
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title DASHbed: a testbed framework for large scale empirical evaluation of
real-time DASH in wireless scenarios

Author(s) Raca, Darijo; Sani, Yusuf; Sreenan, Cormac J.; Quinlan, Jason J.

Publication date 2019-06

Original citation Raca, D., Sani, Y., Sreenan, C. J., Quinlan, J. J. (2019) 'DASHbed: a
testbed Framework for Large Scale Empirical Evaluation of Real-Time
DASH in Wireless Scenarios', ACM MMSys'19: ACM Multimedia
Systems Conference, Amherst, MA, USA, 18-21 June.

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/citation.cfm?id=3325813
http://dx.doi.org/10.1145/3304109.3325813
Access to the full text of the published version may require a
subscription.

Rights © 2019 Association for Computing Machinery. This is the author's
version of the work. It is posted here for your personal use. Not for
redistribution.

Item downloaded
from

http://hdl.handle.net/10468/8081

Downloaded on 2021-11-27T07:32:43Z

https://libguides.ucc.ie/openaccess/impact?suffix=8081&title=DASHbed: a testbed framework for large scale empirical evaluation of real-time DASH in wireless scenarios
https://dl.acm.org/citation.cfm?id=3325813
http://dx.doi.org/10.1145/3304109.3325813
http://hdl.handle.net/10468/8081

DASHbed: a testbed Framework for Large Scale Empirical
Evaluation of Real-Time DASH in Wireless Scenarios

Darijo Raca, Yusuf Sani, Cormac J. Sreenan, Jason J. Quinlan
School of Computer Science and Information Technology, University College Cork, Cork, Ireland

{d.raca,ys8,cjs,j.quinlan}@cs.ucc.ie

ABSTRACT
Recent years have witnessed an explosion of multimedia traffic car-
ried over the Internet. Video-on-demand and live streaming services
are the most dominant services. To ensure growth, many streaming
providers have invested considerable time and effort to keep pace
with ever-increasing users’ demand for better quality and stall abo-
lition. HTTP adaptive streaming (HAS) algorithms are at the core of
every major streaming provider service. Recent years have seen sus-
tained development in HAS algorithms. Currently, to evaluate their
proposed solutions, researchers need to create a framework and
numerous state-of-the-art algorithms. Often, these frameworks lack
flexibility and scalability, covering only a limited set of scenarios. To
fill this gap, in this paper we propose DASHbed, a highly customiz-
able real-time framework for testing HAS algorithms in a wireless
environment. Due to its low memory requirement, DASHbed offers
a means of running large-scale experiments with a hundred com-
peting players. Finally, we supplement the proposed framework
with a dataset consisting of results for five HAS algorithms tested
in various evaluated scenarios. The dataset showcases the abilities
of DASHbed and presents the adaptation metrics per segment in the
generated content (such as switches, buffer-level, P .1203.1 values,
delivery rate, stall duration, etc.), which can be used as a baseline
when researchers compare the output of their proposed algorithm
against the state-of-the-art algorithms.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Public Internet; Wireless access networks; Network mea-
surement;

KEYWORDS
HTTP Adaptive Streaming, HAS, Testbed Framework, Dynamic
Adaptive Streaming over HTTP, DASH, Real-Time Streaming

ACM Reference Format:
Darijo Raca, Yusuf Sani, Cormac J. Sreenan, Jason J. Quinlan. 2019. DASHbed:
a testbed Framework for Large Scale Empirical Evaluation of Real-Time
DASH in Wireless Scenarios. In Proceedings of ACM Conference (Confer-
ence’17).ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Multimedia traffic dominates today’s Internet, and this trend is
expected to continue in the foreseeable future1. On average, users
spend almost six hours a day consuming video content 2. Further-
more, over-the-top (OTT) services experienced tremendous growth
in recent years. Video-on-demand (VoD) services are the most dom-
inant OTT service. Big players, like Netflix, Hulu, and Amazon
offer subscription-based VoD services. The success of VoD technol-
ogy lies, among other key factors (powerful compression methods
and broadband access), in the ability to adapt streaming content
to the current device (e.g., switch to lower video quality if the
available link throughput plunges or does not stream content with
a resolution not supported by screen capability). To enable this
customisation, OTT providers employ HTTP adaptive streaming
concepts at the heart of their services (in particular dominated by
Apple HLS and MPEG-DASH streaming formats3). As multimedia
traffic soars, so does user’s expectation regarding video quality.
The majority of users want reliable, high-quality video. Also, the
most annoying factor causing streaming session abandonment is re-
buffering/stalls 4. Multimedia consumption over mobile devices is
continuously rising every year 5, however, streaming high-quality
and interrupt-free video content over a wireless link is a formidable
challenge for both ISPs and content providers. While content can
be compressed to reduce the delivery rate (H.264 to H.265), the
inherent variability in the throughput of the air-interface of the
wireless environment has the most impact on achievable quality
at the device. As a result, most new HAS algorithms are typically
judged by their performance in a wireless environment, such as
over WiFi, 3G and 4G technologies.

The goal of many HAS algorithms over the last decade has been
to minimise or completely abolish stalls, thus maximising achiev-
able video quality based on the variance in the underlying network
throughput. [1, 2]. These algorithms operate by estimating network
conditions and adapting video quality based on available network
resources.

