) = 0, i.e. there are no vehicles of the p-class with velocity v1

at the initial time, interactions will not lead to an increase of fp1 . In this sense, the equilibrium
solution of the multi-population model does not only depend on the initial densities, but also on
the initial condition fp(0, v) because “spurious” equilibria on sub-manifolds of the state space may
appear. However, as showed in [32], these solutions are unstable: a small perturbation of fp1 (0) is
enough to trigger the evolution towards the stable equilibrium, which depends only on the initial
densities.

4 Fundamental diagrams of traffic

In this Section we present the fundamental diagrams obtained with the multi-population kinetic
model described in this work. We focus on the case of a mixture composed of three types of
vehicles. Such diagrams provide the relation between flux and density at the macroscopic level.

Macroscopic variables for the p-class of vehicles are recovered computing moments of the distri-
bution functions fp, see equations (1). However, fundamental diagrams are obtained by assuming
that traffic is in equilibrium. Therefore, we compute the quantities (1) using the asymptotic dis-
tributions (fr)

p
. Since for each population p the (fr)

p
’s depend uniquely on the densities of all

vehicle classes, at equilibrium we have that the flux is a function of the initial densities and it is
computed as

qp(r) =

∫
Vp

v (fp)
∞

(v)dv ≈
∫
Vp

v

np∑
j=1

(fr)
p
j

χIpj (v)∣∣Ipj ∣∣
= (fr)

p
1 v

p
1 +

np−1∑
j=2

(fr)
p
j v

p
j + (fr)

p
np v

p
np (25)

where the velocities vpj are the mid points of the cells Ipj resulting with the grid size δv = ∆v
r and

the (fr)
p
j ’s are the equilibrium solutions. We recall that the vpj ’s for j = 2, . . . , np do not change

when the grid is refined, i.e. when r increases, while the first and last velocity grid point approach
zero and the maximum velocity of the p-class, respectively, when r →∞. Recall that Theorem 6
states that the equilibrium values of the discretized model do not depend on the discretization, i.e.
on the grid size δv and on the discrete speeds vpj ’s, but only on the velocity jump ∆v. Therefore,

the flux can be computed exactly using the values (f1)
p
j , j = 1, . . . , T p + 1 = np. In other words,

for the case of two populations we can exploit the explicit formulas for the equilibrium solutions
given in Theorem 6 and in Appendix B. Instead, for more than two populations we numerically
integrate the system (15) on the coarser velocity grid (r = 1) to recover the equilibrium values
and using the results of Theorem 6 we obtain the exact flux as

qp(∞) =

T p+1∑
j=1

(f1)
p
j (j − 1)∆v. (26)

Notice that this result is due to the quantized structure of the equilibria, which is in turn a
consequence of the assumptions in Section 3.1. Finally, once the flux is given, the macroscopic
speed of the p-class can be obtained as

up(∞) =
qp(∞)

ρp
. (27)

Since in the space homogeneous case each density ρp is constant in time, the fraction of occupied
space s remains also constant. Hence we study the total flux Q =

∑
p q

p and the mean speed

19



Fast Cars Slow Cars Vans Trucks
(p = Cf) (p = Cs) (p = V ) (p = T )

Typical length lp 4 m 4 m 6 m 12 m
Max. density ρpmax 250 veh./km 250 veh./km 166.6 veh./km 83.3 veh./km
Max. velocity V p

max 120 km/h 80 km/h 120 km/h 80 km/h
Velocity jump ∆v 40 km/h 40 km/h 40 km/h 40 km/h

Table 1: Physical parameters of the four classes of vehicles chosen for the simulations.

U =
∑

p q
p∑

p ρ
p at equilibrium as functions of the total number of vehicles per unit length Nv =

∑
p ρ

p

and of the fraction of occupied space s.
In the case of the single population model [32], the flux and the speed at equilibrium are single-

valued functions of the initial density. However, this property does not reflect the structure of the
fundamental diagrams provided by experimental data, because such diagrams are multivalued with
a wide dispersion of the flux values in the congested phase of traffic, i.e. at high densities. Here,
the scattered behavior of the real data will be recovered because traffic is treated as a mixture
of more than one population characterized by different physical features. In fact, note that the
equilibria related to the p-population, and showed in Theorem 6, do not only depend on the initial
density ρp but also on the values of the occupied space s. Thus, since the same value of s can
be obtained with different compositions of the traffic mixture, for a given s ∈ [0, 1] we may find
different equilibria, hence different flux and speed values at equilibrium, depending on how the
road is occupied.

