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Unified Methods for Feature Selection in
Large-Scale Genomic Studies with Censored

Survival Outcomes

Lauren Spirko-Burns and Karthik Devarajan

Abstract

One of the major goals in large-scale genomic studies is to identify genes with
a prognostic impact on time-to-event outcomes which provide insight into the
disease’s process. With rapid developments in high-throughput genomic tech-
nologies in the past two decades, the scientific community is able to monitor the
expression levels of tens of thousands of genes and proteins resulting in enormous
data sets where the number of genomic features is far greater than the number of
subjects. Methods based on univariate Cox regression are often used to select ge-
nomic features related to survival outcome; however, the Cox model assumes pro-
portional hazards (PH), which is unlikely to hold for each feature. When applied
to genomic features exhibiting some form of non-proportional hazards (NPH),
these methods could lead to an under- or over-estimation of the effects. We pro-
pose a broad array of marginal screening techniques that aid in feature ranking
and selection by accommodating various forms of NPH. First, we develop an ap-
proach based on Kullback-Leibler information divergence and the Yang-Prentice
model that includes methods for the PH and proportional odds (PO) models as
special cases. Next, we propose R2 indices for the PH and PO models that can
be interpreted in terms of explained variation. Lastly, we propose a generalized
pseudo-R2 measure that includes PH, PO, crossing hazards and crossing odds
models as special cases and can be interpreted as the percentage of separability
between subjects experiencing the event and not experiencing the event according
to feature expression. We evaluate the performance of our measures using exten-
sive simulation studies and publicly available data sets in cancer genomics. We
demonstrate that the proposed methods successfully address the issue of NPH in



genomic feature selection and outperform existing methods. The proposed infor-
mation divergence, R2 and pseudo-R2 measures were implemented in R (www.R-
project.org) and code is available upon request.
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Abstract

One of the major goals in large-scale genomic studies is to identify genes with a prog-
nostic impact on time-to-event outcomes which provide insight into the disease’s pro-
cess. With rapid developments in high-throughput genomic technologies in the past two
decades, the scientific community is able to monitor the expression levels of tens of thou-
sands of genes and proteins resulting in enormous data sets where the number of ge-
nomic features is far greater than the number of subjects. Methods based on univariate
Cox regression are often used to select genomic features related to survival outcome;
however, the Cox model assumes proportional hazards (PH), which is unlikely to hold for
each feature. When applied to genomic features exhibiting some form of non-proportional
hazards (NPH), these methods could lead to an under- or over-estimation of the effects.
We propose a broad array of marginal screening techniques that aid in feature ranking
and selection by accommodating various forms of NPH. First, we develop an approach
based on Kullback-Leibler information divergence and the Yang-Prentice model that in-
cludes methods for the PH and proportional odds (PO) models as special cases. Next,
we propose R2 indices for the PH and PO models that can be interpreted in terms of ex-
plained variation. Lastly, we propose a generalized pseudo-R2 measure that includes PH,
PO, crossing hazards and crossing odds models as special cases and can be interpreted
as the percentage of separability between subjects experiencing the event and not expe-
riencing the event according to feature expression. We evaluate the performance of our
measures using extensive simulation studies and publicly available data sets in cancer
genomics. We demonstrate that the proposed methods successfully address the issue
of NPH in genomic feature selection and outperform existing methods. The proposed
information divergence, R2 and pseudo-R2 measures were implemented in R (www.R-
project.org) and code is available upon request.
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1 Introduction

There have been significant developments in high-throughput genomic and related tech-

nologies in the past two decades. Examples include microarray technology to mea-

sure mRNA and microRNA expression, methylation arrays to quantify DNA methylation,

SNP arrays to measure allele-specific expression and DNA copy number variation, next-

generation sequencing technologies such as RNA-Seq, ChIP-Seq, etc. for the measure-

ment of digital gene expression as well as mass spectroscopy and nuclear magnetic res-

onance spectroscopy for the measurement of protein and metabolite expression. With the

wealth of data available from large-scale genomic studies, researchers can now attempt

to understand and estimate the effects of specific genomic features on various diseases

and characteristics associated with those diseases. A genomic feature may represent a

gene that codes for a protein or a non-gene-centric element such as a microRNA, CpG

site or a particular genomic region of interest. One specific area of interest is in study-

ing the relationship between the expression of genomic features and time to death or

recurrence of some disease, often referred to as “survival time”. Let Y and C denote,

respectively, the survival and censoring times, and let δ = I(Y ≤ C) be the indicator of

whether the event has been observed. Because of censoring, it is not possible to observe

all true survival times, so we let T = min(Y,C) be the observed survival time. In this

study, we will deal with p features measured for each of n subjects, where p � n. We let

Z denote the n×p matrix of features and z represent the p-vector of features for a subject.

These high-dimensional data sets offer some explicit challenges when applying

standard statistical methods. One of the most commonly used models in survival analysis

is the Cox proportional hazards (PH) regression model (Cox, 1972) which postulates that

the risk (or hazard) of death of an individual, given their feature measurement, is simply

proportional to their baseline risk in the absence of the feature. It is a multiplicative haz-

ards model that implies constant hazard ratio (HR). In a high-throughput genomic study,
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for instance, the PH assumption would imply a constant effect of feature expression on

survival over the entire period of follow-up in a study. However, this assumption cannot be

verified for each feature and it is also unlikely that PH will actually hold for each feature.

Moreover, there is empirical evidence indicating that feature expression may not have a

multiplicative effect on the hazard and that non-proportional hazards (NPH) can occur

when feature effect increases or decreases over time leading to converging or diverging

hazards (CH or DH); in some studies, features with DH are found more often than fea-

tures with CH (Bhattacharjee et al., 2001; Xu et al., 2005; Dunkler et al., 2010; Rouam

et al., 2011). It is, therefore, unreasonable to expect the expression levels of the many

thousands of features to exhibit PH. In a review of survival analyses published in can-

cer journals, it was revealed that only 5% of all studies using the Cox PH model actually

checked the PH assumption (Altman et al., 1995). Applying the PH model to data that

do not support the underlying assumptions may result in inaccurate and sometimes er-

roneous conclusions. For instance, it could lead to under- or over-estimation of effects

for a considerable number of features. Consequently, some features are falsely declared

as important in predicting survival and other relevant features are completely missed.

Furthermore, if some features exhibit NPH then their HRs, estimated by ignoring their

time-dependence, are not comparable to those of features with PH or of features exhibit-

ing different patterns of NPH. Although NPH typically arises from time-dependent effects

of features on survival, it could also result from model mis-specification such as from

omitting relevant clinical covariates like age at diagnosis and stage of disease. Feature

selection methods involving univariate analyses are particularly prone to this problem.

The goal of this study is to discuss alternative models and methods that can be used

to link large-scale genomic data to a survival outcome, with the ultimate goal of feature

selection under different types of hazards that may be present.

This paper is organized as follows. In §2 we survey a variety of well known survival

models, many of which are designed to handle non-proportional hazards (NPH), and
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provide an overview of marginal screening methods that currently exist in the literature.

In §3, we use real-life genomic data to motivate the need for these models. Through

this analysis, we identify specific models that fit a large proportion of genomic features

and allow for NPH. Then in §4, we propose several feature selection methods that do not

rely on the PH assumption and, instead, are developed from models capable of handling

NPH. These methods are evaluated using extensive simulations and publicly available

large-scale data sets in cancer genomics in §5 and §6. Finally, §7 provides a summary

and some concluding remarks.

2 A brief survey of survival models and existing methods

2.1 The PH model and its generalization

The Cox PH model is a semi-parametric regression model proposed by Cox (1972). The

hazard rate, λ(t|z), is defined as the instantaneous risk of an event at time t for covariate

vector z, with Λ(t|z) representing the cumulative hazard function. The model is given by

λ(t|z) = λo(t) exp(β′z) and Λ(t|z) = Λo(t) exp(β′z), (2.1)

where t > 0, λo(t) and Λo(t) are the baseline hazard and cumulative hazards functions,

and β is a vector of regression coefficients. Estimation for the coefficient β can be done

by maximizing the log partial likelihood l(β) =
∑n

i=1 δi

{
z′iβ − log

[∑
j∈R(ti)

exp(z′jβ)
]}

,

where ti is the survival time for subject i, δi is the censoring indicator, and R(ti) is the risk

set, the individuals who have yet to experience the event at time ti.

The hazard ratio corresponding to two different feature vectors z and z∗, given by
λ(t|z)
λ(t|z∗) = exp[β′(z− z∗)], depends only on the features and not on time. This fundamental

assumption is unlikely to hold for all p features in the genomic setting. A semi-parametric

generalization of the Cox PH model which allows crossing hazards is described in De-

varajan & Ebrahimi (2011). In this model, the cumulative hazard and survival functions

4
https://biostats.bepress.com/cobra/art120



are, respectively,

Λ(t|z) = eβ
′z{Λ0(t)}exp(γ′z) and S(t|z) = exp{−eβ

′z[− logS0(t)]exp(γ′z)}. (2.2)

This model has a more flexible, general form, but retains the Cox PH model as a special

case when γ = 0. Since the partial likelihood approach cannot be applied, Devarajan &

Ebrahimi (2011) utilize a flexible parametric approach via a cubic B-spline approximation

for the baseline hazard to estimate the model parameters. Rouam et al. (2011) consid-

ered the special case obtained by setting β = 0 and proposed a pseudo-R2 measure for

genomic feature selection. In this paper, we refer to this special case as the crossing

hazards (CH) model.

2.2 The proportional odds (PO) model and its generalization

The PO model is an alternative to the PH model, and it does not require the assumption

of PH. It allows some forms of NPH and, instead, assumes that the effect of covariates

will proportionately increase or decrease the odds of dying or recurrence at time t. The

PO model is given by
1− S(t|z)

S(t|z)
=

1− So(t)
So(t)

exp(β′z), (2.3)

where So(t) and ψ0(t) = 1−So(t)
So(t)

are the baseline survival and odds functions, respectively,

at time t. The multiplier exp(β′z) quantifies the amount of proportionate increase or de-

crease in the odds associated with covariate z. A semi-parametric generalization of the

PO model can be specified as

1− S(t|z)

S(t|z)
=

[
1− S0(t)

S0(t)

]exp(γ′z)

exp(β′z), (2.4)

where γ = 0 results in the PO model. This model allows for both crossing hazards and

crossing odds. Later, we consider the special case where γ = β and refer to it as the

5
Hosted by The Berkeley Electronic Press



crossing odds (CO) model.

2.3 Yang-Prentice (YP) model

Yang & Prentice (2005; 2012) proposed the YP model as a generalization of both the PH

and PO models. Its hazard and survival functions are given by

λ(t|z) =
λ0(t) exp [(β + γ)′z]

exp(β′z)− S0(t) exp(β′z) + S0(t) exp(γ ′z)
(2.5)

and

S(t|z) =

(
S0(t) exp(γ ′z)

exp(β′z)− S0(t) exp(β′z) + S0(t) exp(γ ′z)

)exp(γ′z)

, (2.6)

respectively. Note that when γ = β, it becomes the PH model, and when γ = 0, it

becomes the PO model. Thus, it is a versatile and useful model that encompasses both

the PH and PO models, as well as a host of other models, and allows for time-varying

hazards. However, a practical limitation of this model is that inferential procedures are

available only for a single dichotomized covariate z.

2.4 Existing methods for feature selection

Few specific methods are currently available in the literature for the purpose of feature

selection when the PH assumption is violated. Dunkler et al. (2010) proposed concor-

dance regression, using a generalized concordance probability as a measure of the effect

size, to select genes in microarray studies that are related to survival irrespective of the

type of hazard. The basic concordance probability is c = P (T1 < T0), where T1 is a

randomly chosen survival time from group 1 and T0 is a randomly chosen survival time

from group 0, and is independent of the PH assumption. This is generalized to contin-

uous data which has the form c′ = exp(γ)
1+exp(γ)

, where γ are the log odds that the survival

time decreases if the gene expression is doubled. Then, c′ is modeled through its log

odds by P (Ti < Tj|xi > xj) = exp(xiγ)
exp(xiγ)+exp(xjγ)

, where the likelihood is computed as the

summation over all risk pairs (i, j) such that ti < tj and c′ is estimated by maximizing this
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likelihood. When ti is censored, it is not clear if ti < tj and appropriate weights are used

to account for the possible over-representation of some subjects (Schemper et al., 2009).