Comparing different HAS algorithms is a non-trivial task, due
in part to the variance in the underlying goals of the different HAS
algorithms. Some algorithms aim for smooth streaming (minimise
switching between different bitrates), others high quality, and no
stalls (which are self-opposing) while others aim at improving net-
work utilisation. Ultimately, the main aim of all HAS algorithms

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.pdf
2https://www.nielsen.com/us/en/insights/reports/2018/
q2-2018-total-audience-report.html
3https://go.bitmovin.com/download-the-bitmovin-2018-video-developer-report
4http://connect.mux.com/2017-streaming-perceptions-report
5https://www.conviva.com/research/convivas-state-streaming-tv-industry/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.nielsen.com/us/en/insights/reports/2018/q2-2018-total-audience-report.html
https://www.nielsen.com/us/en/insights/reports/2018/q2-2018-total-audience-report.html
https://go.bitmovin.com/download-the-bitmovin-2018-video-developer-report
http://connect.mux.com/2017-streaming-perceptions-report
https://www.conviva.com/research/convivas-state-streaming-tv-industry/

Conference’17, July 2017, Washington, DC, USA Darijo Raca, Yusuf Sani, Cormac J. Sreenan, Jason J. Quinlan

is to achieve the highest quality of user experience (QoE) irrespec-
tive of whether the adaptation is client focused, network focused
or distributed between both. Because of its subjective nature QoE
is typically difficult to measure and generalise. To help alleviate
this problem, researchers have proposed various QoE models over
the years, mapping various streaming video QoE-related metrics
(e.g., average quality, switching, stalls) to a QoE score, typically
in the range (0-5). While most of these models only take into con-
sideration a subset of the mentioned QoE-related metrics to find
an “optimal” blend between them, some efforts have been made in
proposing subjectively-validated QoE models [3, 4]. The foregoing
discussion notwithstanding, the first standardised model for QoE
was published in 2017 [5].

Currently, to evaluate a proposed scheme against the state-of-
the-art streaming algorithms, researchers need to build a custom
made framework/testbed. Most of the time, reproducibility of their
work is limited, as many researchers do not publish the source code.
However, even when the code is released, the set of scenarios is
typically limited, and any new test scenarios require a significant
amount of effort to implement in their existing testbed.

With this in mind, in this paper, we reduce the evaluation work-
load by proposing DASHbed, a large-scale framework for testing
HAS algorithms in a wireless environment. DASHbed allows au-
tomation of different scenarios under different conditions for vari-
ous HAS algorithms. The framework is trace-driven, running over
different wireless traces collected from real wireless networks e.g.,
WiFi, 3G, 4G). Furthermore, low memory requirements allow for
running up to 100 competing video players on a single machine.
DASHbed provides a rich set of flexibility in defining different sce-
narios making it appealing for researchers to use. Furthermore,
DASHbed outputs result in a structured form, making it easy to
analyse and compare. Finally, we include a P .1203.1model (mode 0)
for video streaming as a standardised QoE model in our framework.

The following outlines the remainder of the paper. Section 2,
presents information on related DASH datasets and QoE-related
metrics and is followed by Section 3, where we provide an overview
and introduce key features of our testbed framework. Section 4
provides an overview of the dataset generated by our framework
and the relevant QoE-related metrics within. Section 5 concludes
the paper.

2 BACKGROUND AND RELATEDWORK
There are five crucial facets when analysing the performance of
HAS algorithms. These are: video content for streaming (sufficiently
large dataset of mixed content - resolutions, encoders and genres),
wireless bandwidth traces (collected over different air-interfaces with
various sample granularity), a range of HAS algorithms to compare
against (with different demands and objectives), a subjective QoE
model (standardised if possible) and a rich set of different scenarios
for evaluation.

In the video research community, there is a relatively small num-
ber of DASH enabled datasets. Over time, the content of these
datasets has evolved in resolution, encoders and bitrates. Lederer
et al. [6], in 2012, released the first publicly available DASH dataset
encoded with the H.264 encoder. Dataset consists of 6 Full HD clips
encoded in 20 quality bitrates ranging from 50 Kbps to 8Mbps. Also

content was encoded in five different segment duration, 1, 2, 4, 6
10, and 15 seconds. The same authors later released the Distributed
DASH dataset [7], which extended the selection of bitrate to encom-
pass a diverse range of geographical content servers. The datasets
of Quinlan et al. [8] provide DASH content with H.265 in addition
to H.264 encoded video content. In total 23 clips were encoded
with ten quality bitrates, five segment duration (2, 4, 6, 8, and 10
seconds). Similarly, Zabrovskiy et. al [9] released content encoded
using multiple encoders (H.264, H.265, VP9, and AV1). This dataset
consists of 4K content with quality bitrates going up to 20Mbps. 4K
datasets with Ultra High Definition resolutions (3840x2160) were
generated [10, 11] with 40 Mbps maximum quality bitrate.

