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Abstract In this paper, a new resampling technique for sampling designs with un-
equal inclusion probabilities is proposed. The basic idea is to use a resampling de-
sign based on ppswor. Its main properties are studied, and its relationships with
other resampling methodologies are discussed.
Abstract In questo lavoro si introduce una tecnica di ricampionamento valida per
disegni campionari con differenti probabilità di inclusione. L’idea di base è di usare
un disegno di ricampionamento di tipo ppswor. Le principalei proprietà del metodo
sono studiate, e le relazioni con altre metodologie di ricampionamento sono dis-
cusse.

Key words: resampling, finite population, sampling design, ppswor.

1 Background and Contribution

Resampling algorithms are simple and general tools for assessing estimators’ accu-
racy via variance estimation and for producing confidence intervals and p-values.
Resampling provides numerical solutions in non-standard challenging inferential
setups so that it has a special appeal for dealing with complex sampling designs for
finite population. These include the popular without replacement probability pro-
portional to size (πpsWOR) sampling, where every population unit is assigned a
specific probability to be included into the final sample, defined as proportional to
an available (positive) covariate with the role of auxiliary variable. The Bootstrap,
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likely the most used resampling method originally proposed by Efron [8] for iid
sample data, does not work in sampling from finite populations, since it cannot deal
with the dependence among sample units due to the sampling design. Several modi-
fied techniques have been proposed to overcome this problem. In a recent extensive
review [12] such proposals are classified into three groups

1. methods based on a pseudo-population, where sample units are first used to con-
struct a replicate of the parent population and then bootstrap samples are selected
into the resulting pseudo-population. Main proposals in this class are [9], [5], [4],
[11] and more recently [6] and [7];

2. direct bootstrap methods where bootstrap samples are directly selected from the
(original) sample or a re-scaled version of it. Main proposals in this class are
[14], [18] and recently [1];

3. weighted bootstrap methods, where a new set of weights is provided to produce
bootstrap estimates, by adjusting the (original) design weights. Main contribu-
tions of this third type are [15] and [2].

In a recent paper Conti et al. [7] provide a general theory for finite population
resampling based on pseudo-population by also proving its asymptotic correctness.
The main contribution parallels the asymptotic justification by Bickel and Friedman
[3] for the classical iid Efron boostrap.

In this paper a new πpsWOR resampling is introduced which is a simplified
and computationally more efficient version of the asymptotically correct bootstrap
by Conti et al. [7]. The new proposal presents several advantages w.r.t. the large
available literature on the topic. First of all, it represents a unified approach to re-
sampling complex samples from finite population. It is in fact a method based on
a pseudo-population, asymptotically correct according to Conti et al. [7]. However,
at the same time it is both a direct bootstrap and a weighted bootstrap, for allow-
ing to select bootstrap samples directly from the original sample on the basis of an
appropriate (bootstrap) weighting system. Secondly, it is computationally efficient
because it does not require the actual construction of a pseudo-population. In the
third place, it is important to notice that the real application of a finite population re-
sampling usually (and certainly for existing methods included in group 1.) involves
some sort of rounding or re-scaling, either randomized or systematic, which would
affect the entire boostrap performance and ultimately the expected properties of the
released bootstrap estimates. The resampling we are proposing does not need any
arbitrary rounding and it admits underlying pseudo-population of any size possibly
non-integer, along with any real value for the bootstrap weights. A greater precision
and possibly efficiency gains are expected as a consequence. Finally, our resampling
is very simple to implement, since it requires a unique basic re-sampling design
whatever πpsWOR design had generated the available to-be-bootstrapped sample.
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2 Notation and Preliminaries

Let UN be a finite population of unit i = 1 . . .N from which a sample s is selected
under a given design and with pre-fixed size n. Let Di be the sample member-
ship indicator, i.e. a random variable taking value 1 if i ∈ s and 0 otherwise, with
n = D1 + · · ·+DN . The (design) expectation πi = E[Di] = P(i ∈ s) is the first order
inclusion probability. Let Y be the study variable and X be an available positive
auxiliary variable, with yi and xi their value for each population unit, ty = ∑i yi and
tX = ∑