In the following, we investigate the properties of the diagrams provided by the multi-population
kinetic model. We show that they exhibits different regimes, or phases, of traffic and they repro-
duce the qualitative structure of experimental diagrams widely analyzed in [4, 7, 16, 31].

We introduce four typical classes of vehicles whose characterizing parameters are listed in
Table 1 and all simulations are performed by choosing three of them. More precisely we con-
sider Fast Cars-Slow Cars-Trucks (Cf -Cs-T ) or Fast Cars-Vans-Trucks (Cf -V -T ). The diagrams
are computed by sampling three random values of the initial densities for any initial fraction of
occupied space s ∈ [0, 1]. Moreover, recalling the computations already made in [32] to evaluate
a physical velocity jump ∆v, here we can consider ∆v = 40 km/h. With this choice, the numbers
of discrete velocities are nCf = nV = 4 and nCs = nT = 3.

Free phase of traffic This traffic regime occurs at low densities, when there is a large distance
between vehicles and the interactions are rare. Thus, we expect that the velocity of vehicles
is ruled by the maximum allowed speed, which in this framework depends on the mechanical
characteristics of the vehicles (e.g. when we assume V Cf

max > V Tmax) or on the type of drivers
(e.g., when we assume that there are two types of cars such that V Cf

max > V Cs
max). Therefore,

in the free phase of traffic the flux increases nearly linearly with respect to the total density,
the data are not widely scattered and are contained in a cone whose upper and lower branch
have a slope proportional to maxp{V p

max} and minp{V p
max} respectively, ∀ p ∈ {Cf , Cs, V, T}.

For instance, in Figure 6 we show the free phase of the diagrams provided by the multi-
population model with three classes of vehicles. This regime is obtained by taking only the
values of the fraction of road occupancy for which P ≥ 1

2 . In fact, as proved in Theorem 6
and as shown in the left panels of Figure 4, this choice produces equilibria of the form

fCf = [0, 0, ∗, ∗]︸ ︷︷ ︸
nCf =4

, fCs = [0, 0, ρCs ]︸ ︷︷ ︸
nCs=3

, fV = [0, 0, ∗, ∗]︸ ︷︷ ︸
nV =4

, fT = [0, 0, ρT ]︸ ︷︷ ︸
nT=3

.

Thus, all classes of vehicles travel at high velocities and in particular the flux of slow cars
and trucks is always proportional to the their maximum velocity V Cs

max and V Tmax respectively.
Instead, the flux values of fast cars and vans depend also on the maximum velocity of slow
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Figure 6: Top: free phase of the flux-density diagrams. Bottom: free phase of the speed-density
diagrams. On the left we consider the three populations Cf -Cs-T , on the right Cf -V -T . The data
are obtained for values of the fraction of road occupancy such that P ≥ 1

2 . In the top panels the
solid red line and the dotted green line have slope respectively as the maximum velocity and the
minimum velocity of the three populations. The probability P is taken as in (7) with γ = 1.

cars and trucks. In the left panel of Figure 6 we consider the test case Cf -Cs-T and we
observe that the flux values obtained are scattered in the whole cone, in contrast with the
case Cf -V -T shown in the right panels in which both fast cars and vans travel at speed
120 km/h and therefore the flux values are mainly distributed on the upper branch. This
consideration can be reinforced by looking at the macroscopic speed diagrams, bottom panels
of Figure 6.

Phase transition It represents the transition between the free and the congested phase of traffic.
The value of the fraction of occupied space s at which the phase transition occurs is called
critical value. The flux is maximum when this value is reached. If s increases then we
observe a decrease of the flux and of the mean speed in the diagrams of traffic. From a
mathematical point of view, the phase transition occurs when there is the bifurcation of the
equilibrium values, that is when P becomes smaller than 1

2 . In fact, when P ≥ 1
2 all vehicles

are moving and only when P < 1
2 the lower speed classes begin to fill up, see equation (22) in

Theorem 6. Since P is a function of s, the choice of the probability P influences the critical
value. In order to investigate this phenomenon, in Figure 7 we consider the total diagram
of the flux with respect to the fraction of occupied space s. In both panels we consider the
law given in (7), but we choose two different values of γ ∈ (0, 1]: more precisely, γ = 1 and
γ = 1