This model can be viewed as conditional logistic regression where the dependent variable

is the concordance of the risk pair (i, j). Genes are ranked based on the absolute effect

size ĉ′+ = .5+|ĉ′−.5|. Using simulated and microarray gene expression data Dunkler et al.

(2010) showed that when some of the genes showed a time-dependent effect on survival,

concordance regression produced the least biased and most stable estimates compared

to methods based on Cox regression. Rouam et al. (2010, 2011) developed pseudo-R2

measures for genomic feature selection based on the PH and CH models which rely on

the partial likelihood of the respective model and utilizes the score statistic.

3 Motivating examples

We motivate our problem using five data sets from large-scale studies in cancer utilizing

a variety of high-throughput genomic technologies. Data sets 1 and 2 consist of DNA

methylation and microRNA expression profiles, respectively, measured on glioblastoma

samples while data set 3 consists of digital gene expression profiles obtained using RNA

sequencing from subjects with head and neck squamous cell carcinoma (The Cancer

Genome Atlas (TCGA), http://cancergenome.nih.gov). Data sets 4 and 5 consist of gene

expression data obtained using Affymetrix and HG 1.ST microarrays, respectively, from

patients with ovarian and oral cancer (Tothill et al, 2008; Saintigny et al, 2011). Raw data

was pre-processed using standard methods for each data set as described in the Supple-

mentary Information (SI): Data Sets and Implementation (§8). Relevant characteristics of

these data sets are outlined in Tables 1 & 2. In what follows, we describe a comprehensive

analysis of these data sets using the PH, PO and YP models to test for the goodness-of-fit

(GOF) of each model using the methods outlined in Grambsch & Therneau (1994), Mar-

tinussen & Scheike (2006) and Yang & Prentice (2012), respectively. All analyses were

performed at the genomic feature level, the purpose of which is to identify features that
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exhibit some form of NPH and to demonstrate the need for alternatives to the PH model.

Wherever possible, clinical covariates such as age at diagnosis and stage of cancer were

adjusted for in the analysis (data sets 3-5, Table 1). The currently available method for the

YP model is only capable of handling a single dichotomized covariate (Yang & Prentice,

2005; 2012), and, hence, we utilized dichotomized expression of genomic features and

did not adjust for age and stage in analyses reported in Table 2. This enabled direct com-

parison of results from different models. The q-value approach was employed to estimate

the false discovery rate (FDR) and to evaluate the effect of testing multiple hypotheses

(Storey & Tibshirani, 2003). In summary, GOF results based on continuous expression

for the PH and PO models (data sets 1-5) as well as dichotomized expression for the PH,

PO and YP models (data sets 1, 2 & 4) are presented in Tables 1 and 2, respectively.

Use of continuous expression - typically on a variance stabilized and normalized

scale that depends on the data type of the genomic feature - offers a comprehensive

approach to our problem and can be used to compute all the R2-type and information

divergence measures developed in this work. It facilitates a straightforward interpretation

of the hazard ratio as the fold-change in hazard that corresponds to a unit change in ex-

pression on the transformed scale; however, currently it cannot be used for estimation

in the YP model and for visualization. On the other hand, dichotomized expression of

genomic features - particularly gene expression - is commonly used in real-life applica-

tions as evidenced by the literature in high-throughput genomic data analyses (Dunkler

et al., 2010; Rouam et al, 2011; Peri et al., 2013). In this approach, the expression of

each feature is typically categorized as a “high” or “low” value for each subject based on

the median split. Although imperfect, it enables graphical summary of the results in the

form of Kaplan-Meier survival curves for subjects with “high” and “low” expression where

the hazard ratio is interpreted as the fold-change in hazard between the “low” and “high”

expression groups. It can be used for all three models of interest in our problem; however,

it is applicable only to information divergence measures.
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In Tables 1 and 2, we employ the following abbreviations: Subset A represents

genomic features for which the PH model does not fit; B and C refer to subsets of features

for which the PO and YP models fit, respectively; and B’ refers to the subset for which the

PO model does not fit. As seen from Table 1, the FDR is controlled at an acceptable level

(q-value ≤ 0.25) in nearly all analyses involving continuous expression. Overall, the PO

model is observed to fit a large fraction of genomic features across all data sets (85-92%,

subset B). There is clear evidence that the PH model does not fit a significant number

of features in these data sets, particularly 2, 4 & 5, where the actual number itself varies

across these sets (14-29%, subset A). However, it is important to note that for a majority

of the features in these subsets the PO model provides a good fit (52-65%, subset A ∩

B), thereby making this model an attractive alternative to the PH model when continuous

expression is considered and potential confounders need to be accounted for. The results

for data sets 3, 4 & 5 are further strengthened by an adjustment for confounders such as

age at diagnosis and stage of disease. Although the PH model is seen to provide a good

fit to most features in data set 1, it is interesting to note that the PO model fits 78% of

features (170 out of 217) for which the PH model does not fit. Thus, it would be beneficial

to develop methods based on the PO model because it has been shown to handle NPH

(Martinussen & Scheike, 2006). In each data set, there exists a reasonable number of

features for which neither the PH nor the PO model fits (subset A ∩ B’). This subset

contains a median 35% of features for which the PH model does not fit and, in particular,

for data set 3 it represents 62% of features (464 out of 752). These observations suggest

the need for a more general survival model such as the YP.

As noted earlier, the YP model cannot be used on continuous expression due to

current limitation in methods. However, as shown in Table 2, when applied to dichotomized

expression the YP model provides a good fit to a majority of the features in each data set

considered (92-97%, subset C). This is not surprising given the flexible form of the YP

model and its inclusion of the PH and PO models as special cases. More importantly, the
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PO model is observed to fit a large fraction of genomic features across all data sets (91-

94%, subset B). In each data set, the PH model does not fit a large number of features

(10-18%, subset A). Once again, the PO model provides a good fit for an overwhelming

fraction of features for which PH does not fit - 91%, 88% and 69%, respectively, for data

sets 1, 2 and & 4 as shown in Table 2 (subset A ∩ B). In addition, the YP model provides

a good fit to an even larger fraction of features for which the PH does not fit - 95%, 98%

and 91%, respectively, for these data sets (subset A ∩ C). Furthermore, the YP model

serves as a useful alternative for genomic features for which both the PH and PO models

do not provide a good fit. In our examples, the YP model provides a good fit for 89-94%

of genomic features for which neither PH nor PO fits (subset A ∩ B’ ∩ C). Thus, the YP

model shows versatility and the ability to fit a large number of features when the PH and

PO models do not. The PO and YP models, therefore, provide flexible alternatives to the

PH model when dichotomized expression is considered and it would be useful to develop

methods based on these models for handling various forms of NPH. In summary, these

results serve as motivation for developing methods based on the PO and YP models

because of their ability to fit not only a large number of genomic features in general, but

specifically features for which the PH assumption is violated.

Table 1: Summary of model fits: continuous data

Data set 1 2 3 4 5

p 9,452 454 19,341 24,739 12,776
n 280 416 221 276 86

% Censored 26% 19% 62% 32% 59%

A: PH (lack of fit) 217 (2%)c 130 (29%)b 752 (4%)a 3,881 (16%)b 1,810 (14%)b

B: PO (good fit) 8,708 (92%)b 385 (85%)b 17,349 (90%)b 22,424 (91%)b 11,544 (90%)b

A ∩ B 170 85 288 2,513 947

A ∩ B’ 47 45 464 1,368 863

p: Number of features; n: Number of observations; q-value: 0.99a;≤ 0.25b;≈ 0.5c
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Table 2: Summary of model fits: dichotomized data

Data set 1 2 4

p 9,452 454 24,739
n 280 416 276

% Censored 26% 19% 32%

A: PH (lack of fit) 941 (10%)b 82 (18%)b 3,366 (14%)b

B: PO (good fit) 8,880 (94%)c 426 (94%)b 22,628 (91%)c

C: YP (good fit) 9,038 (96%)c 441 (97%)a 22,796 (92%)c

A ∩ B 854 72 2,325

A ∩ C 896 80 3,051

A ∩ B’ (∩ C) 87 (82) 10 (9) 1,041 (926)

p: Number of features; n: Number of observations; q-value: 0.99a;≤ 0.26b; 0.33-0.53c

4 Proposed methods for feature selection and ranking

In §3, we demonstrated the need for alternative methods to the PH model that can handle

various types of NPH. We also showed in Tables 1 and 2 that there are many features for

which the PH model does not fit but the PO or YP model does; and for some features,

we observed that both the PH and PO models do not fit thereby suggesting the need for

more complex models such as the YP or CO.

In this section, we construct several marginal screening approaches based on the

PO, CO and YP models. First, we adopt an information-theoretic approach and develop a

test for genomic feature effect under the YP model using Kullback-Leibler (KL) information

divergence. This approach includes tests as well as R2 measures for its two important

special cases - the PO and PH models. Following this, we propose a unified framework

to compute pseudo-R2 measures for a wide range of survival models that allow different

types of NPH. It includes the PH, CH, PO and CO models and generalizes prior work

(Rouam et al., 2010; 2011). Finally, we propose R2 measures for the PO model based on
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the likelihood ratio. The utility of these new marginal screening methods is demonstrated

using simulated and real-life genomic data sets and by comparison to existing methods.

4.1 Methods based on information divergence

4.1.1 Test for genomic feature effect under the YP model

Within the framework of the YP model, we would like to test the null hypothesis H0 :

Λ(t|z) = Λ0(t) against the alternative H1 : Λ(t|z) =
t∫

0

λ(t|z)dt, where λ(t|z) is as specified

in equation (2.5). These hypotheses can be rewritten as H0 : β = 0, γ = 0 vs. H1 : β 6=

0, γ 6= 0, i.e., we are interested in testing whether a particular genomic feature has an

effect on survival time according to the YP model. To this end, we utilize KL information

divergence and construct a test statistic. Let f0(t) and f(t|z) denote the densities of

T under H0 and H1, respectively, and let F0 and F be the corresponding distribution

functions. Then KL information divergence is defined as

I(F0 : F |z) =

∞∫
0

f0(t) log

{
f0(t)

f(t|z)

}
dt, (4.1)

and is the directed divergence that measures the discrepancy between F0 and F . Equa-

tion (4.1) quantifies the divergence between the null and alternative hypotheses and can

be viewed as a weighted log-likelihood ratio, i.e., I(F0 : F ) = Ef0

(
log
{
f0(t)
f(t|z)

})
. We will

use this quantity to develop a test for genomic feature effect.

Under the YP model in equations (2.5) and (2.6), we have f(t|z) = λ(t|z)S(t|z)

and f0(t) = λ0(t)S0(t). Hence, feature-specific KL information divergence for the YP

model has the form

IY P (F0 : F |z) =

∞∫
0

f0(t) log

{
λ0(t)S0(t)

λ(t|z)S(t|z)

}
dt =

exp(βz) [βz exp(γz)− γz − 2]− exp(γz) [γz exp(βz)− βz − 2]

exp(βz)− exp(γz)
.

(4.2)

Let zij represent the expression for individual i and feature j, where i = 1, . . . , n and

j = 1, . . . , p. We estimate this measure by replacing β and γ with β̂ and γ̂, the pseudo
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maximum likelihood estimates obtained using the approach in Yang & Prentice (2005;

2012), and by summing over the n individuals in a study. Thus, we obtain the following

estimate of IjY P for feature j

ÎjY P =
n∑
i=1

exp(β̂zij)
[
β̂zij exp(γ̂zij)− γ̂zij − 2

]
− exp(γ̂zij)

[
γ̂zij exp(β̂zij)− β̂zij − 2

]
exp(β̂zij)− exp(γ̂zij)

. (4.3)

From Theorem 1 (see SI: Methods, §9.1) it can be seen that ÎY P is a maximum likelihood

estimator and is asymptotically normal with mean IY P . Despite the complexity of the YP

model, ÎY P has the computational advantage of not requiring an estimate of the baseline.