Similarly, there is a limited set of bandwidth traces collected over
a wireless channel. The main differences in the traces are the gran-
ularity of samples and the channel and context metrics. Bokani et
al. [12] collected 3G and 4G traces with 10-second resolution (traces
are repeated over the same route to get statistically relevant results
on network performance). Similarly, Xiao et al. and Li et al. [13, 14]
collected bandwidth traces over 3G and 4G in high mobility scenar-
ios (train and car). On the other hand, Riiser et al. [15] collected 3G
traces for different mobility patterns (tram, train, metro, bus, ferry,
and car). Similarly, Hooft et al. [16] used the same approach for 4G
networks. All these traces contain a sample granularity in the order
of seconds and provides additional information such as timestamp
and GPS coordinates of the device. Meixner et al. [17] collected a
large set of 5-minutes bandwidth traces with 100ms granularity
collected over a 4G network and various mobility patterns. Further-
more, traces have additional channel information such as signal
strength. Futhermore, Raca et al. [18] collected video-streaming
based traces over two operational 4G networks with additional
channel information such as velocity, SNR, CQI, RSRP and RSRQ.

The underlying concept of HAS is to split video content into
multiple segments with segment duration ranging between 2-20
seconds. Each segment is encoded into multiple video bitrates. After
the current segment is downloaded, an algorithm decides on the
quality of the next requested segment. Broadly, these algorithms can
be grouped into three categories: rate-based [19], which makes de-
cisions based on delivery rates of previously downloaded segments;
buffer-based [20], which monitors the state of playback buffer and
makes appropriate decisions; hybrid-based [21] algorithms that take
both approaches when deciding on the quality of the next segment.

HAS algorithms use different approaches in designing their adap-
tation logic, such as control theory [22], optimisation [23, 24], ma-
chine learning [25], game theory [26] and other techniques [21].
Other approaches leverage the possibility of having accurate through-
put prediction and how it can help in improving HAS performance
by incorporating prediction into existing algorithms [27] or design-
ing new prediction-aware HAS algorithms [28, 29].

Many efforts have been made to analyse the performance of HAS
players under different conditions [30–32]. Several key factors have
been identified as a cause for low performance, such as "ON-OFF"
behaviour of HAS player [33] and TCP Slow start [34]. Furthermore,
these effects get exacerbated when multiple clients compete for
the available resources. While many HAS algorithms exist in the
literature, there is a limited number of evaluation frameworks avail-
able, as authors don’t release their frameworks or frameworks are
limited in their functionality. To fill this gap, we provide a DASH

DASHbed: Framework for Large Scale Empirical Evaluation of Real-Time DASH Conference’17, July 2017, Washington, DC, USA

testbed (DASHbed) framework for the evaluation of HAS algorithms
in real-time.

Table 1: Ladder for the average UHD encoding rate,
resolution and frame rate for the used dataset [35]

Bitrate Resolution Frame Rate
13 40Mbps 3840x1744 24, 60
12 25Mbps 3840x1744 24, 60
11 15Mbps 3840x1744 24, 60
10 4.3Mbps 1920x872 24, 60
9 3.85Mbps 1920x872 24, 60
8 3Mbps 1280x582 24, 60
7 2.35Mbps 1280x582 24, 60
6 1.75Mbps 720x328 24, 60
5 1.05Mbps 640x292 24, 60
4 750Kbps 512x234 24, 60
3 560Kbps 512x234 24, 60
2 375Kbps 384x174 24, 60
1 235Kbps 320x146 24, 60

3 THE DASHBED FRAMEWORK
Figure 1 illustrates the architecture of our DASHbed framework.
Four main components are constituting our framework:

• Stored video content.
• Link throughput limiter.
• Wireless traces for link throughput emulation.
• HAS video player

In the following section, we give details for each component of
our framework.

Figure 1: DASHbed framework Architecture

3.1 Main components of the framework
For video content, we use the Ultra High Definition (UHD/4K)
dataset [35]. The dataset provides bothAVC (H.264), andHEVC (H.265)
encoded video content. However, we only generate P .1203.1 values
for H.264 encoded content. Furthermore, our framework only pro-
duces QoE values based on mode 0 of P .1203.1. This limits the QoE
output of our model as the inclusion of bitstream parsing for Mode
1 and 2 is missing. Finally, integrating complete P.1203 model with
initial delay and stall events (already produced by dashc player) is
set for future work.

In [35] three well-known open-source video clips (Big Buck
Bunny, Sintel, and Tears of Steel) are used for generating 4K DASH
compatible content. Table 1 shows encoding settings used for the
dataset (frame rates depend on video clip). The duration of the

video clips ranges between 10 and 14 minutes. For segmentation
and encoding dataset following tools were used: FFmpeg - encod-
ing original content to lossless YUV format; x264/x265 codec for
encoding to AVC/HEVC format; MP4Box for segmentation and
multi-profile MPD generation. Furthermore, the video content is
generated for five different segment durations (2, 4, 6, 8 and 10
seconds) allowing for a greater variety of experiments. This helps
a researcher to better quantify the impact of different segment
durations on the underlying adaptive delivery service.

