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Abstract

Research into the molecular basis of stress resilience is a novel strategy to identify potential 

therapeutic strategies to treat stress-induced psychopathologies such as anxiety and 

depression. Stress resilience is a phenomenon which is not solely driven by effects within the 

central nervous system (CNS) but involves multiple systems, central and peripheral, which 

interact with and influence each other. Accordingly, we used the chronic social defeat stress 

paradigm and investigated specific CNS, endocrine and immune responses to identify 

signatures of stress-resilience and stress susceptibility in mice. Our results showed that mice 

behaviourally susceptible to stress (indexed by a reduction in social interaction behaviour) 

had higher plasma corticosterone levels and adrenal hypertrophy. An increase in 

inflammatory circulating monocytes was another hallmark of stress susceptibility. 

Furthermore, prefrontal cortex mRNA expression of corticotrophin-releasing factor (Crf) was 

increased in susceptible mice relative to resilient mice. We also report differences in 

hippocampal synaptic plasticity between resilient and susceptible mice. Ongoing studies will 

interpret the functional relevance of these signatures which could potentially inform the 

development of novel psychotherapeutic strategies.

Keywords stress resilience; neuroendocrine; corticotrophin-releasing factor; prefrontal 

cortex; synaptic plasticity; inflammatory monocytes
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1. Introduction

Stress-induced psychopathologies such as anxiety and major depression are the most 

prevalent mental health disorders worldwide and impose a significant burden on society 

(WHO, 2017). A conventional approach to develop therapeutic strategies in this context is to 

create animal models which incorporate chronic stress exposure (Slattery and Cryan, 2017). 

Such paradigms enable the identification of causative links between stress, its effects on the 

central nervous system and the onset of behaviours which are clinically relevant. These links, 

in turn, form the basis for developing pharmacotherapeutics. However, over the last two to 

three decades our perspective of stress as a risk factor with a predetermined detrimental 

outcome has shifted significantly to one where stress induces a spectrum of phenotypes and 

at opposing ends lie individuals who are stress-resilient and stress-susceptible (Franklin et al., 

2012; Pfau and Russo, 2015). From a therapeutic standpoint, identifying the central and 

peripheral processes which underlie the former could form the basis for novel therapeutic 

strategies which not only treat stress-induced psychopathologies but also build resilience 

against future stress exposure (Kentner et al., 2018). 

The chronic social defeat stress paradigm is a popular preclinical methodology that has been 

used in the study of stress-resilience and susceptibility (Pryce and Fuchs, 2017). Classification 

is typically based on a test of social behaviour following the stress paradigm; mice which 

display increased social avoidance are labelled as susceptible and conversely, mice with intact 

social behaviour are considered resilient. Some of the recent findings which have emerged 

from studies using this experimental approach include the identification of differentially 

expressed genes between susceptible and resilient mice linked to CNS myelination (Laine et 

al., 2018) and DNA methylation in the bed nucleus of the stria terminalis and hippocampus 
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(Hammels et al., 2015) as well as contrasting peripheral and central immune signatures 

(Ambrée et al., 2018). Susceptible mice have also been shown to diverge from resilient mice 

in terms of the activity of the hypothalamic-pituitary-adrenal (HPA) axis (Jochems et al., 2015) 

which is known to be dysfunctional in stress-induced psychopathologies such as anxiety and 

major depression (Zorn et al., 2017). 

However, to our knowledge, no study has yet combined behavioural readouts with systemic 

immune readouts, hippocampal electrophysiological recordings and gene expression data 

from relevant brain regions as functional readouts of the stress response. Such an integrated, 

systems-based approach would provide a more in-depth understanding of the impact of 

chronic stress on the mouse as a whole. To this end, the goal of our study was to use several 

orthogonal techniques to systematically identify putative central and peripheral signatures of 

stress-resilience and stress-susceptibility in mice exposed to a modified version of the chronic 

social defeat stress paradigm. 
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2. Materials & Methods

2.1 Animals & Housing

Adult male mice were used for this study. Breeding pairs (B6;129-Gt(ROSA)26Sortm1(CAG-cas9,-

EGFP)Fezh/J) were purchased from The Jackson Laboratory (https://www.jax.org/strain/024857) 

to establish an in-house breeding colony for planned follow-up CRISPR-cas9 experiments. 

Approximately one week before commencement of social defeat sessions, all mice were 

singly housed and weighed daily over the course of the experimental protocol (Figure 1). 

Percentage change in weight gain was calculated based on body weights recorded the day 

before the first defeat (day 0) and the day after the last defeat (day 11). For the chronic social 

defeat stress procedure, non-experimental singly housed adult male CD1 were used as 

aggressors (Envigo, UK). Mice were kept under a 12 hr light/dark cycle (ON 7:30AM, OFF 

7:30PM) in a temperature/humidity controlled environment (21°C, 55.5%) with food and 

water ad libitum. 

 (Insert Figure 1 here)

2.2 Chronic social defeat stress

Mice were randomly assigned to either the social defeat stress (n=32) or control groups 

(n=27). Chronic social defeat stress was carried out daily for 10 consecutive days (see Fig 1 for 

experimental timeline) by the same researcher as previously described but with slight 

modifications (Savignac et al., 2011). Prior to the defeat sessions, all CD1 aggressor mice were 

tested for aggressiveness over two separate days. A CD1 mouse was directly exposed to 

another CD1 mouse until the first attack. Mice with the shortest attack latencies were 

selected as aggressors to be used in subsequent social defeats. For each defeat session, test 

mice were subjected to a different aggressor CD1 mouse each day over the 10 days. The 

session would involve a single initial exposure of the test mouse to the aggressive CD1 in a 

https://www.jax.org/strain/024857
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clean cage with fresh bedding (to eliminate effects of coprophagy) until the first attack, 

expression of submissive posturing or until 5 mins had passed. The latency to attack or display 

a submissive posture was recorded. The mice were then separated by a perforated Plexiglas® 

wall that allowed only non-physical contact for 2 hrs. Subsequently, the separator was 

removed and, after another defeat, mice were transferred back to their home-cage. All defeat 

sessions were carried out in the mornings during the light cycle. Control mice remained in 

their home-cages over the course of the stress protocol but were handled to an equal extent 

as the stressed mice in the process of measuring daily body weight and collecting tail-blood 

samples. Following social defeat, the number of mice used for each experimental procedure 

is tabulated below.

