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Abstract: This work presents the design of a directed acyclic graph
(DAG) scheme, the nodes of which incorporate hidden Markov models
(HMMs) for classifying insect species. Such a DAG scheme is able to limit
the problem space, while having the HMMs capture the temporal evolu-
tion of Mel-scaled spectrograms extracted out of wingbeat sounds.
Interestingly, the proposed approach offers interpretability of the classifica-
tion process by inspecting the sequence of edges activated in the DAG
(path). The dataset encompasses 50 000 wingbeat sounds representing six
species, i.e., Ae. aegypti (male and female), Cx. quinquefasciatus (male and
female), Cx. stigmatosoma (male and female), Cx. tarsalis (male and
female), Musca domestica, and Drosophila simulans, and is publicly avail-
able at https://sites.google.com/site/insectclassification/. Thorough species
classification experiments showed that the proposed solution outperforms
state-of-the-art approaches.
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1. Introduction

Classification of insect species may assist pest management and control significantly not
only in terms of biodiversity assessment and cataloging, but also financially since the pres-
ence/absence of certain species may lead to catastrophic economic losses (Potamitis et al.,
2015). Importantly, mosquitoes comprise a great animal threat to human health as they
directly contribute to the transmission of deadly diseases such as yellow fever, malaria,
dengue, and the Zika virus (Pile, 2018). Such relevance has driven many researchers to
develop mechanisms automatizing the process of identification (Chen et al., 2014; Zhang
et al., 2017). Interestingly, the work reported in Chen et al. (2014) apart from presenting
a Bayesian classifier for insect species, presents a publicly available dataset focusing on
Diptera, thus facilitating research in the field. The dataset encompasses 50 000 wingbeat
sounds representing six species, i.e., Ae. aegypti (male and female), Cx. quinquefasciatus
(male and female), Cx. stigmatosoma (male and female), Cx. tarsalis (male and female),
Musca domestica, and Drosophila simulans. The creators employed optical sensors to
record the “sound” of insect flight; such types of recordings remain completely unaffected
by potential environmental sound/noise interferences. Following the same line of thought,
this letter proposes a directed acyclic graph (DAG) suitably dividing the problem space,
while modeling the temporal patterns existing in the spectral content of wingbeat sounds.
The proposed solution encompasses the following steps: (a) feature extraction, (b) DAG
construction including its topological ordering, (c) establishment of the node-based classi-
fiers, and (d) insect species identification based on DAG’s operation.

2. Feature set

In essence, we used a Mel-scaled spectrogram to represent the available signals. To
this end, we employed a triangular Mel filterbank for extracting 23 log-energies. At
first, the audio signal is windowed and the short-time Fourier transform (STFT) is
computed with respect to each window. The outcome of the STFT passes through the
filterbank and the logarithm is computed to adequately space the data. We avoid using
the discrete cosine transform, which might lead to information loss, thus we exploit the
entire content of each wingbeat Mel-spectrum. Figure 1 demonstrates Mel-scaled spec-
trograms extracted out of recordings coming from all available classes.

3. DAG-based scheme

The proposed framework relies on the DAG logic, i.e., the classification scheme is
a graph denoted as G ¼ fN;Lg, where N ¼ fn1;…; nmg represents the nodes and
L ¼ fl1;…; lkg represents the links associating the nodes. Each node in N is responsible
for a binary classification task conducted via a set of hidden Markov models (HMMs)
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which fit well the specifications of audio pattern recognition tasks (Ntalampiras, 2014),
thus the DAG-HMM notation.

The motivation behind creating such a graph-based classification system is
that in this way, one is able to limit the problem space and design classification algo-
rithms for two mutually-exclusive classes than having to deal with the entirety of the
different classes at the same time. Essentially, the proposed methodology breaks down
any Cm-class classification problem into a series of 2-class classification problems.

DAGs can be seen as a generalization of the class of Decision Trees, while the
redundancies and repetitions that may occur in different branches of the tree can be
observed more efficiently since different decision paths might be merged. In addition,
DAGs are able to collect and conduct a series of tasks in an ordered manner, subject
to constraints that certain tasks must be performed earlier than others. The sequential
execution of tasks is particularly important and directly related to the efficacy with
which the overall task is addressed (VanderWeele and Robins, 2010).

The DAG-HMM architecture used in this paper includes mðm� 1Þ=2 nodes,
each one associated with a 2-class classification problem. The connections between the
different nodes in G have only one orientation without any kind of loop(s). As a result,
each node of such a so-called rooted DAG has either 0 or 2 leaving arcs.

Sections 4 and 5 provide a detailed analysis of the way the DAG-HMM is
constructed and subsequently operates. The principal issue associated with the design
of every DAG is the topological ordering, i.e., ordering the nodes in a way that the
starting endpoints of every edge occur earlier than the corresponding ending endpoints.
In the following, we describe how such a topological ordering is discovered based on
the Kullback–Leibler divergence.