For modelling link throughput, we use the Linux Traffic Con-
trol (tc) tool to modify the link capacity between video server and
video clients. Depending on the bandwidth traces, link throughput
is changed on the order of seconds (4G and WiFi every second,
while 3G every couple of seconds). For bandwidth traces we use
4G [18] and 3G [15] bandwidth traces, while we generated our
own WiFi traces. The 3G/4G traces are collected over various mo-
bility patterns (static, pedestrian, car, tram, train). Modelling link
capacity from real traces implicitly reflect impact of cross-traffic on
available throughput. Using real traces implicitly reflect the impact
of cross-traffic on available throughput. However, as cross-traffic
characteristics are unknown, further qualification of impact, either
on video performance by cross-traffic or vice versa, is not possi-
ble. On the other hand, full network emulation allows for further
analysis of the interaction between video and different types of
traffic. The current framework can be easily extended to support
full network emulation through mininet 6 and tools for synthetic
traffic generation (e.g., distributed internet traffic generator [36]).
This is left as future work.

For the video player, we select dashc [37]. Dashc emulates a
HAS video player by adopting all of the player’s logic, except the
option to decode the video content. This feature results in low
memory requirements allowing for the running of a large number
of concurrent players at the same time.

Dashc implements the following adaptation algorithms:
• Conventional - Conventional represents a rate-based adap-
tation algorithm. It makes its choice on the next segment,
by using an exponential moving average of past segments
delivery rate.

• Elastic [22] - Elastic uses a harmonic average of the recent
five segment rates. The harmonic average is a conservative
estimate of available throughput. Furthermore Elastic em-
ploys control-theory to combine throughput estimate and
buffer levels when making video rate selection decisions.

• Arbiter [38] - Arbiter belongs to the hybrid category of
HAS adaptive streaming algorithms. It employs exponential
weighted moving average of the delivery rate of the last ten
segment’s to estimate the available throughput for the next
segment. However, to adapt quickly to sudden changes in
throughput (especially in a wireless environment), Arbiter
employs adaptive scaling, such that its estimate is based on
the secondmoment of the throughput sample. The additional
scaling factor reflects the buffer state of the player (i.e., full
buffer signals good conditions forcing the player to be less
conservative by requesting higher video quality).

6http://mininet.org/

http://mininet.org/

Conference’17, July 2017, Washington, DC, USA Darijo Raca, Yusuf Sani, Cormac J. Sreenan, Jason J. Quinlan

• BBA-2 [20] and Logistic [39] - both algorithms select the next
segment quality by mapping the buffer level to a target seg-
ment quality. Furthermore, BBA-2 incorporates a throughput-
based decision in its “startup” phase while taking into ac-
count future video segment sizes. Logistic uses a logistic
model to map buffer levels to video bitrate.

3.2 Key features of the framework
This section outlines the main characteristics of the DASHbed
framework. Further details are available on the following web-
page 7 8. DASHbed is designed to run completely automatically. To
run experiments, one needs to execute a python3 control script and
pass the required input arguments. These arguments consist of a
physical interface (the interface linked to the machine containing
dashc), number of clients, number of runs, duration of the segment,
list of adaptation algorithms, duration of the segment, and list of
movies. After running a control script, the script proceeds in the
following order:

(1) Perform necessary checks
(2) Parse input arguments
(3) Create a config file for each client (adaptation algorithm and

movie URL)
(4) Load trace files from trace folder
(5) For each trace, start bandwidth emulation using tc tool
(6) Start all video players
(7) Repeat steps 4-6 for defined number of runs
After the video player finishes streaming, a DASHbed log file is

saved. Table 2 shows an example of the output from DASHbed. The
logs contain values for each segment selection decision. Within
this log file, we provide a rich set of various metrics, which can
be used for later analysis. In addition to the standard performance
metrics (quality rate, buffer level, and stall duration) which are
commonly used to generate QoE related metrics, such as the aver-
age video quality, switching rate (i.e., instability) and video stalls
(i.e., total stall duration and number of stalls). We provide detailed
information for each segment (its delivery rate, actual rate, which is
a function of segment size and segment duration, encoding format,
segment resolution, and round trip time).

We combine the output of the generated DASHbed log files
and create a dataset of content adaptation for the five algorithms
currently implemented in the testbed (further details in Section 4).
Finally, for each segment, we output a QoE score. For the QoE score,
we use the recently standardised ITU-T Rec. P .1203.1 HAS QoE
model [5].

The P.1203.1 QoE model is derived from subjective studies. It
uses MOS (mean opinion score, 5-point scale) to capture user expe-
rience of the streaming session, taking into account both video and
audio impairments. The main drawback of the standardised model
is its limitation to H.264 (AVC) encoding content to a maximum
resolution of Full HD (1920x1080).

Many of the state-of-the-art streaming algorithms require infor-
mation about segment sizes in advance. Availability of this infor-
mation depends on the type of manifest profile, such as full, main,
live, onDemand, byte-range, etc. Alternatively, a player needs to
7http://www.cs.ucc.ie/misl/research/datasets/dashbed
8https://github.com/uccmisl/DASHbed

request all the per-segment transmission costs for all the segments,
of all the available representation rates. DASHbed employs two
approaches to get this information. First, by default, if the algorithm
requires segment size information, the player will obtain informa-
tion for each segment at the beginning by sending head requests
for each segment across all quality levels. However, in experiments
with limited bandwidth, this approach can take a long time (order
of minutes in some cases) resulting in unusable results for compar-
ison with other adaptation algorithms. To overcome this limitation,
DASHbed also provides an alternative approach where information
of the segment sizes are downloaded, once, before the start of an
experiment, and are saved to a local file. For future requests, the
segment size information is extracted from the local file.