In addition, it combines feature effects quantified by the two model parameters β and γ

into a single measure and provides a simpler interpretation of feature effect. However,

a practical limitation of the currently available estimation method for this model is that it

requires dichotomized feature expression (Yang & Prentice, 2005; 2012). Therefore, we

propose IY P as a measure for ranking feature effect. In our applications, IY P was esti-

mated using β̂ and γ̂ obtained by fitting the YP model to feature expression dichotomized

by the median. Details on the derivation of IY P are provided in SI: Methods (§9.1).

4.1.2 Tests for genomic feature effect under the PO and PH models

As outlined earlier, the YP model contains the PO and PH models as special cases. In

equations (2.5) and (2.6), setting γ = β results in the PH model and setting γ = 0 results

in the PO model. In each model there is a single parameter β and we are interested

evaluating feature effect under the respective model by testing the null hypothesis H0 :

β = 0 against the alternative H1 : β 6= 0.

The test statistic for feature j under the PO model is obtained by setting γ = 0 in

equation (4.2) and using equation (4.3) which simplifies to

ÎjPO =
n∑
i=1

β̂zij exp(β̂zij)− 2 exp(β̂zij) + β̂zij + 2

exp(β̂zij)− 1
, (4.4)
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where β̂ is the modified partial likelihood estimator (Martinussen & Scheike, 2006). From

Theorem 2 (see SI: Methods, §9.1, for details on IPO), it can be seen that ÎPO is a max-

imum likelihood estimator and is asymptotically normal with mean IPO. The variance of

ÎPO can be estimated using the delta method and Taylor series expansion as

Var(ÎPO) ≈
n∑
i=1

n∑
i′=1

1

18
z2
i z

2
i′σ

4, (4.5)

where σ is the variance under H0. Details on the derivation of V ar(ÎPO) are provided in

SI: Methods (§9.1). Using (4.5) we can reject H0 if

χ̂2
PO =

Î2
PO

ˆV ar(ÎPO)
> χ2

1. (4.6)

The test statistic for feature j under the PH model, ÎPH , is obtained by setting γ = β in

equation (4.3) resulting in a test similar to those outlined above for the YP and PO models.

This is outlined in Devarajan & Ebrahimi (2009); however, it has not been applied to large-

scale genomic data and could potentially over- or under-estimate feature effects when the

PH assumption is violated. In that regard, the proposed methods based on YP and PO

models benefit from the simplicity of this approach while addressing the issue of NPH.

4.1.3 Feature ranking and selection

Since Î quantifies the effect of a genomic feature according to the particular model of

interest, it can be directly used to serve as a measure for feature ranking. Both ÎPO and

ÎY P can be calculated for each feature in a data set where a higher Î indicates a larger

effect on survival based on the particular model chosen. Similarly, the test statistic in

equation (4.6) based on the PO model can be used to to compute a p-value for each

feature and features can be selected by controlling the FDR, at a pre-determined level

such as 5%, using the Benjamini-Hochberg approach (Benjamini & Hochberg, 1995). A
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similar approach can be used for feature selection and ranking using ÎPH under the PH

model. It is straightforward to account for potential confounders (such as age and stage

of disease) by utilizing the model parameter estimate from the adjusted model in the

computation of ÎPO and ÎPH and their respective test statistics. Moreover, standard GOF

tests such as those used in §3 can be used to determine which of the three measures to

use.

4.2 Measures of explained variation

4.2.1 R2 measures based on information divergence

We utilize tests for genomic feature effect proposed in §4.1.2 to develop R2 measures,

that quantify the fraction of variation explained, for the PO and PH models. These indices

take values on the [0, 1] scale and are easy to interpret. From equation (4.2), feature-

specific KL information divergence for the PO model can be obtained by setting γ = 0 and

expressed as

IPO(F0 : F |z) =
βz exp(βz)− 2 exp(βz) + βz + 2

exp(βz)− 1
= βz − 2 +

2βz

exp(βz)− 1
, (4.7)

where z represents feature expression. Similarly, feature-specific KL information diver-

gence for the PH model can be written as

IPH(F0 : F |z) = exp(βz)− βz − 1. (4.8)

which is obtained in the limit as β → γ in equation (4.2). In §4.1.1 and §4.1.2, we de-

rived tests for feature effect in the YP and PO models using the respective Î by summing

over n individuals in a data set. This approach accounts for the feature expression of

each individual in the study. Here we propose an alternative, but more robust, approach

by integrating over the covariate distribution; in this case, the distribution of feature ex-
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pression. A normalizing transformation stabilizes the variance and can be applied to a

variety of large-scale genomic data for this purpose. Examples include the logarithmic

transformation for mRNA and miRNA gene expression, the log(x + 1) transformation for

digital gene expression and the logit transformation for DNA methylation while copy num-

ber variation is expressed as log-ratios. In addition, if we standardize the expression of

each feature to have zero mean and unit standard deviation, then Z ≡ zij
iid∼ Normal(0, 1),

where i = 1, . . . , n and j = 1, . . . , p. We define Ĩ as the expectation of I(F0 : F ) with

respect to the marginal distribution of Z,

Ĩ = EZ [I(F0 : F )] =

∫ ∞
−∞

I(F0 : F |z)φZ(z)dz, (4.9)

where φZ(z) is the standard normal density. Ĩ is computed for the PO and PH models

using I(F0 : F |z) in equations (4.7) and (4.8), respectively. An R2 is then defined as

R2
Ĩ

= 1− exp(−2Ĩ) (4.10)

(Joe, 1989; Soofi et al., 1995). For the PO model, ĨPO is calculated using Taylor series

expansion as

ĨPO =

∫ ∞
−∞

IPO(β; z)φZ(z)dz ≈ 1

6
β2, (4.11)

and, hence,

R2
ĨPO

= 1− exp(−2ĨPO) = 1− exp(−1

3
β2), (4.12)

where β is replaced by β̂, the modified partial likelihood estimator in the PO model ob-

tained using standardized feature expression (Martiussen & Scheike, 2006). For the PH

model, we calculate Ĩ directly using IPH as

ĨPH =

∫ ∞
−∞

IPH(β; z)φZ(z)dz = exp

(
1

2
β2

)
− 1. (4.13)
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Hence,

R2
ĨPH

= 1− exp(−2ĨPH), (4.14)

where β in ĨPH is replaced by β̂, the partial likelihood estimator parameter in the PH model

obtained using standardized feature expression (Cox, 1972). Details regarding the deriva-

tion of ĨPO and ĨPH are provided in SI: Methods (§9.2). Both R2
ĨPO

and R2
ĨPH

can be easily

seen to fall in the [0, 1] range and can be used for feature ranking and selection where

genomic features with larger R2 values can be interpreted as exhibiting larger effects

on survival under the respective models. These measures have an information-theoretic

foundation and are easy to compute; from equations (4.11) and (4.13), we observe that

both measures are simple functions of the respective model parameter β which contains

the required information if feature expression can be normalized to follow the standard

normal model.

4.2.2 R2 measures based on the likelihood ratio

We propose three different R2 measures for the PO model based on likelihood ratio (LR),

log L(β̂)
L(0)

, where L(0) and L(β̂) denote the modified partial likelihood for this model under

the null and alternative hypotheses, respectively, and the parameter β is estimated using

the approach outlined in Martinussen & Scheike (2006) (see SI Methods, §9.3, for the

modified partial likelihood). These measures parallel corresponding R2 measures for the

PH model that exist in the literature and can be interpreted as the proportion of variation

explained by the PO model (Allison, 1995; Nagelkerke, 1991; O’Quigley et al., 2005). The

first measure is based on Allison’s index (Allison, 1995) which uses a transformation of

the log partial likelihood ratio. It has the form R2
LR,A = 1 − exp

(
− 2
N

[
log L(β̂)

L(0)

])
where N

is the number of subjects. The second measure is a modified version of Allison’s index

based on the work in O’Quigley et al. (2005) where N in R2
LR,A is replaced by k, the

number of failures. It is less sensitive to censoring which is beneficial in our application
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due to the observed high fraction of censored observations in large-scale genomic data

sets. It is given by

R2
LR,O = 1− exp

(
−2

k

[
log

L(β̂)

L(0)

])
. (4.15)

The last measure is based on Nagelkerke’s index (Nagelkerke, 1991) and is another mod-

ified version of Allison’s index obtained by dividing the index by its maximum possible

value. It has the form R2
LR,N =

R2
LR,A

R2
max

where R2
max = 1 − exp

(
2
N

logL(0)
)
. While these

measures result in different values and ranges for a specified data set, we note from em-

pirical observation that their rankings are the same. In our simulated study, we found that

although their values differed, R2
LR,A, R2

LR,O, and R2
LR,N resulted in the same feature rank-

ings. Hence, we choose to use R2
LR,O for the remainder of the analysis. For simplicity of

notation, we will refer to R2
LR,O as R2

LR going forward.

4.3 A generalized pseudo-R2 measure

We develop pseudo-R2 measures for the PO and CO models, denoted by R2
PO and R2

CO,

as well as a generalized pseudo-R2 measure that embeds such measures for the PH,

CH, PO and CO models. The proposed approach utilizes the partial likelihood of the

respective models and does not require an estimate of the parameter β in these models.

It generalizes the work of Rouam et al. (2010, 2011) where measures for the PH and CH

models, which we denote by R2
PH and R2

CH , respectively, were proposed. These pseudo-

R2 measures can be interpreted in terms of the difference in the expression of a genomic

feature between subjects experiencing and not experiencing the event of interest, and can

be used as tools for feature ranking and selection under a variety of scenarios involving

NPH. An obvious disadvantage of R2
PH is that it is based on the PH model. In the CH

model, the hazard ratio between two individuals with feature expression z and z∗ cross

over time (Rouam et al., 2011). Thus, while R2
CH does address the inherent problem with

R2
PH , it forces crossing hazards. Therefore, the measure itself is specifically designed
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to identify crossing hazards. The advantage of the PO model is that it can handle non-

proportional hazards while still allowing for proportional hazards, and therefore, is more

generally applicable to the variety of hazard structures observed in genomic data. This

is evidenced by the results shown in Tables 1 and 2 where PO fits features that exhibit

both PH and some forms of NPH. The CO model generalizes the PO model in the same

manner as the CH model generalizes the PH model and, thus, has a more versatile form.

For our purposes, we will use the special case γ = β in equation (2.4). Hence, the

measures R2
PO and R2

CO based on these models offer significant advantages and flexibility

that is not afforded by currently available measures.

The generalized pseudo-R2 index can then be expressed as

R2 =
1

k

(
n∑
i=1

Ŵi

)2

n∑
i=1

Ŵ 2
i

, (4.16)

where Ŵi = δiŵ(ti)

zi −
n∑
j=1

Yj(ti)zj

n∑
j=1

Yj(ti)

− n∑
j=1

δjŵ(tj)Yi(tj)
n∑
r=1

Yr(tj)

zi − n∑
r=1

Yr(tj)zr

n∑
r=1

Yr(tj)

, zi is the expression

of a given feature for subject i, k is the number of uncensored failure times and Ȳ =
n∑
j=1

Yj

is the number of subjects at risk at time ti (see SI: Methods, §9.3, for details). This index

can be seen as the robust score statistic divided by the number of distinct uncensored

failure times, a quantity that falls between 0 and 1 and can be interpreted in terms of

the percentage of separability between subjects experiencing and not experiencing the

event in relation to the expression of a genomic feature. Using equation (4.16), indices

corresponding to the PH, CH, PO and CO models based on model-specific choice of

the weight, w(t), determined by the respective partial likelihood can be obtained (see SI:

Methods, §9.3, for a derivation of weights). The estimated weight, ŵ(t), for each special

case is shown in Table 3 and can be interpreted as the derivative of the log hazard ratio

for the corresponding model with respect to the parameter β evaluated at β = 0. In
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Table 3, Λ0(t) is estimated by the left-continuous version of Nelson’s estimator and S0(t)

is estimated using the Kaplan-Meier (KM) estimator. We note that R2
PH and R2

CH are the

measures described in Rouam et al. (2010, 2011) while R2
PO and R2

CO are our newly

proposed measures that allow for various types of NPH as well as PH. In order to avoid

numerical issues, we applied empirical corrections in the computation of R2
CH and R2

CO

(see SI: Methods, §9.3, for details).