2 in the left and right plot, respectively. Note that the critical value of the fraction of
occupied space decreases from s = 1

2 to s = 1
4 . In fact, with (7)

P <
1

2
⇐⇒ s >

(
1

2

) 1
γ

21



0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

16000

s

Cf − Cs − T
Q

[v
eh
./
h
]

 s=1/2

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

16000

s

Cf − Cs − T

Q
[v
eh
./
h
]

 s=1/4

Figure 7: Diagrams of the flux vs. the fraction of occupied space for the test case Cf -Cs-T . The
probability P is taken as in (7) with γ = 1 (left) and γ = 1

2 (right).

and this means that high values of γ increase the value of s at which the transition between
the two regimes of traffic occurs. Thus, γ > 1 is not a good choice because it does not reflect
the structure of the phase transition usually observed in the experimental diagrams.

Congested phase of traffic This traffic regime occurs at high densities, that is when the frac-
tion of occupied space s exceeds the critical value. The congested phase is characterized by
frequent interactions among vehicles which are forced to slow down, i.e. they cannot travel
at the same high speeds as in free road conditions, because traffic becomes more and more
jammed. As a consequence, the flux decreases as the fraction of occupied space increases
and the experimental diagrams exhibit a large scattering of the flux values. In the congested
phase, therefore, the flux can hardly be approximated by a single-valued function of the
density. The scattered behavior is automatically reproduced by our multi-population kinetic
model, see the left panels of Figure 8 in which we plot the total flux- and speed-density
diagrams for the test case Cf -V -T with the probability law (7). Recalling that the diagrams
of traffic are obtained by means of the equilibrium distributions, the multi-population model
naturally accounts for the dispersion of the flux values in the congested phase because the
equilibrium solutions do not only depend on the fraction of occupied space s but also on
the single densities of the vehicles. Therefore, the explanation for the multivalued beha-
vior is based on the consideration that the flow along a road is strongly influenced by the
composition of the traffic mixture. In particular, this aspect is evident at high densities
because the different mechanical characteristics (the typical length) of the vehicles on the
road become a key factor to adjust the speed in congested conditions. Conversely, if we
focus on the diagrams of the speed vs. the fraction of occupied space at the bottom of
Figure 8, we deduce that in free flow conditions the macroscopic speed is influenced by the
fact that fast vehicles slow down as a consequence of their interactions with slower vehicles.
In contrast, at high values of s, all types of vehicles are forced to slow down, reaching the
same macroscopic speed. These remarks reflect the daily experience of driving on highways,
in particular the fact that in congested flow all vehicles tend to travel at the same speed,
which steadily decreases as the traffic congestion increases.

Capacity drop The flux-density diagram in the top-left panel of Figure 8 is very similar to the
experimental ones, whose main characteristics are well reproduced. However, as observed
also in the single population model [32], the diagrams seem to be strictly dependent on T p,
which defines uniquely the number of discrete velocities once V p

max and ∆v are given. In fact,
the capacity drop, that is the jump between the maximum flux values in free and congested
phases, see e.g. [35], becomes sharper and sharper when T p increases. For instance, with
the choice of the physical parameters listed in Table 1, the number of velocities of fast
cars is nCf = 4 and this provides a sharp decrease of the flux of the Cf -class beyond the
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Figure 8: Top: flux-density diagrams. Bottom: diagrams of the speed vs. the fraction of occupied
space. We have considered the three populations Cf -V -T . In the left panels the probability of
changing velocity P is taken as in (7) with γ = 1, while in the right panels the probability P is as
in (28) with scr = 1

2 and µ = − 1
8 .

critical fraction of occupied space. Clearly, this phenomenon influences also the capacity
drop of the total diagram obtained with the multi-population model. We try to overcome
this drawback acting on the law which defines the dependence of P on s. To this end, we
introduce a new law relating P to s in order to better fit experimental data. As a matter of
fact, the sharp transition is due to over-crowding of the low-speed equilibrium distributions,
also for values of s just greater than the critical value. Thus, if Pγ(s) is the γ-law given in
equation (7), the purpose is now to introduce a new and less simplistic function P (s) such
that Pγ(s) < P (s) < 1