Code 1 illustrates a template for running the video streaming
experiments. This code is executed at the content machine:

Listing 1: Template for running DASHbed framework
1 # python3 runExperimentsDASHCMD.py interface \
2 numOfCClients numRuns streamingDuration \
3 [list of algorithms] segmentDuration [movieNames]

where arguments used are following: interface - physical inter-
face for tc (bandwidth modulation) at the content machine; nu-
mOfCClients - number of competing clients to run on the client
machine; numRuns - number of repeating run (to get statistically
significant results) for each trace; streamingDuration - duration of
experiment for each trace; [list of algorithms] - list of streaming
algorithms used by competing clients (list must equal the number of
clients). No spaces in list are permitted; segmentDuration - duration
of the segment; [movieNames] - list of movies for each client (list
must equal the number of clients).

The flexibility of the framework allows for running heteroge-
neous scenarios with different types of streaming algorithms com-
peting for bandwidth resources.

4 OVERVIEW OF DATASET
To complement the proposed DASHbed framework, we produce a
dataset using our framework covering a large variety of scenarios.
As stated, we gather the output of the generated testbed log files and
create a DASH dataset of content adaptation for the five algorithms
currently implemented in DASHbed 9.

While this dataset can be used for further analysis and compari-
son with other adaptive algorithms, its primary goal is to showcase
the potential and flexibility of DASHbed. The list of covered sce-
narios is not exhaustive by any means, but we feel it does illustrate
the capabilities beyond current practice. The current version of
dashc, available at the following website 10. In addition, a Vagrant
configuration file for creating the complete testbed across multiple
VMs is available and contains the build scripts, dependencies and
links to content to stream using dashc and produce the output logs
as mentioned above.

Table 3 depicts all scenarios we have run with DASHbed. For
bandwidth traces, we randomly select thirty 4G traces [18], and
twenty five 3G traces [15]. Additionally, we collect five traces over

9http://cs1dev.ucc.ie/misl/dashbed/dashbed-dataset
10http://cs1dev.ucc.ie/misl/dashbed/dashc-updated-algorithms.zip

http://www.cs.ucc.ie/misl/research/datasets/dashbed
https://github.com/uccmisl/DASHbed
http://cs1dev.ucc.ie/misl/dashbed/dashbed-dataset
http://cs1dev.ucc.ie/misl/dashbed/dashc-updated-algorithms.zip

DASHbed: Framework for Large Scale Empirical Evaluation of Real-Time DASH Conference’17, July 2017, Washington, DC, USA

Table 2: Sample trace output from modified dashc

Seg_# Arr_time Del_Time Stall_Dur Rep_Level Del_Rate Act_Rate Byte_Size Buff_Level RTT Codec Width Height FPS Seg_Dur Start P .1203.1

1 109 109 0.000000 232 9070 248 124131 4.000 0.005969 h264 320 240 24 4.000 0.000 1.936882
2 1375 59 0.000000 232 18704 276 138452 8.000 0.006278 h264 320 240 24 4.000 4.000 1.936882
3 3116 533 0.000000 4275 39881 5323 2661696 11.466 0.034981 h264 1920 1080 24 4.000 8.000 2.669001
4 4621 268 0.000000 4275 47542 3187 1593595 15.198 0.075885 h264 1920 1080 24 4.000 12.000 2.997820
5 6012 113 0.000000 4275 53917 1524 762041 19.085 0.016670 h264 1920 1080 24 4.000 16.000 3.331018

Table 3: 60 Evaluated Scenarios

of clients # of algorithms # of runs segment dur. (s)
1 1 5 2, 4, 8
4 1 5 2, 4, 8
5 5 5 2, 4, 8
10 5 5 2, 4, 8

WiFi. Selected traces are included with the framework. All experi-
ments are five minutes long (we only stream first five minutes of
clips and not for whole duration). As the content is streamed in
real-time, in total our evaluation took 62.5 days to run.

We start with a range of standard experiments, i.e., running
a single algorithm against the wireless traces. This experiment
provides for a comparison between the performance of each al-
gorithm. Furthermore, all algorithms are evaluated for different
segment durations, allowing for quantifying the impact of different
segment duration on overall algorithms performance (e.g., longer
segments are more “costly” as a wrong decision could result in
a higher adverse effect on QoE compared to shorter segments).
Next, the experiments are repeated in the same conditions with
four clients, each with the same algorithm. These experiments can
be used to analyse the fairness of each algorithm. While we do not
undertake any evaluation of the output generated in our datasets,
a commonly used fairness metric, Jain fairness index [40] or the
recent F-index [41], a QoE fairness metric, could be utilised.

Finally, we evaluate five heterogeneous clients competing for
throughput resources, with each client using a different adaptation
algorithm. These experiments permit analysis on how algorithms
are actually “fair” against other algorithms. This scenario is the
most realistic one. In practice, one would expect multiple users
are streaming from different providers at the same time. Table 4
illustrates the range for average bitrate, stall duration and P.1203.1
score for all tested algorithms across all scenarios.