4. Determining the topological ordering of the DAG-HMM

Naturally, one would expect that the performance of the DAG-HMM depends on the
order in which the different classification tasks are conducted. This was also evident
from early experiments. This observation motivated the construction of the DAG-HMM
so that “simple” tasks are executed earlier in the graph. In other words, these are placed
in the top nodes of the DAG-HMM, in a way that classes responsible for a high amount
of misclassifications are discarded early in the graph operation. In order to get an early
indication of the degree of difficulty of a classification task, we employed the metric rep-
resenting the distance of the involved classes in the probabilistic space, i.e., the
Kullback–Leibler Divergence (KLD) between per-class Gaussian mixture models
(GMMs) in the feature space. The basic motivation is to place early in the DAG-HMM
tasks concerning the classification of classes with large KLD, as they could be completed
with high accuracy. The scheme determining the topological ordering is illustrated in
Fig. 2. There, a simplified two-dimensional feature space (facilitating demonstration pur-
poses) is used where the KLD distances are computed and subsequently sorted.

The KLD between two J-dimensional probability distributions A and B is
defined as (Taylor, 2006)

D AjjBð Þ ¼
ð

RJ
p X jAð Þlog

p X jAð Þ
p X jBð Þ dx: (1)

KLD provides an indication of how distant two models are in the probabilistic
space. It is important to note that KLD as given in Eq. (1) comprises an asymmetric

Fig. 1. (Color online) Mel-scaled spectrograms extracted out of recordings coming from all available classes
[Ae. aegypti (male and female), Drosophila simulans, Musca domestica, Cx. quinquefasciatus (male and female),
Cx. stigmatosoma (male and female), and Cx. tarsalis (male and female)].
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quantity. The symmetrical form can be inferred by simply adding the integrals in both
directions, i.e.,

DsðAjjBÞ ¼ DðAjjBÞ þDðBjjAÞ: (2)

In the special case where both A and B are Gaussian mixture models KLD
can be defined as follows:

KLD AjjBð Þ ¼
ð

A xð Þlog
B xð Þ
A xð Þ

dx: (3)

Unfortunately, there is not a closed-form solution for Eq. (3), thus we
employed the empirical mean as follows:

KLD AjjBð Þ � 1
n

Xn

i¼1

log
B xið Þ
A xið Þ

; (4)

given that the number of Monte Carlo draws is sufficiently large. During our experi-
ments we set n¼ 2000.

It should be noted the KLD between HMMs was not used since computing
distances between HMMs of unequal lengths, which might be common in this work as
HMMs representing different classes might have different number of states, can be sig-
nificantly more computationally demanding without a corresponding gain in modeling
accuracy (Liu et al., 2007; Zhao et al., 2007).

After computing the KLD for the different pairs of classes, i.e., reach the sec-
ond stage depicted in Fig. 2, the KLD distances are sorted in an increasing manner.
This way the topological ordering of the DAG-HMM is revealed, placing the classifi-
cation tasks of low difficulty on its top. Each node removes a class from the candidate
list until there is only one class left, which comprises the DAG-HMM prediction. The
elements of the distance matrix could be seen as early performance indicators of the
task carried out by the corresponding node. The proposed topological ordering places
tasks likely to produce misclassifications at the bottom of the graph. This process out-
puts a unique solution for the topological sorting problem, as it is usually met in the
graph theory literature (Cook, 1985).

5. The DAG-HMM operation

The operation of the proposed DAG-HMM scheme is the following: after extracting
the features of the unknown audio signal, the first/root node is activated. More pre-
cisely, the feature sequence is fed to the HMMs, which produce two log-likelihoods
showing the degree of resemblance between the training data of each HMM and the
unknown one. These are compared and the graph flow continues on the larger log-
likelihood path. It should be stressed that the HMMs are optimized (in terms of the
number of states and Gaussian components) so that they address the task of each node
optimally. That said, it is possible that a specific class is represented by HMMs with
different parameters when it comes to different nodes of the DAG-HMM.

An example of a DAG-HMM addressing a problem with four classes is illus-
trated in Fig. 3. The remaining classes for testing are mentioned beside each node.
Digging inside each node, Fig. 3 shows the HMM-based sound classifier responsible
for activating the path of the maximum log-likelihood.

The operation of the DAG-HMM may be parallelized with that of investigat-
ing a list of classes, where each level eliminates one class from the list. In more detail,
in the beginning the list includes all the potential audio classes. At each node the fea-
ture sequence is matched against the respective HMMs and the model with the lowest

Fig. 2. The determination of the topological ordering (for simplicity, only four classes are considered).
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log-likelihood is erased from the list, while the DAG-HMM proceeds to the part of
the topology without the discarded class. This process terminates when only one class
remains in the list, which comprises the system’s prediction. Hence, in case the prob-
lem deals with m different classes, the DAG’s decision will be made after the evalua-
tion of m � 1 nodes.