Table 3: Pseudo R2: Special Cases

Model Measure Weight function, ŵ(t)

PH R2
PH 1

CH R2
CH 1 + log{Λ̂0(t)}

PO R2
PO Ŝ0(t)

CO R2
CO 1 + Ŝ0(t)− Ŝ0(t) log

(
Ŝ0(t)

1−Ŝ0(t)

)

5 Application to simulated data

In this section, we evaluate our newly proposed ranking methods, IPO, IY P , R2
ĨPO

, R2
ĨPH

,

R2
PO, R2

CO, R2
ModCH and R2

LR using simulated data sets under a variety of scenarios and

compare their performance to existing methods, R2
PH , R2

CH and ĉ′+ (Rouam et al., 2010,

2011; Dunkler et al., 2010). The goal of this study is to assess the performance of

these methods in selecting features that are truly associated with survival in the high-

dimensional setting.

5.1 Simulation schemes

We considered two different simulation schemes to generate artificial survival and ge-

nomic data sets based on the approach outlined in Dunkler et al. (2010). In order to

account for various types of hazards, survival times Yi, i = 1, . . . , n, were generated from
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each of 5 different models specified as follows: standard log-normal LN (µ = 0, σ = 1);

log-logistic LL1 (α1 = 2, λ1 = 2, λ2 = 4) and LL2 (α1 = 3, α2 = 4, λ1 = 1, λ2 = 2); and

Weibull W1 (α1 = 1, λ1 = 1
2
) and W2 (α1 = 3, α2 = 2, λ1 = 1, λ2 = 1

2
), where LL1 and W1

refer to the respective models where the shape parameters are the same but the scale

parameters differ, and LL2 and W2 refer to the respective models where both the shape

and scale parameters differ. In the LN model, µ and σ are the location and scale parame-

ters, respectively. We use a more informed approach that is broader in scope compared

to that of Dunkler et al. (2010), who only considered W1 in their simulations. Here, LN,

LL2 and W2 cases are of particular interest because of their ability to simulate crossing

hazards. To simulate censoring, we drew random samples with uniform follow-up times

C from U(0, τ) and defined the observed survival time as T = min(Y,C) with censoring

indicator δ = I(T = Y ). We chose τ to get censoring proportions of 0, 33, and 67%.

For each model, we simulated censored survival times and genomic data for N =

200 subjects and p = 5000 mock features whose expression is linked to survival time

based on the logarithm of the hazard ratio (HR), βg(t) = β0 log(HR). Genomic data was

generated from the standard normal model which covers a variety of features seen in

large-scale genomic studies. Following Klein and Moeschberger (2003), log(HR) was

calculated based on the respective model of interest. For LN, we used βg(t) = β0(t2 − 1)

to simulate crossing hazards similar to what was done in Dunkler et al. (2010). Then, β0

was chosen so that only the first 400 features were assumed to have an effect on survival

time, with 200 having a large effect and 200 having a small effect. In Scheme 1, we

adopt a univariate approach where the expression of each feature is separately linked to

survival, and in Scheme 2 we adopt a multivariate approach that incorporates correlations

between features. More details on these steps can be found in Dunkler et al. (2010).

For each simulation scheme and censoring combination, 200 data sets were gen-

erated and assessed. The ranking methods developed §4 were applied to each data set

and genomic features were ranked based on each method. The results are summarized
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using mean AUC, specificity, sensitivity and the Youden index (Youden, 1950) across the

200 simulations in each case and used to compare the methods. The Youden index is

calculated as J = sensitivity + specificity − 1 where higher values are desirable.

5.2 Simulation Results

Overall, under different models (LN, LL1, LL2, W1, W2) and censoring proportions (0,

33, 67%), the proposed methods outperformed and, in some cases, performed as well

as existing methods. In most cases, we noticed some form of improvement. Detailed

simulation results under various scenarios outlined above are provided in SI: Simulation

Results and SI: Tables 5-9 (§10). Our PO model-based methods performed strongly

overall and IY P performed particularly well for lower censoring. R2
CO performed similarly

to R2
CH in many cases, but it is important to note that our modified version, R2

ModCH ,

performed better than R2
CH in most cases and similarly to it in other cases. Overall,

depending on the simulation scheme and type of non-proportional hazards present, we

can identify the benefits of utilizing each of our measures. Most importantly, the proposed

feature selection methods are more flexible and generalize existing methods.

6 Application to genomic data

In this section, we compare the performance of the proposed methods using several data

sets representing a broad spectrum of high-throughput genomic technologies. In addition

to data sets 1-5 described in §3, we utilized the following data sets. Data set 6 consists of

microarray gene expression profiles measured on the same set of glioblastoma samples

used in data sets 1 and 2, while data sets 7 and 8 consist of DNA methylation and copy

number variation profiles, respectively, from subjects with head and neck squamous cell

carcinoma. Since we do not have prior knowledge on the number of genomic features

significantly associated with survival in real data, this approach will differ from that of the
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simulations. Here, we will rank features based on each method and compare them using

a preselected number of top features across methods. Whenever possible, parameter

estimates required for computing certain I and R2 measures were obtained from respec-

tive models adjusted for potential confounders such as age and stage of disease. These

measures include IPO, R2
LR, R2

ĨPO
, R2

ĨPH
and the absolute effect size estimate, c′+, from

concordance regression. In addition to continuous feature expression, dichotomized ex-

pression was utilized for IPO and c′+ and no adjustment for confounders was done for

analyses involving dichotomized data in order to enable direct comparison of results to

IY P which accommodates only a single dichotomized covariate due to current limitations

in the YP model implementation (Yang & Prentice, 2005; 2012). Overall, the approach

outlined above for computing the proposed I and R2 measures parallels the analyses

presented in §3 comparing different models.

We begin by focusing attention on the application of our proposed I measures -

IPO and IY P - and c′+, selecting the top 500 features based on each measure. We observe

that there are few features commonly selected by all three measures, as evidenced in the

Venn diagrams presented in SI: Figures 1 (data sets 1, 2 and 6) and 2 (data sets 3, 7, 8,

4, and 5). This is not surprising given that these measures are based on different model

assumptions. However, it is interesting to note that in the glioblastoma data sets (1, 2 and

6) and in the HNSCC data sets 7 and 8, a large fraction of the selected features (62%,

88%, 75%, 62% and 53% respectively) are common to IPO and c′+. Overall, relatively

fewer features appear to be commonly selected by IY P and c′+. For dichotomized data, it

is evident that feature sets corresponding to different measures are much less concordant

compared to continuous expression, as shown in SI: Figure 3 (data sets 1, 2 and 4).

Using the test statistic for ÎPO developed in §4 and denoted by χ̂2
PO, we computed

a p-value for each feature and selected features by controlling the FDR at 5% using the

Benjamini-Hochberg approach (Benjamini & Hochberg, 1995). It should be noted that this

approach can also be used to rank features and to compare different measures. Table
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4 summarizes the results of this analysis for continuous and dichotomized feature ex-

pression for various data sets. In almost all cases, χ̂2
PO selects a much larger number of

features compared to c′+ which does not select many features at all in the first place. This

is likely due to its more general form which accounts for PH as well some form of NPH.

Although adjustment for confounding effects of age and stage or for multiple testing typ-

ically reduce the number of features significantly associated with survival, we observed

that c′+ identified fewer features even without such adjustments and fared poorly overall

compared to χ̂2
PO not only in selecting features with some type of NPH but also in se-

lecting features with PH, based on statistical significance. This limitation is recognized

in Dunkler et al. (2010) and it renders c′+ as a tool for feature ranking only rather than

feature selection, unlike χ̂2
PO which can both be used for ranking as well as selecting fea-

tures based on a pre-specified p-value or FDR threshold. These observations provide an

argument in favor of the use of χ̂2
PO for feature selection and ranking. In SI: Application to

Genomic Data (§11) and SI: Figures 8-12, we outline an approach to evaluate and visual-

ize the combined effect of features selected on survival. We thus recommend the use of

IPO, χ̂2
PO or IY P because of their inherent versatility. While IY P is able to handle various

types of hazards and retains both IPO and IPH as special cases, its performance could

be significantly improved by developing methods to estimate the YP model parameters for

continuous data which are currently unavailable. On the other hand, IPO performed better

than or at least similarly to ĉ′+ in every simulation scenario considered. All three measures

are easy to calculate and the associated statistical test can be used for simple feature se-

lection at a pre-defined significance or FDR threshold, as shown in the examples in this

section.

Next, we examine the differences between genomic features selected by various

R2 measures, once again selecting the top 500 features in each case. SI: Figure 4 shows

the overlaps between PO-based R2 measures - R2
PO, R2

LR, and R2
ĨPO

- for the glioblastoma

data sets (1, 2 and 6). Since data set 2 contained a small number of features (454), the top
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Table 4: Number of features selected by χ̂2
PO and c′+

Data type Continuous Dichotomous
Data set χ̂2

PO c′+ χ̂2
PO c′+

1 1097 99 318 0
2 33 0 17 0
3 1,580 7 1,963 2
4 4,784 17 6,057 0
5 758 1,473 4,099 323
6 310 0 - -
7 5,799 0 3,885 21
8 464 0 64 0

50 selected features were compared. The results are, however, consistent across these

data sets where we observe a large fraction of common features selected by different

measures. In all three data sets, a large fraction of features (> 80%) are common to all

three measures as well as between any pair of measures. SI: Figure 5 shows the overlaps

between PO-based R2 measures for the HNSCC (3, 7 and 8), ovarian (4) and oral (5)

data sets where we, once again, observe a significant fraction of features common to

different measures. Overall, 55-80% of features are common to all three measures while

61-96% of features are common between to any pair of measures. These results are not

surprising since all three measures are based on the PO model and performed similarly

in the simulations.

Venn diagrams corresponding to R2
PO, R2

CO, and R2
ModCH are shown in SI: Figures

6 (data sets 1, 2 and 6) and 7 (data sets 3, 7, 8, 4 and 5). We observe that there are only

minor overlaps between different measures across all data sets, with the largest overlaps

occurring between R2
PO and R2

ModCH for data sets 5 and 8 and between R2
CO and R2

ModCH

for data sets 1, 6 and 8. However, there are no features common to all three measures

in data sets 3, 4, 6, 7 and 8, and only a very small number of common features in the

remaining data sets. This is not surprising since each of these methods is based on a

different model, so we would expect them to select different features. Although not shown

here, we note that R2
CH and R2

ModCH selected a large proportion of common features in all
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of the data sets; however, R2
ModCH provided a robust estimate compared to R2

CH due to its

computational correction. The differences in observed selected features across the three

measures are most likely related to the presence of NPH features; for example, R2
CH is

specifically designed to identify crossing hazards, but a measure based on PO or YP will

provide more flexibility as it allows for different types of time-varying hazards as well as

PH. Thus, the appropriate measure can be chosen based on the goal of feature selection

and type of hazards present or expected. We emphasize that our proposed measures

provide a more versatile and general framework that allows for inclusion of various types

of hazards.