(Insert Table 1 here)

2.3 Social interaction test

All mice were habituated to the test room for 1 hr prior to testing which was carried out 

during the light cycle and under-red light (5 lux) to reduce interference of potential anxiogenic 

factors with social interaction behaviour. In the first 2.5 min trial (Trial 1), the test mouse was 

placed into a plastic box (41 × 32 × 24 cm) containing a wire mesh cage (9.5 × 7.5 × 7.0 cm) 

against one wall and allowed to explore freely. The mouse was then returned to its home 

cage for 1 min. During this time, an unfamiliar aggressor CD1 mouse was placed inside the 

wire mesh cage. This was followed by a second 2.5 min trial (Trial 2) in which the test mouse 

was allowed to explore the area freely in the presence of the caged CD1. At the end of the 

social interaction test, mice were returned to their respective home cages and the arena and 

mesh were cleaned with 70% ethanol. Trials were video-recorded and analysed using 

EthoVision 3.1 (Noldus, Wageningen, Netherlands) to quantify locomotor activity and time 

spent in an interaction zone (IZ) 8cm around the wire mesh cage (Supplementary Figure 1). 
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The experimenter was blind to group assignment during video analysis. The time spent in the 

IZ during the first and the second trials were used to calculate the social interaction ratio (time 

spent in IZ during Trial 2/time spent in IZ during Trial 1). Mice with ratios above 1 were 

classified as resilient and those with ratios less than 1 were classified as susceptible. 

2.4 Plasma collection & Corticosterone assay

Tail bleeds were carried out within 1 hour of the lights turning on (0730-0830). The tail of an 

unrestrained mouse was held between two fingers and a diagonal incision was made on the 

tip (2mm) using a new single-edge razor blade. As previously described, the tail was gently 

squeezed by the two fingers of the researcher until 20-30µl of blood was collected using 

Lithium-Heparin coated capillary tubes (Sigma-Aldrich, St Louis, Missouri, United States) 

which was subsequently deposited into an eppendorf containing EDTA and centrifuged at 

3500g at 4°C for 15 min (Burokas et al., 2017). Plasma was aspirated and stored at -20°C. 

Samples were collected on the day before the first defeat (day 0) and on the day after the last 

defeat (day 11). Plasma samples were analysed in duplicate using the Enzo® Corticosterone 

ELISA kit plate (Enzo®, Exeter, United Kingdom) according to the manufacturer’s instructions. 

The lowest detection threshold was 27pg/ml and concentrations expressed are in ng/ml. 

ELISA plates were read using a Multiskan® microplate photometer (Thermofisher Scientific®, 

Waltham, MA, USA) at 405nm. Across the 10 plates we used, the inter-assay coefficient of 

variation was 10% and the average intra-assay coefficient of variation was 2.4%. These values 

fall within the manufacturer’s guidelines.
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2.5 Tissue collection

Mice were sacrificed by cervical decapitation. The brain was excised and four brain regions 

with critical roles in the stress response were dissected using a brain slicer – prefrontal cortex 

(PFC: A/P 2.2 to 1.70, M/L ± 0.8, DV -1 to -3.2), bed nucleus of the stria terminalis (BNST: A/P 

0.26 to -0.1, M/L ± 0 to ± 1.0, DV -4.0 to -4.8), amygdala (AMG: A/P -1.06 to -2.06, M/L ± 2.2 

to ± 3.2, DV -3.9 to -5.2) and hippocampus (HIP: A/P -2.30 to -3.40, M/L ± 1 to ± 3.4, DV -1.2 

to -5). Tissue was snap-frozen on dry ice before being stored at -80°C until further analysis.  

2.6 Gene expression analysis - Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted using the miRVana™ miRNA Isolation kit (Ambion/Life Technologies, 

Paisley, UK) according to the manufacturer’s instructions. RNA concentrations were 

quantified using a NanoDrop™ spectrophotometer (Thermofisher Scientific®, Waltham, MA, 

USA) and only samples with 260/280 ratios of greater than 1.8 were used. RNA was reverse-

transcribed to complementary DNA using the Applied Biosystem® High Capacity cDNA 

Reverse Transcription Kit (10X RT Buffer, 25X dNTP mix (100mM), 10X RT Random Primers, 

Multiscribe® Reverse Transcriptase) on the Applied Biosystem® GeneAmp PCR System 9700 

(Thermofisher®, Waltham, MA, USA). qRT-PCR was carried out on the StepOnePlus® PCR 

machine (Thermofisher®, Waltham, MA, USA) using the following primer assays (Table 2) 

designed by Integrated DNA Techologies (Skokie, Illinois, USA).

(Insert Table 2 here)

Samples were heated to 95°C x 10 min, and then subjected to 40 cycles of amplification by 

melting at 95°C x 15 s and annealing at 60°C x 1 min. Experimental samples were run in 

duplicates with 1.33 μL complementary DNA (cDNA) per reaction. To check for amplicon 

contamination, each run also contained template free controls for each probe used. PCR data 
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were normalized using β-actin and transformed using the ΔΔCt method as previously 

described (Stilling et al., 2018). 

2.7 Electrophysiology 

Acute brain slice preparation. Mice were anesthetized with isoflurane (Abbot, Chicago, USA). 

Anesthesia was maintained until mice were decapitated. Once the pain reflexes were absent, 

mice were transcardially perfused using chilled 20 ml NMDG-aCSF (in mM: N-methyl-d-

glucamine 92.0, KCl 2.5, NaH2PO4-H2O 1.25, NaHCO3 30.0, HEPES 20.0, Thiourea 2.0, 

Ascorbate 5.0, Na-Pyruvate 3.0, Glucose 25.0, CaCl2 0.5, MgSO4 10.0). Immediately after the 

animal was exsanguinated, it was decapitated and its brain carefully removed. The removed 

brain was immediately mounted onto a vibratome (VT1000S, Leica Biosystems, Nussloch, 

Germany) and brain slices (transverse, 300µm thick) that contained the hippocampus were 

kept. The obtained slices were kept in NMDG-aCSF for 12 min at 32 - 34°C. Subsequently, they 

were kept at room temperature in Holding-aCSF (in mM: NaCl 92.0, KCl 2.5, NaH2PO4-H2O 

1.25, NaHCO3 30.0, HEPES 20.0, Thiourea 2.0, Ascorbate 5.0, Na-Pyruvate 3.0, Glucose 25.0, 

CaCl2 2.0, MgSO4 2.0) for 1h before the beginning of the recordings. Throughout the slicing 

process, from slicing to holding, brain slices were oxygenated with Carboxygen (5% O2/95% 

CO2; Irish Gas).