6. Experimental setup and results

In this section, we analyze the: (a) wingbeat dataset including ten classes, (b) parame-
trization of both DAG-HMM and feature extraction module, (c) contrasted
approaches, and (d) we present and comment the achieved results.

The low-level feature extraction window is 30 ms with 10 ms overlap, so that the
system is robust against possible misalignments. The sampled data are Hamming windowed
to smooth potential discontinuities while the fast Fourier transform (FFT) size is 512.
Standard normalization techniques, i.e., mean removal and variance scaling, were applied.

The HMMs of each node are optimized in terms of number of states and
nodes following the Expectation-Maximization and Baum Welch algorithms (Rabiner,
1989). As the considered sound events are characterized by a distinct time evolution,
we employed HMMs with left–right topology, i.e., only left to right state transitions
are permitted. Moreover, the distribution of each state is approximated by a Gaussian
mixture model of diagonal covariance, which may be equally effective to a full one at
a much lower computational cost (Reynolds and Rose, 1995).

The maximum number of k-means iterations for cluster initialization was set
to 50 while the Baum–Welch algorithm used to estimate the transition matrix was
bounded to 25 iterations with a threshold of 0.001 between subsequent iterations. The
number of explored states ranges from 3 to 7 while the number of Gaussian compo-
nents used to build the GMM belongs to the {2, 4, 8, 16, 32, 64, 128, 256, and 512}
set. The final parameters were selected based on the maximum recognition rate crite-
rion. The machine learning package Torch (freely available at http://torch.ch/) was
used to construct and evaluate GMMs and HMMs. Furthermore, MATLAB was
employed for extracting the Mel-spectrograms and setting up the DAG.

Here, we address two crucial points toward comparability and reproducibility
of the proposed approach: (a) we employed a publicly available dataset (Chen et al.,
2014), and (b) our experiments were carried out based on the cross-validation protocol
adopted in Chen et al. (2014) and Zhang et al. (2017).

Fig. 3. An example of a DAG-HMM addressing a problem with four classes. The binary operation carried out
in each node of the DAG-HMM is also depicted.

Table 1. The recognition rates for the proposed and contrasted methods on the species identification task.

Approach Recognition rate (%)

AlexNet-BNþLIBSVM (Chen et al., 2014) 76.12
FFTþLIBSVM (Zhang et al., 2017) 74.74
DAG-HMM 80.7
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Preprocessing of the wingbeat sounds includes removal of any background
noise and filling the silent parts with the value 0. Each insect flight sound lasts 1 s.

Classification of insect flight sounds is typically focused on two tasks, i.e., (a)
gender and (b) species classification. After the excellent results reported in Zhang et al.
(2017) regarding the first task, this work concentrates on the second one, which com-
prises a ten-class problem. The dataset includes six insect species, i.e., Ae. aegypti (male
and female), Cx. quinquefasciatus (male and female), Cx. stigmatosoma (male and
female), Cx. tarsalis (male and female), Musca domestica, and Drosophila simulans.
Gender information is included only with respect to four species. Overall, the dataset
encompasses 50.000 wingbeat sounds distributed equally among the classes and is pub-
licly available for research purposes at https://sites.google.com/site/insectclassification/.

The resulting topological ordering is presented at https://sites.google.com/site/
stavrosntalampiras/demos/insect-species-classification. Table 1 tabulates the average
recognition rates achieved by the proposed solution and the ones reported in the litera-
ture. As we can see, the one obtained here is the highest one surpassing by 4.58%/2290
recordings and 5.96%/2980 recordings the solutions reported in Zhang et al. (2017) and
Chen et al. (2014), respectively (Table 1). Toward a more thorough analysis of the
results, in Table 2 we present the confusion matrix offered after applying the proposed
solution. We observe that the highest rate is achieved for the Aedes male class (98%),
while the worst one for the Tarsalis male (64.6%). The latter is misclassified for Quinx
male 26.6% of the time. Other strong misclassifications concern the pairs Quinx
female-Aedes female and Stigma female-House flies.

7. Conclusion

This paper presented an effective solution for insect species classification using sounds
of their wingbeats. Its cornerstone dividing the problem space via a directed graph, the
nodes of which carry out binary classification tasks using HMMs. Interestingly, the
proposed solution is a comprehensive classification scheme, since its operation does not
follow the black-box logic, while one is able to “open” the classifier, and by inspecting
the misclassifications, understand the reasons leading to the specific errors. This is a
crucial advantage over deep nets, where it is hard to interpret their operation, let alone
explain their errors. Finally, new insect classes can be easily incorporated in the pro-
posed scheme as long as the respective data become available.
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