2 , ∀ s > scr, where scr is the critical value of s obtained with the

γ-law, i.e. scr =
(

1
2

) 1
γ . Thus, when s just exceeds scr, the new probability P (s) provides an

under-crowding of the first equilibrium distributions (22). As a consequence, the maximum
flux value of the congested phase increases and the capacity drop abates. Recalling that P
is the probability of achieving the maximum speed prescribed by the interaction rules, the
desired function P (s) ∈ [0, 1] should satisfy the following properties:

1. P (0) = 1: when the road is empty, the probability of accelerating is maximum;

2. P (1) = 0: in contrast to the previous request, the probability is zero in jammed traffic
situations;

3. P (scr) = 1
2 : we impose that the transition from free to congested phase corresponds to

the bifurcation of the equilibrium solutions and it occurs at s = scr. The value of the
critical space can be chosen by means of experimental data;

4. d
dsPγ|s=s+cr

< d
dsP|s=s+cr

:= µ < 0: since any reasonable P should be a decreasing function

of s, this is a sufficient condition to verify Pγ(s) < P (s) < 1
2 , ∀ s > scr. Thus, since
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Figure 9: Left: the probability law (7) (black solid line) with scr = 1
2 , γ = 1, and the probability

law (28), which differs from the γ-law only for s > scr = 1
2 , obtained with three different values

of the slope µ for s = scr. Right: the asymptotic distribution f1 (lower speed) obtained with the
probability laws considered in the left panel.

γ is uniquely determined once the value of the critical space is fixed, we require that

µ > d
dsPγ|s=s+cr

= −γsγ−1
cr = −γ

(
1
2

)1− 1
γ .

In order to satisfy the four properties above and since the equilibrium solutions do not
depend on the analytical expression of P (s) (for s ∈ [0, scr]) we consider P as a piecewise
function of s, so that

P (s) = P1(s)χ[0,scr](s) + P2(s)χ(scr,1](s) (28)

where P1(s) is a linear polynomial satisfying the first and the third property, while P2(s) is
a quadratic polynomial satisfying the second, the third and the fourth property. Therefore

P1(s) = 1− s

2scr
, P2(s) = as2 + bs+ c

the coefficients of P2 being

a =
2µ(scr − 1)− 1

2(scr − 1)2
, b = −µ(s2

cr − 1)− scr
(scr − 1)2

, c =
2scr [µ(scr − 1)− 1] + 1

2(scr − 1)2
.

For simplicity, in the left panel of Figure 9 we consider the probability laws with scr =
1
2 . Thus, γ = 1 and the γ-law (7) writes as P = 1 − s, while the piecewise probability
law (28) is plotted for different values of the slope µ computed in s = scr = 1

2 such that

µ > −1 = d
dsPγ|s=scr=1

2

. Notice that the probability values resulting from the piecewise law

increase for ∀ s > scr when µ is increased and this provides a little decrease of the first
equilibrium distribution. This can be seen it in the right panel of Figure 9, in which we plot
the asymptotic distribution f1 as a function of s for the case of a single population. Thus,
the piecewise law allows one to reduce the sharp capacity drop. For instance, this can be
appreciated by comparing the diagrams in the left panels of Figure 8 obtained with the γ-law
and the diagrams in the right panels of Figure 8 obtained with the piecewise probability law.

5 Conclusions and perspectives

In this paper we have introduced a kinetic model for traffic flow which accounts for the heterogen-
eous composition of the flow. Thus, we have considered more than one kinetic function describing
the distribution of vehicles on the road. The model is based on the Boltzmann-like description of
the microscopic interactions which take place among different types of vehicles.
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The aim of this work was to refine the construction of the recent multi-population kinetic
model [31] based on a discrete space of microscopic speeds in order to make it more amenable to
a sound physical interpretation and mathematical analysis. In fact, here we have generalized the
single-population framework introduced in [32], to the case of more than one class of vehicles. In
particular, we have considered continuous and bounded velocity spaces and we have introduced a
fixed parameter ∆v to account for the physical velocity jump produced by a vehicle that increases
its speed. The types of vehicles are characterized by few microscopic features, in this case the
typical length of a vehicle and the maximum speed. After modeling the collision terms describing
the acceleration and the slowing down interactions, we have proved that the model satisfies the
indifferentiability principle at all times, which makes it consistent with the original model when
the vehicles have the same physical characteristics.