Recordings.  Recordings were obtained in a multi-electrode array chip with a 5x13 electrode 

layout (MEA60-5x13, Qwane Biosciences, Lausanne, Switzerland) connected to a MEA2100 

Headstage (Multichannel Systems, Reutlingen, Germany) connected to a digitizer (Interface 

Board 3.0 Multiboot, Multichannel Systems, Reutlingen, Germany) and controlled through 

MCRack software (Version 4.6.2, Multichannel Systems, Reutlingen, Germany). Sampling rate 
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was 20kHz. Once a brain slice was placed in the MEA-chip, it was kept in place with a slice 

anchor, while  oxygenated aCSF (in mM: NaCl 119.0, KCl 2.5, NaH2PO4-H2O 1.25, NaHCO3 24.0, 

Glucose 12.5, CaCl2 2.0, MgSO4 2.0) was provided at a flow rate of about 4 mL/min using a 

peristaltic pump (PPS2, Multichannel Systems, Reutlingen, Germany). The temperature in the 

MEA-chip was maintained at 37°C (PH01, Multichannel Systems, Reutlingen, Germany). 

Electrodes located in the stratum radiatum and/or stratum lacunosum-moleculare of the CA1 

region were used to stimulate Schaffer collaterals. Once administration of a 75µA bipolar 

square pulse resulted in a field excitatory postsynaptic potential (fEPSP) in the stratum 

radiatum of CA1, the same pulse was delivered every 30s until the peak amplitude of the 

fEPSP (measured from baseline) remained stable. Subsequently, an input-output (I/O) curve 

was recorded by applying current steps through the same stimulation electrode (2, 5, 10, 25, 

50, 100, 150, and 200 µA). Based on this I/O curve, the stimulation intensities that resulted in 

an fEPSP with a peak amplitude of 30% of max amplitude (30% stimulus intensity) and an 

fEPSP with a peak amplitude of 50% of max amplitude (50% stimulus intensity) were chosen 

for paired pulse recordings with four different interpulse intervals (IPI; 25, 50, 100, 200 ms). 

For each IPI 10 paired pulses were recorded at each stimulus intensity and the average of 

these 10 pairs was used for analysis. Overall, the parameter used for analysis was fEPSP slope 

(calculated between 30 and 50% of the peak amplitude). The paired-pulse ratio (PPR) was 

computed as PPR = fEPSPslopePulse2/fEPSPslopePulse1. If PPR > 1 we speak of paired-pulse 

facilitation (PPF) and if it is PPR <1 we speak of paired-pulse depression (PPD).

2.8 Flow cytometry

Trunk blood (60μL) was collected in EDTA coated tubes and processed on the same day for 

flow cytometry. Blood was resuspended in 10 mL home-made red blood cell lysis buffer (15.5 
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mM NH4Cl, 1.2 mM NaHCO3, 0.01 mM tetrasodium EDTA diluted in deionised water) for 4 

min. Blood samples were subsequently centrifuged (1500g, 5 min) and resuspended in 45μL 

staining buffer (autoMACS Rinsing Solution (Miltenyi, 130-091-222) supplemented with MACS 

BSA stock solution (Miltenyi, 130-091-376)). For the staining procedure, 5 μL of FcR blocking 

reagent (Miltenyi, 130-092-575) was added to each sample. Samples were subsequently 

incubated with a mix of antibodies (5 μL CD11b-FITC (Miltenyi, 130-081-201), 2 μL LY6C-

PerCP-Vio700 (Miltenyi, 130-111-782) and 5 μL MHC-II-APC (Miltenyi, 130-102-139) and 

incubated for 30 min on ice. Samples were subsequently fixed using 4% paraformaldehyde 

for 30 min on ice and finally resuspended in staining buffer. The following day, samples were 

analysed on the BD FACS Calibur flow cytometry machine. Data were analysed using FlowJo 

(version 10). PBMCs were gated based on their FSC-SSC, after which granulocytes (CD11b+, 

SSC(high)) and CD11b+, SSC(low) cells were selected. The latter population was subsequently 

used to identify inflammatory monocytes (CD11b+, SSC(low), LY6C(high)) and CD11b+, 

SSC(low), LY6C(low) cells, which consist mainly of resident monocytes (Ginhoux and Jung, 

2014; Lessard et al., 2017). The investigated cell populations were normalised to PBMC levels. 

CD11b expression on target populations was quantified by median fluorescent intensity 

(MFI), whereas MHC-II expression was investigated by quantification of MHC-II+ cells, as 

expression of the MHC-II receptor was not prevalent on all cells.

2.9 Statistical Analysis

Statistical analysis was done in an R software environment. All data were assessed for 

normality using the Shapiro-Wilk test and Levene’s test for equality of variance. Outliers were 

removed from each group using the ROUT method (Motulsky and Brown, 2006). Normally 

distributed data were analysed using a one-way ANOVA followed by Bonferroni-corrected 
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two-tailed t-tests for planned between group comparisons (control vs susceptible, control vs 

resilient, resilient vs susceptible) (Laine et al., 2018). Repeated measures ANOVA was used 

for analysis of electrophysiological input/output recordings with stress phenotype as 

between-subjects factor and stimulation as within-subjects factor. Paired-pulse recordings at 

different IPIs were analysed using one-way ANOVA with stress phenotype as factor. 