N
i=1 xi their population totals. A πpsWOR sampling design is known to be

highly efficient whenever Y is expected to be in a relation of approximate pro-
portionality with X , so that πi are set to be proportional to the auxiliary variable
πi = nxi/tX , i = 1 . . .N. Let θ = θ (FN) be the population quantity to be estimated,
where FN denotes the population distribution function of Y . We focus on the famil-
iar and often used class of estimators that are expressed as functional of an estimator
of FN , namely θ̂ = θ

(
F̂
)
. Such class includes both the popular Horvitz-Thompson

and Hájek estimators, respectively given by the following choices to estimate FN

F̂HT (y) = 1
N ∑

N
i=1

1
πi

DiI(yi≤y) F̂H(y) =
∑

N
i=1

1
πi

DiI(yi≤y)

∑
N
i=1

1
πi

Di
(1)

Whatever complex both the sampling design and the analytical structure of θ , a
resampling algorithm would produce a (Monte Carlo) estimate of the variance of
θ̂ as well as confidence intervals for θ . In Conti et al [7] conditions are given for
a resampling algorithm to be asymptotically correct, which implies to be based on
a pseudo population and to comprise the following basic steps, where the familiar
star ∗ notation is adopted to denote bootstrap quantities:

0. Construct a pseudo-population U ∗
N∗ by replicating (a chosen number) N∗i of times

the values {yi,xi} associated with every sampled unit i ∈ s. From now on y∗k
and x∗k will indicate the study and auxiliary values included into the pseudo-
population of size N∗, such that N∗i units k ∈U ∗

N∗ would be of Type i, with i ∈ s
and N∗ = ∑i∈s N∗i . Finally define the pseudo-population distribution function as

F∗N∗(y) =
1

N∗
N∗

∑
k=1

I(y∗k≤y) =
N

∑
i=1

N∗i
N∗

DiI(yi≤y), y ∈ R (2)

1. Generate M independent bootstrap samples s∗ of size n (M chosen sufficiently
large) by selecting from U ∗

N∗ under a (re)sampling design guaranteeing first order
inclusion probabilities π∗k = nx∗k/t∗X where t∗x = ∑

N∗
k=1 x∗k = ∑i∈s N∗i xi.

2. For each bootstrap sample s∗m compute F̂∗H,m according to the right term in (1)

and thus compute the replicate θ̂ ∗m = θ

(
F̂∗H,m

)
, m = 1 . . .M.

3. Compute the M quantities

Z∗n,m =
√

n
(

θ̂
∗
m−θ

∗
)
=
√

n
(

θ(F̂∗H,m)−θ(F∗N∗)
)

m = 1, . . . , M. (3)
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Note that (3) provides a bootstrap distribution of θ̂ = θ
(
F̂
)

- simulated upon M
runs - with empirical distribution function given by R̂∗n,M(z) = 1

M ∑
M
m=1 I(Z∗n,m≤z),

z ∈ R and corresponding pth quantile defined as

R̂∗−1
n,M (p) = inf{z : R̂∗n,M(z)≥ p}, 0 < p < 1. (4)

4. Compute the variance of (3)

Ŝ2∗ =
1

M−1

M

∑
m=1

(
Z∗n,m−Z∗M

)2
=

n
M−1

M

∑
m=1

(
θ̂
∗
m−θ

∗
M

)2
(5)

where Z∗M = 1
M ∑

M
m=1 Z∗n,m and θ

∗
M = 1

M ∑
M
m=1 θ̂ ∗m, which is a bootstrap (point)

estimate of the variance of estimator θ̂ .

6. Finally bootstrap confidence intervals (CI) can be computed; for instance based
on percentiles (4)[

θ̂ −n−1/2R∗−1
n,M (1−α/2), θ̂ −n−1/2R∗−1

n,M (α/2)
]

(6)

and based on Standard Normal percentiles and the bootstrap variance estimate at
step 3. [

θ̂ −n−1/2zα/2Ŝ∗, θ̂ +n−1/2zα/2Ŝ∗
]

(7)

3 The Proposed Method

With the purpose of contributing a new πpsWOR resampling which is a simplified
and computationally more efficient version of the asymptotically correct bootstrap
recalled above, we aim at compressing the initial steps 0. and 1. in a unique sim-
plified and significantly less time-consuming step. Toward this goal a promising
starting point has been a recent Quatember proposal [13]. It focused on a pseudo-
population based on the quite natural choice