Table 4: Range of average values for selected QoE-related
metrics and P.1203.1 model for all scenarios (8-sec segment

duration)

Algorithm Bitrate (Kbps) Stall dur. (s) P.1203.1 (mode 0)
Arbiter [517, 1421] [1.47, 4.71] [2.27, 2.85]
BBA [238, 588] [2.56, 3.45] [2.02, 2.39]
Conv [1235, 2427] [1.97, 5.63] [2.51, 3.18]
Elastic [532, 1777] [0.82, 5.53] [2.1, 3.01]
Logistic [662, 1943] [1.86, 3.68] [2.23, 3.11]

While these metrics showcase the dataset results, other metrics
are necessary (e.g., fairness metric, instability) for full comparison.

5 CONCLUSION
In this paper, we release a flexible, scalable, and customizable real-
time framework for testing HAS algorithms in a wireless environ-
ment, which we call DASHbed. Due to its low memory requirement
DASHbed offers a means of running large-scale experiments with
a hundred competing players, across a number of competing HAS
algorithms. In the framework, we include the inline generation
of QoE scores using the recently released standardised ITU-T Rec.
P.1203.1 (mode 0) HAS QoE model. The value provided by this Em-
pirical Evaluation is two-fold: 1) it provides a framework to validate
the design and functionality of future HAS algorithms and 2) it
offers an insight into how the design of existing HAS algorithms
benefit from specific context, which can in some instances fail when
generalised.

Finally, we supplement the framework with a dataset of gen-
erated content for the implemented algorithms across a range of
scenarios, thus providing a means of benchmarking and validating
future algorithms. Future work will encompass additional state-of-
the-art HAS algorithms to dashc, importing all modes of P.1203
QoE model [42] and support for additional codecs (VP9, HEVC) 11.
Furthermore DASHbed will be extended with Google ExoPlayer,
thus adding an Android-based mobile device to the range of players
offered by DASHbed.

ACKNOWLEDGEMENTS
This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under Grant
Number 13/IA/1892.

REFERENCES
[1] Yusuf Sani, Andreas Mauthe, and Christopher F. Edwards. Adaptive bitrate

selection: A survey. IEEE Communications Surveys & Tutorials, 19:2985–3014,
2017.

[2] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. A survey on
bitrate adaptation schemes for streaming media over http. IEEE Communications
Surveys Tutorials, pages 1–1, 2018. ISSN 1553-877X. doi: 10.1109/COMST.2018.
2862938.

[3] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. Deriving and validating user
experience model for dash video streaming. IEEE Transactions on Broadcasting,
61(4):651–665, Dec 2015.

[4] Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Steven Latré, and Filip
De Turck. Qoe-driven rate adaptation heuristic for fair adaptive video streaming.
ACM Trans. Multimedia Comput. Commun. Appl., October 2015.

[5] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,
and Bernhard Feiten. A bitstream-based, scalable video-quality model for HTTP
adaptive streaming: ITU-T P.1203.1. In Ninth International Conference on Quality
of Multimedia Experience (QoMEX), Erfurt, May 2017. IEEE. ISBN 978-1-5386-4024-
1. doi: 10.1109/QoMEX.2017.7965631. URL http://ieeexplore.ieee.org/document/
7965631/.

[6] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic Adaptive
Streaming over HTTP Dataset. In Proceedings of the 3rd Multimedia Systems

11https://github.com/Telecommunication-Telemedia-Assessment/
itu-p1203-codecextension

http://ieeexplore.ieee.org/document/7965631/
http://ieeexplore.ieee.org/document/7965631/
https://github.com/Telecommunication-Telemedia-Assessment/itu-p1203-codecextension
https://github.com/Telecommunication-Telemedia-Assessment/itu-p1203-codecextension

Conference’17, July 2017, Washington, DC, USA Darijo Raca, Yusuf Sani, Cormac J. Sreenan, Jason J. Quinlan

Conference, MMSys ’12, pages 89–94, New York, 2012. ISBN 978-1-4503-1131-1.
doi: 10.1145/2155555.2155570. URL http://doi.acm.org/10.1145/2155555.2155570.

[7] Stefan Lederer, Christopher Mueller, Christian Timmerer, Cyril Concolato, Jean
Le Feuvre, and Karel Fliegel. Distributed dash dataset. In Proceedings of the 4th
ACM Multimedia Systems Conference, MMSys ’13, pages 131–135, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1894-5. doi: 10.1145/2483977.2483994. URL
http://doi.acm.org/10.1145/2483977.2483994.

[8] Jason J. Quinlan, Ahmed H. Zahran, Cormac J. Sreenan. Datasets for AVC
(H.264) and HEVC (H.265) Evaluation of Dynamic Adaptive Streaming over
HTTP (DASH). In MMSys ’16 Proceedings of the 7th ACM Multimedia Systems
Conference, May 2016.

[9] Anatoliy Zabrovskiy, Christian Feldmann, and Christian Timmerer. Multi-codec
dash dataset. In Proceedings of the 9th ACM Multimedia Systems Conference,
MMSys ’18, pages 438–443, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5192-8. doi: 10.1145/3204949.3208140. URL http://doi.acm.org/10.1145/3204949.
3208140.

[10] J. Le Feuvre, J-M. Thiesse, M. Parmentier, M. Raulet, and C. Daguet. Ultra High
Definition HEVC DASH Data Set. In Proceedings of the 5th ACM Multimedia
Systems Conference, MMSys ’14, 2014. ISBN 978-1-4503-2705-3. doi: 10.1145/
2557642.2563672. URL http://doi.acm.org/10.1145/2557642.2563672.