Next, we have discretized the model in order to investigate numerically the asymptotic kinetic
distributions. We have shown that they approach a series of delta functions centered on a finite
number of velocities. More precisely, these velocities are integer multiples of ∆v. Therefore, the
asymptotic distributions can be found by solving numerically the discretized model with only
few discrete velocities in the grid. It is worth stressing that the knowledge of the equilibrium
distributions is crucial for both the study of average characteristic of traffic, such as the flux- and
the speed-density relations, and the derivation of macroscopic equations from the kinetic approach,
because the richer closure law provided by the kinetic approach can be used.

We have also studied the analytical properties of the system of ordinary differential equations
resulting from the discretization of the continuous-velocity model. We have proved that the
solution exists, that it is unique, and that it remains positive in time. In addition to that, we have
provided the explicit formulas for the equilibrium distribution functions and the corresponding
macroscopic variables of traffic.
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Boston, Boston, MA, 2004.

[22] J. P. Lebacque. Two-phase bounded-acceleration traffic flow model: analytical solutions and
applications. Transportation Research Record, 1852:220–230, 2003.

[23] J. P. Lebacque and M. M. Khoshyaran. A variational formulation for higher order macroscopic
traffic flow models of the gsom family. Procedia - Social and Behavioral Sciences, 80:370–394,
2013.

[24] M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long
crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955.

[25] M. Lo Schiavo. A personalized kinetic model of traffic flow. Math. Comput. Modelling,
35(5-6):607–622, 2002.

[26] A. R. Méndez and R. M. Velasco. Kerner’s free-synchronized phase transition in a macroscopic
traffic flow model with two classes of drivers. J. Phys. A: Math. Theor., 46, 2013.

26



[27] S. L. Paveri-Fontana. On Boltzmann-like treatments for traffic flow: a critical review of
the basic model and an alternative proposal for dilute traffic analysis. Transportation Res.,
9(4):225–235, 1975.

[28] B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In
R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, volume 22, pages
9727–9749. Springer, New York, 2009.

[29] I. Prigogine. A Boltzmann-like approach to the statistical theory of traffic flow. In R. Herman,
editor, Theory of traffic flow, pages 158–164, Amsterdam, 1961. Elsevier.

[30] I. Prigogine and R. Herman. Kinetic theory of vehicular traffic. American Elsevier Publishing
Co., New York, 1971.

[31] G. Puppo, M. Semplice, A. Tosin, and G. Visconti. Fundamental diagrams in traffic flow: the
case of heterogeneous kinetic models. Commun. Math. Sci., 2015.

[32] G. Puppo, M. Semplice, A. Tosin, and G. Visconti. Kinetic models for traffic flow resulting
in a reduced space of microscopic velocities. Submitted, 2015.

[33] P. I. Richards. Shock waves on the highway. Operations Res., 4:42–51, 1956.

[34] M. Rosini. Macroscopic models for vehicular flows and crowd dynamics: theory and applica-
tions. Springer, Basel, Switzerland, 2013.

[35] H. M. Zhang and T. Kim. A car-following theory for multiphase vehicular traffic flow. Trans-
portation Research Part B: Methodological, 39(5):385–399, 2005.

A Matrix elements for the discretized model

We compute explicitly the right-hand side of the system (14). In the following formulas, the
kinetic distribution functions of candidate and field vehicles are distinguished by the position of
the index of the components: bottom-right for candidate vehicles (such as e.g. fph), top-right for
field vehicles (such as e.g. fpk or fqk).

Starting from the self-collision term Qpp
j and recalling the computations in [32] for the single

population model, we obtain:

1

ηp
Qpp
j [fp, fp](t) = (1− P

2
)fpjfpj + Pfpj

j−1∑
k=1

fpk + (1− P )fpj

np∑
k=j+1

fpk (A.1a)

+ (1− P )fpj
np∑

h=j+1

fph − f
p
j

np∑
k=1

fpk, for j = 1, . . . , r

1

ηp
Qpp
j [fp, fp](t) =

P

2
fpj−rfpj−r + (1− P

2
)fpjfpj + Pfpj−r

np∑
k=j−r+1

fpk + Pfpj

j−1∑
k=1

fpk (A.1b)

+ (1− P )fpj

np∑
k=j+1

fpk + (1− P )fpj
np∑

h=j+1

fph − f
p
j

np∑
k=1

fpk, for j = r + 1, . . . , np − 1

1

ηp
Qpp
np [fp, fp](t) = P

np−1∑
h=np−r

fph

[
1

2
fph +

np∑
k=h+1

fpk

]
+ fpn

p

fpnp + Pfpnp

np−1∑
k=1

fpk − fpnp

np∑
k=1

fpk.