Differences were further examined using Bonferroni-corrected two-tailed t-tests for between 

group comparisons. For datasets in which the condition of normality was violated the Kruskal-

Wallis test was used followed by Dunn-Bonferroni corrected tests for planned between group 

comparisons as above. Permutational multivariate analysis of variance (PERMANOVA) was 

used to identify relationships of significance between variables. A p-value of <0.05 was 

deemed significant in all cases.
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3. Results

3.1 Chronic social defeat stress 

In carrying out our social defeat stress paradigm, we made two key observations which we 

report here. Firstly, over the course of the 10 days, we noted that on average mice were 

socially defeated by an aggressive CD1 mice at least 60% of the time. Secondly, on days when 

there was aggression, the average latency to attack the test mouse during the first exposure 

was 100 sec (Supplementary Figure 2). None of our experimental mice suffered from any 

wounds. 

The chronic social defeat stress paradigm had a significant effect on social behaviour 

(χ2(2)=22.13, p <0.001). Subsequent classification based on social interaction ratios revealed 

a lower proportion of susceptible mice (14/32) compared to resilient mice (18/32). Between-

group comparisons revealed social behaviour of susceptible mice was significantly impaired 

compared to resilient mice (p<0.001) and control mice (p<0.01). There was also a significant 

increase in social behaviour in resilient mice compared to controls (p<0.05) (Fig 2a). There 

was no difference in the percentage days of aggression or in the latency to attack or display 

submissive posture between resilient and susceptible mice (Supplementary Figure 2). 

3.2 Locomotor Activity

During Trial 1 of the social interaction test when there was no CD1 in the mesh cage, there 

were between-group differences in locomotor activity (χ2(2)=8.17, p <0.05) with a significant 

reduction in locomotor activity of resilient mice compared to controls (p<0.05). In Trial 2, the 

presence of a CD1 mouse decreased locomotor activity in all mice compared to Trial 1 
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(control: p<0.001; susceptible p<0.01; resilient: p<0.01) but there were no between-group 

differences (Fig 2b).

3.3 Plasma Corticosterone (CORT)

At baseline (Day 0) there were no statistically significant differences between groups in 

plasma CORT. However, differential effects emerged on the day after the last defeat session 

(Day 11) (F(2,50)=12.31, p<0.001). In particular, plasma CORT was significantly elevated in 

susceptible mice compared to controls (p<0.001) and resilient mice (p<0.01) (Fig 2c). 

Examining the relationship between social behaviour and plasma CORT, PERMANOVA of all 

three groups followed by pairwise PERMANOVA revealed that the centroid for susceptible 

mice is distinct from controls (F(1,39)=21.6, p<0.001) and resilient mice (F(1,27)=9.76, p<0.001) 

but not different between resilient and controls (Fig 2d). 

3.4 Body & Organ Weights

There was an overall effect of stress on body weight gain (F(2,56)=8.54, p<0.001). Between-

group comparisons revealed a significant decrease in weight in resilient mice (p<0.01) and a 

trend towards a reduction in susceptible mice (p=0.079) compared to controls (Fig 2e). Stress 

differentially affected the weight of adrenal glands (F(2,37)=16.11, p<0.001) with increases in 

susceptible (p<0.05) and resilient mice (p<0.05) compared to controls; adrenal weight was 

also significantly greater in susceptible mice compared to resilient mice (p<0.05) (Fig 2f). 

There was a trend towards an effect of stress on thymus weight (F(2,40)=2.65, p=0.08) and 

between-group comparisons revealed a significant reduction in resilient mice (p<0.05) 

compared to control mice (Fig 2g). Stress had a potentiating effect on spleen weight in all 

mice (F(2,41)=6.784, p<0.01). Between group-comparisons revealed an increase in susceptible 
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(p<0.01) and trend towards an increase in resilient mice (p=0.086) relative to controls (Fig 

2h).

(Insert Figure 2 here)

 3.5 Gene Expression in the Brain

Chronic social defeat stress affected expression of PFC Crf mRNA (χ2(2)=10.554, p<0.01) (Fig 

3a). In particular, between-group comparisons revealed a significant difference in expression 

between susceptible mice and resilient mice (p<0.01). There were no significant effects of 

chronic stress on gene expression in the AMG (Fig 3b). Chronic stress upregulated mRNA 

expression of HIP Crfr1 (F(2,38)=3.685, p<0.05) with significance increase in resilient mice 

compared to control mice (p<0.05) (Fig 3c). There were no significant effects of chronic stress 

on gene expression in the BNST (Fig 3d). 

(Insert Figure 3 here)

3.6 Hippocampal electrophysiology

Generally, our I/O curves did not reach a maximum, therefore the lower stimulus intensity 

cannot be considered to be 30% of the maximum slope but rather <30% and this also is the 

case for the higher stimulation intensity used. The I/O curves of fEPSPs at the SC-CA1 synapse 

of resilient mice suggests a tendency towards elevated excitability compared to those of 

control and stress-susceptible mice (Fig 4a). An easily excitable synapse displays elevated 

neurotransmitter release probability or paired-pulse facilitation (PPF) with a PPR of around 1.

At both stimulation strengths and at all IPIs we observed PPF, meaning a PPR >1 at the SC-

CA1 synapse in acute hippocampal slices. This observation was not unexpected, as the SC-

CA1 synapse is considered to have low vesicle release probability (Hasegawa et al., 2018; 

Hinds et al., 2003; Wu and Saggau, 1994). However, Petersen et al., (2013) have shown that 
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lateral perforant pathway inputs onto granule cells in the dentate gyrus express PPF or PPD 

depending on stimulation intensity and interpulse intervals. Thus, we were interested if the 

use of different stimulation strengths and IPIs would unveil phenotype-dependent differences 

in synaptic physiology.

When stimulated with lower intensity (<30%, Fig 4b), PPF differed between groups at IPIs of 

both 25ms (F(2,30)=3.106, p=0.059) and 50ms (χ2(2)=6.372, p<0.05). At an IPI of 25ms, both 

stress susceptible and stress resilient mice displayed lowered PPF which did not reach 

significance (p=0.088 and p=0.174, respectively). At an IPI of 50 ms, PPF was reduced in 

resilient mice (p=0.054) but not significantly in susceptible mice (p=0.165) compared to 

control mice. No differences were observed at higher IPIs.

When challenged with higher stimulation current (<50%, Fig 4c), at an IPI of 100ms, PPF also 

differed between groups (χ2(2)=7.172, p<0.05); in particular, the PPF of resilient mice  trended 

towards being reduced compared to controls (p=0.065) and susceptible mice, although not 

significantly (p=0.109). Furthermore at an IPI of 200ms there was a trend towards an effect 

on PPR (χ2(2)=5.05, p=0.08) with PPR of resilient mice tending towards 1 and reduced 

comparable to both the PPR of control (p=0.153) and susceptible mice (p=0.252). 