N∗i = π
−1
i = tX/(nxi) i ∈ s (8)

which are usually non-integer numbers so that some sort of rounding is needed, the
most popular being the Holmberg randomization [11]

N∗i,Holm = bπ−1
i c+Bern

(
π
−1
i −bπ

−1
i c
)

(9)

The ingenious Quatember solution has two main properties: first of all, the ac-
tual construction of the pseudo-population is unnecessary and in fact skipped, so
that N∗ and every N∗i are allowed any real number non-necessary integer. Impor-
tant simplifications realize as a consequence: both the construction of the pseudo-
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population and any rounding would be avoided, whether randomized or otherwise.
Second the M bootstrap samples s∗m are selected directly from the (original) sample
s by a simple draw-by-draw (with replacement, WR) design, related to the so called
drawing-probability-proportional to size (pps). Quatember re-sampling design has
initial probability of selecting a unit of Type i, either from the underlying U ∗

N∗ or
directly from s, set equal to

p∗i,Q = xi/t∗X (10)

However it can be proved that Quatember method is not asympotically correct,
according to Conti et al. [7]. This is essentially because it fails to address the require-
ment for the re-sampling inclusion probabilities to be proportional to the auxiliary
variable, precisely π∗k = nxi/t∗X for all N∗i units k ∈U ∗

N∗ of Type i ∈ s.
By benefit upon the main idea in Quatember first proposal and by retaining its

simplicity and computational efficiency, we now propose some modified versions of
p∗i,Q able to address, at least approximatively, such requirement which would lead
to asymptotically correct resampling methods beside simplified and efficient. It is
important to notice that inclusion probabilities for pps design are not proportional
to pis, and do not have an expression in closed form (see for instance [10], p. 95).
We then rely upon three useful approximations, each relating the initial selection
probability pi to the first order inclusion probability πi. By conditioning on the re-
sampling first order inclusion probability to equate nxi/t∗X , we derive

p∗i,R1 ≈ log
(

1− nxi

t∗X

)/
∑
l∈s

N∗l log
(

1− nxl

t∗X

)
(11)

as a first solution based on [16]. A second solution, computationally heavier, is based
on [17] and can be computed via the following iterative algorithm:

0. Set m = 0, π∗(i)(m) = π∗(i), i ∈ s, and take a threshold δ > 0.
1. Compute

p∗i (m) = log
(

1−π
∗
(i)(m)

)/
∑
l∈s

N∗l log
(

1−π
∗
(l)(m)

)
, i ∈ s.

2. Compute ξ ∗n (m) as the solution of the equation:

∑
i∈s

N∗i (1− exp{−p∗i (m)t}) = n

3. Compute

π
∗
i (m+1) = 1− exp{−ξ

∗
n (m)p∗i (m)} , i ∈ s (12)

4. Set m→ m+1. If |π∗i (m+1)−π∗i |< δ for every i ∈ s, then go to Step 5. Other-
wise, go to Step 1.

5. Set
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p∗i,R2 = p∗i (m), i ∈ s. (13)

A third option, based on [10], has led to

p∗i,H =
xi

t∗X

{
1+

1
2

n−1
n

(
nxi

t∗X
−π

∗
)}

(14)

where π
∗ = n−1

∑i∈s N∗i π∗2i .

Finally we considered a fourth solution based on adjusting the choice (8) rather
than the initial selection probability. Notice that eqn. (8) leads to the important prop-
erty t∗X = tX , i.e. the resulting pseudo-population is calibrated w.r.t. the (real) total
of the auxiliary variable. On the other hand, neither (8) nor its randomized version
(9) satisfy ∑i∈s N∗i = N, i.e. the pseudo-population is not calibrated w.r.t. the pop-
ulation size. Our fourth option is based on fostering a pseudo population calibrated
w.r.t. both the (real) population size and (real) total of X . Such double calibration
(DCal) is reached by replacing either equation (8) or (9) by

N∗i =
1
πi

+
(N−∑π

−1
i )(∑x2

i )

n(∑x2
i )− (∑xi)2 −

(N−∑π
−1
i )(∑xi)

n(∑x2
i )− (∑xi)2 xi (15)

that is the exact solution of a quadratic constrained optimization problem, and can
be any real number, whether integer or not.