The R2 measures can be interpreted as the percentage of separation in feature

expression between those experiencing the event of interest and those not experiencing

it. As seen in SI: Figures 6 and 7, R2
PO, R2

CO, and R2
ModCH select fairly independent

subsets of features, and each set can be used for further exploration and study. The PO

model-based measures demonstrated their ability to handle PH and various forms of NPH

throughout the simulation results while R2
ModCH only performed well in detecting crossing

hazards; moreover, R2
CO offers an alternative approach to R2

ModCH and is better suited for

handling particular forms of time-varying hazards. Thus, each measure provides useful

information specific to a particular model of interest while PO model-based R2 measures

provide overall flexibility relative to other measures.

7 Summary and discussion

In this paper, we proposed unified methods for feature selection in large-scale genomic

data in the presence of censored survival outcomes. We illustrated the utility of these

methods using real-life studies in cancer genomics; in particular, we demonstrated their

ability to handle the challenges due to various forms of non-proportional hazards. The

proposed methods are based on models that relax the PH assumption and are able to

identify genomic features with a time-varying effect with increased specificity and sensi-
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tivity.

Our methods are flexible and generalize existing methods for feature selection by

casting them within unifying frameworks. First, we proposed a general framework to test

for the effect of a genomic feature under the YP model using KL information divergence

by developing the measure IY P which quantifies this effect. IY P contains corresponding

measures for the PO and PH model - IPO and IPH , respectively - as special cases. An

advantage of these measures is that they do not require an estimate of the baseline

hazard and, instead, are simple functions of model parameters. Using these measures,

we developed a statistical test (χ̂2
PO) for genomic feature effect in the PO model where

the test-statistic or p-value could be used for feature selection. Using IPH and IPO, we

developed R2
ĨPH

and R2
ĨPH

for the PH and PO model, respectively, that only rely on the

corresponding regression coefficient; in addition, we developed alternative R2 measures

(R2
LR) based on the likelihood ratio for the PO model. All these R2 measures are easily

interpretable as the fraction of variation explained by the respective models. Finally, we

proposed a generalized pseudo-R2 measure that embeds measures for the PO, CO, PH,

and CH models as special cases. These measures do not require an estimate of the

model parameter and can be easily interpreted as the percentage of separability between

subjects in the event and non-event groups according to feature expression.

All proposed R2 measures can be applied to quantitative (continuous or ordered

categorical) data and I measures are applicable to quantitative or dichotomized data;

however, IY P is currently usable only on dichotomized data. Use of (appropriately vari-

ance stabilized and normalized) quantitative feature expression aids in robust estima-

tion of time-varying effects and interpretability while dichotomized expression facilitates

visualization of results. However, it is important to be aware of the potential effect of

dichotomization - using the median split or any other arbitrary cut-off - on the PH as-

sumption. This is evidenced by the results in Tables 1 and 2 for data sets 1 and 2 where

dichotomization has a negative and positive effect, respectively, on GOF. The proposed I
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measures are useful for feature ranking in general and, in particular, when the distribution

of feature expression or a normalizing transformation for it is unknown. Furthermore, IPO,

R2
ĨPO

, R2
ĨPH

and R2
LR can accommodate potential confounders such as age and stage of

disease directly or indirectly in their computation (as illustrated in our examples) as well as

a group of pre-selected features depending on the application of interest. While IY P offers

an approach for feature ranking using a flexible survival model for dichotomized feature

expression, χ̂2
PO provides a method for feature ranking as well as selection for both contin-

uous and dichotomized feature expression. Typically, it selects more features at the same

significance threshold and, thus, provides a more lenient approach for feature discovery

relative to standard methods and CON as evidenced in Table 4. Moreover, our results

demonstrate that it includes a significant fraction of features identified by CON. This is a

desirable property of any feature selection method and it enables appropriate correction

for multiple testing through use of FDR based not only on the Benjamini-Hochberg ap-

proach which assumes independent hypotheses but even a more stringent method such

as Benjamini-Yekutieli that accounts for dependence amongst hypotheses. Such flexi-

bility is not possible with currently available methods for feature selection and ranking

especially within a broad framework that includes the YP, PO and PH models.

Our extensive simulation studies demonstrated that there were a variety of scenar-

ios where our proposed measures outperformed currently available methods. An impor-

tant consideration is that when marginal screening methods are utilized for the purpose

of feature ranking and selection, the issue of multiple testing becomes less important in

comparison to adjusting for potential confounders when considering different models and

measures. The proposed methods demonstrated their ability to correctly select genomic

features associated with survival in the presence of different types of time-varying effects

in real genomic data, after adjusting for potential confounders and for multiple testing, as

well as in simulated data. As genomic technologies continue to advance and as more

clinical, demographic and genomic data are generated and stored in repositories such as
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TCGA, Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) etc., feature se-

lection methods will become increasingly important as we attempt to identify genomic

features with a prognostic impact on patient survival. Although we focused on genomic

feature selection in this paper, it should be noted that the proposed methods are directly

applicable to a broad array of high-throughput “omics” studies such as those involving

genome-wide association, proteomics, metabolomics, transcriptomics and radiomics. In

particular, radiomics is a rapidly developing area which involves a multitude of quanti-

tative measurements of tumor heterogeneity based on various imaging modalities such

as computed tomography and magnetic resonance imaging. There has been consider-

able interest recently in correlating intra-tumor heterogeneity based on textural features

to survival endpoints.
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Supplementary Information

8 Data Sets and Implementation

Data sets 1, 2 and 6

These data sets were published by TCGA (http://cancergenome.nih.gov/). Data set 1
consists of the methylation profiles (beta values) of tumor samples from 280 patients with
glioblastoma (GBM) obtained using the Infinium HumanMethylation27 platform. The beta
values were normalized using the logit transformation. For genes with multiple methy-
lation probes, the probe most negatively correlated with expression is used. Data set
2 consists of microRNA expression profiles in the form of z-scores compared to all tu-
mors for 416 patients with GBM. Data set 6 consists of merged mRNA and microRNA
z-scores from 426 patients with GBM where mRNA expression z-scores were compared
to diploid tumors (diploid for each gene) using median values from all three mRNA expres-
sion platforms (Affymetrix U133, Affymetrix Exon, and Agilent), and microRNA z-scores
were compared to all tumors. Data sets 1, 2 and 6 contain a total of 9,452, 454 and
15,546 features, respectively.

Data sets 3, 7 and 8

These data sets were published by TCGA (http://cancergenome.nih.gov/). The raw genome-
wide methylation data for ∼ 485, 000 CpG sites (based on Infinium HumanMethylation450
BeadChip Kit, Illumina, Inc.) obtained from tumor samples of 286 patients with head
and neck squamous cell carcinoma (HNSCC) were retrieved from TCGA, and M-values
(methylation signal quantified by logit-transformed beta values) were calculated for each
CpG site using the Bioconductor package Minfi (Aryee et al., 2014). CpGs located in the
transcription start sites and UTR regions for each gene were retrieved and used in further
analyses. Somatic copy number variation (CNV) - expressed in discretized form as gain
or loss (-2,-1,0,1,2) - and RNA-Seq gene expression data - presented as RSEM values (Li
& Dewey, 2011) - were obtained from the Broad Institute (http://gdac.broadinstitute.org/).
CNV data was filtered by removing genes with identical copy number variation across
subjects. RNA-seq data was normalized using the log2(x + 1) transformation. A gene
was included in the analyses only if (i) if 50% of patients have expression values for that
gene, and (ii) protein expression of that gene was observed in at least one head and neck
cancer sample in the Human Protein Atlas database (Uhlen et al., 2015). Data sets 7 and
8 consist of methylation and CNV data, respectively, for 286 patients with HNSCC while
data set 3 consists of RNA-Seq data for 221 patients with cancers of the oral cavity, a
subgroup of HNSCC. Data sets 3, 7 and 8 contain a total of 19,341, 49,270 and 5,869
features, respectively, after the above pre-processing steps.
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Data sets 4

Tothill et al. (2008) studied the relationship between recurrence-free survival and gene
expression in ovarian cancer using tumor samples from 276 subjects and Affymetrix U133
Plus 2 microarrays. This RMA normalized data set (Irizarry et al., 2003) was filtered
using a coefficient of variation threshold of 35% to remove genes with low variation in
expression and contains the expression profiles of 24,739 probe sets. In all analyses, log2

transformed data was used.

Data set 5

Saintigny et al. (2011) studied 86 subjects enrolled in a clinical chemoprevention trial
where the primary endpoint of interest was the development of oral cancer. This RMA
normalized and log2 transformed data set (Irizarry et al., 2003) contains the expression
profiles of 12,776 probe sets obtained using the Human Gene 1.ST platform.

Implementation

All computations were done using the R Statistical Language and Environment (R Core
Team, 2018) and Bioconductor (Gentleman et al., 2004). The following packages were
utilized as needed: survival, timereg, YPmodel, qvalue, Minfi, affy, concreg, gplots, VennDia-
gram and latex2exp.

9 Methods

9.1 Derivation of IY P
Under the YP model defined in equations (2.5) and (2.6) and the identities f(t|z) =
λ(t|z)S(t|z) and f0(t) = λ0(t)S0(t), feature-specific KL information divergence for this
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model has the form

IY P (F0 : F |z) =

∞∫
0

f0(t) log

{
λ0(t)S0(t)

λ(t|z)S(t|z)

}
dt

=

∞∫
0

f0(t) log

{
[exp(βz)− S0(t) exp(βz) + S0(t) exp(γz)]exp(γz)+1

exp [(β + γ)z] exp(γz)exp(γz)S0(t)exp(γz)−1

}
dt

= −(β + γ)z − γz exp(γz)− [exp(γz)− 1]

∞∫
0

f0(t) log [S0(t)] dt

+ [exp(γz) + 1]

∞∫
0

f0(t) log [exp(βz)− S0(t) exp(βz) + S0(t) exp(γz)] dt

In the second term, let u = S0(t) and du = −f0(t)dt.

In the third term, let u = exp(βz)− S0(t) exp(βz) + S0(t) exp(γz)

and du = f0(t) [exp(βz)− exp(γz)] dt

= −(β + γ)z − γz exp(γz) + [exp(γz)− 1]

0∫
1

log udu+
exp(γz) + 1

exp(βz)− exp(γz)

exp(βz)∫
exp(γz)

log udu

= −(β + γ)z − γz exp(γz) + [exp(γz)− 1]

+
exp(γz) + 1

exp(βz)− exp(γz)
[βz exp(βz)− exp(βz) + exp(γz)− γz exp(γz)]

=
exp(βz) [βz exp(γz)− γz − 2]− exp(γz) [γz exp(βz)− βz − 2]

exp(βz)− exp(γz)
.

Theorem 1. ÎY P is a maximum likelihood estimator and is asymptotically normal with
mean IY P .

Proof. It can be seen from equation (4.3) that ÎY P is a simple transformation of the pseudo
maximum likelihood estimators β̂ and γ̂. Since (β̂, γ̂) is asymptotically bivariate normal
with mean (β, γ), using the invariance property of maximum likelihood estimators it can be
concluded that ÎY P is also asymptotically normal with the mean above. For more details,
see Yang & Prentice (2005) and Devarajan & Ebrahimi (2009).

9.2 Derivation of IPO and V ar(ÎPO)

IPO(F0 : F ) is obtained by setting γ = 0 in the expression for IY P (F0 : F ). It turns out
that KL information divergence is symmetric for the PO model, i.e., IPO(F0 : F ) = IPO(F :
F0) (Spirko, 2016). This measure is weighted equally towards the null and alternative
hypotheses.
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Theorem 2. ÎPO is a maximum likelihood estimator and is asymptotically normal with
mean IPO.

Proof. It can be seen from equation (4.4) that ÎPO is a simple transformation of the mod-
ified partial likelihood estimator β̂. Since β̂ is asymptotically normal with mean β, using
the invariance property of maximum likelihood estimators it can be concluded that ÎPO is
also asymptotically normal with the mean above. For more details, see Martinussen &
Scheike (2006) and Devarajan & Ebrahimi (2009).