[11] Jason J. Quinlan and Cormac J. Sreenan. Multi-profile ultra high definition (uhd)
avc and hevc 4k dash datasets. In Proceedings of the 9th ACM Multimedia Systems
Conference, MMSys ’18, pages 375–380, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5192-8. doi: 10.1145/3204949.3208130. URL http://doi.acm.org/10.
1145/3204949.3208130.

[12] Ayub Bokani, Mahbub Hassan, Salil S. Kanhere, Jun Yao, and Garson Zhong.
Comprehensive mobile bandwidth traces from vehicular networks. In Proceedings
of the 7th International Conference on Multimedia Systems, MMSys ’16, pages 44:1–
44:6. ACM, 2016. ISBN 978-1-4503-4297-1. URL http://doi.acm.org/10.1145/
2910017.2910618.

[13] Q. Xiao, K. Xu, D. Wang, L. Li, and Y. Zhong. Tcp performance over mobile
networks in high-speed mobility scenarios. In 2014 IEEE 22nd International
Conference on Network Protocols, pages 281–286, Oct 2014. doi: 10.1109/ICNP.
2014.49.

[14] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi. A measurement study
on tcp behaviors in hspa+ networks on high-speed rails. In 2015 IEEE Conference
on Computer Communications (INFOCOM), pages 2731–2739, April 2015. doi:
10.1109/INFOCOM.2015.7218665.

[15] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute path bandwidth
traces from 3g networks: Analysis and applications. In Proceedings of the 4th
ACM Multimedia Systems Conference, MMSys ’13, pages 114–118, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1894-5. doi: 10.1145/2483977.2483991.

[16] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. HTTP/2-Based Adaptive Streaming of HEVCVideo Over 4G/LTE
Networks. IEEE Communications Letters, 20(11):2177–2180, 2016.

[17] Britta Meixner, JanWillem Kleinrouweler, and Pablo Cesar. 4g/lte channel quality
reference signal trace data set. In Proceedings of the 9th ACM Multimedia Systems
Conference, MMSys ’18, pages 387–392, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5192-8. doi: 10.1145/3204949.3208132. URL http://doi.acm.org/10.
1145/3204949.3208132.

[18] Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. Beyond
throughput: A 4g lte dataset with channel and context metrics. In Proceedings of
the 9th ACM Multimedia Systems Conference, MMSys ’18, pages 460–465, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-5192-8. doi: 10.1145/3204949.3208123.
URL http://doi.acm.org/10.1145/3204949.3208123.

[19] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. IEEE/ACM Trans.
Netw., 22(1):326–340, February 2014. ISSN 1063-6692. doi: 10.1109/TNET.2013.
2291681. URL https://doi.org/10.1109/TNET.2013.2291681.

[20] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages
187–198, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2836-4. doi: 10.1145/
2619239.2626296.

[21] A. H. Zahran, D. Raca, and C. Sreenan. Arbiter+: Adaptive rate-based intelligent
http streaming algorithm for mobile networks. IEEE Transactions on Mobile
Computing, pages 1–1, 2018. ISSN 1536-1233. doi: 10.1109/TMC.2018.2825384.

[22] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. Elastic: A client-side con-
troller for dynamic adaptive streaming over http (dash). In 2013 20th International
Packet Video Workshop, pages 1–8. IEEE, Dec 2013. doi: 10.1109/PV.2013.6691442.

[23] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. SIGCOMM Comput.
Commun. Rev., 45(4), August 2015. ISSN 0146-4833.

[24] Ahmed H. Zahran, Jason Quinlan, Darijo Raca, Cormac J. Sreenan, Emir Hale-
povic, Rakesh K. Sinha, Rittwik Jana, and Vijay Gopalakrishnan. Oscar: An
optimized stall-cautious adaptive bitrate streaming algorithm for mobile net-
works. In MoVid. ACM, 2016.

[25] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 197–210, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4653-5. doi: 10.1145/3098822.3098843. URL http:
//doi.acm.org/10.1145/3098822.3098843.

[26] Abdelhak Bentaleb, Ali C. Begen, Saad Harous, and Roger Zimmermann. Want
to play dash?: A game theoretic approach for adaptive streaming over http. In
MMSys. ACM, 2018.

[27] Darijo Raca, Ahmed H. Zahran, Cormac J. Sreenan, Rakesh K. Sinha, Emir Hale-
povic, Rittwik Jana, Vijay Gopalakrishnan, Balagangadhar Bathula, and Matteo
Varvello. Incorporating prediction into adaptive streaming algorithms: A qoe
perspective. In NOSSDAV. ACM, 2018.

[28] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik
Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha. Can accurate predictions
improve video streaming in cellular networks? In HotMobile. ACM, 2015.

[29] Tarun Mangla, Nawanol Theera-Ampornpunt, Mostafa Ammar, Ellen Zegura,
and Saurabh Bagchi. Video through a crystal ball: Effect of bandwidth prediction
quality on adaptive streaming in mobile environments. In MoVid. ACM, 2016.