(A.1c)
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For the cross-collision terms, we distinguish the two cases described in (10) and (11). Therefore,
let Vp ⊂ Vq, we obtain:

1

ηpq
Qpq
j [fp, fq](t) = (1− P

2
)fqjfpj + Pfpj

j−1∑
k=1

fqk + (1− P )fpj

nq∑
k=j+1

fqk (A.2a)

+ (1− P )fqj
np∑

h=j+1

fph − f
p
j

nq∑
k=1

fqk, for j = 1, . . . , r

1

ηpq
Qpq
j [fp, fq](t) =

P

2
fqj−rfpj−r + (1− P

2
)fqjfpj + Pfpj−r

nq∑
k=j−r+1

fqk + Pfpj

j−1∑
k=1

fqk (A.2b)

+ (1− P )fpj

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1

fph − f
p
j

nq∑
k=1

fqk, for j = r + 1, . . . , np − 1

1

ηpq
Qpq
np [fp, fq](t) = P

np−1∑
h=np−r

fph

[
1

2
fqh +

nq∑
k=h+1

fqk

]
+ fpnp

[
fqn

p

+

nq∑
k=np+1

fqk

]
(A.2c)

+ Pfpnp

np−1∑
k=1

fqk − fpnp

nq∑
k=1

fqk.

Finally, let Vp ⊃ Vq. If V p
max − V q

max > ∆v, we obtain:

1

ηpq
Qpq
j [fp, fq](t) = (1− P

2
)fqjfpj + Pfpj

j−1∑
k=1

fqk + (1− P )fpj

nq∑
k=j+1

fqk (A.3a)

+ (1− P )fqj
np∑

h=j+1

fph − f
p
j

nq∑
k=1

fqk, for j = 1, . . . , r

1

ηpq
Qpq
j [fp, fq](t) =

P

2
fqj−rfpj−r + (1− P

2
)fqjfpj + Pfpj−r

nq∑
k=j−r+1

fqk + Pfpj

j−1∑
k=1

fqk (A.3b)

+ (1− P )fpj

nq∑
k=j+1

fqk + (1− P )fqj
np∑

h=j+1

fph − f
p
j

nq∑
k=1

fqk, for j = r + 1, . . . , nq − 1

1

ηpq
Qpq
nq [fp, fq](t) =

P

2
fqn

q−rfpnq−r + (1− P

4
)fqn

q

fpnq + Pfpnq−r

nq∑
k=nq−r+1

fqk + Pfpnq

nq−1∑
k=1

fqk

(A.3c)

+ (1− P )fqn
q

np∑
h=nq+1

fph − f
p
nq

nq∑
k=1

fqk,

1

ηpq
Qpq
j [fp, fq](t) =

P

2
fqj−rfpj−r + Pfpj−r

nq∑
k=j−r+1

fqk + Pfpj

nq∑
k=1

fqk − fpj
nq∑
k=1

fqk, for j = nq + 1, . . . , nq + r − 1

(A.3d)

1

ηpq
Qpq
nq+r[f

p, fq](t) =
P

4
fqn

q

fpnq + Pfpnq+r

nq∑
k=1

fqk − fpnq+r

nq∑
k=1

fqk, (A.3e)

1

ηpq
Qpq
j [fp, fq](t) = Pfpj

nq∑
k=1

fqk − fpj
nq∑
k=1

fqk, for j = nq + r + 1, . . . , np. (A.3f)

On the other hand, if V p
max − V q

max = ∆v then nq + r = np and the cases (A.3f) do not appear.
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B Equilibrium solutions of the discretized model

The equilibrium values of the ODE system (15) are explicitly computed in Theorem 6 for the
j = 1, . . . , 2r cases, which are typical. The other solutions can be easily obtained as follows.