Using equation (4.4), for a given feature j with expression z, variance of ÎPO can be written
in terms of β̂ as (suppressing the subscript j)

Var(ÎPO) = Var

(
n∑
i=1

β̂zi − 2 +
2β̂zi

exp(β̂zi)− 1

)

=
n∑
i=1

n∑
j=1

Cov

([
β̂zi − 2 +

2β̂zi

exp(β̂zi)− 1

]
,

[
β̂zj − 2 +

2β̂zj

exp(β̂zj)− 1

])

Let I(β) denote IPO in equation (4.4) expressed as a function of the parameter β for each
observation i. Expanding I(β) using the first three terms of the Taylor series, we get

I(β) ≈ I(0) + I ′(0)β + 1
2
I ′′(0)β2 + 1

6
I ′′′(0)β3

where

I(β) = βzi − 2 + 2βzi
exp(βzi)−1

I ′(β) = zi +
2zi[exp(βzi)−1]−2βz2i exp(βzi)

[exp(βzi)−1]2

I ′′(β) =
[−2β′z3i exp(βzi)][exp(βzi)−1]2−2zi exp(βzi)[exp(βzi)−1][2zi[exp(βzi)−1]−2βz2i exp(βzi)]

[exp(βzi)−1]4

=
2βz3i exp(2βzi)+2βz3i exp(βzi)−4z2i exp(2βzi)+4z2i exp(βzi)

[exp(βzi)−1]3

I ′′′(β) =
6z3i exp(3βzi)−2βz4i exp(3βzi)−8βz4i exp(2βzi)−6z3i exp(βzi)−2βz4i exp(βzi)

[exp(βzi)−1]4

Taking the limit as β → 0 of all four functions above, we get

lim
β→0

I(β) = lim
β→0

I ′(β) = lim
β→0

I ′′′(β) = 0

lim
β→0

I ′′(β) = 1
3
z2
i

Thus, I(β) ≈ 0 + 0 + 1
2
(1

3
z2
i )β

2 + 0 = 1
6
z2
i β

2

Now, using the above results the approximate variance of ÎPO can be computed as follows.
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Var(ÎPO) ≈ Cov

([
1

6
z2
i β̂

2

]
,

[
1

6
z2
j β̂

2

])
=

n∑
i=1

n∑
j=1

E

[(
1

6
z2
i β̂

2

)(
1

6
z2
j β̂

2

)]
− E

[
1

6
z2
i β̂

2

]
E

[
1

6
z2
j β̂

2

]

=
n∑
i=1

n∑
j=1

1

36
z2
i z

2
jE
[
β̂4
]
− 1

36
z2
i z

2
jE
[
β̂2
]2

=
n∑
i=1

n∑
j=1

1

36
z2
i z

2
j

(
3σ4
)
− 1

36
z2
i z

2
j

(
σ2
)2

=
n∑
i=1

n∑
j=1

1

18
z2
i z

2
jσ

4

The fourth equality above is obtained using the fact E(β̂2k) = 2k!σ2k

2kk!
where σ2 is the vari-

ance of β̂ under H0.

9.3 Derivation of ĨPO and ĨPH

PO model For the PO model, using equations (4.9) and (4.7),

ĨPO =

∫ ∞
−∞

IPO(z)fZ(z)dz =

∫ ∞
−∞

(βz − 2)fZ(z)dz +

∫ ∞
−∞

2βz

exp(βz)− 1
fZ(z)dz

= −2 +

∫ ∞
−∞

2βz

exp(βz)− 1
fZ(z)dz

= −2 + Ef [g(z)],

where g(z) = 2βz
exp(βz)−1

. Using the Taylor series expansion, we can estimate Ef [g(z)] by

Ef [g(z)] ≈ g(µz) + g′(µz)E(z − µz) +
g′′(µz)

2
E[(z − µz)2]

= g(0) +
g′′(0)

2
,

where g′′(z) = 2β3x exp(2βx)−4β2 exp(2βx)+2β3x exp(βx)+4β2 exp(βx)
[exp(βx)−1]3

. Now, take the lim
z→0

for g(z) and
g′′(z) using L’Hopital’s rule to get

lim
z→0

g(z) = 2 and lim
z→0

g′′(z) = 1
3
β2.
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Thus, E[g(z)] ≈ 2 + 1
2
(1

3
β2) = 2 + 1

6
β2, and therefore,

ĨPO = −2 + 2 +
1

6
β2 =

1

6
β2. (9.1)

The R2 measure is then defined as

R2
ĨPO

= 1− exp(−2ĨPO), (9.2)

where β in ĨPO is replaced by β̂, the modified partial likelihood estimator in the PO model
(Martinussen and Scheike 2006).

PH model For the PH model, using equations (4.8) and (4.9),

ĨPH =

∫ ∞
−∞

IPH(z)fZ(z)dz =

∫ ∞
−∞

exp(βz)fZ(z)dz +

∫ ∞
−∞

(−βz − 1)fZ(z)dz

=

[∫ ∞
−∞

exp(βz)
1√
2π

exp

(
−z2

2

)
dz

]
− 1

= exp

(
1

2
β2

)
− 1. (9.3)

R2 is defined as
R2
ĨPH

= 1− exp(−2ĨPH). (9.4)

where β in ĨPH is replaced by β̂, the partial likelihood estimator parameter in the PH model
(Cox 1972).

9.4 Derivation of the generalized pseudo-R2 measure

Following standard counting process notation for censored survival data, let Ni(t) = {0, 1}
denote the number of events that have occurred for subject i, i = 1, · · · , n in the interval
(0, t] and let Yi(t) = 1 indicate that subject i is at risk just before time t. Here, N̄(t) =∑n

i=1 Ni(t) and Ȳ (t) =
∑n

i=1 Yi(t) denote, respectively, the total number of events that have
occurred in (0, t] and the number of subjects at risk at time t. Let β denote the parameter
and let Ui(β; t) denote the score function for individual i obtained as the derivative of the
logarithm of partial likelihood with respect to β for a particular model of interest. For each
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model, it can be shown that the score evaluated at β = 0 has the form

Ui(0; t) =

t∫
0

w∗(s)
zi −

n∑
j=1;j 6=i

Yj(s)zj

n∑
j=1

Yj(s)− 1


 dNi(s)

=

t∫
0

w(s)(Ȳ (s)− 1)

Ȳ (s)

zi −
∑

j∈R∗(ti)
zj

Ȳ (s)− 1


 dNi(s), (9.5)

where w∗(s) = w(s)
(
Ȳ (s)−1

Ȳ (s)

)
, w(s) is a weight function that is model-specific, and R∗(t)

is the set of individuals not experiencing the event at time t. Thus, it can be seen that
this is a measure of the weighted difference in the expression of a genomic feature be-
tween subjects observed to experience the event of interest and those observed to not
experience the event. For each observation i, an estimate for Ui(0; t) is given by

Ûi = δiŵ(ti)

zi −
n∑
j=1

Yj(ti)zj

n∑
j=1

Yj(ti)

 , (9.6)

where estimation of ŵ(ti) is discussed later in this section and δi is the indicator of failure
at time ti. Following Rouam et al. (2011), we utilize the robust score proposed in Lin &
Wei (1989) given by

Wi(0; t) =

t∫
0

{
w(s)

[
zi −

s(0)(t)

s(1)(t)

]}
dNi(s), (9.7)

where s(r)(t) = E[S(r)(t)], r = 0, 1;S(0)(t) =
∑n

i=1 Yi(t) and S(1)(t) =
∑n

i=1 Yi(t)zi. This
quantity can be estimated by

Ŵi = Ûi−EÛi = δiŵ(ti)

zi −
n∑
j=1

Yj(ti)zj

n∑
j=1

Yj(ti)

− n∑
j=1

δjŵ(tj)Yi(tj)
n∑
r=1

Yr(tj)

zi −
n∑
r=1

Yr(tj)zr

n∑
r=1

Yr(tj)

 . (9.8)

The sum of Wis is identical to the sum of Uis but Wis are independent under the PH
model. Using Wi, a pseudo-R2 index can then be written as

R2 =
1

k

(
n∑
i=1

Ŵi

)2

n∑
i=1

Ŵ 2
i

, (9.9)
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where k is the number of uncensored failure times. Next, we compute U(0; t) for the PO
and CO models defined in equations (2.3) and (2.4), respectively, and use it to derive
respective weights w(t).

PO model For the PO model defined in equation (2.3), the following quantities represent
the survival and hazard functions, respectively,

S(t|z) =
S0(t)

S0(t)− S0(t) exp(βz) + exp(βz)
(9.10)

and
λ(t|z) = −∂ lnS(t|z)

∂t
=

λ0(t) exp(βz)

S0(t)− S0(t) exp(βz) + exp(βz)
. (9.11)

Using equations (9.10) and (9.11), the partial likelihood for the PO model can be written
as

L(β) =
∏
t≤τ

n∏
i=1


λi(t|zi)

n∑
j=1

Yj(t)λj(t|zj)


∆Ni(t)

=
∏
t≤τ

n∏
i=1


λ0(t) exp(βzi)

S0(t)−S0(t) exp(βzi)+exp(βzi)

n∑
j=1

Yj(t)λ0(t) exp(βzj)

S0(t)−S0(t) exp(βzj)+exp(βzj)


∆Ni(t)

,

where Yj(t) = 1 if the subject is at risk before time t, and zi represents the expression of a
given feature for subject i. For fixed t, logL(β) =
n∑
i=1

t∫
0

{
βzi − log [S0(s)− S0(s) exp(βzi) + exp(βzi)]− log

[
n∑
j=1

Yj(s) exp(βzj)
S0(s)−S0(s) exp(βzj)+exp(βzj)

]}
dNi(s).

Hence,

U(β; t) =
d logL(β)

dβ
=

n∑
i=1

t∫
0

zi −
zi exp(βzi)[1− S0(s)]

S0(s)− S0(s) exp(βzi) + exp(βzi)
−

n∑
j=1

Yj(s)zj exp(βzj)S0(s)

[S0(s)−S0(s) exp(βzj)+exp(βzj)]
2

n∑
j=1

Yj(s) exp(βzj)
S0(s)−S0(s) exp(βzj)+exp(βzj)

dNi(s),

(9.12)

and setting β = 0, we get

U(0; t) =

n∑
i=1

t∫
0

ziS0(s)−

n∑
j=1

Yj(s)zjS0(s)

n∑
j=1

Yj(s)

dNi(s) =

n∑
i=1

t∫
0

w(s)

zi −
n∑
j=1

Yj(s)zj

n∑
j=1

Yj(s)


dNi(s),

(9.13)
where w(s) = S0(s).
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CO model The CO model in equation (2.4) introduces another parameter into the PO
model and has the form

1−S(t|z))
S(t|z)) =

[
1−S0(t)
S0(t)

]exp (γz)

exp(βz).

It is useful because of this generalization, and it allows the hazard functions corresponding
to two values of a covariate to cross. Here, we set γ = β such that

1−S(t|z))
S(t|z)) =

[
1−S0(t)
S0(t)

]expβz

exp(βz).