(Insert Figure 4 here)

3.7 Flow cytometry

Stress increased the proportion of inflammatory monocytes (CD11b+, SSC(low), Ly-6C(high) 

cells) (F(2,34)=5.68, p<0.01) in all mice. Between group comparisons revealed a significant 

increase in susceptible mice (p<0.05) and a trend towards significance in resilient mice 

(p=0.07) compared to controls (Fig 5d). However, the proportion of CD11b+, SSC(low), Ly-
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6C(low) cells, consisting of mainly resident monocytes, remained unchanged (Fig 5e).  There 

were no between-group differences in the proportion of MHC-II+ (Fig 5f) or CD11b expressing 

inflammatory monocytes (Fig 5g). Stress increased the proportion of circulating granulocytes 

(F(2,35)=4.29, p<0.05) with between-group comparisons revealing a significant increase  in 

resilient mice compared to controls (p<0.05) (Fig 5h). The percentage of MHC-II+ granulocytes 

and CD11b receptor expression were not different between groups (Fig 5i, j). 

(Insert Figure 5 here)
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4. Discussion

The response to stress involves multiple systems and understanding the biological constructs 

that are responsive to resilience may pave the way for novel therapeutic strategies for stress-

related disorders. Here we show what is to our knowledge the first study to explore the 

impact of chronic social defeat stress on physiology, neuroendocrine systems, CNS gene 

expression, hippocampal synaptic plasticity and peripheral innate immune responses with a 

view to identifying signatures of stress resilience and susceptibility. 

For our investigation, we used a modified version of the chronic social defeat stress paradigm 

which is now wideley used in the field (Pryce and Fuchs, 2017). However, important variables 

which could influence individual differences in stress response include the latency to attack 

or adopt a defensive posture and also the days of aggression. One study reported that the 

latency to attack was approximately 14 sec in male C57BL/6J with Swiss mice as aggressors 

over a 5-day defeat protocol (Henriques-Alves and Queiroz, 2016). Another which used 

female C57BL/6J reported the latency to attack and the days of aggressive behaviour as a 

percentage were approximately 125 sec and 60%, respectively, with CD1 aggressors over a 

10-day defeat protocol (Takahashi et al., 2017). In our study, the attack latency was 

approximately 100 sec and experimental mice were exposed to aggressive CD1s 60% of the 

time. Importantly, after we classified mice as being either resilient or susceptible, there were 

no differences in these variables between these groups which suggests that overall, all mice 

were exposed to social stress to a similar degree.

 

In this study, we were able to obtain a greater proportion of resilient mice compared to 

susceptible mice based on an arbitrary split of their social behaviour. There are limitations to 
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be acknowledged with this paradigm. Firstly, the social interaction test we used does not 

assess threat appraisal. A mouse which avoids the CD1 could be doing so as an adaptive 

response to avoid being attacked any further, even though the CD1 is inside a cage. 

Conversely, a mouse which we define as resilient could suggest that the chronic stress 

exposure has impaired its ability to assess threat and act defensively. Future studies could 

overcome this limitation by using a stimulus mouse of a similar strain or extracting other 

variables from the existing test such as the approach and flight index (Henriques-Alves and 

Queiroz, 2016). Secondly, we did not perform any other behavioural tests for depressive- or 

anxiety-like behaviours. Previous reports have reported a divergence in anxiety-like 

behaviour in the elevated plus maze between resilient and susceptible mice but reported no 

differences in the forced swim test or the sucrose preference test (Hammels et al., 2015; 

Henriques-Alves and Queiroz, 2016; Laine et al., 2018). It is also worth highlighting the work 

by Krishnan et al., (2007) who examined behaviours for several weeks after the last defeat 

and reported that of all the behaviours they analysed, only social behaviour remained 

significantly different between resilient and susceptible mice at the later time point (39 days 

after the last defeat session). Nevertheless, there are other tests which could be used such as 

assessing reward function with the intracranial self-stimulation (Der-Avakian et al., 2014). 

Furthermore, calculating behavioural Z-scores derived from multiple tests may provide more 

reliable indices of resilience and susceptibility as opposed to a single measurement of social 

avoidance behaviour. Lastly, we did not characterise any non-social behaviours such as 

grooming and freezing which could confound interpretation of data from the social 

interaction test (Meshalkina and Kalueff, 2016). In terms of locomotor activity, as previously 

observed a social stimulus (CD1 mouse) decreased locomotor activity in all mice (Savignac et 

al., 2011). 
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We observed significant elevation of plasma CORT and increased adrenal gland weight only 

in susceptible mice. Furthermore, there was a significant association between plasma CORT 

and social interaction behaviour. We speculate that this may reflect dysregulation of HPA-

axis, altering it’s ‘set-point’ activity and this may be underscored by differential expression of 

Crf in structures such as the PFC (see below) (Sandi and Haller, 2015). Interestingly, our 

findings are in contrast with earlier work by Krishan et al., (2007) who reported no differences 

in plasma CORT between resilient and mice on the day after the last defeat (day 11). However, 

they did observe a paradoxical increase in plasma CORT in resilient mice and a decrease in 

susceptible mice weeks later (day 39). Analysis of plasma samples from multiple time points 

including those taken during the defeat protocol itself may provide further insights into the 

relationship between stress-induced dysregulation of HPA-axis and behavioural responses to 

stress (Koolhaas et al., 1999). 

There was a decrease in the body weight gain of all stressed mice which has been reported in 

another study which also used the chronic social defeat stress protocol (Iñiguez et al., 2014). 