For j = lr+ 1, l = 2, . . . , T 2− 1, the equation for fpj is again computed by using (A.1b)-(A.3b)

if p = 1 and in (A.1b)-(A.2b) if p = 2. Let Fj = f1
j + f2

j , then summing the evolution equation of
both populations we obtain(

3P − 2

2

)
F 2
lr+1 +

[
(3P − 2)

l−1∑
k=0

Fkr+1 + (1− 2P )
(
ρ1 + ρ2

)]
Flr+1

+PF(l−1)r+1

[
−1

2
F(l−1)r+1 + ρp + ρq −

l−2∑
k=0

Fkr+1

]
= 0.

If P ≥ 1
2 , then the above equation becomes identical to (19) and the stable root is Flr+1 = 0. If

instead P < 1
2 , then the stable solution is

Flr+1 =

−(3P − 2)

l−1∑
k=0

Fkr+1 − (1− 2P )
(
ρ1 + ρ2

)
−
√

∆lr+1

3P − 2

where

∆lr+1 =

[
(3P − 2)

l−1∑
k=0

Fkr+1 + (1− 2P )
(
ρ1 + ρ2

)]2

−2P (3P − 2)F(l−1)r+1

[
−1

2
F(l−1)r+1 + ρ1 + ρ2 −

l−2∑
k=0

Fkr+1

]
,

which is positive because it is a sum of two positive terms, provided P < 1
2 . The equilibrium

solutions of population p can be again deduced by assuming that they are functions only of the
quantities depending on p, so that

(fr)
p
lr+1 =


0 P ≥ 1

2

−(3P − 2)

l−1∑
k=0

fpkr+1 − (1− 2P )ρp −
√

∆p
lr+1

3P − 2
P < 1

2

, l = 0, . . . , T 2 − 1,∀ p

where

∆p
lr+1 =

[
(3P − 2)

l−1∑
k=0

fpkr+1 + (1− 2P )ρp

]2

−2P (3P−2)fp(l−1)r+1

[
−1

2
fp(l−1)r+1 + ρp −

l−2∑
k=0

fpkr+1

]
.

Finally, if lr + 2 ≤ j ≤ (l + 1)r, l = 2, . . . , T 2 − 1, then the equilibria are (fr)
p
j ≡ 0, ∀ P ∈ [0, 1]

and ∀ p.
Note that for j = n2, i.e. for the maximum speed of population p = 2, the equilibrium value

related to the population p = 2 can be found by using mass conservation, so that

(fr)
2
n2 = ρ2 −

n2−1∑
k=1

f2
k . (B.1)

Instead, for the population p = 1, the equilibrium equation is obtained by means of (A.1b)-(A.3c).
If P < 1

2 , then fpj 6= 0, if j = kr + 1, k = 0, . . . , T 2 − 1 and ∀ p. Thus, using the last equilibrium
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value (B.1) for p = 2, we find(
3P − 2

2

)(
f1
n2

)2
+

(3P − 2)

T 2−1∑
k=0

f1
kr+1 +

P

4

T 2−1∑
k=0

f2
kr+1 + (1− 2P )ρ1 +

(
3

4
P − 1

)
ρ2

 f1
n2

+(1− P )

ρ1 −
T 2−1∑
k=0

f1
kr+1

ρ2 −
T 2−1∑
k=0

f2
kr+1


+Pf1

n2−r

−1

2

(
f1
n2−r + f2

n2−r
)

+ ρ1 + ρ2 −
T 2−2∑
k=0

(
f1
kr+1 + f2

kr+1

)
whose stable root is

(fr)
1
n2 =

−

(3P − 2)

T 2−1∑
k=0

f1
kr+1 +

P

4

T 2−1∑
k=0

f2
kr+1 + (1− 2P )ρ1 +

(
3

4
P − 1

)
ρ2

−√∆n2

3P − 2
(B.2)

where the discriminant

∆n2 =

(3P − 2)

T 2−1∑
k=0

f1
kr+1 +

P

4

T 2−1∑
k=0

f2
kr+1 + (1− 2P )ρ1 +

(
3

4
P − 1

)
ρ2

2

−2(3P − 2)(1− P )

ρ1 −
T 2−1∑
k=0

f1
kr+1

ρ2 −
T 2−1∑
k=0

f2
kr+1

 (B.3)

−2(3P − 2)Pf1
n2−r

−1

2

(
f1
n2−r + f2

n2−r
)

+ ρ1 + ρ2 −
T 2−2∑
k=0

(
f1
kr+1 + f2

kr+1

)
is positive provided P < 1

2 . If instead P ≥ 1
2 , then the equilibrium value is again of the form (B.2)

with the discriminant (B.3), but it is obtained by taking fpj = 0, ∀ j < n2, ∀ p. It can be proved

that ∆n2 is positive also provided P ≥ 1
2 .