Then, the survival and hazard functions for this special case of the CO model can be
written as

S(t|z) =
1

exp(βz)
[

1−S0(t)
S0(t)

]exp(βz)

+ 1

=
S0(t)exp(βz)

exp(βz) [1− S0(t)]exp(βz) + S0(t)exp(βz)
(9.14)

and
λ(t|z) = −∂ lnS(t|z)

∂t
=

λ0(t) exp(2βz)

[1− S0(t)]

[
exp(βz) +

(
S0(t)

1−S0(t)

)exp(βz)
] , (9.15)

respectively. The partial likelihood is written as

L(β) =
∏
t≤τ

n∏
i=1


λi(t|zi)

n∑
j=1

Yj(t)λj(t|zj)


∆Ni(t)

=
∏
t≤τ

n∏
i=1


λ0(t) exp(2βzi)

[1−S0(t)]

[
exp(βzi)+

(
S0(t)

1−S0(t)

)exp(βzi)
]

n∑
j=1

Yj(t)λ0(t) exp(2βzj)

[1−S0(t)]

[
exp(βzj)+

(
S0(t)

1−S0(t)

)exp(βzj)
]



∆Ni(t)

,

where Yj(t) = 1 if the subject is at risk before time t. For fixed t, logL(β) =

n∑
i=1

t∫
0

{
2βzi − log [1− S0(s)]− log

[
exp(βzj) +

(
S0(s)

1−S0(s)

)exp(βzj)
]

− log

[
n∑
j=1

Yj(s) exp(2βzj)

[1−S0(s)]

[
exp(βzj)+

(
S0(s)

1−S0(s)

)exp(βzj)]
]}

dNi(s) .
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Hence,

U(β; t) =
d logL(β)

dβ
=

n∑
i=1

t∫
0

{
2zi −

zi exp(βzi) + zi exp(βzi) log
(

S0(s)
1−S0(s)

)(
S0(s)

1−S0(s)

)exp(βzi)

exp(βzj) +
(

S0(s)
1−S0(s)

)exp(βzj)

−

n∑
j=1

Yj(s)zj exp(2βzj)[1−S0(s)]

{
2
(

S0(s)
1−S0(s)

)exp(βzj)−log
(

S0(s)
1−S0(s)

)
exp(βzj)

(
S0(s)

1−S0(s)

)exp(βzj)
+exp(βzj)

}
{

[1−S0(s)]

[
exp(βzj)+

(
S0(s)

1−S0(s)

)exp(βzj)]}2

n∑
j=1

Yj(s) exp(2βzj)

[1−S0(s)]

[
exp(βzj)+

(
S0(s)

1−S0(s)

)exp(βzj)]
}

dNi(s),

(9.16)

and setting β = 0, we get

U(0; t) =

n∑
i=1

t∫
0

{
2zi −

zi + zi log
(

S0(s)
1−S0(s)

)(
S0(s)

1−S0(s)

)
1 + S0(s)

1−S0(s)

−
Yj(s)zj [1− S0(s)]

{
2
(

S0(s)
1−S0(s)

)
− log

(
S0(s)

1−S0(s)

)(
S0(s)

1−S0(s)

)
+ 1
}

n∑
j=1

Yj(s)

}
dNi(s)

=
n∑
i=1

t∫
0

zi
[
1 + S0(s)− S0(s) log

(
S0(s)

1− S0(s)

)]
−

n∑
j=1

Yj(s)zj

[
1 + S0(s)− S0(s) log

(
S0(s)

1−S0(s)

)]
n∑
j=1

Yj(s)

 dNi(s)

=

n∑
i=1

t∫
0

w(s)

zi −
n∑
j=1

Yj(s)zj

n∑
j=1

Yj(s)


dNi(s), (9.17)

where w(s) = 1 + S0(s)− S0(s) log
(

S0(s)
1−S0(s)

)
.

General Form Using equations (9.13) and (9.17), the score function can be expressed
in the following generalized form

U(0; t) =

n∑
i=1

t∫
0

w(s)

zi −
n∑
j=1

Yj(s)zj

n∑
j=1

Yj(s)


dNi(s) =

t∫
0

w(s)(Ȳ − 1)

Ȳ

zi −
∑

j∈R∗(ti)
zj

Ȳ − 1


dNi(s),

(9.18)
that includes the PO and CO models where w(s) is the model-specific weight function and
the other terms are as defined before. Using weights specified in Table 3 for the PH and
CH models (Rouam et al, 2010; 2011), equation (9.18) can be seen to represent the gen-
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eralized score function that includes the PH, CH, PO and CO models under consideration
in this paper.

Computational correction forR2
CH andR2

CO The measureR2
CH has weight ŵ(ti) = (1+

log ˆΛ0(ti)), where Λ0(ti) is estimated by the left-continuous version of Nelson’s estimator.
However, this weight has an inherent numerical issue when ˆΛ0(ti) = 0. To handle this
error, Rouam et al. (2011) set ŵ(ti) = 1 if ˆΛ0(ti) = 0, implying that log( ˆΛ0(ti)) → 0 as

ˆΛ0(ti)→ 0. This is unrealistic because log( ˆΛ0(ti))→ −∞ as ˆΛ0(ti)→ 0. Thus, we propose
an empirical correction for this error that uses a plot of the cumulative hazard versus the
weight to obtain an approximation for the weight as the cumulative hazard approaches
zero. In our computations, we set ŵ(ti) equal to this approximation when ˆΛ0(ti) = 0. We
call this modified measure R2

ModCH . Similarly, for R2
CO, an empirical correction was made

to account for the numerical issue when ˆS0(ti) = 1 by obtaining a graphical approximation
for the weight as ˆS0(ti)→ 1.

10 Simulation Studies

10.1 Simulation scheme 1

First, we look at the results for scheme 1, the univariate approach. Table 5 reports the
AUCs for each method across the five models considered - LN, LL1, LL2, W1 and W2.
We note that the standard deviations of the AUCs were uniformly very small throughout
and ranged from 7X10−4 to 0.02. In Table 5, we observe several scenarios where the
proposed measures outperform existing methods.

First, we look at the performance of the three R2 measures based on the PO model
- R2

PO, R2
LR, and R2

ĨPO
. In each scenario and across all censoring schemes, these mea-

sures perform almost identically. In some instances, such as LL2 under 0% and 33%
censoring, we do observe a slight improvement in R2

ĨPO
. Next, we consider PH model-

based measures - the newly proposed R2
ĨPH

and the existing R2
PH . From Table 5, we

observe that the AUCs are almost identical for these measures, with a slight improvement
noted in some cases for R2

ĨPH
. In fact, based on the Youden indices in Table 7, we note

that the proposed R2
ĨPH

outperforms R2
PH for all three censoring proportions for LL2 and

for the 0% censoring case for LN; this also holds true for AUCs.
Next, we examine the LN case where we observe from Table 5 that R2

PH and
ĉ′+ are outperformed by various measures under different scenarios. Specifically, R2

CH

and R2
ModCH perform similarly and outperform PO and PH model-based R2 measures,

except for the 67% censoring case where R2
PO, R2

LR, and R2
ĨPO

perform the best. This
is not surprising since the LN model allows for crossing hazards. R2

CO performs well for
lower censoring proportions, but its AUC decreases as censoring increases. As censoring
increases, PO model-based R2 measures also outperform PH model-based measures in
terms of AUCs as well as Youden indices shown in Table 7. IY P outperforms IPO and ĉ′+
when the censoring proportion is 0 and 33% but its performance decreases as censoring
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increases. It should be noted that IY P can only be applied to dichotomized genomic data;
thus, IY P ’s performance may be affected by its inability to accommodate continuous data.
IPO also outperforms ĉ′+ as censoring increases which is also evidenced by the Youden
indices in Table 7.

Under LL1, we expect PO model-based measures to perform well since the log-
logistic model is related to the PO model, and our results provide evidence in support.
While R2

CH and R2
ModCH do improve as censoring increases, R2

PO, R2
LR, and R2

ĨPO
still

outperform R2
CH and R2

ModCH at each censoring level. Similar to the LN case, the per-
formance of R2

CO and IY P decreases as censoring increases. Under LL2, R2
PH and R2

ĨPH

perform significantly worse than other R2 measures, but their AUCs do increase from ap-
proximately .50 − .54 in the 0% censoring case to .78 in the 67% censoring case. Thus,
while these measures show improved performance with higher censoring, they are still
consistently outperformed by other model-based measures. This is also evident from Ta-
ble 7, where R2

PH and R2
ĨPH

have the lowest Youden index of all the reported measures
with the exception of R2

CO under 67% censoring. The log-logistic model of LL2 allows for
crossing hazards and is related to the CO model and, not surprisingly, R2

CO outperforms
PO model-based R2 measures in the 0 and 33% censoring cases but, similar to the LN
and LL1 models, we see its AUCs drop for 67% censoring. ĉ′+ is outperformed by IPO
and/or IY P , as well as by R2

CO, at each censoring level, with IY P performing better for
lower censoring proportion and IPO performing better for higher censoring proportion. In
this case, we also observe that PO model-based R2 measures outperform PH model-
based methods which emphasizes the PO model’s ability to handle some forms of NPH.
These observations are further supported by the Youden indices shown in Table 7.

Under the W1 model, we observe that R2
PO, R2

LR, and R2
ĨPO

outperform R2
CH and

R2
ModCH at all censoring levels. This result is intuitive because this Weibull model is related

to the PH model and the PO model does allow for PH. Under the W2 model, we observe
that R2

CO outperforms R2
CH and R2

ModCH at all censoring levels, especially for higher cen-
soring proportions where the improvement in performance is markedly higher. Further-
more, PO model-based measures outperform R2

CH . The W2 model allows for crossing
hazards, and yet here, we observe a clear advantage for our PO and CO model-based
measures over R2

CH which was purposefully designed to handle crossing hazards. Also,
in this case we observe that R2

ModCH , the proposed modification to R2
CH , performs signifi-

cantly better than R2
CH as the censoring proportion increases. Youden indices for models

W1, W2, and LL1 under scheme 1 are listed in Table 8 and support the results in Table 5.

10.2 Simulation scheme 2

Next, we consider results from simulation scheme 2 which are shown in Table 6. In
general, AUCs are observed to be slightly lower than those in Table 5, but this is likely
due to the complexity of the scheme itself where correlations are introduced between
features. The observed trend in these results, however, mimic what was observed for
scheme 1. We note that the standard deviations of AUCs were very small for this scheme
as well, ranging from 7X10−4 to 0.02.

Similar to scheme 1, PO model-based R2 measures - R2
PO, R2

LR, and R2
ĨPO

- per-
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form almost identically across all scenarios and censoring levels. The PH model-based
measures - R2

ĨPH
and R2

PH - also perform similarly. Under the LN model which allows for
crossing hazards, R2

PH and R2
ĨPH

are outperformed by the proposed PO model-based R2

measures as well as by R2
CH and R2

ModCH for 0 and 33% censoring cases, but for 67%
censoring the PO model-based measures perform similarly and better than the other R2

measures. The AUCs for R2
CO, R2

CH , and R2
ModCH decrease as censoring increases, with

PO model-based measures having a clear advantage for all censoring proportions. ĉ′+ is
also outperformed by IPO and IY P for 0% and 33% censoring and by IPO for 67% censor-
ing. These differences are supported by the Youden indices shown in Table 7. Under the
LL1 model, PO and PH model-based R2 measures perform similarly and result in slightly
higher AUCs than R2

CH and R2
ModCH . This result is also intuitive since the log-logistic

model is related to the PO model which allows for both proportional hazards as well as
some forms of non-proportional hazards. They also significantly outperform R2

CO at each
censoring level. IPO and ĉ′+ perform similarly and outperform IY P , whose AUC decreases
as censoring increases. Under the LL2 model, which allows for crossing hazards, R2

CO

performs similarly to R2
CH and R2

ModCH and they all significantly outperform PO and PH
model-based R2 measures. This result is expected since the LL2 model allows for cross-
ing hazards. However, similar to scheme 1, R2

CO’s performance falls in the 67% censoring
case. We also observe that the performance of ĉ′+ is poor and no better than a coin toss
across all censoring proportions. IY P outperforms IPO in the 0 and 33% censoring cases,
but consistent with previous results, its AUC drops in the 67% censoring case. This is fur-
ther corroborated by the Youden indices shown in Table 7 where IPO is the best performer
under 67% censoring. However, as alluded to earlier its performance may be affected by
its inability to accommodate continuous genomic data. Under the W1 model, we observe
results similar to that of scheme 1. R2

PO, R2
LR, and R2

ĨPO
outperform R2

CH and R2
ModCH at

all censoring levels which is intuitive since the PO model can accommodate proportional
hazards and the Weibull model is related to the PH model. Under W2, R2

CO once again
outperforms R2

CH and R2
ModCH at all censoring levels and particularly for higher censor-

ing where the improvement in performance is marked; in this case, we also observe that
R2
ModCH performs slightly better than R2

CH across all censoring proportions. Youden in-
dices for models W1, W2, and LL1 under scheme 2 are listed in Table 9 and support the
results in Table 6.
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Table 5: Simulation scheme 1: Comparison of methods (AUC)