[30] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental
evaluation of rate-adaptation algorithms in adaptive streaming over http. In
Proceedings of the Second Annual ACM Conference on Multimedia Systems, MMSys
’11, pages 157–168, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0518-1.
doi: 10.1145/1943552.1943574. URL http://doi.acm.org/10.1145/1943552.1943574.

[31] Saamer Akhshabi, Sethumadhavan Narayanaswamy, Ali C. Begen, and Con-
stantine Dovrolis. An experimental evaluation of rate-adaptive video players
over http. Image Commun., 27(4):271–287, April 2012. ISSN 0923-5965. doi:
10.1016/j.image.2011.10.003. URL http://dx.doi.org/10.1016/j.image.2011.10.003.

[32] Theodoros Karagkioules, Cyril Concolato, Dimitrios Tsilimantos, and Stefan
Valentin. A comparative case study of http adaptive streaming algorithms in
mobile networks. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, NOSSDAV’17, pages 1–6, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-5003-7. doi: 10.1145/3083165.3083170.
URL http://doi.acm.org/10.1145/3083165.3083170.

[33] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C. Begen, and Constantine
Dovrolis. What happens when http adaptive streaming players compete for
bandwidth? In Proceedings of the 22Nd International Workshop on Network and
Operating System Support for Digital Audio and Video, NOSSDAV ’12, pages 9–14,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1430-5. doi: 10.1145/2229087.
2229092. URL http://doi.acm.org/10.1145/2229087.2229092.

[34] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh
Johari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In
Proceedings of the 2012 Internet Measurement Conference, IMC ’12, pages 225–238,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1705-4. doi: 10.1145/2398776.
2398800. URL http://doi.acm.org/10.1145/2398776.2398800.

[35] Jason J. Quinlan and Cormac J. Sreenan. Multi-profile ultra high definition (uhd)
avc and hevc 4k dash datasets. In Proceedings of the 9th ACM Multimedia Systems
Conference, MMSys ’18, pages 375–380, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5192-8. doi: 10.1145/3204949.3208130. URL http://doi.acm.org/10.
1145/3204949.3208130.

[36] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. A tool for the generation
of realistic network workload for emerging networking scenarios. Computer
Networks, 56(15):3531–3547, 2012.

[37] Aleksandr Reviakin, Ahmed H. Zahran, and Cormac J. Sreenan. Dashc: A highly
scalable client emulator for dash video. In Proceedings of the 9th ACM Multimedia
Systems Conference, MMSys ’18, pages 409–414, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5192-8. doi: 10.1145/3204949.3208135. URL http://doi.acm.org/
10.1145/3204949.3208135.

[38] A. H. Zahran and C. J. Sreenan. Arbiter: Adaptive rate-based intelligent http
streaming algorithm. In 2016 IEEE International Conference on Multimedia Expo
Workshops (ICMEW), pages 1–6, July 2016. doi: 10.1109/ICMEW.2016.7574709.

[39] Y. Sani, A. Mauthe, and C. Edwards. Modelling video rate evolution in adaptive
bitrate selection. In 2015 IEEE International Symposium on Multimedia (ISM),
pages 89–94, Dec 2015. doi: 10.1109/ISM.2015.65.

[40] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems. eprint
arXiv:cs/9809099, September 1998.

[41] T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, and M. Varela. Definition of qoe
fairness in shared systems. IEEE Communications Letters, 21(1):184–187, Jan 2017.
ISSN 1089-7798. doi: 10.1109/LCOMM.2016.2616342.

[42] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar
Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, UlfWüstenhagen, Marie-
Neige Garcia, et al. Http adaptive streaming qoe estimation with itu-t rec. p. 1203:
open databases and software. In Proceedings of the 9th ACM Multimedia Systems
Conference, pages 466–471. ACM, 2018.

http://doi.acm.org/10.1145/2155555.2155570
http://doi.acm.org/10.1145/2483977.2483994
http://doi.acm.org/10.1145/3204949.3208140
http://doi.acm.org/10.1145/3204949.3208140
http://doi.acm.org/10.1145/2557642.2563672
http://doi.acm.org/10.1145/3204949.3208130
http://doi.acm.org/10.1145/3204949.3208130
http://doi.acm.org/10.1145/2910017.2910618
http://doi.acm.org/10.1145/2910017.2910618
http://doi.acm.org/10.1145/3204949.3208132
http://doi.acm.org/10.1145/3204949.3208132
http://doi.acm.org/10.1145/3204949.3208123
https://doi.org/10.1109/TNET.2013.2291681
http://doi.acm.org/10.1145/3098822.3098843
http://doi.acm.org/10.1145/3098822.3098843
http://doi.acm.org/10.1145/1943552.1943574
http://dx.doi.org/10.1016/j.image.2011.10.003
http://doi.acm.org/10.1145/3083165.3083170
http://doi.acm.org/10.1145/2229087.2229092
http://doi.acm.org/10.1145/2398776.2398800
http://doi.acm.org/10.1145/3204949.3208130
http://doi.acm.org/10.1145/3204949.3208130
http://doi.acm.org/10.1145/3204949.3208135
http://doi.acm.org/10.1145/3204949.3208135

	Abstract
	1 Introduction
	2 Background and Related Work
	3 The DASHbed Framework
	3.1 Main components of the framework
	3.2 Key features of the framework

	4 Overview of Dataset
	5 Conclusion
	References