Our new method consists in replacing both steps 0. and 1. of the asymptotically
correct resampling algorithm given in Section 2, by the following unique simplified
and computationally more efficient step

1. Generate M independent bootstrap samples s∗ of size n (M chosen sufficiently
large) by selecting from s under a draw-by-draw WR (re)sampling design with
conditional probability of selecting a unit of Type i at the jth bootstrap draw
given by

p j
(
Type i|s∗j−1

)
=

max{0,(N∗i −hi, j−1)xi}
t∗X −∑l∈s hl, j−1xl

j = 2 . . .n. (16)

where s∗j−1 denotes the bootstrap sub-sample informed by the previous j− 1
draws, hi, j−1 is the number of units of type i selected in the first j− 1 draw.
Notice that, at the first draw ( j=1) would hold any of the options illustrated in
the present section, either equations (11), (13), (14) or (10) joined with (15).

4 Preliminary Empirical Evidence

A preliminary simulation has been carried out with the purpose of empirically test-
ing the performance of our simplified resampling method according to each of the
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4 alternative options illustrated in Section 3, and to compare it with some main
competitors available in the literature. The simulated scenarios are composed by
two populations of increasing size N = 200, 400. The study and auxiliary vari-
able Y and X were generated according to the same model in [1] leading to circa
80% of correlation. For each scenario, 1000 samples were simulated under a Pareto
πps design with 20% sampling fraction. Focusing of the population mean N−1 ty
as the quantity θ to be estimated, we simulated two familiar estimators: the unbi-
ased Horvitz-Thompson estimator θ̂HT = N−1

∑i∈s yiπ
−1
i and the more efficient and

asymptotically unbiased Hájek estimator θ̂H =
(
∑i∈s π

−1
i

)−1
∑i∈s yiπ

−1
i .

For each simulated sample, M = 1000 bootstrap runs were performed under 7 dif-
ferent resampling methods: 4 proposed in this paper plus 3 competitors, as described
in Table 1. The first competitor, dabbed Holm, consists of the asymptotically correct
resampling algorithm recalled in Section 2 with the pseudo-population constructed
via the Holmberg randomization. It is thus interesting to compare with the resam-
pling proposed here which aim at an equivalent resampling but computationally
more efficient for avoiding both the actual construction of the pseudo-population
and any rounding. The second competitor, DirAT for short, has been recently pro-
posed in the literature as a direct bootstrap neither based on a pseudo-population nor
requiring π∗i ∝ xi for every sample unit i ∈ s. Thus, it appears interesting to compare
with our methods w.r.t the statistical properties of the bootstrap estimate provided.
Finally, the third competitor briefly indicated by Q, is the original proposals by
Quatember which has been the starting point for developping our new porposal for
a simplified, computationally more efficient and yet asymptotically correct resam-
pling.

Table 1 7 Simulated Resampling Methods

Method Main features Reference

Holm resampling from U ∗
N∗ with N∗i = bπ−1

i c+ Bern
(
π
−1
i −bπ

−1
i c
)

under the
same original sampling design with π∗k = nx∗k/t∗X∗

[11]

DirAT no U ∗
N∗ , direct resampling into s under a combination of special designs [1]

Q direct resampling into s under WR pps design with initial draw probabilities
(10) and N∗i = π

−1
i

[13]

R1 direct resampling into s under WR pps design with initial draw probabilities
(11) and N∗i = π

−1
i

new

R2 direct resampling into s under WR pps design with initial draw probabilities
(13) and N∗i = π

−1
i

new

H direct resampling into s under WR pps design with initial draw probabilities
(14) and N∗i = π

−1
i

new

DCal direct resampling into s under WR pps design with initial draw probabilities
(10) and N∗i as in (15)

new

Expected results from our preliminary simulation are
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• a significant/dramatic outperformance of any of the new methods R1,R2,H or
DCal over both Holm and DirAT w.r.t. the computational time needed for pro-
ducing botstrap estimate;

• an essentially equivalent performance of any new methods R1,R2,H or DCal as
compared to Holm w.r.t to the properties of the final bootstrap estimates with
possibly slight gains due to the possibility to avoid the (randomized) rounding;

• an improvement of all new methods over Q as N and n increases for moderate
sampling fraction;

• differences between the performance of the 7 simulated resampling methods able
to suggest raccomandations for practical application (beside the computational
efficiency).
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