While a significant reduction was observed only the resilient mice, increasing the sample size 

may have led to a similarly significant effect in the susceptible mice also. This phenotype has 

been directly linked to elevations of glucocorticoids and leptin, the anorexigenic hormone 

which inhibits food intake (Maniam and Morris, 2012). Between resilient and susceptible 

mice, evidence for differential effects of social defeat stress on body weight is equivocal with 

studies reporting no difference (Bosch-Bouju et al., 2016; Tse et al., 2014), a decrease only in 

susceptible mice (Krishnan et al., 2007) and an increase in mice which were initially identified 

as dominant in a hierarchy but subsequently classified as susceptible following defeat stress 

(Larrieu et al., 2017). 
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There was an overall increase in spleen weight for all stressed mice. These effects have been 

shown previously using social defeat stress;  (Avitsur et al., 2007; Niraula et al., 2018; Tarr et 

al., 2012; Wohleb et al., 2014). In the spleen, the mechanisms underpinning stress-induced 

morphological changes involve increased mobilisation of leukocytes and accumulation of 

bone-marrow derived hematopoietic progenitors (Jiang et al., 2017; McKim et al., 2018; 

Wohleb et al., 2014). There was a trend towards an attenuating effect of stress on thymus 

weight which may have crossed the threshold for significance with a large sample size. In 

particular, there was a signficant reduction in resilient mice compared to controls. This effect 

of stress has been previously reported (Hartmann et al., 2012; Schmidt et al., 2007) and could 

be underpinned by thymocyte apoptosis and effects on thymocyte cellularity (Živković et al., 

2005). Given that we observed no differences in thymus or spleen weight between resilient 

and susceptible mice, we speculate on their relevance to effects on social avoidance 

behaviour. However, it is possible that the rate of resolution from the inflammatory state 

resulting from thymic hypotrophy and splenic hypertrophy could be linked to longer-term 

differences in behavioural outcomes between these two groups of mice.

Given its role in cognition, executive functioning and regulation of the HPA-axis, the functional 

flexibility of the PFC is a critical determinant of the response to chronic stress exposure 

(Arnsten, 2009). Indeed, recent clinical imaging studies have shown correlations between 

stress-coping strategies and PFC plasticity (Sinha et al., 2016). Our data appears to suggest 

that PFC Crf expression in particular has a role in this context with mRNA expression being 

significantly increased in susceptible mice compared to resilient mice. Interestingly, the 

temporal effects of the social defeat stress paradigm on Crf receptor expression appear to be 

important; whereas we observed no effects of chronic defeat stress on PFC Crfr1 mRNA 
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expression, another study using acute social defeat stress showed increased expression and 

this underscored deficits in cognitive behaviours (Uribe-Mariño et al., 2016). Future studies 

will be required to explore the precise downstream molecular effects of PFC Crf expression in 

the context of social behaviour. One approach would be to examine interactions between Crf 

and the Crf binding protein (BP), which acts in cell-specific manner (Ketchesin et al., 2017). 

Another would be to examine the functional role of Crf in neuronal responses in the PFC and 

PFC-driven coherence with other structures in light of recent evidence showing that PFC 

reactivity and connectivity with the amygdala is differerentially affected between resilient 

and susceptible mice (Hultman et al., 2016; Kumar et al., 2014). 

In our study, there was a stress-induced increase in Crfr1 mRNA expression in the 

hippocampus of resilient mice. Previous work has reported that chronic early-life stress and 

chronic restraint stress in mice induced a reduction in spine density in hippocampal pyramidal 

neurons, an effect dependent on the expression of Crfr1 receptors (Chen et al., 2008; Ivy et 

al., 2010). Moreover, Crfr1 receptors in the hippocampus have been shown to facilitate 

induction of long-term potentiation (LTP) (Schierloh et al., 2007). With respect to the lack of 

differences in the postsynaptic response (I/O curves) recorded in this study, it has to be noted 

that neither chronic early-life stress nor administration of Crf to acute hippocampal brain 

slices showed any effect on fEPSP amplitude when fEPSPs were obtained through stimulation 

of Schaffer Collaterals (Ivy et al., 2010; Kratzer et al., 2013). However, one study has shown 

that if fEPSPs in CA1 were obtained through stimulation of CA3 pyramidal cells, acute 

administration of Crf increased fEPSP amplitude (Kratzer et al., 2013). These findings might 

explain why we did not see group differences in the postsynaptic response recordings, as 

fEPSPs in CA1 were evoked through stimulation of Schaffer Collaterals (SC). 
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Our data suggests that the upregulation of hippocampal Crfr1 and any consequent changes 

in synaptic plasticity do not mediate differences in social behaviour but possibly other 

hippocampal dependent-behaviours such as working or spatial memory. In this regard, we 

noticed stimulus intensity- and interpulse interval (IPI)-dependent effects on the hippocampal 

PPR ratio as a measurement of the probability of presynaptic neurotransmitter release. A 

ratio below 1 (PPD) indicates presynaptic terminals with a high probability of transmitter 

release upon stimulation, while a ratio above 1 (PPF) indicates a low release probability. At 

lower stimulation intensities and IPIs of both 25ms and 50ms, we observed a trends towards 

reductions in PPF in stressed mice. Similar findings have been reported in rats which 

experienced chronic restraint stress, namely dentate granule cells of stressed rats displayed 

lower PPR than those of control animals (Radahmadi et al., 2014) using a stimulation strength 

of 40%, which is inbetween our low intensity stimulation (30%) and our high intensity 

stimulation (50%). When recruiting more inputs onto CA1 pyramidal cells through higher 

stimulation intensity and at both IPI of 100ms and 200ms, the PPF of stress-resilient mice was 

reduced, particularly compared to control mice. This effect seemed to have been driven by 

the reduction of PPF in stress-resilient mice, although it only trended towards significance. In 

a previous study, rats which were classified as susceptible to a chronic mild stress protocol 

expressed PPF of inhibitory postsynaptic currents and accordingly decreased spontaneous 

GABA-ergic neurotransmission in the dentate gyrus of the ventral hippocampus, while both 

control and resilient rats expressed PPD (Nieto-Gonzalez et al., 2015), suggesting altered 

GABA innervation in stress-susceptible rats. Interestingly, excitatory synapses with low 

release probability (i.e., PPF) together with feed-forward inhibitory synapses in the rat 

hippocampus function as a high-pass filter (Klyachko and Stevens, 2006). 
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In this context, the term high-pass filter refers to a synapse that works at a state of low 

synaptic strength when it is stimulated with low frequency discharges, but switches to a state 

of hightened synaptic strength as a response to high frequency stimulation that exceeds a 

certain frequency threshold (i.e. its cut-off frequency). Synapses characterized by low 

transmitter release probability (i.e., PPF) are particularly suited to fulfill this function, as a 

low-frequency stimulation of these synapses would result only in a weak postsynaptic 

response, whereas high-frequency stimulation would result in a much stronger postsynaptic 

response, expressed as the increased fEPSP after the second pulse in our PPR recordings. 