Censoring Measure LN LL1 LL2 W1 W2
IPO 0.81 1.00 0.74 1.00 1.00
IY P 1.00 0.96 0.81 1.00 1.00
ĉ′+ 0.81 1.00 0.73 1.00 1.00
R2
PO 0.81 1.00 0.73 1.00 1.00

R2
LR 0.81 1.00 0.73 1.00 1.00

0% R2
ĨPO

0.81 1.00 0.75 1.00 1.00
R2
CO 0.99 0.86 0.84 0.93 1.00

R2
CH 1.00 0.68 0.87 0.65 0.98

R2
ModCH 1.00 0.73 0.89 0.69 0.98

R2
ĨPH

0.92 0.99 0.54 1.00 1.00
R2
PH 0.87 0.99 0.50 1.00 1.00

IPO 0.89 0.99 0.77 0.99 1.00
IY P 0.96 0.89 0.75 0.98 1.00
ĉ′+ 0.82 0.99 0.71 0.99 1.00
R2
PO 0.89 0.99 0.77 0.99 0.99

R2
LR 0.88 0.99 0.77 1.00 1.00

33% R2
ĨPO

0.88 0.99 0.78 1.00 1.00
R2
CO 0.82 0.69 0.80 0.82 0.87

R2
CH 0.98 0.82 0.86 0.70 0.76

R2
ModCH 0.97 0.84 0.87 0.74 0.82

R2
ĨPH

0.77 0.99 0.64 1.00 1.00
R2
PH 0.77 0.99 0.61 1.00 1.00

IPO 0.93 0.98 0.81 0.99 0.95
IY P 0.83 0.70 0.58 0.81 0.93
ĉ′+ 0.88 0.96 0.71 0.98 0.98
R2
PO 0.93 0.97 0.81 0.99 0.95

R2
LR 0.93 0.98 0.81 0.99 0.95

67% R2
ĨPO

0.93 0.98 0.81 0.99 0.95
R2
CO 0.68 0.63 0.74 0.51 0.89

R2
CH 0.88 0.90 0.83 0.87 0.57

R2
ModCH 0.87 0.90 0.84 0.87 0.71

R2
ĨPH

0.92 0.98 0.78 0.99 0.97
R2
PH 0.92 0.97 0.78 0.99 0.97

11 Application to Genomic Data

Once a subset of genomic features has been selected at a particular threshold, the com-
bined effect of these features on survival can be evaluated using a weighted average
of feature expression. Let m be the number of features in a given subset of interest.
If β = {β1, . . . , βm}′ and Z are the corresponding regression coefficient vector and the
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Table 6: Simulation scheme 2: Comparison of methods (AUC)

Censoring Measure LN LL1 LL2 W1 W2
IPO 0.84 0.91 0.54 0.91 0.90
IY P 0.86 0.89 0.77 0.89 0.89
ĉ′+ 0.82 0.91 0.50 0.91 0.90
R2
PO 0.84 0.91 0.55 0.91 0.90

R2
LR 0.84 0.91 0.56 0.91 0.90

0% R2
ĨPO

0.82 0.91 0.57 0.91 0.90
R2
CO 0.76 0.51 0.88 0.51 0.88

R2
CH 0.89 0.86 0.89 0.86 0.79

R2
ModCH 0.89 0.87 0.89 0.86 0.81

R2
ĨPH

0.55 0.91 0.63 0.91 0.90
R2
PH 0.55 0.90 0.66 0.91 0.89

IPO 0.87 0.91 0.62 0.91 0.90
IY P 0.84 0.85 0.82 0.88 0.86
ĉ′+ 0.80 0.91 0.50 0.91 0.90
R2
PO 0.87 0.90 0.63 0.90 0.89

R2
LR 0.88 0.91 0.61 0.91 0.90

33% R2
ĨPO

0.86 0.91 0.64 0.91 0.90
R2
CO 0.59 0.51 0.87 0.53 0.88

R2
CH 0.89 0.87 0.90 0.87 0.70

R2
ModCH 0.88 0.87 0.89 0.87 0.74

R2
ĨPH

0.72 0.90 0.57 0.90 0.90
R2
PH 0.75 0.90 0.54 0.90 0.89

IPO 0.89 0.90 0.80 0.90 0.86
IY P 0.69 0.65 0.68 0.69 0.68
ĉ′+ 0.84 0.90 0.53 0.90 0.87
R2
PO 0.89 0.90 0.81 0.90 0.84

R2
LR 0.89 0.90 0.80 0.90 0.89

67% R2
ĨPO

0.88 0.90 0.80 0.90 0.89
R2
CO 0.56 0.50 0.71 0.50 0.87

R2
CH 0.81 0.88 0.88 0.88 0.53

R2
ModCH 0.81 0.88 0.87 0.88 0.55

R2
ĨPH

0.87 0.90 0.70 0.90 0.89
R2
PH 0.89 0.90 0.71 0.90 0.87

n ×m expression matrix for features in this subset, then a weighted average, η, can be
calculated as η = Zβ. Thus, η is a vector of size n, where each subject has a weighted
average computed across all m features in a subset. This weighted average uses every
feature in each subset where each features’s contribution is quantified by the estimate of
the coefficient. It is worth noting that the linear predictor η can be interpreted as the log-
arithm of the hazard ratio for the PH model and as the logarithm of the odds ratio for the
PO model. A graphical analysis of the combined effect of features selected using χ̂2

PO (as
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Table 7: Simulation schemes 1 & 2: Comparison of methods (Youden Index)

Scheme 1 2
Censoring 0% 33% 67% 0% 33% 67%
Measure LN LL2 LN LL2 LN LL2 LN LL2 LN LL2 LN LL2
IPO 0.53 0.34 0.61 0.42 0.68 0.50 0.23 0.03 0.24 0.09 0.26 0.24
IY P 0.99 0.49 0.49 0.22 0.38 0.00 0.22 0.17 0.12 0.16 0.07 0.04
ĉ′+ 0.53 0.33 0.54 0.28 0.61 0.29 0.21 0.02 0.19 0.00 0.22 0.01
R2
PO 0.53 0.31 0.62 0.39 0.68 0.48 0.23 0.04 0.25 0.10 0.26 0.24

R2
LR 0.53 0.33 0.60 0.41 0.68 0.49 0.23 0.05 0.25 0.07 0.26 0.22

R2
ĨPO

0.52 0.36 0.59 0.43 0.68 0.50 0.20 0.06 0.23 0.11 0.25 0.19
R2
CO 0.89 0.53 0.41 0.43 0.24 0.26 0.17 0.23 0.06 0.22 0.07 0.14

R2
CH 0.99 0.59 0.82 0.56 0.60 0.52 0.26 0.28 0.25 0.28 0.23 0.28

R2
ModCH 0.99 0.61 0.80 0.58 0.60 0.54 0.26 0.28 0.24 0.28 0.23 0.28
R2
ĨPH

0.66 0.04 0.49 0.18 0.66 0.44 0.02 0.06 0.13 0.03 0.24 0.13
R2
PH 0.46 0 0.49 0.12 0.66 0.41 0.04 0.09 0.17 0.02 0.25 0.16

shown in Table 4) was performed for representative data sets from different data types.
This included data sets 1 (methylation), 2 (microRNA expression), 3 (RNA sequencing),
4 (mRNA expression) and 8 (CNV). Panels (a), (b) and (c) in Figures 8-12 represent KM
survival curves, cumulative hazard curves (on the log-scale) and odds curves, respec-
tively, for subjects with high and low weighted average feature expression (determined
by the median split) for each of these data sets. We observed that when χ̂2

PO was used
to select features, the PO model generally provided a good fit while the PH did not fit in
some cases (as seen in panels (a), (b) and (c) of Figures 8-12). These observations were
further corroborated by GOF tests for the PH, PO and YP models where the PO and YP
models were found to provide a good fit for weighted feature expression in all cases. This
analysis emphasizes the versatility and modeling flexibility provided by the PO and YP
models in allowing PH as well as certain forms of NPH.
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Figure 1: Top selected genes, I measures and ĉ′+, Glioblastoma data sets
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Table 8: Simulation Scheme 1: Comparison of methods (Youden Index)

Censoring 0% 33% 67%
Measure LL1 W1 W2 LL1 W1 W2 LL1 W1 W2
IPO 0.92 0.95 0.98 0.88 0.92 0.92 0.80 0.85 0.72
IY P 0.73 0.92 0.98 0.41 0.73 0.86 0.16 0.34 0.70
ĉ′+ 0.92 0.95 0.97 0.87 0.93 0.94 0.76 0.84 0.81
R2
PO 0.92 0.94 0.97 0.87 0.92 0.91 0.80 0.85 0.72

R2
LR 0.92 0.98 0.97 0.88 0.95 0.92 0.81 0.86 0.73

R2
ĨPO

0.92 0.98 0.98 0.88 0.95 0.92 0.81 0.86 0.73
R2
CO 0.48 0.63 0.99 0.22 0.48 0.61 0.15 0.05 0.64

R2
CH 0.19 0.14 0.80 0.49 0.25 0.32 0.63 0.58 0.10

R2
ModCH 0.27 0.22 0.80 0.52 0.31 0.44 0.63 0.59 0.30
R2
ĨPH

0.88 0.99 1.00 0.87 0.97 0.98 0.81 0.87 0.80
R2
PH 0.87 0.96 1.00 0.85 0.94 0.97 0.79 0.86 0.79

Table 9: Simulation Scheme 2: Comparison of methods (Youden Index)

Scheme 2
Censoring 0% 33% 67%
Measure LL1 W1 W2 LL1 W1 W2 LL1 W1 W2
IPO 0.32 0.33 0.30 0.31 0.31 0.29 0.29 0.29 0.26
IY P 0.26 0.26 0.27 0.12 0.20 0.20 0.02 0.01 0.08
ĉ′+ 0.32 0.33 0.29 0.31 0.30 0.28 0.27 0.28 0.25
R2
PO 0.31 0.31 0.27 0.29 0.29 0.27 0.26 0.27 0.24

R2
LR 0.33 0.33 0.29 0.31 0.31 0.27 0.28 0.28 0.25

R2
ĨPO

0.32 0.32 0.30 0.31 0.30 0.27 0.28 0.28 0.25
R2
CO 0.02 0.02 0.21 0.01 0.01 0.21 0.00 0.01 0.21

R2
CH 0.16 0.15 0.16 0.16 0.16 0.10 0.19 0.20 0.01

R2
ModCH 0.16 0.15 0.17 0.17 0.17 0.11 0.20 0.20 0.01
R2
ĨPH

0.30 0.31 0.30 0.29 0.29 0.27 0.27 0.27 0.25
R2
PH 0.30 0.31 0.25 0.30 0.29 0.26 0.27 0.28 0.25
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Figure 2: Top selected genes, I measures and ĉ′+, HNSCC (3, 7, and 8), ovarian (4) and
oral (5) data sets
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ĉ′+

(c) Dataset 4

Figure 3: Top selected genes, Dichotomized feature expression, Data sets 1, 2 and 4
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Figure 4: Top selected genes, PO-based R2 measures, Glioblastoma data sets
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Figure 5: Top selected genes, PO-based R2 measures, HNSCC (3, 7, and 8), ovarian (4)
and oral (5) data sets
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Figure 6: Top selected genes, Other R2 measures, Glioblastoma data sets
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Figure 7: Top selected genes, Other R2 measures, HNSCC (3, 7, and 8), ovarian (4) and
oral (5) data sets
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Figure 8: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale), (c)
Odds curves. Weighted expression of features selected by χ2

PO for data set 1
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Figure 9: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale), (c)
Odds curves. Weighted expression of features selected by χ2

PO for data set 2
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Figure 10: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by χ2

PO for data set 3
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Figure 11: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by χ2

PO for data set 4
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Figure 12: (a) Kaplan-Meier survival curves, (b) Cumulative hazard curves (log-scale),
(c) Odds curves. Weighted expression of features selected by χ2

PO for data set 8
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