Let j = n2 + 1, now vj ∈ V1 but vj /∈ V2. The equilibrium equation for p = 1 is computed by
using (A.1b)-(A.3d). We obtain(

3P − 2

2

)(
f1
n2+1

)2
+

(3P − 2)

T 2∑
l=0

f1
lr+1 + (1− 2P )ρ1 + (P − 1)ρ2

 f1
n2+1 = 0 (B.4)

and f1
n2+1 = 0 results the stable solution ∀ P ∈ [0, 1]. This consideration holds for each f1

j ,

n2 + 1 < j ≤ n2 + r − 1 because the equation resulting from d
dtf

1
j = 0 is identical to (B.4). Thus,

(fr)
1
j ≡ 0, n2 + 1 ≤ j ≤ n2 + r − 1.

Now, let j = n2 + r, then in order to compute d
dtf

1
n2+r = 0 we use the equations (A.1c)-(A.3e)

if V 1
max − V 2

max = m1,2∆v, with m1,2 = 1. Notice that in this case n2 + r = n1, thus we can

use mass conservation to find (fr)
1
n2+r. Instead, if m1,2 > 1 we may use (A.1b)-(A.3e), and since

f1
j ≡ 0, if j 6= kr + 1, k = 0, . . . , T 2, we find(

3P − 2

2

)(
f1
n2+r

)2
+

(3P − 2)

T 2∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

 f1
n2+r (B.5)

Pf1
n2

−1

2
f1
n2 +

1

4
f2
n2 + ρ1 −

T 2−1∑
k=0

f1
kr+1

 = 0.
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If P < 1
2 the stable solution of the above equation is

(fr)
1
n2+r =

−

(3P − 2)

T 2∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

−√∆n2+r

3P − 2
(B.6)

where the discriminant

∆n2+r =

(3P − 2)

T 2∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

2

(B.7)

−2P (3P − 2)f1
n2

−1

2
f1
n2 +

1

4
f2
n2 + ρ1 −

T 2−1∑
k=0

f1
kr+1


is positive provided P < 1

2 . If instead P ≥ 1
2 then the stable root of (B.5) is again of the form (B.6)

with the discriminant (B.7), but it is obtained by taking f1
j = 0, ∀ j 6= n2, and it can be proved

that ∆n2+r is positive provided P ≥ 1
2 .

Let n2 +r+1 ≤ j ≤ n1−1, then the equilibrium equation resulting from d
dtf

1
j = 0 is computed

by using (A.1b)- (A.3f). For any j = n2 + lr, l = 2, . . . ,m1,2 − 1, where m1,2 is such that
V 1

max − V 2
max = m1,2∆v, we obtain(

3P − 2

2

)(
f1
j

)2
+

(3P − 2)

T 2+l−1∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

 f1
j

+Pf1
j−r

−1

2
f1
j−r + ρ1 −

T 2+l−2∑
k=0

f1
kr+1

 = 0

whose stable solution is

(fr)
1
j =

−

(3P − 2)

T 2+l−1∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

−√∆j

3P − 2

for all values of P ∈ [0, 1] and where the discriminant

∆j =

(3P − 2)

T 2+l−1∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

2

−2P (3P − 2)f1
j−r

−1

2
f1
j−r + ρ1 −

T 2+l−2∑
k=0

f1
kr+1


is positive ∀ P ∈ [0, 1]. While, if n2 + lr + 1 ≤ j ≤ n2 + (l + 1)r − 1, l = 2, . . . ,m1,2 − 1, the
equilibrium equation for f1

j is(
3P − 2

2

)(
f1
j

)2
+

(3P − 2)

T 2+l−1∑
k=0

f1
kr+1 + (1− 2P )ρ1 + (P − 1)ρ2

 f1
j = 0

whose stable solution results (fr)
1
j = 0, ∀ P ∈ [0, 1].

Finally, the last equilibrium value for the population p = 1 can be found by mass conservation,
so that

f1
n1 = ρ1 −

n1−1∑
k=1

f1
k .
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