Unfortunately, our experiment was not set-up to determine if potential differences in PPF 

between stressed and control mice would stem from an underlying alteration of the filter 

function of the SC-CA1 synapse, e.g. by determining the cut-off frequency (i.e. the stimulation 

frequency that needs to be exceeded to cause a strong postsynaptic response, which would 

contribute to LTP expression in CA1). However, in rodent hippocampal slices, it has been 

demonstrated that an increase in release probability (i.e. a reduction in PPF) contributes to 

LTP expression (Madroñal et al., 2009; Schulz, 1997). Generally, inescapable stress attenuates 

LTP expression, while enhancing the expression of LTD (Kim and Diamond, 2002; Richter-Levin 

and Xu, 2018). This has been confirmed recently for chronic social defeat stress in both mice 

and Chinese tree shrews (Wang et al., 2013; Yang et al., 2018). In light of the inverse 

relationship between PPF and LTP described above, our results seemingly contradict these 

findings. We mainly observed a reduction of PPF in stress resilient mice at lower stimulation 

intensity at 50ms IPI, while the reduction at the 25ms IPI trended towards significance. At 

higher stimulation intensity, the trend towards a reduction in PPF at 100ms and 200ms IPI 

appeared to be driven by reduction in stress-resilient mice. However, Yang et al., (2018) also 

reported a concomitant reduction of NMDA-mediated currents in CA1 pyramidal cells of 
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stress-susceptible mice compared to controls, which plays an important role for the observed 

reduction in LTP. Unfortunately, Yang et al. excluded stress-resilient mice from their study.

We were not able to attribute certain changes of CA1 PPF clearly to either stress-susceptible 

or stress-resilient mice. Thus, both stress phenotypes do not differ in their functioning of 

presynaptic release probability, but instead display reduced PPF at different IPIs and stimulus 

intensities tested. While generally the reduction of PPF positively correlates with LTP 

expression in the hippocampus, chronic social defeat stress appears to affect LTP not via a 

presynaptic route, but rather through a postsynaptic mechanism, involving the reduction of 

NMDAR-mediated currents (Yang et al., 2018). Nevertheless, our results contribute to the 

growing body of evidence of distinctly affected hippocampal synaptic physiology in both mice 

susceptible or resilient to chronic social defeat stress. The main limitation of our study is the 

small sample size, which did not permit us to examine the effects of chronic social defeat 

stress on synaptic physiology in more depth. Thus, in order to unravel whether stress-resilient 

mice posess a particular predisposition in their synaptic physiology and/or plasticity leaving 

their behavioural faculties unscathed as opposed to stress-susceptible, more extensive 

studies are needed.

The BNST and amygdala are linked structures both of which are stress-sensitive and 

implicated in regulation of social behaviour (Duque-Wilckens et al., 2018; Volk et al., 2014). 

However, they are both made up of several subregions; the BNST in particular is known to 

have at least 20 (Lebow and Chen, 2016). As such, gross-dissection is likely to have produced 

diluted signals that may not be entirely informative. Future studies will need to consider using 

high-resolution analysis of these structures in sub-regions. For example, it has been shown 
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that there is differential expression of enkephalin in the basolateral amygdala of mice 

following social defeat stress (Henry et al., 2018). Similary, chronic unpredictable stress 

exposure in rats has resulted in sub-region specific effects on expression of Crfr1, Crfr2, GABA 

receptor A and NMDA receptor subunit 2B in the BNST (Ventura-Silva et al., 2012). Lastly, it 

must also be noted that the BNST is a sexually dimorphic structure (Lebow and Chen, 2016); 

we did not examine females but it is likely that gene expression profiles would significantly 

differ in response to female-specific chronic social defeat stress paradigms (Harris et al., 2018; 

Takahashi et al., 2017).

Neuroinflammation is one of the features of stress-induced psychopathologies in subsets of 

patients and this phenomenon has been observed in preclinical studies using the social defeat 

stress paradigm (Weber et al., 2017). For example, a recent study has shown increased 

activation of the peripheral innate immune system (Menard et al., 2017). Another, has 

reported that the release of inflammatory monocytes from the bone marrow into the blood 

is linked to social defeat stress-induced release of plasma corticosterone (Niraula et al., 2018). 

Interestingly, we observed a significant increase in the proportion of inflammatory monocytes 

in the blood of susceptible mice relative to controls. Trafficking of inflammatory monocytes 

from the periphery into the brain and differentiation into macrophages precedes the onset 

of neuroinflammation mediated by the activation of microglia and release of pro-

inflammatory cytokines (Wohleb et al., 2015). Cytokine-induced dysregulation of 

serotonergic and dopaminergic neurotransmission, increased glutamate-mediated 

excitotoxicity and reduced neurogenesis may be linked to the decrease in social behaviour in 

susceptible mice (Stein et al., 2017).
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Expression of MHC-II classically represents an activation marker on granulocytes (Lin and 

Loré, 2017) and monocytes (Bunbury et al., 2008) which subsequently facilitates activation of 

T-cells. However, glucocorticoids can also regulate the expression of MHC-II. We identified a 

trend towards decreased MHC-II expression on inflammatory monocytes in susceptible mice; 

increasing the sample size may have led to the detection of significance for this group. This 

decrease might be explained by the increase in corticosterone levels, as glucocorticoids have 

previously been shown to decrease MHC-II gene expression on monocytes (Achuthan et al., 

2018; van de Garde et al., 2014). Our inflammatory monocyte data may indicate that these 

cells are more affected by stress in susceptible mice, compared to resilient mice. We also 

report a significant increase in the prevalence of granulocytes for stressed mice which is 

consistent with the literature (Wohleb et al., 2015). However, CD11b receptor expression on 

monocytes and granulocytes remains unaffected by defeat stress. Notwithstanding our 

findings, we acknowledge that one of the limitations of our analysis is the absence of data on 

whether the peripheral immune changes we report here are associated with specific altered 

expression of neuroimmune markers in the brain. 

In summary, this report provides an overview of the differential impact that our chronic social 

defeat stress paradigm has on a range of central and peripheral parameters associated with 

behavioural stress-resilience and stress-susceptibility. Our most striking findings are the 

increased inflammatory circulating monocytes, plasma corticosterone, adrenal hypertrophy, 

increased PFC Crf mRNA expression in stress-susceptible mice and differential hippocampal 

synaptic plasticity. Future studies will identify the mechanisms via which these changes 

impact on behaviour and examine their viability as therapeutic targets to treat stress-induced 

psychopathologies and to facilitate resilience against future stress exposure. 
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Figure Legends:

Figure 1 - Experimental timeline.

Figure 2: Chronic social defeat stress induces phenotypes associated with stress-resilience 

and stress-susceptibility. (a) Social interaction behaviour. vs. control, @p<0.05, #p<0.01; vs. 

susceptible, *p<0.001. SIT-social interaction ratio. (b) Locomotor activity. Trial 1- vs. control, 

@p<0.05. Trial 2-vs. Trial 1 control, *p<0.001; vs. Trial 1 susceptible, #p<0.01; vs Trial 1 

resilient, #p<0.01. (c) Plasma corticosterone (CORT) levels at baseline and at the end of the 

stress protocol. vs. control and resilient, #p<0.01. (d) PERMANOVA correlation plot for social 

behaviour vs. plasma CORT. (e) Change in body weight. vs. control, @p<0.05. (f) Weight of 

adrenals as a percentage of body weight (BW) vs. control, @p<0.05; vs. susceptible, 

$p<0.05. (g) Weight of thymus as a percentage of body weight. vs. control. 

@p<0.05. (h) Weight of spleen as a percentage of body weight. vs. control, #p<0.01. (a),(b),(e) 

control = 27, susceptible = 14, resilient = 18. (c),(d),(f)-(h) control = 19-25, susceptible = 10-

14, resilient = 11-14. All data are expressed as mean+SEM.

 

Figure 3: Effect of chronic psychosocial defeat stress on gene expression (mRNA). vs. control, 

@p<0.05, vs. susceptible, *p<0.05. control=21-22, susceptible=10-11, resilient=9-11. All data 

are expressed as mean±SEM. Abbreviations: Gr-glucocorticoid receptor, Mr-

mineralocorticoid receptor, Crf-corticotropic release factor, Crfr1-corticotropic release factor 

receptor 1, Crfr2-corticotropic release factor receptor 2, Fkbp5- FK506 binding protein 5, 

Adycap1-adenylate cyclase activating polypeptide 1, Pac1- Adycap1 receptor.

 

Figure 4 - Chronic social defeat stress induces differential effects on hippocampal synaptic 

plasticity. (a) Postsynaptic response. fEPSP-field excitatory post synaptic 

potential. (b) Paired-pulse ratio (PPR) at 30% stimulation intensity. (c) PPR at 505 stimulation 

intensity. control=5, susceptible=3, resilient=6, 8-14 slices/group. All data are expressed as 

mean±SEM.
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Figure 5 - Chronic social defeat stress induces differential effects on the peripheral innate 

immune system. (a) For the flow cytometry data analysis, peripheral blood mononuclear cells 

(PMBCs) were selected based on the forward scatter (FSC) and sideward 

(SSC). (b) Granulocytes were subsequently selected based on the surface expression cluster 

of differentiation molecule 11b+ (CD11b+),  SSC(high), whereas CD11b+, SSC(low) cells were 

used to identify monocytes. (c) Inflammatory monocytes were selected based on high 

expression of lymphocyte antigen 6 complex (LY6C(high)). (d) Percentage of circulating 

inflammatory monocytes. (e) Percentage of resident CD11b+, SSC(low), LY6C(low) cells, 

consisting of mainly resident monocytes. (f) Percentage of major histocompatibility complex 

class II (MHC-II+) expressing inflammatory monocytes. (g) CD11b receptor expression on 

CD11b+ expressing inflammatory monocytes shown as median fluorescence intensity 

(MFI). (h) Percentage of circulating granulocytes. (i) Percentage of MHC-II+ expressing 

granulocytes. (j) CD11b receptor expression on CD11b+ expressing granulocytes. (k) The 

staining intensity of the MHC-II receptor is shown, where an extra staining histogram is added 

for MHC-II+ control staining, as the percentage MHC-II for the investigated target populations 

was relatively low. (l) The staining intensity of CD11b receptor is shown. vs. control, 

@p<0.05. control=19-20, susceptible=6, resilient=11-12. All data are expressed as 

mean±SEM.

Supplementary Figure 1 – Schematic of the experimental setup to assess social interaction 

behaviour. 

Supplementary Figure 2 – (a) Number of days that CD1 showed aggressive behaviors and (b) 

average latency to attack or adopt a submissive posture. Control = 27, susceptible = 14, 

resilient = 18.













Resilience to Chronic Stress Is Associated with Specific Neurobiological, 

Neuroendocrine and Immune Responses.

Table 1 – Number of mice in each experimental group used for each analysis

Assay Control Susceptible Resilient
Social behaviour 27 1518

Plasma CORT 25 14 14
Adrenals weight 19 10 11
Thymus weight 21 11 11
Spleen weight 22 14 14

PCR 2122 11 11
Electrophysiology 5 3 6
Flow cytometry 20 6 12



Resilience to Chronic Stress Is Associated with Specific Neurobiological, Neuroendocrine 

and Immune Responses.

Table 2 – qRT-PCR primer assay IDs

Gene Assay ID
Corticotropin releasing factor (Crf) Mm.PT.58.32061593
Crf receptor 1 (Crfr1) Mm.PT.58.13604366
Crf receptor 2 (Crfr2) Mm.PT.58.12499462
Glucorticoid receptor (Gr) Mm.PT.58.42952901
Mineralocorticoid receptor (Mr) Mm.PT.58.30752774
FK506 binding protein 5 (Fkbp5) Mm.PT.58.45861921
Adenylate cyclase activating peptide (Adcyap1) Mm.PT.58.31241204
Adcyap1 receptor 1 (Pac1) Mm.PT.58.32800544
-actin Mm.PT.39a.22214843.g








